immune deficiency, isoform A [Drosophila melanogaster]
death domain-containing protein( domain architecture ID 10109012)
death domain-containing protein may be involved in protein-protein interactions, similar to Drosophila melanogaster protein immune deficiency (IMD), which functions as an adapter protein that transduces immunity signals from the activation of pathogen recognition receptors (PRRs) by bacterial infection to the IMD/NF-kappa-B signaling pathway
List of domain hits
Name | Accession | Description | Interval | E-value | |||
Death | cd01670 | Death Domain: a protein-protein interaction domain; Death Domains (DDs) are protein-protein ... |
180-260 | 1.97e-20 | |||
Death Domain: a protein-protein interaction domain; Death Domains (DDs) are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. Structural analysis of DD-DD complexes show that the domains interact with each other in many different ways. DD-containing proteins serve as adaptors in signaling pathways and they can recruit other proteins into signaling complexes. In mammals, they are prominent components of the programmed cell death (apoptosis) pathway and are found in a number of other signaling pathways. In invertebrates, they are involved in transcriptional regulation of zygotic patterning genes in insect embryogenesis, and are components of the ToII/NF-kappaB pathway, a conserved innate immune pathway in animal cells. : Pssm-ID: 260017 [Multi-domain] Cd Length: 79 Bit Score: 82.71 E-value: 1.97e-20
|
|||||||
Name | Accession | Description | Interval | E-value | |||
Death | cd01670 | Death Domain: a protein-protein interaction domain; Death Domains (DDs) are protein-protein ... |
180-260 | 1.97e-20 | |||
Death Domain: a protein-protein interaction domain; Death Domains (DDs) are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. Structural analysis of DD-DD complexes show that the domains interact with each other in many different ways. DD-containing proteins serve as adaptors in signaling pathways and they can recruit other proteins into signaling complexes. In mammals, they are prominent components of the programmed cell death (apoptosis) pathway and are found in a number of other signaling pathways. In invertebrates, they are involved in transcriptional regulation of zygotic patterning genes in insect embryogenesis, and are components of the ToII/NF-kappaB pathway, a conserved innate immune pathway in animal cells. Pssm-ID: 260017 [Multi-domain] Cd Length: 79 Bit Score: 82.71 E-value: 1.97e-20
|
|||||||
Death | pfam00531 | Death domain; |
178-260 | 2.98e-09 | |||
Death domain; Pssm-ID: 459845 [Multi-domain] Cd Length: 86 Bit Score: 52.75 E-value: 2.98e-09
|
|||||||
DEATH | smart00005 | DEATH domain, found in proteins involved in cell death (apoptosis); Alpha-helical domain ... |
172-256 | 7.62e-07 | |||
DEATH domain, found in proteins involved in cell death (apoptosis); Alpha-helical domain present in a variety of proteins with apoptotic functions. Some (but not all) of these domains form homotypic and heterotypic dimers. Pssm-ID: 214467 [Multi-domain] Cd Length: 88 Bit Score: 46.25 E-value: 7.62e-07
|
|||||||
Name | Accession | Description | Interval | E-value | |||
Death | cd01670 | Death Domain: a protein-protein interaction domain; Death Domains (DDs) are protein-protein ... |
180-260 | 1.97e-20 | |||
Death Domain: a protein-protein interaction domain; Death Domains (DDs) are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. Structural analysis of DD-DD complexes show that the domains interact with each other in many different ways. DD-containing proteins serve as adaptors in signaling pathways and they can recruit other proteins into signaling complexes. In mammals, they are prominent components of the programmed cell death (apoptosis) pathway and are found in a number of other signaling pathways. In invertebrates, they are involved in transcriptional regulation of zygotic patterning genes in insect embryogenesis, and are components of the ToII/NF-kappaB pathway, a conserved innate immune pathway in animal cells. Pssm-ID: 260017 [Multi-domain] Cd Length: 79 Bit Score: 82.71 E-value: 1.97e-20
|
|||||||
Death_FADD | cd08306 | Fas-associated Death Domain protein-protein interaction domain; Death domain (DD) found in ... |
181-270 | 1.63e-09 | |||
