bifunctional UDP-glucuronic acid decarboxylase/UDP-4-amino-4-deoxy-L-arabinose formyltransferase [Pseudomonas aeruginosa PAO1]
bifunctional UDP-4-amino-4-deoxy-L-arabinose formyltransferase/UDP-glucuronic acid oxidase ArnA( domain architecture ID 11483097)
bifunctional UDP-4-amino-4-deoxy-L-arabinose formyltransferase/UDP-glucuronic acid oxidase ArnA catalyzes the decarboxylation of UDP-glucuronic acid to UDP-4-keto-arabinose and the addition of a formyl group to UDP-4-amino-4-deoxy-L-arabinose to form UDP-L-4-formamido-arabinose
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||||||
PRK08125 | PRK08125 | bifunctional UDP-4-amino-4-deoxy-L-arabinose formyltransferase/UDP-glucuronic acid oxidase ... |
4-654 | 0e+00 | ||||||||||
bifunctional UDP-4-amino-4-deoxy-L-arabinose formyltransferase/UDP-glucuronic acid oxidase ArnA; : Pssm-ID: 236156 [Multi-domain] Cd Length: 660 Bit Score: 1418.60 E-value: 0e+00
|
||||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||||
PRK08125 | PRK08125 | bifunctional UDP-4-amino-4-deoxy-L-arabinose formyltransferase/UDP-glucuronic acid oxidase ... |
4-654 | 0e+00 | ||||||||||
bifunctional UDP-4-amino-4-deoxy-L-arabinose formyltransferase/UDP-glucuronic acid oxidase ArnA; Pssm-ID: 236156 [Multi-domain] Cd Length: 660 Bit Score: 1418.60 E-value: 0e+00
|
||||||||||||||
Fmt | COG0223 | Methionyl-tRNA formyltransferase [Translation, ribosomal structure and biogenesis]; |
4-307 | 3.24e-119 | ||||||||||
Methionyl-tRNA formyltransferase [Translation, ribosomal structure and biogenesis]; Pssm-ID: 439993 [Multi-domain] Cd Length: 308 Bit Score: 357.49 E-value: 3.24e-119
|
||||||||||||||
Arna_like_SDR_e | cd05257 | Arna decarboxylase_like, extended (e) SDRs; Decarboxylase domain of ArnA. ArnA, is an enzyme ... |
319-650 | 8.82e-117 | ||||||||||
Arna decarboxylase_like, extended (e) SDRs; Decarboxylase domain of ArnA. ArnA, is an enzyme involved in the modification of outer membrane protein lipid A of gram-negative bacteria. It is a bifunctional enzyme that catalyzes the NAD-dependent decarboxylation of UDP-glucuronic acid and N-10-formyltetrahydrofolate-dependent formylation of UDP-4-amino-4-deoxy-l-arabinose; its NAD-dependent decaboxylating activity is in the C-terminal 360 residues. This subgroup belongs to the extended SDR family, however the NAD binding motif is not a perfect match and the upstream Asn of the canonical active site tetrad is not conserved. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187567 [Multi-domain] Cd Length: 316 Bit Score: 351.60 E-value: 8.82e-117
|
||||||||||||||
fmt | TIGR00460 | methionyl-tRNA formyltransferase; The top-scoring characterized proteins other than ... |
4-278 | 7.22e-50 | ||||||||||
methionyl-tRNA formyltransferase; The top-scoring characterized proteins other than methionyl-tRNA formyltransferase (fmt) itself are formyltetrahydrofolate dehydrogenases. The mitochondrial methionyl-tRNA formyltransferases are so divergent that, in a multiple alignment of bacterial fmt, mitochondrial fmt, and formyltetrahydrofolate dehydrogenases, the mitochondrial fmt appears the most different. However, because both bacterial and mitochondrial fmt are included in the seed alignment, all credible fmt sequences score higher than any non-fmt sequence. This enzyme modifies Met on initiator tRNA to f-Met. [Protein synthesis, tRNA aminoacylation] Pssm-ID: 273088 [Multi-domain] Cd Length: 313 Bit Score: 176.05 E-value: 7.22e-50
|
||||||||||||||
Epimerase | pfam01370 | NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. ... |
320-567 | 1.95e-45 | ||||||||||
NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. The proteins in this family use nucleotide-sugar substrates for a variety of chemical reactions. Pssm-ID: 396097 [Multi-domain] Cd Length: 238 Bit Score: 161.70 E-value: 1.95e-45
|
||||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||||
PRK08125 | PRK08125 | bifunctional UDP-4-amino-4-deoxy-L-arabinose formyltransferase/UDP-glucuronic acid oxidase ... |
4-654 | 0e+00 | ||||||||||
bifunctional UDP-4-amino-4-deoxy-L-arabinose formyltransferase/UDP-glucuronic acid oxidase ArnA; Pssm-ID: 236156 [Multi-domain] Cd Length: 660 Bit Score: 1418.60 E-value: 0e+00
|
||||||||||||||
PRK11908 | PRK11908 | bifunctional UDP-4-keto-pentose/UDP-xylose synthase; |
319-659 | 0e+00 | ||||||||||
bifunctional UDP-4-keto-pentose/UDP-xylose synthase; Pssm-ID: 183375 [Multi-domain] Cd Length: 347 Bit Score: 541.61 E-value: 0e+00
|
||||||||||||||
Fmt | COG0223 | Methionyl-tRNA formyltransferase [Translation, ribosomal structure and biogenesis]; |
4-307 | 3.24e-119 | ||||||||||
Methionyl-tRNA formyltransferase [Translation, ribosomal structure and biogenesis]; Pssm-ID: 439993 [Multi-domain] Cd Length: 308 Bit Score: 357.49 E-value: 3.24e-119
|
||||||||||||||
PRK06988 | PRK06988 | formyltransferase; |
1-278 | 1.83e-118 | ||||||||||
formyltransferase; Pssm-ID: 235902 [Multi-domain] Cd Length: 312 Bit Score: 355.93 E-value: 1.83e-118
|
||||||||||||||
Arna_like_SDR_e | cd05257 | Arna decarboxylase_like, extended (e) SDRs; Decarboxylase domain of ArnA. ArnA, is an enzyme ... |
319-650 | 8.82e-117 | ||||||||||
Arna decarboxylase_like, extended (e) SDRs; Decarboxylase domain of ArnA. ArnA, is an enzyme involved in the modification of outer membrane protein lipid A of gram-negative bacteria. It is a bifunctional enzyme that catalyzes the NAD-dependent decarboxylation of UDP-glucuronic acid and N-10-formyltetrahydrofolate-dependent formylation of UDP-4-amino-4-deoxy-l-arabinose; its NAD-dependent decaboxylating activity is in the C-terminal 360 residues. This subgroup belongs to the extended SDR family, however the NAD binding motif is not a perfect match and the upstream Asn of the canonical active site tetrad is not conserved. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187567 [Multi-domain] Cd Length: 316 Bit Score: 351.60 E-value: 8.82e-117
|
||||||||||||||
FMT_core_ArnA_N | cd08644 | ArnA, N-terminal formyltransferase domain; ArnA_N: ArnA is a bifunctional enzyme required for ... |
3-205 | 7.60e-110 | ||||||||||
