Jojoba acyl CoA reductase-related male sterility protein [Arabidopsis thaliana]
PLN02996 family protein( domain architecture ID 11477349)
PLN02996 family protein
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||||
PLN02996 | PLN02996 | fatty acyl-CoA reductase |
6-493 | 0e+00 | ||||||||
fatty acyl-CoA reductase : Pssm-ID: 215538 [Multi-domain] Cd Length: 491 Bit Score: 932.20 E-value: 0e+00
|
||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||
PLN02996 | PLN02996 | fatty acyl-CoA reductase |
6-493 | 0e+00 | ||||||||
fatty acyl-CoA reductase Pssm-ID: 215538 [Multi-domain] Cd Length: 491 Bit Score: 932.20 E-value: 0e+00
|
||||||||||||
FAR-N_SDR_e | cd05236 | fatty acyl CoA reductases (FARs), extended (e) SDRs; SDRs are Rossmann-fold NAD(P)H-binding ... |
17-365 | 1.89e-137 | ||||||||
fatty acyl CoA reductases (FARs), extended (e) SDRs; SDRs are Rossmann-fold NAD(P)H-binding proteins, many of which may function as fatty acyl CoA reductases (FAR), acting on medium and long chain fatty acids, and have been reported to be involved in diverse processes such as biosynthesis of insect pheromones, plant cuticular wax production, and mammalian wax biosynthesis. In Arabidopsis thaliana, proteins with this particular architecture have also been identified as the MALE STERILITY 2 (MS2) gene product, which is implicated in male gametogenesis. Mutations in MS2 inhibit the synthesis of exine (sporopollenin), rendering plants unable to reduce pollen wall fatty acids to corresponding alcohols. This N-terminal domain shares the catalytic triad (but not the upstream Asn) and characteristic NADP-binding motif of the extended SDR family. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187547 [Multi-domain] Cd Length: 320 Bit Score: 398.98 E-value: 1.89e-137
|
||||||||||||
NAD_binding_4 | pfam07993 | Male sterility protein; This family represents the C-terminal region of the male sterility ... |
21-322 | 3.36e-91 | ||||||||
Male sterility protein; This family represents the C-terminal region of the male sterility protein in a number of arabidopsis and drosophila. A sequence-related jojoba acyl CoA reductase is also included. Pssm-ID: 462334 [Multi-domain] Cd Length: 257 Bit Score: 278.34 E-value: 3.36e-91
|
||||||||||||
Lys2b | COG3320 | Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs [Secondary ... |
17-207 | 1.88e-27 | ||||||||
Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs [Secondary metabolites biosynthesis, transport and catabolism]; Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs is part of the Pathway/BioSystem: Lysine biosynthesis Pssm-ID: 442549 [Multi-domain] Cd Length: 265 Bit Score: 110.68 E-value: 1.88e-27
|
||||||||||||
Thioester-redct | TIGR01746 | thioester reductase domain; This model includes the terminal domain from the fungal alpha ... |
18-235 | 5.88e-13 | ||||||||
thioester reductase domain; This model includes the terminal domain from the fungal alpha aminoadipate reductase enzyme (also known as aminoadipate semialdehyde dehydrogenase) which is involved in the biosynthesis of lysine, as well as the reductase-containing component of the myxochelin biosynthetic gene cluster, MxcG. The mechanism of reduction involves activation of the substrate by adenylation and transfer to a covalently-linked pantetheine cofactor as a thioester. This thioester is then reduced to give an aldehyde (thus releasing the product) and a regenerated pantetheine thiol. (In myxochelin biosynthesis this aldehyde is further reduced to an alcohol or converted to an amine by an aminotransferase.) This is a fundamentally different reaction than beta-ketoreductase domains of polyketide synthases which act at a carbonyl two carbons removed from the thioester and forms an alcohol as a product. This domain is invariably found at the C-terminus of the proteins which contain it (presumably because it results in the release of the product). The majority of hits to this model are non-ribosomal peptide synthetases in which this domain is similarly located proximal to a thiolation domain (pfam00550). In some cases this domain is found at the end of a polyketide synthetase enzyme, but is unlike ketoreductase domains which are found before the thiolase domains. Exceptions to this observed relationship with the thiolase domain include three proteins which consist of stand-alone reductase domains (GP|466833 from M. leprae, GP|435954 from Anabaena and OMNI|NTL02SC1199 from Strep. coelicolor) and one protein (OMNI|NTL01NS2636 from Nostoc) which contains N-terminal homology with a small group of hypothetical proteins but no evidence of a thiolation domain next to the putative reductase domain. Below the noise cutoff to this model are proteins containing more distantly related ketoreductase and dehydratase/epimerase domains. It has been suggested that a NADP-binding motif can be found in the N-terminal portion of this domain that may form a Rossman-type fold. Pssm-ID: 273787 [Multi-domain] Cd Length: 367 Bit Score: 70.14 E-value: 5.88e-13
