HMP-PP phosphatase is a HAD (haloacid dehalogenase) family hydrolase that catalyzes the hydrolysis of 4-amino-2-methyl-5-hydroxymethylpyrimidine pyrophosphate (HMP-PP) to form 4-amino-2-methyl-5-hydroxymethylpyrimidine phosphate (HMP-P)
Cof subfamily of IIB subfamily of haloacid dehalogenase superfamily; This subfamily of ...
4-258
4.27e-87
Cof subfamily of IIB subfamily of haloacid dehalogenase superfamily; This subfamily of sequences falls within the Class-IIB subfamily (TIGR01484) of the Haloacid Dehalogenase superfamily of aspartate-nucleophile hydrolases. The use of the name "Cof" as an identifier here is arbitrary and refers to the E. coli Cof protein. This subfamily is notable for the large number of recent paralogs in many species. Listeria, for instance, has 12, Clostridium, Lactococcus and Streptococcus pneumoniae have 8 each, Enterococcus and Salmonella have 7 each, and Bacillus subtilus, Mycoplasma, Staphylococcus and E. coli have 6 each. This high degree of gene duplication is limited to the gamma proteobacteria and low-GC gram positive lineages. The profusion of genes in this subfamily is not coupled with a high degree of divergence, so it is impossible to determine an accurate phylogeny at the equivalog level. Considering the relationship of this subfamily to the other known members of the HAD-IIB subfamily (TIGR01484), sucrose and trehalose phosphatases and phosphomannomutase, it seems a reasonable hypothesis that these enzymes act on phosphorylated sugars. Possibly the diversification of genes in this subfamily represents the diverse sugars and polysaccharides that various bacteria find in their biological niches. The members of this subfamily are restricted almost exclusively to bacteria (one sequences from S. pombe scores above trusted, while another is between trusted and noise). It is notable that no archaea are found in this group, the closest relations to the archaea found here being two Deinococcus sequences. [Unknown function, Enzymes of unknown specificity]
Pssm-ID: 272905 [Multi-domain] Cd Length: 256 Bit Score: 259.89 E-value: 4.27e-87
phosphatase, similar to Escherichia coli Cof and Thermotoga maritima TM0651; belongs to the ...
4-260
1.30e-78
phosphatase, similar to Escherichia coli Cof and Thermotoga maritima TM0651; belongs to the haloacid dehalogenase-like superfamily; Escherichia coli Cof is involved in the hydrolysis of HMP-PP (4-amino-2-methyl-5-hydroxymethylpyrimidine pyrophosphate, an intermediate in thiamin biosynthesis), Cof also has phosphatase activity against the coenzymes pyridoxal phosphate (PLP) and FMN. Thermotoga maritima TM0651 acts as a phosphatase with a phosphorylated carbohydrate molecule as a possible substrate. Escherichia coli YbhA is also a member of this family and catalyzes the dephosphorylation of PLP, YbhA can also hydrolyze erythrose-4-phosphate and fructose-1,6-bis-phosphate. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases.
Pssm-ID: 319818 [Multi-domain] Cd Length: 253 Bit Score: 238.26 E-value: 1.30e-78
Cof subfamily of IIB subfamily of haloacid dehalogenase superfamily; This subfamily of ...
4-258
4.27e-87
Cof subfamily of IIB subfamily of haloacid dehalogenase superfamily; This subfamily of sequences falls within the Class-IIB subfamily (TIGR01484) of the Haloacid Dehalogenase superfamily of aspartate-nucleophile hydrolases. The use of the name "Cof" as an identifier here is arbitrary and refers to the E. coli Cof protein. This subfamily is notable for the large number of recent paralogs in many species. Listeria, for instance, has 12, Clostridium, Lactococcus and Streptococcus pneumoniae have 8 each, Enterococcus and Salmonella have 7 each, and Bacillus subtilus, Mycoplasma, Staphylococcus and E. coli have 6 each. This high degree of gene duplication is limited to the gamma proteobacteria and low-GC gram positive lineages. The profusion of genes in this subfamily is not coupled with a high degree of divergence, so it is impossible to determine an accurate phylogeny at the equivalog level. Considering the relationship of this subfamily to the other known members of the HAD-IIB subfamily (TIGR01484), sucrose and trehalose phosphatases and phosphomannomutase, it seems a reasonable hypothesis that these enzymes act on phosphorylated sugars. Possibly the diversification of genes in this subfamily represents the diverse sugars and polysaccharides that various bacteria find in their biological niches. The members of this subfamily are restricted almost exclusively to bacteria (one sequences from S. pombe scores above trusted, while another is between trusted and noise). It is notable that no archaea are found in this group, the closest relations to the archaea found here being two Deinococcus sequences. [Unknown function, Enzymes of unknown specificity]
Pssm-ID: 272905 [Multi-domain] Cd Length: 256 Bit Score: 259.89 E-value: 4.27e-87
phosphatase, similar to Escherichia coli Cof and Thermotoga maritima TM0651; belongs to the ...
