ADP-ribose pyrophosphatase [Escherichia coli O157:H7 str. Sakai]
ADP-ribose diphosphatase( domain architecture ID 11484913)
ADP-ribose diphosphatase catalyzes a hydrolysis reaction in which water nucleophilically attacks ADP-ribose to produce AMP and D-ribose 5-phosphate
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
nudF | PRK10729 | ADP-ribose pyrophosphatase NudF; Provisional |
9-209 | 1.70e-158 | ||||
ADP-ribose pyrophosphatase NudF; Provisional : Pssm-ID: 182682 [Multi-domain] Cd Length: 202 Bit Score: 435.70 E-value: 1.70e-158
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
nudF | PRK10729 | ADP-ribose pyrophosphatase NudF; Provisional |
9-209 | 1.70e-158 | ||||
ADP-ribose pyrophosphatase NudF; Provisional Pssm-ID: 182682 [Multi-domain] Cd Length: 202 Bit Score: 435.70 E-value: 1.70e-158
|
||||||||
NUDIX_ADPRase | cd24155 | Adp Ribose Pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase) catalyzes the hydrolysis of ... |
15-201 | 1.37e-107 | ||||
Adp Ribose Pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase) catalyzes the hydrolysis of ADP-ribose and a variety of additional ADP-sugar conjugates to AMP and ribose-5-phosphate. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. Pssm-ID: 467603 [Multi-domain] Cd Length: 187 Bit Score: 306.76 E-value: 1.37e-107
|
||||||||
TIGR00052 | TIGR00052 | nudix-type nucleoside diphosphatase, YffH/AdpP family; Members of this family include proteins ... |
14-199 | 5.83e-100 | ||||
nudix-type nucleoside diphosphatase, YffH/AdpP family; Members of this family include proteins of about 200 amino acids, including the recently characterized nudix hydrolase YffH, shows to be highly active as a GDP-mannose pyrophosphatase. It also includes the C-terminal half of a 361-amino acid protein, TrgB from Rhodobacter sphaeroides, shown experimentally to help confer tellurite resistance. This model also hits a region near the C-terminus of a 1092-amino acid protein of C. elegans. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 129162 [Multi-domain] Cd Length: 185 Bit Score: 287.10 E-value: 5.83e-100
|
||||||||
MutT | COG0494 | 8-oxo-dGTP pyrophosphatase MutT and related house-cleaning NTP pyrophosphohydrolases, NUDIX ... |
45-198 | 1.23e-26 | ||||
8-oxo-dGTP pyrophosphatase MutT and related house-cleaning NTP pyrophosphohydrolases, NUDIX family [Defense mechanisms]; Pssm-ID: 440260 [Multi-domain] Cd Length: 143 Bit Score: 99.34 E-value: 1.23e-26
|
||||||||
NUDIX | pfam00293 | NUDIX domain; |
58-167 | 3.73e-07 | ||||
NUDIX domain; Pssm-ID: 395229 [Multi-domain] Cd Length: 132 Bit Score: 47.48 E-value: 3.73e-07
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
nudF | PRK10729 | ADP-ribose pyrophosphatase NudF; Provisional |
9-209 | 1.70e-158 | ||||
ADP-ribose pyrophosphatase NudF; Provisional Pssm-ID: 182682 [Multi-domain] Cd Length: 202 Bit Score: 435.70 E-value: 1.70e-158
|
||||||||
NUDIX_ADPRase | cd24155 | Adp Ribose Pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase) catalyzes the hydrolysis of ... |
15-201 | 1.37e-107 | ||||
Adp Ribose Pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase) catalyzes the hydrolysis of ADP-ribose and a variety of additional ADP-sugar conjugates to AMP and ribose-5-phosphate. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. Pssm-ID: 467603 [Multi-domain] Cd Length: 187 Bit Score: 306.76 E-value: 1.37e-107
|
||||||||
TIGR00052 | TIGR00052 | nudix-type nucleoside diphosphatase, YffH/AdpP family; Members of this family include proteins ... |
14-199 | 5.83e-100 | ||||