ArnA, N-terminal formyltransferase domain; ArnA_N: ArnA is a bifunctional enzyme required for the modification of lipid A with 4-amino-4-deoxy-L-arabinose (Ara4N) that leads to resistance to cationic antimicrobial peptides (CAMPs) and clinical antimicrobials such as polymyxin. The C-terminal dehydrogenase domain of ArnA catalyzes the oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcUA) to UDP-4-keto-arabinose (UDP-Ara4O), while the N-terminal formyltransferase domain of ArnA catalyzes the addition of a formyl group to UDP-4-amino-4-deoxy-L-arabinose (UDP-L-Ara4N) to form UDP-L-4-formamido-arabinose (UDP-L-Ara4FN). This domain family represents the catalytic core of the N-terminal formyltransferase domain. The formyltransferase also contains a smaller C-terminal domain the may be involved in substrate binding. ArnA forms a hexameric structure, in which the dehydrogenase domains are arranged at the center of the particle with the transformylase domains on the outside of the particle. Pssm-ID: 187713 [Multi-domain] Cd Length: 203 Bit Score: 329.69 E-value: 7.60e-110
|
||||||||||||||
PLN02427 | PLN02427 | UDP-apiose/xylose synthase |
319-649 | 3.17e-71 | ||||||||||
UDP-apiose/xylose synthase Pssm-ID: 178047 [Multi-domain] Cd Length: 386 Bit Score: 235.91 E-value: 3.17e-71
|
||||||||||||||
WcaG | COG0451 | Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; |
319-650 | 5.87e-61 | ||||||||||
Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440220 [Multi-domain] Cd Length: 295 Bit Score: 205.60 E-value: 5.87e-61
|
||||||||||||||
FMT_core_Met-tRNA-FMT_N | cd08646 | Methionyl-tRNA formyltransferase, N-terminal hydrolase domain; Methionyl-tRNA ... |
19-199 | 6.70e-54 | ||||||||||
Methionyl-tRNA formyltransferase, N-terminal hydrolase domain; Methionyl-tRNA formyltransferase (Met-tRNA-FMT), N-terminal formyltransferase domain. Met-tRNA-FMT transfers a formyl group from N-10 formyltetrahydrofolate to the amino terminal end of a methionyl-aminoacyl-tRNA acyl moiety, yielding formyl-Met-tRNA. Formyl-Met-tRNA plays essential role in protein translation initiation by forming complex with IF2. The formyl group plays a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and by impairing its binding to EFTU-GTP. The N-terminal domain contains a Rossmann fold and it is the catalytic domain of the enzyme. Pssm-ID: 187715 [Multi-domain] Cd Length: 204 Bit Score: 183.41 E-value: 6.70e-54
|
||||||||||||||
fmt | TIGR00460 | methionyl-tRNA formyltransferase; The top-scoring characterized proteins other than ... |
4-278 | 7.22e-50 | ||||||||||
methionyl-tRNA formyltransferase; The top-scoring characterized proteins other than methionyl-tRNA formyltransferase (fmt) itself are formyltetrahydrofolate dehydrogenases. The mitochondrial methionyl-tRNA formyltransferases are so divergent that, in a multiple alignment of bacterial fmt, mitochondrial fmt, and formyltetrahydrofolate dehydrogenases, the mitochondrial fmt appears the most different. However, because both bacterial and mitochondrial fmt are included in the seed alignment, all credible fmt sequences score higher than any non-fmt sequence. This enzyme modifies Met on initiator tRNA to f-Met. [Protein synthesis, tRNA aminoacylation] Pssm-ID: 273088 [Multi-domain] Cd Length: 313 Bit Score: 176.05 E-value: 7.22e-50
|
||||||||||||||
FMT_core | cd08369 | Formyltransferase, catalytic core domain; Formyltransferase, catalytic core domain. The ... |
6-181 | 1.10e-47 | ||||||||||
Formyltransferase, catalytic core domain; Formyltransferase, catalytic core domain. The proteins of this superfamily contain a formyltransferase domain that hydrolyzes the removal of a formyl group from its substrate as part of a multistep transfer mechanism, and this alignment model represents the catalytic core of the formyltransferase domain. This family includes the following known members; Glycinamide Ribonucleotide Transformylase (GART), Formyl-FH4 Hydrolase, Methionyl-tRNA Formyltransferase, ArnA, and 10-Formyltetrahydrofolate Dehydrogenase (FDH). Glycinamide Ribonucleotide Transformylase (GART) catalyzes the third step in de novo purine biosynthesis, the transfer of a formyl group to 5'-phosphoribosylglycinamide. Formyl-FH4 Hydrolase catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to FH4 and formate. Methionyl-tRNA Formyltransferase transfers a formyl group onto the amino terminus of the acyl moiety of the methionyl aminoacyl-tRNA, which plays important role in translation initiation. ArnA is required for the modification of lipid A with 4-amino-4-deoxy-l-arabinose (Ara4N) that leads to resistance to cationic antimicrobial peptides (CAMPs) and clinical antimicrobials such as polymyxin. 10-formyltetrahydrofolate dehydrogenase (FDH) catalyzes the conversion of 10-formyltetrahydrofolate, a precursor for nucleotide biosynthesis, to tetrahydrofolate. Members of this family are multidomain proteins. The formyltransferase domain is located at the N-terminus of FDH, Methionyl-tRNA Formyltransferase and ArnA, and at the C-terminus of Formyl-FH4 Hydrolase. Prokaryotic Glycinamide Ribonucleotide Transformylase (GART) is a single domain protein while eukaryotic GART is a trifunctional protein that catalyzes the second, third and fifth steps in de novo purine biosynthesis. Pssm-ID: 187712 [Multi-domain] Cd Length: 173 Bit Score: 165.54 E-value: 1.10e-47
|
||||||||||||||
Epimerase | pfam01370 | NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. ... |
320-567 | 1.95e-45 | ||||||||||
NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. The proteins in this family use nucleotide-sugar substrates for a variety of chemical reactions. Pssm-ID: 396097 [Multi-domain] Cd Length: 238 Bit Score: 161.70 E-value: 1.95e-45
|
||||||||||||||
UGD_SDR_e | cd05230 | UDP-glucuronate decarboxylase (UGD) and related proteins, extended (e) SDRs; UGD catalyzes the ... |
319-650 | 5.53e-44 | ||||||||||
UDP-glucuronate decarboxylase (UGD) and related proteins, extended (e) SDRs; UGD catalyzes the formation of UDP-xylose from UDP-glucuronate; it is an extended-SDR, and has the characteristic glycine-rich NAD-binding pattern, TGXXGXXG, and active site tetrad. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187541 [Multi-domain] Cd Length: 305 Bit Score: 159.72 E-value: 5.53e-44
|
||||||||||||||
SDR_e | cd08946 | extended (e) SDRs; Extended SDRs are distinct from classical SDRs. In addition to the Rossmann ... |