4-260
1.30e-78
phosphatase, similar to Escherichia coli Cof and Thermotoga maritima TM0651; belongs to the haloacid dehalogenase-like superfamily; Escherichia coli Cof is involved in the hydrolysis of HMP-PP (4-amino-2-methyl-5-hydroxymethylpyrimidine pyrophosphate, an intermediate in thiamin biosynthesis), Cof also has phosphatase activity against the coenzymes pyridoxal phosphate (PLP) and FMN. Thermotoga maritima TM0651 acts as a phosphatase with a phosphorylated carbohydrate molecule as a possible substrate. Escherichia coli YbhA is also a member of this family and catalyzes the dephosphorylation of PLP, YbhA can also hydrolyze erythrose-4-phosphate and fructose-1,6-bis-phosphate. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases.
Pssm-ID: 319818 [Multi-domain] Cd Length: 253 Bit Score: 238.26 E-value: 1.30e-78
HAD-superfamily hydrolase, subfamily IIB; This subfamily falls within the Haloacid ...
4-229
1.28e-44
HAD-superfamily hydrolase, subfamily IIB; This subfamily falls within the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The Class II subfamilies are characterized by a domain that is located between the second and third conserved catalytic motifs of the superfamily domain. The IIB subfamily is distinguished from the IIA subfamily (TIGR01460) by homology and the predicted secondary structure of this domain by PSI-PRED. The IIB subfamily's Class II domain has the following predicted structure: Helix-Sheet-Sheet-(Helix or Sheet)-Helix-Sheet-(variable)-Helix-Sheet-Sheet. The IIB subfamily consists of Trehalose-6-phosphatase (TIGR00685), plant and cyanobacterial Sucrose-phosphatase and a closely related group of bacterial and archaeal sequences, eukaryotic phosphomannomutase (pfam03332), a large subfamily ("Cof-like hydrolases", TIGR00099) containing many closely related bacterial sequences, a hypothetical equivalog containing the E. coli YedP protein, as well as two small clusters containing OMNI|TC0379 and OMNI|SA2196 whose relationship to the other groups is unclear. [Unknown function, Enzymes of unknown specificity]
Pssm-ID: 273651 [Multi-domain] Cd Length: 207 Bit Score: 149.84 E-value: 1.28e-44
phosphatase, similar to Bacteroides thetaiotaomicron VPI-5482 BT4131 hexose phosphate ...
7-238
4.97e-25
phosphatase, similar to Bacteroides thetaiotaomicron VPI-5482 BT4131 hexose phosphate phosphatase; belongs to the haloacid dehalogenase-like superfamily; Bacteroides thetaiotaomicron VPI-5482 BT4131 is a phosphatase with preference for hexose phosphates. In addition this family includes uncharacterized Bacillus subtilis YkrA, a putative phosphatase and uncharacterized Streptococcus pyogenes MGAS10394 a putative bifunctional phosphatase/peptidyl-prolyl cis-trans isomerase. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases.
Pssm-ID: 319819 [Multi-domain] Cd Length: 213 Bit Score: 98.83 E-value: 4.97e-25
Escherichia coli YbiV sugar phosphatase/phosphotransferase and related proteins; belongs to ...
3-254
2.18e-17
Escherichia coli YbiV sugar phosphatase/phosphotransferase and related proteins; belongs to the haloacid dehalogenase-like superfamily; Escherichia coli YbiV can act as both a sugar phosphatase and as a phosphotransferase. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases.
Pssm-ID: 319820 [Multi-domain] Cd Length: 184 Bit Score: 77.62 E-value: 2.18e-17
Sucrose-6F-phosphate phosphohydrolase; This family consists of Sucrose-6F-phosphate ...
2-240
4.08e-15
Sucrose-6F-phosphate phosphohydrolase; This family consists of Sucrose-6F-phosphate phosphohydrolase proteins found in plants and cyanobacteria. Sucrose-6(F)-phosphate phosphohydrolase catalyzes the final step in the pathway of sucrose biosynthesis.
Pssm-ID: 428314 [Multi-domain] Cd Length: 246 Bit Score: 72.68 E-value: 4.08e-15
sucrose-phosphatase, similar to Synechocystis sp PCC 6803 SPP; Sucrose-phosphatase (SPP; EC 3. ...