Fas-associated Death Domain protein-protein interaction domain; Death domain (DD) found in FAS-associated via death domain (FADD). FADD is a component of the death-inducing signaling complex (DISC) and serves as an adaptor in the signaling pathway of death receptor proteins. It modulates apoptosis as well as non-apoptotic processes such as cell cycle progression, survival, innate immune signaling, and hematopoiesis. FADD contains an N-terminal DED and a C-terminal DD. Its DD interacts with the DD of the activated death receptor, FAS, and its DED recruits the initiator caspases, caspase-8 and -10, to the DISC complex via a homotypic interaction with the N-terminal DED of the caspase. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and they can recruit other proteins into signaling complexes. Pssm-ID: 260020 Cd Length: 85 Bit Score: 53.45 E-value: 1.63e-09
|
|||||||
Death | pfam00531 | Death domain; |
178-260 | 2.98e-09 | |||
Death domain; Pssm-ID: 459845 [Multi-domain] Cd Length: 86 Bit Score: 52.75 E-value: 2.98e-09
|
|||||||
Death_RIP1 | cd08777 | Death Domain of Receptor-Interacting Protein 1; Death domain (DD) found in ... |
180-243 | 9.92e-08 | |||
Death Domain of Receptor-Interacting Protein 1; Death domain (DD) found in Receptor-Interacting Protein 1 (RIP1) and related proteins. RIP kinases serve as essential sensors of cellular stress. Vertebrates contain several types containing a homologous N-terminal kinase domain and varying C-terminal domains. RIP1 harbors a C-terminal DD, which binds death receptors (DRs) including TNF receptor 1, Fas, TNF-related apoptosis-inducing ligand receptor 1 (TRAILR1), and TRAILR2. It also interacts with other DD-containing adaptor proteins such as TRADD and FADD. RIP1 plays a crucial role in determining a cell's fate, between survival or death, following exposure to stress signals. It is important in the signaling of NF-kappaB and MAPKs, and it links DR-associated signaling to reactive oxygen species (ROS) production. Abnormal RIP1 function may result in ROS accumulation affecting inflammatory responses, innate immunity, stress responses, and cell survival. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. Pssm-ID: 260048 Cd Length: 86 Bit Score: 48.58 E-value: 9.92e-08
|
|||||||
DEATH | smart00005 | DEATH domain, found in proteins involved in cell death (apoptosis); Alpha-helical domain ... |
172-256 | 7.62e-07 | |||
DEATH domain, found in proteins involved in cell death (apoptosis); Alpha-helical domain present in a variety of proteins with apoptotic functions. Some (but not all) of these domains form homotypic and heterotypic dimers. Pssm-ID: 214467 [Multi-domain] Cd Length: 88 Bit Score: 46.25 E-value: 7.62e-07
|
|||||||
Death_TNFR1 | cd08313 | Death domain of Tumor Necrosis Factor Receptor 1; Death Domain (DD) found in tumor necrosis ... |
191-247 | 1.19e-05 | |||
Death domain of Tumor Necrosis Factor Receptor 1; Death Domain (DD) found in tumor necrosis factor receptor-1 (TNFR-1). TNFR-1 has many names including TNFRSF1A, CD120a, p55, p60, and TNFR60. It activates two major intracellular signaling pathways that lead to the activation of the transcription factor NF-kB and the induction of cell death. Upon binding of its ligand TNF, TNFR-1 trimerizes which leads to the recruitment of an adaptor protein named TNFR-associated death domain protein (TRADD) through a DD/DD interaction. Mutations in the TNFRSF1A gene causes TNFR-associated periodic syndrome (TRAPS), a rare disorder characterized recurrent fever, myalgia, abdominal pain, conjunctivitis and skin eruptions. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. Pssm-ID: 176729 Cd Length: 80 Bit Score: 42.76 E-value: 1.19e-05
|
|||||||
Death_PIDD | cd08779 | Death Domain of p53-induced protein with a death domain; Death domain (DD) found in PIDD ... |
183-263 | 1.22e-04 | |||