nudix-type nucleoside diphosphatase, YffH/AdpP family; Members of this family include proteins of about 200 amino acids, including the recently characterized nudix hydrolase YffH, shows to be highly active as a GDP-mannose pyrophosphatase. It also includes the C-terminal half of a 361-amino acid protein, TrgB from Rhodobacter sphaeroides, shown experimentally to help confer tellurite resistance. This model also hits a region near the C-terminus of a 1092-amino acid protein of C. elegans. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 129162 [Multi-domain] Cd Length: 185 Bit Score: 287.10 E-value: 5.83e-100
|
||||||||
NUDIX_GDPMK | cd24157 | GDP-mannose hydrolase (GDPMK), and similar proteins; GDP-mannose hydrolase (GDPMK) is a NUDIX ... |
54-199 | 6.45e-41 | ||||
GDP-mannose hydrolase (GDPMK), and similar proteins; GDP-mannose hydrolase (GDPMK) is a NUDIX enzyme that uses GDP-mannose as the preferred substrate. It is distinct from Nudix ADP-ribose hydrolases. GDPMK and ADP-ribose pyrophosphatase seem to use similar catalytic mechanism. However, GDPMK hydrolysis does not rely on a single glutamate as the catalytic base; rather, it is dependent on residues that coordinate the magnesium ions and residues that position the substrate properly for catalysis. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467605 Cd Length: 146 Bit Score: 136.15 E-value: 6.45e-41
|
||||||||
NUDIX_ADPRase_Nudt5_UGPPase_Nudt14 | cd03424 | ADP-ribose pyrophosphatase, UDP-glucose pyrophosphatase, and similar proteins; ADP-ribose ... |
56-198 | 2.02e-32 | ||||
ADP-ribose pyrophosphatase, UDP-glucose pyrophosphatase, and similar proteins; ADP-ribose pyrophosphatase (ADPRase) ( NUDIX (Nucleoside diphosphate-linked moiety X)) motif 5; Nudt5) catalyzes the hydrolysis of ADP-ribose and a variety of additional ADP-sugar conjugates to AMP and ribose-5-phosphate. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. Pssm-ID: 467530 [Multi-domain] Cd Length: 134 Bit Score: 113.76 E-value: 2.02e-32
|
||||||||
MutT | COG0494 | 8-oxo-dGTP pyrophosphatase MutT and related house-cleaning NTP pyrophosphohydrolases, NUDIX ... |
45-198 | 1.23e-26 | ||||
8-oxo-dGTP pyrophosphatase MutT and related house-cleaning NTP pyrophosphohydrolases, NUDIX family [Defense mechanisms]; Pssm-ID: 440260 [Multi-domain] Cd Length: 143 Bit Score: 99.34 E-value: 1.23e-26
|
||||||||
NUDIX_ADPRase_Ndx2 | cd24161 | NUDIX family Ndx2; NUDIX family protein Ndx2 found in Thermus thermophilus has ADP-ribose ... |
55-200 | 2.71e-23 | ||||
NUDIX family Ndx2; NUDIX family protein Ndx2 found in Thermus thermophilus has ADP-ribose pyrophosphatase (ADPRase) as well as flavin adenine dinucleotide (FAD) activity. ADPRase (EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity.Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467609 [Multi-domain] Cd Length: 137 Bit Score: 90.31 E-value: 2.71e-23
|
||||||||
PRK15009 | PRK15009 | GDP-mannose pyrophosphatase NudK; Provisional |
50-201 | 1.02e-19 | ||||
GDP-mannose pyrophosphatase NudK; Provisional Pssm-ID: 184971 Cd Length: 191 Bit Score: 82.58 E-value: 1.02e-19
|
||||||||
NUDIX_ADPRase_Rv1700 | cd24158 | ADP-ribose pyrophosphatase from Mycobacterium tuberculosis (Mt-ADPRase), and similar proteins; ... |
17-194 | 7.38e-18 | ||||
ADP-ribose pyrophosphatase from Mycobacterium tuberculosis (Mt-ADPRase), and similar proteins; Mycobacterium tuberculosis ADP-ribose pyrophosphatase mt-ADPRase(also called Rv1700) is a NUDIX protein that catalyzes the hydrolysis of ADP-ribose and a variety of additional ADP-sugar conjugates to AMP and ribose-5-phosphate. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. Pssm-ID: 467606 [Multi-domain] Cd Length: 174 Bit Score: 77.26 E-value: 7.38e-18
|
||||||||
NUDIX_ADPRase_Nudt5 | cd18888 | ADP-ribose pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase) (also known as NUDIX ... |