320-567 | 2.41e-39 | ||||||||||
extended (e) SDRs; Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 212494 [Multi-domain] Cd Length: 200 Bit Score: 143.59 E-value: 2.41e-39
|
||||||||||||||
FMT_core_like_4 | cd08651 | Formyl transferase catalytic core domain found in a group of proteins with unknown functions; ... |
13-182 | 8.45e-39 | ||||||||||
Formyl transferase catalytic core domain found in a group of proteins with unknown functions; Formyl transferase catalytic core domain found in a group of proteins with unknown functions. Formyl transferase catalyzes the transfer of one-carbon groups, specifically the formyl- or hydroxymethyl- group. This domain contains a Rossmann fold and it is the catalytic domain of the enzyme. Pssm-ID: 187720 [Multi-domain] Cd Length: 180 Bit Score: 141.25 E-value: 8.45e-39
|
||||||||||||||
PLN02285 | PLN02285 | methionyl-tRNA formyltransferase |
4-278 | 2.03e-34 | ||||||||||
methionyl-tRNA formyltransferase Pssm-ID: 215159 [Multi-domain] Cd Length: 334 Bit Score: 133.67 E-value: 2.03e-34
|
||||||||||||||
FMT_core_NRPS_like | cd08649 | N-terminal formyl transferase catalytic core domain of NRPS_like proteins, one of the proteins ... |
13-182 | 2.55e-34 | ||||||||||
N-terminal formyl transferase catalytic core domain of NRPS_like proteins, one of the proteins involved in the synthesis of Oxazolomycin; This family represents the N-terminal formyl transferase catalytic core domain present in a subgroup of non-ribosomal peptide synthetases. In Streptomyces albus a member of this family has been shown to be involved in the synthesis of oxazolomycin (OZM). OZM is a hybrid peptide-polyketide antibiotic and exhibits potent antitumor and antiviral activities. It is a multi-domain protein consisting of a formyl transferase domain, a Flavin-utilizing monoxygenase domain, a LuxE domain functioning as an acyl protein synthetase and a pp-binding domain, which may function as an acyl carrier. It shows sequence similarity with other peptide-polyketide biosynthesis proteins. Pssm-ID: 187718 [Multi-domain] Cd Length: 166 Bit Score: 128.15 E-value: 2.55e-34
|
||||||||||||||
Arna_FMT_C | cd08702 | C-terminal subdomain of the formyltransferase domain on ArnA, which modifies lipid A with ... |
206-295 | 7.43e-32 | ||||||||||
C-terminal subdomain of the formyltransferase domain on ArnA, which modifies lipid A with 4-amino-4-deoxy-l-arabinose; Domain found in ArnA with similarity to the C-terminal domain of Formyltransferase. ArnA is a bifunctional enzyme required for the modification of lipid A with 4-amino-4-deoxy-l-arabinose (Ara4N) that leads to resistance to cationic antimicrobial peptides (CAMPs) and clinical antimicrobials such as polymyxin. The C-terminal domain of ArnA is a dehydrogenase domain that catalyzes the oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcUA) to UDP-4-keto-arabinose (UDP-Ara4O) and the N-terminal domain is a formyltransferase domain that catalyzes the addition of a formyl group to UDP-4-amino-4-deoxy-L-arabinose (UDP-L-Ara4N) to form UDP-L-4-formamido-arabinose (UDP-L-Ara4FN). This domain family represents the C-terminal subdomain of the formyltransferase domain, downstream of the N-terminal subdomain containing the catalytic center. ArnA forms a hexameric structure (a dimer of trimers), in which the dehydrogenase domains are arranged at the center with the transformylase domains on the outside of the complex. Pssm-ID: 187730 Cd Length: 92 Bit Score: 118.50 E-value: 7.43e-32
|
||||||||||||||
UDP_AE_SDR_e | cd05256 | UDP-N-acetylglucosamine 4-epimerase, extended (e) SDRs; This subgroup contains ... |
319-650 | 4.95e-31 | ||||||||||
UDP-N-acetylglucosamine 4-epimerase, extended (e) SDRs; This subgroup contains UDP-N-acetylglucosamine 4-epimerase of Pseudomonas aeruginosa, WbpP, an extended SDR, that catalyzes the NAD+ dependent conversion of UDP-GlcNAc and UDPGalNA to UDP-Glc and UDP-Gal. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187566 [Multi-domain] Cd Length: 304 Bit Score: 123.48 E-value: 4.95e-31
|
||||||||||||||
Formyl_trans_N | pfam00551 | Formyl transferase; This family includes the following members. Glycinamide ribonucleotide ... |
19-175 | 4.84e-25 | ||||||||||
Formyl transferase; This family includes the following members. Glycinamide ribonucleotide transformylase catalyzes the third step in de novo purine biosynthesis, the transfer of a formyl group to 5'-phosphoribosylglycinamide. Formyltetrahydrofolate deformylase produces formate from formyl- tetrahydrofolate. Methionyl-tRNA formyltransferase transfers a formyl group onto the amino terminus of the acyl moiety of the methionyl aminoacyl-tRNA. Inclusion of the following members is supported by PSI-blast. HOXX_BRAJA (P31907) contains a related domain of unknown function. PRTH_PORGI (P46071) contains a related domain of unknown function. Y09P_MYCTU (Q50721) contains a related domain of unknown function. Pssm-ID: 395436 [Multi-domain] Cd Length: 181 Bit Score: 102.37 E-value: 4.84e-25
|
||||||||||||||
PLN02166 | PLN02166 | dTDP-glucose 4,6-dehydratase |
315-662 | 2.62e-23 | ||||||||||
dTDP-glucose 4,6-dehydratase Pssm-ID: 165812 [Multi-domain] Cd Length: 436 Bit Score: 103.17 E-value: 2.62e-23
|
||||||||||||||
FMT_core_like_3 | cd08653 | Formyl transferase catalytic core domain found in a group of proteins with unknown functions; ... |
35-175 | 4.20e-23 | ||||||||||
Formyl transferase catalytic core domain found in a group of proteins with unknown functions; Formyl transferase catalytic core domain found in a group of proteins with unknown functions. Formyl transferase catalyzes the transfer of one-carbon groups, specifically the formyl- or hydroxymethyl- group. This domain contains a Rossmann fold and it is the catalytic domain of the enzyme. Pssm-ID: 187721 [Multi-domain] Cd Length: 152 Bit Score: 95.74 E-value: 4.20e-23
|
||||||||||||||
FMT_core_like_5 | cd08823 | Formyl transferase catalytic core domain found in a group of proteins with unknown functions; ... |
70-183 | 3.19e-21 | ||||||||||
Formyl transferase catalytic core domain found in a group of proteins with unknown functions; Formyl transferase catalytic core domain found in a group of proteins with unknown functions. Formyl transferase catalyzes the transfer of one-carbon groups, specifically the formyl- or hydroxymethyl- group. This domain contains a Rossmann fold and it is the catalytic domain of the enzyme. Pssm-ID: 187725 [Multi-domain] Cd Length: 177 Bit Score: 91.35 E-value: 3.19e-21