Death Domain of p53-induced protein with a death domain; Death domain (DD) found in PIDD (p53-induced protein with a death domain) and similar proteins. PIDD is a component of the PIDDosome complex, which is an oligomeric caspase-activating complex involved in caspase-2 activation and plays a role in mediating stress-induced apoptosis. The PIDDosome complex is composed of three components, PIDD, RAIDD and caspase-2, which interact through their DDs and DD-like domains. The DD of PIDD interacts with the DD of RAIDD, which also contains a Caspase Activation and Recruitment Domain (CARD) that interacts with the caspase-2 CARD. Autoproteolysis of PIDD determines the downstream signaling event, between pro-survival NF-kB or pro-death caspase-2 activation. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD, DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. Pssm-ID: 260049 Cd Length: 86 Bit Score: 39.99 E-value: 1.22e-04
|
|||||||
Death_TRAILR_DR4_DR5 | cd08315 | Death domain of Tumor necrosis factor-Related Apoptosis-Inducing Ligand Receptors; Death ... |
191-229 | 1.97e-04 | |||
Death domain of Tumor necrosis factor-Related Apoptosis-Inducing Ligand Receptors; Death Domain (DD) found in Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL) Receptors. In mammals, this family includes TRAILR1 (also called DR4 or TNFRSF10A) and TRAILR2 (also called DR5, TNFRSF10B, or KILLER). They function as receptors for the cytokine TRAIL and are involved in apoptosis signaling pathways. TRAIL preferentially induces apoptosis in cancer cells while exhibiting little toxicity in normal cells. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. Pssm-ID: 260027 Cd Length: 88 Bit Score: 39.56 E-value: 1.97e-04
|
|||||||
Death_RAIDD | cd08319 | Death domain of RIP-associated ICH-1 homologous protein with a death domain; Death domain (DD) ... |
187-243 | 1.37e-03 | |||
Death domain of RIP-associated ICH-1 homologous protein with a death domain; Death domain (DD) of RAIDD (RIP-associated ICH-1 homologous protein with a death domain), also known as CRADD (Caspase and RIP adaptor). RAIDD is an adaptor protein that together with the p53-inducible protein PIDD and caspase-2, forms the PIDDosome complex, which is required for caspase-2 activation and plays a role in mediating stress-induced apoptosis. RAIDD contains an N-terminal Caspase Activation and Recruitment Domain (CARD), which interacts with the caspase-2 CARD, and a C-terminal DD, which interacts with the DD of PIDD. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD, DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. Pssm-ID: 260031 Cd Length: 83 Bit Score: 36.92 E-value: 1.37e-03
|
|||||||
Death_DRs | cd08784 | Death Domain of Death Receptors; Death domain (DD) found in death receptor proteins. Death ... |
191-231 | 1.80e-03 | |||
Death Domain of Death Receptors; Death domain (DD) found in death receptor proteins. Death receptors are members of the tumor necrosis factor (TNF) receptor superfamily, characterized by having a cytoplasmic DD. Known members of the family are Fas (CD95/APO-1), TNF-receptor 1 (TNFR1/TNFRSF1A/p55/CD120a), TNF-related apoptosis-inducing ligand receptor 1 (TRAIL-R1 /DR4), and receptor 2 (TRAIL-R2/DR5/APO-2/KILLER), as well as Death Receptor 3 (DR3/APO-3/TRAMP/WSL-1/LARD). They are involved in apoptosis signaling pathways. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. Pssm-ID: 260054 Cd Length: 80 Bit Score: 36.40 E-value: 1.80e-03
|
|||||||
Death_ank | cd08317 | Death domain associated with Ankyrins; Death Domain (DD) associated with Ankyrins. Ankyrins ... |
173-231 | 2.41e-03 | |||
Death domain associated with Ankyrins; Death Domain (DD) associated with Ankyrins. Ankyrins are modular proteins comprising three conserved domains, an N-terminal membrane-binding domain containing ANK repeats, a spectrin-binding domain and a C-terminal DD. Ankyrins function as adaptor proteins and they interact, through ANK repeats, with structurally diverse membrane proteins, including ion channels/pumps, calcium release channels, and cell adhesion molecules. They play critical roles in the proper expression and membrane localization of these proteins. In mammals, this family includes ankyrin-R for restricted (or ANK1), ankyrin-B for broadly expressed (or ANK2) and ankyrin-G for general or giant (or ANK3). They are expressed in different combinations in many tissues and play non-overlapping functions. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including CARD (Caspase activation and recruitment domain), DED (Death Effector Domain), and PYRIN. They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes. Pssm-ID: 260029 Cd Length: 84 Bit Score: 36.09 E-value: 2.41e-03
|
|||||||
Blast search parameters | ||||
|