|
||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||
PLN02996 | PLN02996 | fatty acyl-CoA reductase |
6-493 | 0e+00 | ||||||||
fatty acyl-CoA reductase Pssm-ID: 215538 [Multi-domain] Cd Length: 491 Bit Score: 932.20 E-value: 0e+00
|
||||||||||||
PLN02503 | PLN02503 | fatty acyl-CoA reductase 2 |
8-492 | 3.85e-148 | ||||||||
fatty acyl-CoA reductase 2 Pssm-ID: 215279 [Multi-domain] Cd Length: 605 Bit Score: 436.60 E-value: 3.85e-148
|
||||||||||||
FAR-N_SDR_e | cd05236 | fatty acyl CoA reductases (FARs), extended (e) SDRs; SDRs are Rossmann-fold NAD(P)H-binding ... |
17-365 | 1.89e-137 | ||||||||
fatty acyl CoA reductases (FARs), extended (e) SDRs; SDRs are Rossmann-fold NAD(P)H-binding proteins, many of which may function as fatty acyl CoA reductases (FAR), acting on medium and long chain fatty acids, and have been reported to be involved in diverse processes such as biosynthesis of insect pheromones, plant cuticular wax production, and mammalian wax biosynthesis. In Arabidopsis thaliana, proteins with this particular architecture have also been identified as the MALE STERILITY 2 (MS2) gene product, which is implicated in male gametogenesis. Mutations in MS2 inhibit the synthesis of exine (sporopollenin), rendering plants unable to reduce pollen wall fatty acids to corresponding alcohols. This N-terminal domain shares the catalytic triad (but not the upstream Asn) and characteristic NADP-binding motif of the extended SDR family. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187547 [Multi-domain] Cd Length: 320 Bit Score: 398.98 E-value: 1.89e-137
|
||||||||||||
NAD_binding_4 | pfam07993 | Male sterility protein; This family represents the C-terminal region of the male sterility ... |
21-322 | 3.36e-91 | ||||||||
Male sterility protein; This family represents the C-terminal region of the male sterility protein in a number of arabidopsis and drosophila. A sequence-related jojoba acyl CoA reductase is also included. Pssm-ID: 462334 [Multi-domain] Cd Length: 257 Bit Score: 278.34 E-value: 3.36e-91
|
||||||||||||
Lys2b | COG3320 | Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs [Secondary ... |
17-207 | 1.88e-27 | ||||||||
Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs [Secondary metabolites biosynthesis, transport and catabolism]; Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs is part of the Pathway/BioSystem: Lysine biosynthesis Pssm-ID: 442549 [Multi-domain] Cd Length: 265 Bit Score: 110.68 E-value: 1.88e-27
|
||||||||||||
Sterile | pfam03015 | Male sterility protein; This family represents the C-terminal region of the male sterility ... |
395-493 | 1.83e-20 | ||||||||
Male sterility protein; This family represents the C-terminal region of the male sterility protein in a number of arabidopsis and drosophila. A sequence-related jojoba acyl CoA reductase is also included. Pssm-ID: 460779 [Multi-domain] Cd Length: 92 Bit Score: 85.60 E-value: 1.83e-20
|
||||||||||||
MupV_like_SDR_e | cd05263 | Pseudomonas fluorescens MupV-like, extended (e) SDRs; This subgroup of extended SDR family ... |
19-213 | 7.80e-20 | ||||||||
Pseudomonas fluorescens MupV-like, extended (e) SDRs; This subgroup of extended SDR family domains have the characteristic active site tetrad and a well-conserved NAD(P)-binding motif. This subgroup is not well characterized, its members are annotated as having a variety of putative functions. One characterized member is Pseudomonas fluorescens MupV a protein involved in the biosynthesis of Mupirocin, a polyketide-derived antibiotic. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187573 [Multi-domain] Cd Length: 293 Bit Score: 89.73 E-value: 7.80e-20
|
||||||||||||
FAR_C | cd09071 | C-terminal domain of fatty acyl CoA reductases; C-terminal domain of fatty acyl CoA reductases, ... |
394-493 | 4.52e-18 | ||||||||