|
||||||||||||||
Formyl_trans_C | pfam02911 | Formyl transferase, C-terminal domain; |
204-279 | 4.85e-21 | ||||||||||
Formyl transferase, C-terminal domain; Pssm-ID: 460744 [Multi-domain] Cd Length: 99 Bit Score: 88.10 E-value: 4.85e-21
|
||||||||||||||
UDP_GE_SDE_e | cd05253 | UDP glucuronic acid epimerase, extended (e) SDRs; This subgroup contains UDP-D-glucuronic acid ... |
319-651 | 9.22e-21 | ||||||||||
UDP glucuronic acid epimerase, extended (e) SDRs; This subgroup contains UDP-D-glucuronic acid 4-epimerase, an extended SDR, which catalyzes the conversion of UDP-alpha-D-glucuronic acid to UDP-alpha-D-galacturonic acid. This group has the SDR's canonical catalytic tetrad and the TGxxGxxG NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187563 [Multi-domain] Cd Length: 332 Bit Score: 93.94 E-value: 9.22e-21
|
||||||||||||||
GDP_Man_Dehyd | pfam16363 | GDP-mannose 4,6 dehydratase; |
321-646 | 7.37e-20 | ||||||||||
GDP-mannose 4,6 dehydratase; Pssm-ID: 465104 [Multi-domain] Cd Length: 327 Bit Score: 91.07 E-value: 7.37e-20
|
||||||||||||||
Met_tRNA_FMT_C | cd08704 | C-terminal domain of Formyltransferase and other enzymes; C-terminal domain of formyl ... |
206-279 | 1.00e-19 | ||||||||||
C-terminal domain of Formyltransferase and other enzymes; C-terminal domain of formyl transferase and other proteins with diverse enzymatic activities. Proteins found in this family include methionyl-tRNA formyltransferase, ArnA, and 10-formyltetrahydrofolate dehydrogenase. Methionyl-tRNA formyltransferases constitute the majority of the family and also demonstrate greater sequence diversity. Although most proteins with formyltransferase activity contain the C-terminal domain, some formyltransferases ( for example, prokaryotic glycinamide ribonucleotide transformylase (GART)) only have the core catalytic domain, indicating that the C-terminal domain is not a requirement for catalytic activity and may be involved in substrate binding. For example, the C-terminal domain of methionyl-tRNA formyltransferase is involved in the tRNA binding. Pssm-ID: 187732 [Multi-domain] Cd Length: 87 Bit Score: 84.12 E-value: 1.00e-19
|
||||||||||||||
PLN02206 | PLN02206 | UDP-glucuronate decarboxylase |
319-641 | 1.54e-19 | ||||||||||
UDP-glucuronate decarboxylase Pssm-ID: 177856 [Multi-domain] Cd Length: 442 Bit Score: 91.97 E-value: 1.54e-19
|
||||||||||||||
UDP_G4E_5_SDR_e | cd05264 | UDP-glucose 4-epimerase (G4E), subgroup 5, extended (e) SDRs; This subgroup partially ... |
319-647 | 4.07e-19 | ||||||||||
UDP-glucose 4-epimerase (G4E), subgroup 5, extended (e) SDRs; This subgroup partially conserves the characteristic active site tetrad and NAD-binding motif of the extended SDRs, and has been identified as possible UDP-glucose 4-epimerase (aka UDP-galactose 4-epimerase), a homodimeric member of the extended SDR family. UDP-glucose 4-epimerase catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187574 [Multi-domain] Cd Length: 300 Bit Score: 88.53 E-value: 4.07e-19
|
||||||||||||||
PurN | COG0299 | Folate-dependent phosphoribosylglycinamide formyltransferase PurN [Nucleotide transport and ... |
19-187 | 1.27e-18 | ||||||||||
Folate-dependent phosphoribosylglycinamide formyltransferase PurN [Nucleotide transport and metabolism]; Folate-dependent phosphoribosylglycinamide formyltransferase PurN is part of the Pathway/BioSystem: Purine biosynthesis Pssm-ID: 440068 [Multi-domain] Cd Length: 202 Bit Score: 84.70 E-value: 1.27e-18
|
||||||||||||||
UDP_G4E_2_SDR_e | cd05234 | UDP-glucose 4 epimerase, subgroup 2, extended (e) SDRs; UDP-glucose 4 epimerase (aka ... |
319-648 | 5.22e-17 | ||||||||||
UDP-glucose 4 epimerase, subgroup 2, extended (e) SDRs; UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup is comprised of archaeal and bacterial proteins, and has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187545 [Multi-domain] Cd Length: 305 Bit Score: 82.35 E-value: 5.22e-17
|
||||||||||||||
FMT_core_GART | cd08645 | Phosphoribosylglycinamide formyltransferase (GAR transformylase, GART); ... |
19-170 | 1.35e-16 | ||||||||||
Phosphoribosylglycinamide formyltransferase (GAR transformylase, GART); Phosphoribosylglycinamide formyltransferase, also known as GAR transformylase or GART, is an essential enzyme that catalyzes the third step in de novo purine biosynthesis. This enzyme uses formyl tetrahydrofolate as a formyl group donor to produce 5'-phosphoribosyl-N-formylglycinamide. In prokaryotes, GART is a single domain protein but in most eukaryotes it is the C-terminal portion of a large multifunctional protein which also contains GAR synthetase and aminoimidazole ribonucleotide synthetase activities. Pssm-ID: 187714 [Multi-domain] Cd Length: 183 Bit Score: 78.20 E-value: 1.35e-16
|
||||||||||||||
CDP_TE_SDR_e | cd05258 | CDP-tyvelose 2-epimerase, extended (e) SDRs; CDP-tyvelose 2-epimerase is a tetrameric SDR that ... |
318-649 | 1.37e-16 | ||||||||||
CDP-tyvelose 2-epimerase, extended (e) SDRs; CDP-tyvelose 2-epimerase is a tetrameric SDR that catalyzes the conversion of CDP-D-paratose to CDP-D-tyvelose, the last step in tyvelose biosynthesis. This subgroup is a member of the extended SDR subfamily, with a characteristic active site tetrad and NAD-binding motif. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187568 [Multi-domain] Cd Length: 337 Bit Score: 81.57 E-value: 1.37e-16
|
||||||||||||||
FMT_core_like_6 | cd08820 | Formyl transferase catalytic core domain found in a group of proteins with unknown functions; ... |
26-179 | 2.55e-16 | ||||||||||
Formyl transferase catalytic core domain found in a group of proteins with unknown functions; Formyl transferase catalytic core domain found in a group of proteins with unknown functions. Formyl transferase catalyzes the transfer of one-carbon groups, specifically the formyl- or hydroxymethyl- group. This domain contains a Rossmann fold and it is the catalytic domain of the enzyme. Pssm-ID: 187722 [Multi-domain] Cd Length: 173 Bit Score: 77.10 E-value: 2.55e-16
|
||||||||||||||