70-182 | 7.56e-13 | ||||
ADP-ribose pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase) (also known as NUDIX (Nucleoside diphosphate-linked moiety X)) motif 5; Nudt5) catalyzes the hydrolysis of ADP-ribose and a variety of additional ADP-sugar conjugates to AMP and ribose-5-phosphate. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. Pssm-ID: 467598 [Multi-domain] Cd Length: 149 Bit Score: 63.27 E-value: 7.56e-13
|
||||||||
NUDIX_ADPRase | cd24160 | Adp-ribose pyrophosphatase (ADPRase) found in Thermus thermophilus, and similar proteins; ... |
36-193 | 1.26e-10 | ||||
Adp-ribose pyrophosphatase (ADPRase) found in Thermus thermophilus, and similar proteins; ADP-ribose pyrophosphatase (ADPRase) such as found in extreme thermophile Thermus thermophilus (TtADPRase) catalyzes the hydrolysis of ADPR to AMP and ribose 5'-phosphate in the presence of Mg2+ and Zn2+ ions. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. Pssm-ID: 467608 [Multi-domain] Cd Length: 151 Bit Score: 57.51 E-value: 1.26e-10
|
||||||||
NUDIX_UGPPase_Nudt14 | cd18887 | UDP-glucose pyrophosphatase; UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as ... |
60-201 | 1.12e-09 | ||||
UDP-glucose pyrophosphatase; UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. Pssm-ID: 467597 [Multi-domain] Cd Length: 181 Bit Score: 55.26 E-value: 1.12e-09
|
||||||||
NUDIX_ADPRase_NudF | cd24159 | Bdellovibrio Bacteriovorus nucleoside diphosphate sugar hydrolase, and similar proteins; ... |
19-198 | 3.24e-09 | ||||
Bdellovibrio Bacteriovorus nucleoside diphosphate sugar hydrolase, and similar proteins; Bdellovibrio bacteriovorus nucleoside diphosphate sugar (NDPS) hydrolase Bd3179 has been shown to similarities to the Escherichia coli adenosine diphosphate ribose (ADPR) hydrolase and the guanosine diphosphate mannose (GDPM) hydrolase. It may have a role when Bdellovibrio degrades and metabolizes host cell. ADP-ribose pyrophosphatase (ADPRase) catalyzes the hydrolysis of ADP-ribose and a variety of additional ADP-sugar conjugates to AMP and ribose-5-phosphate. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. Pssm-ID: 467607 [Multi-domain] Cd Length: 173 Bit Score: 53.92 E-value: 3.24e-09
|
||||||||
NUDIX_Hydrolase | cd02883 | NUDIX hydrolase superfamily; NUDIX hydrolase is a superfamily of enzymes found in all three ... |
58-167 | 1.76e-08 | ||||
NUDIX hydrolase superfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467528 [Multi-domain] Cd Length: 106 Bit Score: 50.48 E-value: 1.76e-08
|
||||||||
NUDIX | pfam00293 | NUDIX domain; |
58-167 | 3.73e-07 | ||||
NUDIX domain; Pssm-ID: 395229 [Multi-domain] Cd Length: 132 Bit Score: 47.48 E-value: 3.73e-07
|
||||||||
PLN03143 | PLN03143 | nudix hydrolase; Provisional |
35-194 | 1.64e-06 | ||||
nudix hydrolase; Provisional Pssm-ID: 215602 Cd Length: 291 Bit Score: 47.51 E-value: 1.64e-06
|
||||||||
NUDIX_NADH_pyrophosphatase_Nudt13 | cd03429 | NADH pyrophosphatase; NADH pyrophosphatase, also known as NUDIX (nucleoside diphosphate linked ... |
95-176 | 3.53e-06 | ||||
NADH pyrophosphatase; NADH pyrophosphatase, also known as NUDIX (nucleoside diphosphate linked moiety X)) motif 13/Nudt13, is thought to have NADH pyrophosphatase activity, be involved in NADH metabolic process and NADP catabolic process, catalyzing the cleavage of NADH into reduced nicotinamide mononucleotide (NMNH) and AMP, and located in mitochondrion. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity. Members of this family are also recognized by the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. A block of 8 conserved amino acids downstream of the NUDIX motif is thought to give NADH pyrophosphatase its specificity for NADH. NADH pyrophosphatase forms a dimer. Pssm-ID: 467535 [Multi-domain] Cd Length: 126 Bit Score: 44.79 E-value: 3.53e-06