C-terminal domain of fatty acyl CoA reductases; C-terminal domain of fatty acyl CoA reductases, a family of SDR-like proteins. SDRs or short-chain dehydrogenases/reductases are Rossmann-fold NAD(P)H-binding proteins. Many proteins in this FAR_C family may function as fatty acyl-CoA reductases (FARs), acting on medium and long chain fatty acids, and have been reported to be involved in diverse processes such as the biosynthesis of insect pheromones, plant cuticular wax production, and mammalian wax biosynthesis. In Arabidopsis thaliana, proteins with this particular architecture have also been identified as the MALE STERILITY 2 (MS2) gene product, which is implicated in male gametogenesis. Mutations in MS2 inhibit the synthesis of exine (sporopollenin), rendering plants unable to reduce pollen wall fatty acids to corresponding alcohols. The function of this C-terminal domain is unclear. Pssm-ID: 176924 [Multi-domain] Cd Length: 92 Bit Score: 79.14 E-value: 4.52e-18
|
||||||||||||
SDR_e1 | cd05235 | extended (e) SDRs, subgroup 1; This family consists of an SDR module of multidomain proteins ... |
18-171 | 5.58e-16 | ||||||||
extended (e) SDRs, subgroup 1; This family consists of an SDR module of multidomain proteins identified as putative polyketide sythases fatty acid synthases (FAS), and nonribosomal peptide synthases, among others. However, unlike the usual ketoreductase modules of FAS and polyketide synthase, these domains are related to the extended SDRs, and have canonical NAD(P)-binding motifs and an active site tetrad. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187546 [Multi-domain] Cd Length: 290 Bit Score: 78.46 E-value: 5.58e-16
|
||||||||||||
Thioester-redct | TIGR01746 | thioester reductase domain; This model includes the terminal domain from the fungal alpha ... |
18-235 | 5.88e-13 | ||||||||
thioester reductase domain; This model includes the terminal domain from the fungal alpha aminoadipate reductase enzyme (also known as aminoadipate semialdehyde dehydrogenase) which is involved in the biosynthesis of lysine, as well as the reductase-containing component of the myxochelin biosynthetic gene cluster, MxcG. The mechanism of reduction involves activation of the substrate by adenylation and transfer to a covalently-linked pantetheine cofactor as a thioester. This thioester is then reduced to give an aldehyde (thus releasing the product) and a regenerated pantetheine thiol. (In myxochelin biosynthesis this aldehyde is further reduced to an alcohol or converted to an amine by an aminotransferase.) This is a fundamentally different reaction than beta-ketoreductase domains of polyketide synthases which act at a carbonyl two carbons removed from the thioester and forms an alcohol as a product. This domain is invariably found at the C-terminus of the proteins which contain it (presumably because it results in the release of the product). The majority of hits to this model are non-ribosomal peptide synthetases in which this domain is similarly located proximal to a thiolation domain (pfam00550). In some cases this domain is found at the end of a polyketide synthetase enzyme, but is unlike ketoreductase domains which are found before the thiolase domains. Exceptions to this observed relationship with the thiolase domain include three proteins which consist of stand-alone reductase domains (GP|466833 from M. leprae, GP|435954 from Anabaena and OMNI|NTL02SC1199 from Strep. coelicolor) and one protein (OMNI|NTL01NS2636 from Nostoc) which contains N-terminal homology with a small group of hypothetical proteins but no evidence of a thiolation domain next to the putative reductase domain. Below the noise cutoff to this model are proteins containing more distantly related ketoreductase and dehydratase/epimerase domains. It has been suggested that a NADP-binding motif can be found in the N-terminal portion of this domain that may form a Rossman-type fold. Pssm-ID: 273787 [Multi-domain] Cd Length: 367 Bit Score: 70.14 E-value: 5.88e-13
|
||||||||||||
WcaG | COG0451 | Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; |
19-207 | 4.95e-11 | ||||||||
Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440220 [Multi-domain] Cd Length: 295 Bit Score: 63.46 E-value: 4.95e-11
|
||||||||||||
SDR_e | cd08946 | extended (e) SDRs; Extended SDRs are distinct from classical SDRs. In addition to the Rossmann ... |
119-341 | 1.09e-07 | ||||||||
extended (e) SDRs; Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 212494 [Multi-domain] Cd Length: 200 Bit Score: 52.30 E-value: 1.09e-07
|
||||||||||||
dTDP_GD_SDR_e | cd05246 | dTDP-D-glucose 4,6-dehydratase, extended (e) SDRs; This subgroup contains dTDP-D-glucose 4, ... |