PurN | TIGR00639 | phosphoribosylglycinamide formyltransferase, formyltetrahydrofolate-dependent; This model ... |
45-170 | 3.57e-16 | ||||||||||
phosphoribosylglycinamide formyltransferase, formyltetrahydrofolate-dependent; This model describes phosphoribosylglycinamide formyltransferase (GAR transformylase), one of several proteins in formyl_transf (pfam00551). This enzyme uses formyl tetrahydrofolate as a formyl group donor to produce 5'-phosphoribosyl-N-formylglycinamide. PurT, a different GAR transformylase, uses ATP and formate rather than formyl tetrahydrofolate. Experimental proof includes complementation of E. coli purN mutants by orthologs from vertebrates (where it is a domain of a multifunctional protein), Bacillus subtilis, and Arabidopsis. No archaeal example was detected. In phylogenetic analyses, the member from Saccharomyces cerevisiae shows a long branch length but membership in the family, while the formyltetrahydrofolate deformylases form a closely related outgroup. [Purines, pyrimidines, nucleosides, and nucleotides, Purine ribonucleotide biosynthesis] Pssm-ID: 161973 [Multi-domain] Cd Length: 190 Bit Score: 77.03 E-value: 3.57e-16
|
||||||||||||||
FMT_core_like_2 | cd08822 | Formyl transferase catalytic core domain found in a group of proteins with unknown functions; ... |
19-198 | 4.05e-16 | ||||||||||
Formyl transferase catalytic core domain found in a group of proteins with unknown functions; Formyl transferase catalytic core domain found in a group of proteins with unknown functions. Formyl transferase catalyzes the transfer of one-carbon groups, specifically the formyl- or hydroxymethyl- group. This domain contains a Rossmann fold and it is the catalytic domain of the enzyme. Pssm-ID: 187724 [Multi-domain] Cd Length: 192 Bit Score: 77.12 E-value: 4.05e-16
|
||||||||||||||
dTDP_GD_SDR_e | cd05246 | dTDP-D-glucose 4,6-dehydratase, extended (e) SDRs; This subgroup contains dTDP-D-glucose 4, ... |
318-651 | 6.35e-14 | ||||||||||
dTDP-D-glucose 4,6-dehydratase, extended (e) SDRs; This subgroup contains dTDP-D-glucose 4,6-dehydratase and related proteins, members of the extended-SDR family, with the characteristic Rossmann fold core region, active site tetrad and NAD(P)-binding motif. dTDP-D-glucose 4,6-dehydratase is closely related to other sugar epimerases of the SDR family. dTDP-D-dlucose 4,6,-dehydratase catalyzes the second of four steps in the dTDP-L-rhamnose pathway (the dehydration of dTDP-D-glucose to dTDP-4-keto-6-deoxy-D-glucose) in the synthesis of L-rhamnose, a cell wall component of some pathogenic bacteria. In many gram negative bacteria, L-rhamnose is an important constituent of lipopoylsaccharide O-antigen. The larger N-terminal portion of dTDP-D-Glucose 4,6-dehydratase forms a Rossmann fold NAD-binding domain, while the C-terminus binds the sugar substrate. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187557 [Multi-domain] Cd Length: 315 Bit Score: 72.97 E-value: 6.35e-14
|
||||||||||||||
GDP_MD_SDR_e | cd05260 | GDP-mannose 4,6 dehydratase, extended (e) SDRs; GDP-mannose 4,6 dehydratase, a homodimeric SDR, ... |
319-651 | 7.79e-13 | ||||||||||
GDP-mannose 4,6 dehydratase, extended (e) SDRs; GDP-mannose 4,6 dehydratase, a homodimeric SDR, catalyzes the NADP(H)-dependent conversion of GDP-(D)-mannose to GDP-4-keto, 6-deoxy-(D)-mannose in the fucose biosynthesis pathway. These proteins have the canonical active site triad and NAD-binding pattern, however the active site Asn is often missing and may be substituted with Asp. A Glu residue has been identified as an important active site base. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187570 [Multi-domain] Cd Length: 316 Bit Score: 69.93 E-value: 7.79e-13
|
||||||||||||||
GME-like_SDR_e | cd05273 | Arabidopsis thaliana GDP-mannose-3',5'-epimerase (GME)-like, extended (e) SDRs; This subgroup ... |
319-646 | 9.52e-13 | ||||||||||
Arabidopsis thaliana GDP-mannose-3',5'-epimerase (GME)-like, extended (e) SDRs; This subgroup of NDP-sugar epimerase/dehydratases are extended SDRs; they have the characteristic active site tetrad, and an NAD-binding motif: TGXXGXX[AG], which is a close match to the canonical NAD-binding motif. Members include Arabidopsis thaliana GDP-mannose-3',5'-epimerase (GME) which catalyzes the epimerization of two positions of GDP-alpha-D-mannose to form GDP-beta-L-galactose. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187581 [Multi-domain] Cd Length: 328 Bit Score: 69.82 E-value: 9.52e-13
|
||||||||||||||
FMT_core_FDH_N | cd08647 | 10-formyltetrahydrofolate dehydrogenase (FDH), N-terminal hydrolase domain; This family ... |
21-199 | 1.78e-11 | ||||||||||
10-formyltetrahydrofolate dehydrogenase (FDH), N-terminal hydrolase domain; This family represents the N-terminal hydrolase domain of the bifunctional protein 10-formyltetrahydrofolate dehydrogenase (FDH). This domain contains a 10-formyl-tetrahydrofolate (10-formyl-THF) binding site and shares sequence homology and structural topology with other enzymes utilizing this substrate. This domain functions as a hydrolase, catalyzing the conversion of 10-formyl-THF, a precursor for nucleotide biosynthesis, to tetrahydrofolate (THF). The overall FDH reaction mechanism is a coupling of two sequential reactions, a hydrolase and a formyl dehydrogenase, bridged by a substrate transfer step. The N-terminal hydrolase domain removes the formyl group from 10-formyl-THF and the C-terminal NADP-dependent dehydrogenase domain then reduces the formyl group to carbon dioxide. The two catalytic domains are connected by a third intermediate linker domain that transfers the formyl group, covalently attached to the sulfhydryl group of the phosphopantetheine arm, from the N-terminal domain to the C-terminal domain. Pssm-ID: 187716 [Multi-domain] Cd Length: 203 Bit Score: 64.01 E-value: 1.78e-11
|
||||||||||||||
AR_SDR_e | cd05227 | aldehyde reductase, extended (e) SDRs; This subgroup contains aldehyde reductase of the ... |
319-581 | 5.50e-11 | ||||||||||
