PLC-like phosphodiesterases superfamily protein [Arabidopsis thaliana]
PI-PLC domain-containing protein( domain architecture ID 10171182)
PI-PLC (phosphoinositide-specific phospholipase C) domain-containing protein may hydrolyze the membrane lipid phosphatidylinositol to produce phosphorylated myo-inositol and diacylglycerol; similar to Arabidopsis thaliana PI-PLC X domain-containing protein At5g67130
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
PI-PLCc_At5g67130_like | cd08588 | Catalytic domain of Arabidopsis thaliana PI-PLC X domain-containing protein At5g67130 and its ... |
71-346 | 9.78e-114 | |||||
Catalytic domain of Arabidopsis thaliana PI-PLC X domain-containing protein At5g67130 and its uncharacterized homologs; This subfamily corresponds to the catalytic domain present in Arabidopsis thaliana PI-PLC X domain-containing protein At5g67130 and its uncharacterized homologs. Members in this family show high sequence similarity to bacterial phosphatidylinositol-specific phospholipase C (PI-PLC, EC 4.6.1.13), which participates in Ca2+-independent PI metabolism, hydrolyzing the membrane lipid phosphatidylinositol (PI) to produce phosphorylated myo-inositol and diacylglycerol (DAG). : Pssm-ID: 176530 Cd Length: 270 Bit Score: 334.30 E-value: 9.78e-114
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
PI-PLCc_At5g67130_like | cd08588 | Catalytic domain of Arabidopsis thaliana PI-PLC X domain-containing protein At5g67130 and its ... |
71-346 | 9.78e-114 | |||||
Catalytic domain of Arabidopsis thaliana PI-PLC X domain-containing protein At5g67130 and its uncharacterized homologs; This subfamily corresponds to the catalytic domain present in Arabidopsis thaliana PI-PLC X domain-containing protein At5g67130 and its uncharacterized homologs. Members in this family show high sequence similarity to bacterial phosphatidylinositol-specific phospholipase C (PI-PLC, EC 4.6.1.13), which participates in Ca2+-independent PI metabolism, hydrolyzing the membrane lipid phosphatidylinositol (PI) to produce phosphorylated myo-inositol and diacylglycerol (DAG). Pssm-ID: 176530 Cd Length: 270 Bit Score: 334.30 E-value: 9.78e-114
|
|||||||||
PLCXc | smart00148 | Phospholipase C, catalytic domain (part); domain X; Phosphoinositide-specific phospholipases C. ... |
113-183 | 3.82e-03 | |||||
Phospholipase C, catalytic domain (part); domain X; Phosphoinositide-specific phospholipases C. These enzymes contain 2 regions (X and Y) which together form a TIM barrel-like structure containing the active site residues. Phospholipase C enzymes (PI-PLC) act as signal transducers that generate two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. The bacterial enzyme appears to be a homologue of the mammalian PLCs. Pssm-ID: 197543 [Multi-domain] Cd Length: 143 Bit Score: 37.65 E-value: 3.82e-03
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
PI-PLCc_At5g67130_like | cd08588 | Catalytic domain of Arabidopsis thaliana PI-PLC X domain-containing protein At5g67130 and its ... |
71-346 | 9.78e-114 | |||||
Catalytic domain of Arabidopsis thaliana PI-PLC X domain-containing protein At5g67130 and its uncharacterized homologs; This subfamily corresponds to the catalytic domain present in Arabidopsis thaliana PI-PLC X domain-containing protein At5g67130 and its uncharacterized homologs. Members in this family show high sequence similarity to bacterial phosphatidylinositol-specific phospholipase C (PI-PLC, EC 4.6.1.13), which participates in Ca2+-independent PI metabolism, hydrolyzing the membrane lipid phosphatidylinositol (PI) to produce phosphorylated myo-inositol and diacylglycerol (DAG). Pssm-ID: 176530 Cd Length: 270 Bit Score: 334.30 E-value: 9.78e-114
|
|||||||||
PI-PLCc_bacteria_like | cd08557 | Catalytic domain of bacterial phosphatidylinositol-specific phospholipase C and similar ... |
75-346 | 5.68e-46 | |||||
Catalytic domain of bacterial phosphatidylinositol-specific phospholipase C and similar proteins; This subfamily corresponds to the catalytic domain present in bacterial phosphatidylinositol-specific phospholipase C (PI-PLC, EC 4.6.1.13) and their sequence homologs found in eukaryota. Bacterial PI-PLCs participate in Ca2+-independent PI metabolism, hydrolyzing the membrane lipid phosphatidylinositol (PI) to produce phosphorylated myo-inositol and diacylglycerol (DAG). Although their precise physiological function remains unclear, bacterial PI-PLCs may function as virulence factors in some pathogenic bacteria. Bacterial PI-PLCs contain a single TIM-barrel type catalytic domain. Its catalytic