|
||||||||
NUDIX_ADPRase_NudE | cd24156 | NUDIX domain family NudE found in Escherichia coli, and similar proteins; The adenosine ... |
57-194 | 8.18e-06 | ||||
NUDIX domain family NudE found in Escherichia coli, and similar proteins; The adenosine nucleotide hydrolase NudE protein in Escherichia coli is a NUDIX hydrolase family member active against ADP ribose, NADH, AP2A and AP3A33, and is classified as a hydrolase (E.C. 3.6.1.-) based on gene annotations. It is an ADPRase (EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467604 [Multi-domain] Cd Length: 134 Bit Score: 43.77 E-value: 8.18e-06
|
||||||||
NUDIX_Hydrolase | cd04677 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
96-131 | 1.25e-05 | ||||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467560 [Multi-domain] Cd Length: 137 Bit Score: 43.27 E-value: 1.25e-05
|
||||||||
YjhB | COG1051 | ADP-ribose pyrophosphatase YjhB, NUDIX family [Nucleotide transport and metabolism]; |
56-130 | 7.08e-05 | ||||
ADP-ribose pyrophosphatase YjhB, NUDIX family [Nucleotide transport and metabolism]; Pssm-ID: 440671 [Multi-domain] Cd Length: 125 Bit Score: 41.12 E-value: 7.08e-05
|
||||||||
nudE | PRK11762 | adenosine nucleotide hydrolase NudE; Provisional |
17-147 | 1.12e-04 | ||||
adenosine nucleotide hydrolase NudE; Provisional Pssm-ID: 183303 Cd Length: 185 Bit Score: 41.33 E-value: 1.12e-04
|
||||||||
NUDIX_Hydrolase | cd04676 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
72-125 | 4.18e-04 | ||||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467559 [Multi-domain] Cd Length: 144 Bit Score: 39.31 E-value: 4.18e-04
|
||||||||
NUDIX_Hydrolase | cd04663 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
92-123 | 4.62e-04 | ||||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467548 [Multi-domain] Cd Length: 132 Bit Score: 38.81 E-value: 4.62e-04
|
||||||||
NUDIX_MTH1_Nudt1 | cd03427 | MutT homolog-1 (MTH1); MutT homolog-1 (MTH1; EC 3.6.1.- ), also called nucleoside ... |
97-127 | 5.74e-04 | ||||
MutT homolog-1 (MTH1); MutT homolog-1 (MTH1; EC 3.6.1.- ), also called nucleoside diphosphate-linked moiety X)) motif 1 (Nudt1), is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases. Pssm-ID: 467533 [Multi-domain] Cd Length: 136 Bit Score: 38.66 E-value: 5.74e-04
|
||||||||
NPY1 | COG2816 | NADH pyrophosphatase NudC, Nudix superfamily [Nucleotide transport and metabolism]; |
95-146 | 6.28e-04 | ||||
NADH pyrophosphatase NudC, Nudix superfamily [Nucleotide transport and metabolism]; Pssm-ID: 442065 [Multi-domain] Cd Length: 288 Bit Score: 39.51 E-value: 6.28e-04
|
||||||||
NUDIX_Hydrolase | cd04683 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
68-122 | 1.04e-03 | ||||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467566 [Multi-domain] Cd Length: 137 Bit Score: 37.97 E-value: 1.04e-03
|
||||||||
NUDIX_MutT_Nudt1 | cd18886 | MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside ... |
95-122 | 3.59e-03 | ||||
MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 1/Nudt1, is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases. Pssm-ID: 467596 [Multi-domain] Cd Length: 147 Bit Score: 36.44 E-value: 3.59e-03
|
||||||||
NUDIX_Tnr3_like | cd03676 | thiamine diphosphokinase Tnr3 from Schizosaccharomyces pombe and similar proteins; Tnr3 is a ... |
94-119 | 4.25e-03 | ||||