aldehyde reductase, extended (e) SDRs; This subgroup contains aldehyde reductase of the extended SDR-type and related proteins. Aldehyde reductase I (aka carbonyl reductase) is an NADP-binding SDR; it has an NADP-binding motif consensus that is slightly different from the canonical SDR form and lacks the Asn of the extended SDR active site tetrad. Aldehyde reductase I catalyzes the NADP-dependent reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187538 [Multi-domain] Cd Length: 301 Bit Score: 64.21 E-value: 5.50e-11
|
||||||||||||||
3b-HSD-like_SDR_e | cd05241 | 3beta-hydroxysteroid dehydrogenases (3b-HSD)-like, extended (e) SDRs; Extended SDR family ... |
319-650 | 1.81e-10 | ||||||||||
3beta-hydroxysteroid dehydrogenases (3b-HSD)-like, extended (e) SDRs; Extended SDR family domains belonging to this subgroup have the characteristic active site tetrad and a fairly well-conserved NAD(P)-binding motif. 3b-HSD catalyzes the NAD-dependent conversion of various steroids, such as pregnenolone to progesterone, or androstenediol to testosterone. This subgroup includes an unusual bifunctional 3b-HSD/C-4 decarboxylase from Arabidopsis thaliana, and Saccharomyces cerevisiae ERG26, a 3b-HSD/C-4 decarboxylase, involved in the synthesis of ergosterol, the major sterol of yeast. It also includes human 3 beta-HSD/HSD3B1 and C(27) 3beta-HSD/ [3beta-hydroxy-delta(5)-C(27)-steroid oxidoreductase; HSD3B7]. C(27) 3beta-HSD/HSD3B7 is a membrane-bound enzyme of the endoplasmic reticulum, that catalyzes the isomerization and oxidation of 7alpha-hydroxylated sterol intermediates, an early step in bile acid biosynthesis. Mutations in the human NSDHL (NAD(P)H steroid dehydrogenase-like protein) cause CHILD syndrome (congenital hemidysplasia with ichthyosiform nevus and limb defects), an X-linked dominant, male-lethal trait. Mutations in the human gene encoding C(27) 3beta-HSD underlie a rare autosomal recessive form of neonatal cholestasis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187552 [Multi-domain] Cd Length: 331 Bit Score: 62.83 E-value: 1.81e-10
|
||||||||||||||
UDP_G4E_1_SDR_e | cd05247 | UDP-glucose 4 epimerase, subgroup 1, extended (e) SDRs; UDP-glucose 4 epimerase (aka ... |
319-493 | 7.49e-10 | ||||||||||
UDP-glucose 4 epimerase, subgroup 1, extended (e) SDRs; UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187558 [Multi-domain] Cd Length: 323 Bit Score: 61.01 E-value: 7.49e-10
|
||||||||||||||
AR_FR_like_1_SDR_e | cd05228 | uncharacterized subgroup of aldehyde reductase and flavonoid reductase related proteins, ... |
320-650 | 1.34e-09 | ||||||||||
uncharacterized subgroup of aldehyde reductase and flavonoid reductase related proteins, extended (e) SDRs; This subgroup contains proteins of unknown function related to aldehyde reductase and flavonoid reductase of the extended SDR-type. Aldehyde reductase I (aka carbonyl reductase) is an NADP-binding SDR; it has an NADP-binding motif consensus that is slightly different from the canonical SDR form and lacks the Asn of the extended SDR active site tetrad. Aldehyde reductase I catalyzes the NADP-dependent reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate. The related flavonoid reductases act in the NADP-dependent reduction of flavonoids, ketone-containing plant secondary metabolites. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187539 [Multi-domain] Cd Length: 318 Bit Score: 59.99 E-value: 1.34e-09
|
||||||||||||||
PLN02331 | PLN02331 | phosphoribosylglycinamide formyltransferase |
53-160 | 2.15e-09 | ||||||||||
phosphoribosylglycinamide formyltransferase Pssm-ID: 177965 [Multi-domain] Cd Length: 207 Bit Score: 57.78 E-value: 2.15e-09
|
||||||||||||||
SDR_a1 | cd05265 | atypical (a) SDRs, subgroup 1; Atypical SDRs in this subgroup are poorly defined and have been ... |
319-569 | 3.24e-09 | ||||||||||
atypical (a) SDRs, subgroup 1; Atypical SDRs in this subgroup are poorly defined and have been identified putatively as isoflavones reductase, sugar dehydratase, mRNA binding protein etc. Atypical SDRs are distinct from classical SDRs. Members of this subgroup retain the canonical active site triad (though not the upstream Asn found in most SDRs) but have an unusual putative glycine-rich NAD(P)-binding motif, GGXXXXG, in the usual location. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187575 [Multi-domain] Cd Length: 250 Bit Score: 58.07 E-value: 3.24e-09
|
||||||||||||||
ADP_GME_SDR_e | cd05248 | ADP-L-glycero-D-mannoheptose 6-epimerase (GME), extended (e) SDRs; This subgroup contains ... |
409-567 | 3.36e-09 | ||||||||||
ADP-L-glycero-D-mannoheptose 6-epimerase (GME), extended (e) SDRs; This subgroup contains ADP-L-glycero-D-mannoheptose 6-epimerase, an extended SDR, which catalyzes the NAD-dependent interconversion of ADP-D-glycero-D-mannoheptose and ADP-L-glycero-D-mannoheptose. This subgroup has the canonical active site tetrad and NAD(P)-binding motif. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187559 [Multi-domain] Cd Length: 317 Bit Score: 58.85 E-value: 3.36e-09
|
||||||||||||||
PLN02725 | PLN02725 | GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase |
395-651 | 2.55e-08 | ||||||||||
GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase Pssm-ID: 178326 [Multi-domain] Cd Length: 306 Bit Score: 55.86 E-value: 2.55e-08
|
||||||||||||||
PRK07579 | PRK07579 | dTDP-4-amino-4,6-dideoxyglucose formyltransferase; |
77-175 | 4.15e-08 | ||||||||||
dTDP-4-amino-4,6-dideoxyglucose formyltransferase; Pssm-ID: 236058 [Multi-domain] Cd Length: 245 Bit Score: 54.52 E-value: 4.15e-08
|
||||||||||||||
FMT_C_OzmH_like | cd08700 | C-terminal subdomain of the Formyltransferase-like domain found in OzmH-like proteins; Domain ... |
206-299 | 4.81e-08 | ||||||||||
C-terminal subdomain of the Formyltransferase-like domain found in OzmH-like proteins; Domain found in OzmH-like proteins with similarity to the C-terminal domain of Formyltransferase. OzmH is one of the proteins involved in the synthesis of Oxazolomycin (OZM), which is a hybrid peptide-polyketide antibiotic that exhibits potent antitumor and antiviral activities. OzmH is a multi-domain protein consisting of a formyl transferase domain, a flavin-utilizing monoxygenase domain, a LuxE domain functioning as an acyl protein synthetase and a phosphopantetheine (PP)-binding domain, which may function as an acyl carrier. It shows sequence similarity with other peptide-polyketide biosynthesis proteins. Pssm-ID: 187728 Cd Length: 100 Bit Score: 51.08 E-value: 4.81e-08