17-183 | 2.37e-07 | ||||||||
dTDP-D-glucose 4,6-dehydratase, extended (e) SDRs; This subgroup contains dTDP-D-glucose 4,6-dehydratase and related proteins, members of the extended-SDR family, with the characteristic Rossmann fold core region, active site tetrad and NAD(P)-binding motif. dTDP-D-glucose 4,6-dehydratase is closely related to other sugar epimerases of the SDR family. dTDP-D-dlucose 4,6,-dehydratase catalyzes the second of four steps in the dTDP-L-rhamnose pathway (the dehydration of dTDP-D-glucose to dTDP-4-keto-6-deoxy-D-glucose) in the synthesis of L-rhamnose, a cell wall component of some pathogenic bacteria. In many gram negative bacteria, L-rhamnose is an important constituent of lipopoylsaccharide O-antigen. The larger N-terminal portion of dTDP-D-Glucose 4,6-dehydratase forms a Rossmann fold NAD-binding domain, while the C-terminus binds the sugar substrate. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187557 [Multi-domain] Cd Length: 315 Bit Score: 52.55 E-value: 2.37e-07
|
||||||||||||
RmlD_sub_bind | pfam04321 | RmlD substrate binding domain; L-rhamnose is a saccharide required for the virulence of some ... |
101-180 | 3.21e-07 | ||||||||
RmlD substrate binding domain; L-rhamnose is a saccharide required for the virulence of some bacteria. Its precursor, dTDP-L-rhamnose, is synthesized by four different enzymes the final one of which is RmlD. The RmlD substrate binding domain is responsible for binding a sugar nucleotide. Pssm-ID: 427865 [Multi-domain] Cd Length: 284 Bit Score: 51.89 E-value: 3.21e-07
|
||||||||||||
RfbD | COG1091 | dTDP-4-dehydrorhamnose reductase [Cell wall/membrane/envelope biogenesis]; |
103-183 | 4.58e-07 | ||||||||
dTDP-4-dehydrorhamnose reductase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440708 [Multi-domain] Cd Length: 279 Bit Score: 51.29 E-value: 4.58e-07
|
||||||||||||
dTDP_HR_like_SDR_e | cd05254 | dTDP-6-deoxy-L-lyxo-4-hexulose reductase and related proteins, extended (e) SDRs; ... |
70-169 | 6.73e-06 | ||||||||
dTDP-6-deoxy-L-lyxo-4-hexulose reductase and related proteins, extended (e) SDRs; dTDP-6-deoxy-L-lyxo-4-hexulose reductase, an extended SDR, synthesizes dTDP-L-rhamnose from alpha-D-glucose-1-phosphate, providing the precursor of L-rhamnose, an essential cell wall component of many pathogenic bacteria. This subgroup has the characteristic active site tetrad and NADP-binding motif. This subgroup also contains human MAT2B, the regulatory subunit of methionine adenosyltransferase (MAT); MAT catalyzes S-adenosylmethionine synthesis. The human gene encoding MAT2B encodes two major splicing variants which are induced in human cell liver cancer and regulate HuR, an mRNA-binding protein which stabilizes the mRNA of several cyclins, to affect cell proliferation. Both MAT2B variants include this extended SDR domain. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187564 [Multi-domain] Cd Length: 280 Bit Score: 47.62 E-value: 6.73e-06
|
||||||||||||
UDP_invert_4-6DH_SDR_e | cd05237 | UDP-Glcnac (UDP-linked N-acetylglucosamine) inverting 4,6-dehydratase, extended (e) SDRs; ... |
16-166 | 1.62e-04 | ||||||||
UDP-Glcnac (UDP-linked N-acetylglucosamine) inverting 4,6-dehydratase, extended (e) SDRs; UDP-Glcnac inverting 4,6-dehydratase was identified in Helicobacter pylori as the hexameric flaA1 gene product (FlaA1). FlaA1 is hexameric, possesses UDP-GlcNAc-inverting 4,6-dehydratase activity, and catalyzes the first step in the creation of a pseudaminic acid derivative in protein glycosylation. Although this subgroup has the NADP-binding motif characteristic of extended SDRs, its members tend to have a Met substituted for the active site Tyr found in most SDR families. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187548 [Multi-domain] Cd Length: 287 Bit Score: 43.38 E-value: 1.62e-04
|
||||||||||||
GDP_Man_Dehyd | pfam16363 | GDP-mannose 4,6 dehydratase; |
87-171 | 8.31e-04 | ||||||||
GDP-mannose 4,6 dehydratase; Pssm-ID: 465104 [Multi-domain] Cd Length: 327 Bit Score: 41.38 E-value: 8.31e-04
|
||||||||||||
Epimerase | pfam01370 | NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. ... |
19-172 | 1.06e-03 | ||||||||
NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. The proteins in this family use nucleotide-sugar substrates for a variety of chemical reactions. Pssm-ID: 396097 [Multi-domain] Cd Length: 238 Bit Score: 40.74 E-value: 1.06e-03
|
||||||||||||
Blast search parameters | ||||
|