thiamine diphosphokinase Tnr3 from Schizosaccharomyces pombe and similar proteins; Tnr3 is a bifunctional enzyme composed of a C-terminal thiamine pyrophosphokinase domain, which transfers pyrophosphate from ATP to thiamine and an N-terminal NUDIX hydrolase domain that converts oxidized derivatives of thiamine diphosphate (oxothiamine and oxythiamine) to their respective monophosphates. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belong to this superfamily requires a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467544 Cd Length: 153 Bit Score: 36.32 E-value: 4.25e-03
|
||||||||
NUDIX_DIPP2_like_Nudt4 | cd04666 | diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase type 2 and similar proteins; Diadenosine 5', ... |
97-130 | 4.58e-03 | ||||
diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase type 2 and similar proteins; Diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase type 2 (DIPP2), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 4; Nudt4, and other proteins including DIPP1/Nudt3, DIPP3a;APS2/Nudt10 and DIPP3beta;APS1/Nudt11. DIPP regulates the turnover of diphosphoinositol polyphosphates. The turnover of these high-energy diphosphoinositol polyphosphates represents a molecular switching activity with important regulatory consequences. Molecular switching by diphosphoinositol polyphosphates may contribute to regulating intracellular trafficking. Several alternatively spliced transcript variants have been described, but the full-length nature of some variants has not been determined. Isoforms DIPP2alpha and DIPP2beta are distinguishable from each other solely by DIPP2beta possessing one additional amino acid due to intron boundary skidding in alternate splicing. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467551 [Multi-domain] Cd Length: 128 Bit Score: 35.97 E-value: 4.58e-03
|
||||||||
NUDIX_Hydrolase | cd04692 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
50-134 | 4.81e-03 | ||||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467574 [Multi-domain] Cd Length: 142 Bit Score: 36.00 E-value: 4.81e-03
|
||||||||
NUDIX_RppH | cd04665 | RNA pyrophosphohydrolase; The initiation of mRNA degradation often requires deprotection of ... |
93-127 | 5.22e-03 | ||||
RNA pyrophosphohydrolase; The initiation of mRNA degradation often requires deprotection of its 5' end. In eukaryotes, the 5'-methylguanosine (cap) structure is principally removed by the NUDIX family decapping enzyme Dcp2, yielding a 5'-monophosphorylated RNA that is a substrate for 5' exoribonucleases. In bacteria, the 5'-triphosphate group of primary transcripts is also converted to a 5' monophosphate by a NUDIX protein called RNA pyrophosphohydrolase (RppH), allowing access to both endo- and 5' exoribonucleases. NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467550 [Multi-domain] Cd Length: 121 Bit Score: 35.69 E-value: 5.22e-03
|
||||||||
NUDIX_Hydrolase | cd18875 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
97-128 | 5.49e-03 | ||||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467587 [Multi-domain] Cd Length: 144 Bit Score: 36.01 E-value: 5.49e-03
|
||||||||
NUDIX_Hydrolase | cd18876 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
59-176 | 6.50e-03 | ||||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467588 [Multi-domain] Cd Length: 121 Bit Score: 35.26 E-value: 6.50e-03
|
||||||||
NUDIX_Hydrolase | cd04511 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
96-121 | 9.18e-03 | ||||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467545 [Multi-domain] Cd Length: 123 Bit Score: 34.86 E-value: 9.18e-03
|
||||||||
NUDIX_Hydrolase | cd04685 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
58-121 | 9.64e-03 | ||||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467568 [Multi-domain] Cd Length: 138 Bit Score: 35.24 E-value: 9.64e-03
|
||||||||
Blast search parameters | ||||
|