|
||||||||||||||
PRK15181 | PRK15181 | Vi polysaccharide biosynthesis UDP-N-acetylglucosaminuronic acid C-4 epimerase TviC; |
319-651 | 4.03e-07 | ||||||||||
Vi polysaccharide biosynthesis UDP-N-acetylglucosaminuronic acid C-4 epimerase TviC; Pssm-ID: 185103 [Multi-domain] Cd Length: 348 Bit Score: 52.40 E-value: 4.03e-07
|
||||||||||||||
PLN02828 | PLN02828 | formyltetrahydrofolate deformylase |
47-162 | 4.86e-06 | ||||||||||
formyltetrahydrofolate deformylase Pssm-ID: 178422 Cd Length: 268 Bit Score: 48.59 E-value: 4.86e-06
|
||||||||||||||
AR_like_SDR_e | cd05193 | aldehyde reductase, flavonoid reductase, and related proteins, extended (e) SDRs; This ... |
320-482 | 6.04e-06 | ||||||||||
aldehyde reductase, flavonoid reductase, and related proteins, extended (e) SDRs; This subgroup contains aldehyde reductase and flavonoid reductase of the extended SDR-type and related proteins. Proteins in this subgroup have a complete SDR-type active site tetrad and a close match to the canonical extended SDR NADP-binding motif. Aldehyde reductase I (aka carbonyl reductase) is an NADP-binding SDR; it catalyzes the NADP-dependent reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate. The related flavonoid reductases act in the NADP-dependent reduction of flavonoids, ketone-containing plant secondary metabolites. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187536 [Multi-domain] Cd Length: 295 Bit Score: 48.38 E-value: 6.04e-06
|
||||||||||||||
Gmd | COG1089 | GDP-D-mannose dehydratase [Cell wall/membrane/envelope biogenesis]; |
319-370 | 6.22e-06 | ||||||||||
GDP-D-mannose dehydratase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440706 [Multi-domain] Cd Length: 321 Bit Score: 48.54 E-value: 6.22e-06
|
||||||||||||||
PLN02650 | PLN02650 | dihydroflavonol-4-reductase |
320-497 | 8.39e-06 | ||||||||||
dihydroflavonol-4-reductase Pssm-ID: 178256 [Multi-domain] Cd Length: 351 Bit Score: 48.28 E-value: 8.39e-06
|
||||||||||||||
Lys2b | COG3320 | Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs [Secondary ... |
319-570 | 1.25e-05 | ||||||||||
Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs [Secondary metabolites biosynthesis, transport and catabolism]; Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs is part of the Pathway/BioSystem: Lysine biosynthesis Pssm-ID: 442549 [Multi-domain] Cd Length: 265 Bit Score: 47.51 E-value: 1.25e-05
|
||||||||||||||
UDP_G4E_4_SDR_e | cd05232 | UDP-glucose 4 epimerase, subgroup 4, extended (e) SDRs; UDP-glucose 4 epimerase (aka ... |
319-646 | 1.48e-05 | ||||||||||
UDP-glucose 4 epimerase, subgroup 4, extended (e) SDRs; UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup is comprised of bacterial proteins, and includes the Staphylococcus aureus capsular polysaccharide Cap5N, which may have a role in the synthesis of UDP-N-acetyl-d-fucosamine. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187543 [Multi-domain] Cd Length: 303 Bit Score: 47.34 E-value: 1.48e-05
|
||||||||||||||
3b-HSD-NSDHL-like_SDR_e | cd09813 | human NSDHL (NAD(P)H steroid dehydrogenase-like protein)-like, extended (e) SDRs; This ... |
319-371 | 4.17e-05 | ||||||||||
human NSDHL (NAD(P)H steroid dehydrogenase-like protein)-like, extended (e) SDRs; This subgroup includes human NSDHL and related proteins. These proteins have the characteristic active site tetrad of extended SDRs, and also have a close match to their NAD(P)-binding motif. Human NSDHL is a 3beta-hydroxysteroid dehydrogenase (3 beta-HSD) which functions in the cholesterol biosynthetic pathway. 3 beta-HSD catalyzes the oxidative conversion of delta 5-3 beta-hydroxysteroids to the delta 4-3-keto configuration; this activity is essential for the biosynthesis of all classes of hormonal steroids. Mutations in the gene encoding NSDHL cause CHILD syndrome (congenital hemidysplasia with ichthyosiform nevus and limb defects), an X-linked dominant, male-lethal trait. This subgroup also includes an unusual bifunctional [3beta-hydroxysteroid dehydrogenase (3b-HSD)/C-4 decarboxylase from Arabidopsis thaliana, and Saccharomyces cerevisiae ERG26, a 3b-HSD/C-4 decarboxylase, involved in the synthesis of ergosterol, the major sterol of yeast. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187673 [Multi-domain] Cd Length: 335 Bit Score: 46.20 E-value: 4.17e-05
|
||||||||||||||
NAD_binding_4 | pfam07993 | Male sterility protein; This family represents the C-terminal region of the male sterility ... |
324-491 | 4.37e-05 | ||||||||||
Male sterility protein; This family represents the C-terminal region of the male sterility protein in a number of arabidopsis and drosophila. A sequence-related jojoba acyl CoA reductase is also included. Pssm-ID: 462334 [Multi-domain] Cd Length: 257 Bit Score: 45.68 E-value: 4.37e-05
|
||||||||||||||
UDP_G4E_3_SDR_e | cd05240 | UDP-glucose 4 epimerase (G4E), subgroup 3, extended (e) SDRs; Members of this bacterial ... |
320-643 | 6.51e-05 | ||||||||||
UDP-glucose 4 epimerase (G4E), subgroup 3, extended (e) SDRs; Members of this bacterial subgroup are identified as possible sugar epimerases, such as UDP-glucose 4 epimerase. However, while the NAD(P)-binding motif is fairly well conserved, not all members retain the canonical active site tetrad of the extended SDRs. UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187551 [Multi-domain] Cd Length: 306 Bit Score: 45.44 E-value: 6.51e-05
|
||||||||||||||
CAPF_like_SDR_e | cd05261 | capsular polysaccharide assembling protein (CAPF) like, extended (e) SDRs; This subgroup of ... |
319-561 | 2.13e-04 | ||||||||||
capsular polysaccharide assembling protein (CAPF) like, extended (e) SDRs; This subgroup of extended SDRs, includes some members which have been identified as capsular polysaccharide assembling proteins, such as Staphylococcus aureus Cap5F which is involved in the biosynthesis of N-acetyl-l-fucosamine, a constituent of surface polysaccharide structures of S. aureus. This subgroup has the characteristic active site tetrad and NAD-binding motif of extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187571 [Multi-domain] Cd Length: 248 Bit Score: 43.50 E-value: 2.13e-04
|
||||||||||||||