mechanism is based on general base and acid catalysis utilizing two well conserved histidines, and consists of two steps, a phosphotransfer and a phosphodiesterase reaction. Eukaryotic homologs in this family are named as phosphatidylinositol-specific phospholipase C X domain containing proteins (PI-PLCXD). They are distinct from the typical eukaryotic phosphoinositide-specific phospholipases C (PI-PLC, EC 3.1.4.11), which have a multidomain organization that consists of a PLC catalytic core domain, and various regulatory domains. The catalytic core domain is assembled from two highly conserved X- and Y-regions split by a divergent linker sequence. In contrast, eukaryotic PI-PLCXDs contain a single TIM-barrel type catalytic domain, X domain, which is closely related to that of bacterial PI-PLCs. Although the biological function of eukaryotic PI-PLCXDs still remains unclear, it may be distinct from that of typical eukaryotic PI-PLCs. This family also includes a distinctly different type of eukaryotic PLC, glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC), an integral membrane protein characterized in the protozoan parasite Trypanosoma brucei. T. brucei GPI-PLC hydrolyzes the GPI-anchor on the variant specific glycoprotein (VSG), releasing dimyristyl glycerol (DMG), which may facilitate the evasion of the protozoan to the host's immune system. It does not require Ca2+ for its activity and is more closely related to bacterial PI-PLCs, but not mammalian PI-PLCs. Pssm-ID: 176500 [Multi-domain] Cd Length: 271 Bit Score: 159.95 E-value: 5.68e-46
|
|||||||||
PI-PLCc_Rv2075c_like | cd08590 | Catalytic domain of uncharacterized Mycobacterium tuberculosis Rv2075c-like proteins; This ... |
78-266 | 8.08e-18 | |||||
Catalytic domain of uncharacterized Mycobacterium tuberculosis Rv2075c-like proteins; This subfamily corresponds to the catalytic domain present in uncharacterized Mycobacterium tuberculosis Rv2075c and its homologs. Members in this family are more closely related to the Streptomyces antibioticus phosphatidylinositol-specific phospholipase C1(SaPLC1)-like proteins rather than the typical bacterial phosphatidylinositol-specific phospholipase C (PI-PLC, EC 4.6.1.13), which participate in Ca2+-independent PI metabolism, hydrolyzing the membrane lipid phosphatidylinositol (PI) to produce phosphorylated myo-inositol and diacylglycerol (DAG). In contrast, SaPLC1-like proteins have two Ca2+-chelating amino acid substitutions which convert them to metal-dependent bacterial PI-PLC. Rv2075c and its homologs have the same amino acid substitutions as well, which might suggest they have metal-dependent PI-PLC activity. Pssm-ID: 176532 Cd Length: 267 Bit Score: 82.84 E-value: 8.08e-18
|
|||||||||
PI-PLCXDc_like | cd08587 | Catalytic domain of phosphatidylinositol-specific phospholipase C X domain containing and ... |
75-233 | 5.05e-10 | |||||
Catalytic domain of phosphatidylinositol-specific phospholipase C X domain containing and similar proteins; This family corresponds to the catalytic domain present in phosphatidylinositol-specific phospholipase C X domain containing proteins (PI-PLCXD) which are bacterial phosphatidylinositol-specific phospholipase C (PI-PLC, EC 4.6.1.13) sequence homologs mainly found in eukaryota. The typical eukaryotic phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11) have a multidomain organization that consists of a PLC catalytic core domain, and various regulatory domains. The catalytic core domain is assembled from two highly conserved X- and Y-regions split by a divergent linker sequence. In contrast, eukaryotic PI-PLCXDs and their bacterial homologs contain a single TIM-barrel type catalytic domain, X domain, which is more closely related to that of bacterial PI-PLCs. Although the biological function of eukaryotic PI-PLCXDs still remains unclear, it may be distinct from that of typical eukaryotic PI-PLCs. Pssm-ID: 176529 Cd Length: 288 Bit Score: 60.05 E-value: 5.05e-10
|
|||||||||
PI-PLCc_BcPLC_like | cd08586 | Catalytic domain of Bacillus cereus phosphatidylinositol-specific phospholipases C and similar ... |
112-223 | 1.40e-08 | |||||