4-257
4.54e-15
sucrose-phosphatase, similar to Synechocystis sp PCC 6803 SPP; Sucrose-phosphatase (SPP; EC 3.1.3.24) catalyzes the dephosphorylation of sucrose-6(F)-phosphate (Suc6P)-the final step in the pathway of sucrose biosynthesis in plants and cyanobacteria. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases.
Pssm-ID: 319792 [Multi-domain] Cd Length: 245 Bit Score: 72.77 E-value: 4.54e-15
haloacid dehalogenase-like hydrolase; This family is structurally different from the alpha ...
3-224
6.59e-07
haloacid dehalogenase-like hydrolase; This family is structurally different from the alpha/beta hydrolase family (pfam00561). This family includes L-2-haloacid dehalogenase, epoxide hydrolases and phosphatases. The structure of the family consists of two domains. One is an inserted four helix bundle, which is the least well conserved region of the alignment, between residues 16 and 96 of Swiss:P24069. The rest of the fold is composed of the core alpha/beta domain. Those members with the characteriztic DxD triad at the N-terminus are probably phosphatidylglycerolphosphate (PGP) phosphatases involved in cardiolipin biosynthesis in the mitochondria.
Pssm-ID: 459910 [Multi-domain] Cd Length: 191 Bit Score: 48.74 E-value: 6.59e-07
Haloacid dehalogenase-like hydrolases; The haloacid dehalogenase-like (HAD) superfamily ...
7-80
1.43e-06
Haloacid dehalogenase-like hydrolases; The haloacid dehalogenase-like (HAD) superfamily includes L-2-haloacid dehalogenase, epoxide hydrolase, phosphoserine phosphatase, phosphomannomutase, phosphoglycolate phosphatase, P-type ATPase, and many others. This superfamily includes a variety of enzymes that catalyze the cleavage of substrate C-Cl, P-C, and P-OP bonds via nucleophilic substitution pathways. All of which use a nucleophilic aspartate in their phosphoryl transfer reaction. They catalyze nucleophilic substitution reactions at phosphorus or carbon centers, using a conserved Asp carboxylate in covalent catalysis. All members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. Members of this superfamily are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases.
Pssm-ID: 319763 [Multi-domain] Cd Length: 106 Bit Score: 45.85 E-value: 1.43e-06
phosphatase, similar to Thermoplasma acidophilum TA0175 phosphoglycolate phosphatase (PCPase), ...
186-237
5.29e-06
phosphatase, similar to Thermoplasma acidophilum TA0175 phosphoglycolate phosphatase (PCPase), and Pyrococcus horikoshii PH1421, a magnesium-dependent phosphatase; belongs to the haloacid dehalogenase-like superfamily; Thermoplasma acidophilum TA0175 phosphoglycolate phosphatase (PGPase) catalyzes the magnesium-dependent dephosphorylation of phosphoglycolate. This family also includes Pyrococcus horikoshii OT3 PH1421, a magnesium-dependent phosphatase. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases.
Pssm-ID: 319816 [Multi-domain] Cd Length: 139 Bit Score: 44.89 E-value: 5.29e-06
haloacid dehalogenase-like superfamily phosphatase similar to Pyrococcus horikoshii ...
8-67
1.12e-03
haloacid dehalogenase-like superfamily phosphatase similar to Pyrococcus horikoshii mannosyl-3-phosphoglycerate phosphatase and Persephonella marina glucosyl-3-phosphoglycerate phosphatase; This family includes Pyrococcus horikoshii and Thermus thermophilus HB27 mannosyl-3-phosphoglycerate phosphatases (MpgPs) which catalyze the dephosphorylation of alpha-mannosyl-3-phosphoglycerate (MPG) to produce alpha-mannosylglycerate (MG), and Persephonella marina glucosyl-3-phosphoglycerate phosphatase (GpgP) which catalyzes the dephosphorylation of glucosyl-3-phosphoglycerate (GPG) to produce glucosylglycerate (GG). It also includes Methanococcoides burtonii MpgP protein which is able to dephosphorylate GPG to GG, and MPG to MG. Similar flexibilities in substrate specificity have been confirmed in vitro for the MpgPs from Thermus thermophiles and Pyrococcus horikoshii. Screens with natural substrates have not yet detected activity for another member Escherichia Coli YedP. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases.
Pssm-ID: 319810 [Multi-domain] Cd Length: 255 Bit Score: 39.65 E-value: 1.12e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options