FMT_core_Formyl-FH4-Hydrolase_C | cd08648 | Formyltetrahydrofolate deformylase (Formyl-FH4 hydrolase), C-terminal hydrolase domain; ... |
69-163 | 2.66e-04 | ||||||||||
Formyltetrahydrofolate deformylase (Formyl-FH4 hydrolase), C-terminal hydrolase domain; Formyl-FH4 Hydrolase catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to FH4 and formate. Formate is the substrate of phosphoribosylglycinamide transformylase for step three of de novo purine nucleotide synthesis. Formyl-FH4 hydrolase has been proposed to regulate the balance of FH4 and C1-FH4 in the cell. The enzyme uses methionine and glycine to sense the pools of C1-FH4 and FH4, respectively. This domain belongs to the formyltransferase (FMT) domain superfamily. Members of this family have an N-terminal ACT domain, which is commonly involved in specifically bind an amino acid or other small ligand leading to regulation of the enzyme. The N-terminal of this protein family may be responsible for the binding of the regulators methionine and glycine. Pssm-ID: 187717 [Multi-domain] Cd Length: 196 Bit Score: 42.55 E-value: 2.66e-04
|
||||||||||||||
SDR_a3 | cd05229 | atypical (a) SDRs, subgroup 3; These atypical SDR family members of unknown function have a ... |
320-578 | 4.71e-04 | ||||||||||
atypical (a) SDRs, subgroup 3; These atypical SDR family members of unknown function have a glycine-rich NAD(P)-binding motif consensus that is very similar to the extended SDRs, GXXGXXG. Generally, this group has poor conservation of the active site tetrad, However, individual sequences do contain matches to the YXXXK active site motif, and generally Tyr or Asn in place of the upstream Ser found in most SDRs. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187540 [Multi-domain] Cd Length: 302 Bit Score: 42.70 E-value: 4.71e-04
|
||||||||||||||
PCBER_SDR_a | cd05259 | phenylcoumaran benzylic ether reductase (PCBER) like, atypical (a) SDRs; PCBER and ... |
319-578 | 5.10e-04 | ||||||||||
phenylcoumaran benzylic ether reductase (PCBER) like, atypical (a) SDRs; PCBER and pinoresinol-lariciresinol reductases are NADPH-dependent aromatic alcohol reductases, and are atypical members of the SDR family. Other proteins in this subgroup are identified as eugenol synthase. These proteins contain an N-terminus characteristic of NAD(P)-binding proteins and a small C-terminal domain presumed to be involved in substrate binding, but they do not have the conserved active site Tyr residue typically found in SDRs. Numerous other members have unknown functions. The glycine rich NADP-binding motif in this subgroup is of 2 forms: GXGXXG and G[GA]XGXXG; it tends to be atypical compared with the forms generally seen in classical or extended SDRs. The usual SDR active site tetrad is not present, but a critical active site Lys at the usual SDR position has been identified in various members, though other charged and polar residues are found at this position in this subgroup. Atypical SDR-related proteins retain the Rossmann fold of the SDRs, but have limited sequence identity and generally lack the catalytic properties of the archetypical members. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187569 [Multi-domain] Cd Length: 282 Bit Score: 42.29 E-value: 5.10e-04
|
||||||||||||||
UDP_invert_4-6DH_SDR_e | cd05237 | UDP-Glcnac (UDP-linked N-acetylglucosamine) inverting 4,6-dehydratase, extended (e) SDRs; ... |
319-482 | 1.16e-03 | ||||||||||
UDP-Glcnac (UDP-linked N-acetylglucosamine) inverting 4,6-dehydratase, extended (e) SDRs; UDP-Glcnac inverting 4,6-dehydratase was identified in Helicobacter pylori as the hexameric flaA1 gene product (FlaA1). FlaA1 is hexameric, possesses UDP-GlcNAc-inverting 4,6-dehydratase activity, and catalyzes the first step in the creation of a pseudaminic acid derivative in protein glycosylation. Although this subgroup has the NADP-binding motif characteristic of extended SDRs, its members tend to have a Met substituted for the active site Tyr found in most SDR families. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187548 [Multi-domain] Cd Length: 287 Bit Score: 41.45 E-value: 1.16e-03
|
||||||||||||||
MupV_like_SDR_e | cd05263 | Pseudomonas fluorescens MupV-like, extended (e) SDRs; This subgroup of extended SDR family ... |
320-592 | 1.24e-03 | ||||||||||
Pseudomonas fluorescens MupV-like, extended (e) SDRs; This subgroup of extended SDR family domains have the characteristic active site tetrad and a well-conserved NAD(P)-binding motif. This subgroup is not well characterized, its members are annotated as having a variety of putative functions. One characterized member is Pseudomonas fluorescens MupV a protein involved in the biosynthesis of Mupirocin, a polyketide-derived antibiotic. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187573 [Multi-domain] Cd Length: 293 Bit Score: 41.20 E-value: 1.24e-03
|
||||||||||||||
purU | PRK13010 | formyltetrahydrofolate deformylase; Reviewed |
50-158 | 1.88e-03 | ||||||||||
formyltetrahydrofolate deformylase; Reviewed Pssm-ID: 139334 [Multi-domain] Cd Length: 289 Bit Score: 40.93 E-value: 1.88e-03
|
||||||||||||||
Gne_like_SDR_e | cd05238 | Escherichia coli Gne (a nucleoside-diphosphate-sugar 4-epimerase)-like, extended (e) SDRs; ... |
319-470 | 2.45e-03 | ||||||||||
Escherichia coli Gne (a nucleoside-diphosphate-sugar 4-epimerase)-like, extended (e) SDRs; Nucleoside-diphosphate-sugar 4-epimerase has the characteristic active site tetrad and NAD-binding motif of the extended SDR, and is related to more specifically defined epimerases such as UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), which catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup includes Escherichia coli 055:H7 Gne, a UDP-GlcNAc 4-epimerase, essential for O55 antigen synthesis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187549 [Multi-domain] Cd Length: 305 Bit Score: 40.45 E-value: 2.45e-03
|
||||||||||||||
YbjT | COG0702 | Uncharacterized conserved protein YbjT, contains NAD(P)-binding and DUF2867 domains [General ... |
319-584 | 2.73e-03 | ||||||||||
Uncharacterized conserved protein YbjT, contains NAD(P)-binding and DUF2867 domains [General function prediction only]; Pssm-ID: 440466 [Multi-domain] Cd Length: 215 Bit Score: 39.83 E-value: 2.73e-03
|
||||||||||||||
Blast search parameters | ||||
|