UDP-2,3-diacylglucosamine diphosphatase catalyzes the fourth step of lipid A biosynthesis, in which a precursor UDP-2,3-diacylglucosamine is hydrolyzed to yield 2,3-diacylglucosamine 1-phosphate and UMP; belongs to the metallophosphoesterase (MPP) superfamily
UDP-2,3-diacylglucosamine diphosphatase; This model represents LpxH, UDP-2,3-diacylglucosamine ...
3-233
1.85e-148
UDP-2,3-diacylglucosamine diphosphatase; This model represents LpxH, UDP-2,3-diacylglucosamine hydrolase, and essential enzyme in E. coli that catalyzes the fourth step in lipid A biosynthesis. Note that Pseudomonas aeruginosa has both a member of this family that shares this function and a more distant homolog, designated LpxH2, that does not. Many species that produce lipid A lack an lpxH gene in this family; some of those species have an lpxH2 gene instead, although for which the function is unknown. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides]
Pssm-ID: 273835 [Multi-domain] Cd Length: 231 Bit Score: 412.99 E-value: 1.85e-148
Escherichia coli YbbF/LpxH and related proteins, metallophosphatase domain; YbbF/LpxH is an ...
4-219
1.38e-73
Escherichia coli YbbF/LpxH and related proteins, metallophosphatase domain; YbbF/LpxH is an Escherichia coli UDP-2,3-diacylglucosamine hydrolase thought to catalyze the fourth step of lipid A biosynthesis, in which a precursor UDP-2,3-diacylglucosamine is hydrolyzed to yield 2,3-diacylglucosamine 1-phosphate and UMP. YbbF belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination.
Pssm-ID: 277343 [Multi-domain] Cd Length: 217 Bit Score: 223.00 E-value: 1.38e-73
UDP-2,3-diacylglucosamine diphosphatase; This model represents LpxH, UDP-2,3-diacylglucosamine ...
3-233
1.85e-148
UDP-2,3-diacylglucosamine diphosphatase; This model represents LpxH, UDP-2,3-diacylglucosamine hydrolase, and essential enzyme in E. coli that catalyzes the fourth step in lipid A biosynthesis. Note that Pseudomonas aeruginosa has both a member of this family that shares this function and a more distant homolog, designated LpxH2, that does not. Many species that produce lipid A lack an lpxH gene in this family; some of those species have an lpxH2 gene instead, although for which the function is unknown. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides]
Pssm-ID: 273835 [Multi-domain] Cd Length: 231 Bit Score: 412.99 E-value: 1.85e-148
Escherichia coli YbbF/LpxH and related proteins, metallophosphatase domain; YbbF/LpxH is an ...
4-219
1.38e-73
Escherichia coli YbbF/LpxH and related proteins, metallophosphatase domain; YbbF/LpxH is an Escherichia coli UDP-2,3-diacylglucosamine hydrolase thought to catalyze the fourth step of lipid A biosynthesis, in which a precursor UDP-2,3-diacylglucosamine is hydrolyzed to yield 2,3-diacylglucosamine 1-phosphate and UMP. YbbF belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination.
Pssm-ID: 277343 [Multi-domain] Cd Length: 217 Bit Score: 223.00 E-value: 1.38e-73
metallophosphatase superfamily, metallophosphatase domain; Metallophosphatases (MPPs), also ...
4-117
4.08e-06
metallophosphatase superfamily, metallophosphatase domain; Metallophosphatases (MPPs), also known as metallophosphoesterases, phosphodiesterases (PDEs), binuclear metallophosphoesterases, and dimetal-containing phosphoesterases (DMPs), represent a diverse superfamily of enzymes with a conserved domain containing an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. This superfamily includes: the phosphoprotein phosphatases (PPPs), Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination.
Pssm-ID: 277317 [Multi-domain] Cd Length: 130 Bit Score: 44.95 E-value: 4.08e-06
Escherichia coli YfcE and related proteins, metallophosphatase domain; YfcE is a ...
4-127
3.52e-04
Escherichia coli YfcE and related proteins, metallophosphatase domain; YfcE is a manganase-dependent metallophosphatase, found in bacteria and archaea, that cleaves bis-p-nitrophenyl phosphate, thymidine 5'-monophosphate-p-nitrophenyl ester, and p-nitrophenyl phosphorylcholine, but is unable to hydrolyze 2',3 ' or 3',5' cyclic nucleic phosphodiesters, and various phosphomonoesters, including p-nitrophenyl phosphate. This family also includes the Bacilus subtilis YsnB and Methanococcus jannaschii MJ0936 proteins. This domain family belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination.
Pssm-ID: 277320 [Multi-domain] Cd Length: 156 Bit Score: 39.95 E-value: 3.52e-04
Mre11 nuclease, N-terminal metallophosphatase domain; Mre11 (also known as SbcD in Escherichia ...
31-117
6.37e-04
Mre11 nuclease, N-terminal metallophosphatase domain; Mre11 (also known as SbcD in Escherichia coli) is a subunit of the MRX protein complex. This complex includes: Mre11, Rad50, and Xrs2/Nbs1, and plays a vital role in several nuclear processes including DNA double-strand break repair, telomere length maintenance, cell cycle checkpoint control, and meiotic recombination, in eukaryotes. During double-strand break repair, the MRX complex is required to hold the two ends of a broken chromosome together. In vitro studies show that Mre11 has 3'-5' exonuclease activity on dsDNA templates and endonuclease activity on dsDNA and ssDNA templates. In addition to the N-terminal phosphatase domain, the eukaryotic MRE11 members of this family have a C-terminal DNA binding domain (not included in this alignment model). MRE11-like proteins are found in prokaryotes and archaea was well as in eukaryotes. Mre11 belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination.
Pssm-ID: 277319 [Multi-domain] Cd Length: 186 Bit Score: 39.56 E-value: 6.37e-04
ABBA-type aromatic prenyltransferases (PTases); ABBA-type aromatic prenyltransferases (PTases) are a subgroup of prenyltransferases that are characterized by an unusual type of beta/alpha fold with antiparallel beta strands. They lack the (N/D)DxxD motif which is characteristic for many other prenyltransferases. Generally, aromatic prenyltransferases (PTs) catalyze the regioselective transfer of prenyl moieties onto aromatic substrates, forming C-C bonds between C-1 or C-3 of the isoprenoid substrate and one of the aromatic carbons of the acceptor substrate by an electrophilic alkylation, or Friedel-Crafts alkylation mechanism.
Pssm-ID: 260105 Cd Length: 294 Bit Score: 38.25 E-value: 2.36e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options