Catalytic domain of Bacillus cereus phosphatidylinositol-specific phospholipases C and similar proteins; This subfamily corresponds to the catalytic domain present in Bacillus cereus phosphatidylinositol-specific phospholipase C (PI-PLC, EC 4.6.1.13) and its sequence homologs found in bacteria and eukaryota. Bacterial PI-PLCs participate in Ca2+-independent PI metabolism, hydrolyzing the membrane lipid phosphatidylinositol (PI) to produce phosphorylated myo-inositol and diacylglycerol (DAG). Although their precise physiological function remains unclear, bacterial PI-PLCs may function as virulence factors in some pathogenic bacteria. Bacterial PI-PLCs contain a single TIM-barrel type catalytic domain. Their catalytic mechanism is based on general base and acid catalysis utilizing two well conserved histidines, and consists of two steps, a phosphotransfer and a phosphodiesterase reaction. This family also includes some uncharacterized eukaryotic homologs, which contains a single TIM-barrel type catalytic domain, X domain. They are similar to bacterial PI-PLCs, and distinct from typical eukaryotic PI-PLCs, which have a multidomain organization that consists of a PLC catalytic core domain, and various regulatory domains, and strictly require Ca2+ for their catalytic activities. The prototype of this family is Bacillus cereus PI-PLC, which has a moderate thermal stability and is active as a monomer. Pssm-ID: 176528 Cd Length: 279 Bit Score: 55.75 E-value: 1.40e-08
|
|||||||||
PI-PLCXD1c | cd08616 | Catalytic domain of phosphatidylinositol-specific phospholipase C, X domain containing 1; This ... |
90-177 | 2.42e-04 | |||||
Catalytic domain of phosphatidylinositol-specific phospholipase C, X domain containing 1; This subfamily corresponds to the catalytic domain present in a group of phosphatidylinositol-specific phospholipase C X domain containing 1 (PI-PLCXD1), 2 (PI-PLCXD2) and 3 (PI-PLCXD3), which are bacterial phosphatidylinositol-specific phospholipase C (PI-PLC, EC 4.6.1.13) sequence homologs found in vertebrates. The typical eukaryotic phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11) has a multidomain organization that consists of a PLC catalytic core domain, and various regulatory domains. The catalytic core domain is assembled from two highly conserved X- and Y-regions split by a divergent linker sequence. In contrast, members in this group contain a single TIM-barrel type catalytic domain, X domain, and are more closely related to bacterial PI-PLCs, which participate in Ca2+-independent PI metabolism, hydrolyzing the membrane lipid phosphatidylinositol (PI) to produce phosphorylated myo-inositol and diacylglycerol (DAG). Although the biological function of eukaryotic PI-PLCXDs still remains unclear, it may distinct from that of typical eukaryotic PI-PLCs. Pssm-ID: 176555 Cd Length: 290 Bit Score: 42.61 E-value: 2.42e-04
|
|||||||||
PI-PLCXDc_like_1 | cd08620 | Catalytic domain of uncharacterized hypothetical proteins similar to eukaryotic ... |
96-181 | 2.72e-04 | |||||
Catalytic domain of uncharacterized hypothetical proteins similar to eukaryotic phosphatidylinositol-specific phospholipase C, X domain containing proteins; This subfamily corresponds to the catalytic domain present in a group of uncharacterized hypothetical proteins found in bacteria and fungi, which are similar to eukaryotic phosphatidylinositol-specific phospholipase C, X domain containing proteins (PI-PLCXD). The typical eukaryotic phosphoinositide-specific phospholipase C (PI-PLC, EC 3.1.4.11) has a multidomain organization that consists of a PLC catalytic core domain, and various regulatory domains. The catalytic core domain is assembled from two highly conserved X- and Y-regions split by a divergent linker sequence. In contrast, eukaryotic PI-PLCXDs contain a single TIM-barrel type catalytic domain, X domain, and are more closely related to bacterial PI-PLCs, which participate in Ca2+-independent PI metabolism, hydrolyzing the membrane lipid phosphatidylinositol (PI) to produce phosphorylated myo-inositol and diacylglycerol (DAG). Although the biological function of eukaryotic PI-PLCXDs still remains unclear, it may distinct from that of typical eukaryotic PI-PLCs. Pssm-ID: 176557 Cd Length: 281 Bit Score: 42.38 E-value: 2.72e-04
|
|||||||||
PLCXc | smart00148 | Phospholipase C, catalytic domain (part); domain X; Phosphoinositide-specific phospholipases C. ... |
113-183 | 3.82e-03 | |||||
Phospholipase C, catalytic domain (part); domain X; Phosphoinositide-specific phospholipases C. These enzymes contain 2 regions (X and Y) which together form a TIM barrel-like structure containing the active site residues. Phospholipase C enzymes (PI-PLC) act as signal transducers that generate two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. The bacterial enzyme appears to be a homologue of the mammalian PLCs. Pssm-ID: 197543 [Multi-domain] Cd Length: 143 Bit Score: 37.65 E-value: 3.82e-03
|
|||||||||
Blast search parameters | ||||
|