NAD(P)-dependent oxidoreductase similar to 3-hydroxyisobutyrate dehydrogenase, L-threonate dehydrogenase, 2-(hydroxymethyl)glutarate dehydrogenase, and glyoxylate/succinic semialdehyde reductase
2-hydroxy-3-oxopropionate reductase; This model represents 2-hydroxy-3-oxopropionate reductase ...
4-283
1.08e-59
2-hydroxy-3-oxopropionate reductase; This model represents 2-hydroxy-3-oxopropionate reductase (EC 1.1.1.60), also called tartronate semialdehyde reductase. It follows glyoxylate carboligase and precedes glycerate kinase in D-glycerate pathway of glyoxylate degradation. The eventual product, 3-phosphoglycerate, is an intermediate of glycolysis and is readily metabolized. Tartronic semialdehyde, the substrate of this enzyme, may also come from other pathways, such as D-glucarate catabolism.
Pssm-ID: 130569 [Multi-domain] Cd Length: 291 Bit Score: 191.64 E-value: 1.08e-59
NADP-binding domain of glutamyl-tRNA reductase; Glutamyl-tRNA reductase catalyzes the ...
4-67
6.96e-03
NADP-binding domain of glutamyl-tRNA reductase; Glutamyl-tRNA reductase catalyzes the conversion of glutamyl-tRNA to glutamate-1-semialdehyde, initiating the synthesis of tetrapyrrole. Whereas tRNAs are generally associated with peptide bond formation in protein translation, here the tRNA activates glutamate in the initiation of tetrapyrrole biosynthesis in archaea, plants and many bacteria. In the first step, activated glutamate is reduced to glutamate-1-semi-aldehyde via the NADPH dependent glutamyl-tRNA reductase. Glutamyl-tRNA reductase forms a V-shaped dimer. Each monomer has 3 domains: an N-terminal catalytic domain, a classic nucleotide binding domain, and a C-terminal dimerization domain. Although the representative structure 1GPJ lacks a bound NADPH, a theoretical binding pocket has been described. (PMID 11172694). Amino acid dehydrogenase (DH)-like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts.
Pssm-ID: 133452 [Multi-domain] Cd Length: 311 Bit Score: 37.25 E-value: 6.96e-03
2-hydroxy-3-oxopropionate reductase; This model represents 2-hydroxy-3-oxopropionate reductase ...
4-283
1.08e-59
2-hydroxy-3-oxopropionate reductase; This model represents 2-hydroxy-3-oxopropionate reductase (EC 1.1.1.60), also called tartronate semialdehyde reductase. It follows glyoxylate carboligase and precedes glycerate kinase in D-glycerate pathway of glyoxylate degradation. The eventual product, 3-phosphoglycerate, is an intermediate of glycolysis and is readily metabolized. Tartronic semialdehyde, the substrate of this enzyme, may also come from other pathways, such as D-glucarate catabolism.
Pssm-ID: 130569 [Multi-domain] Cd Length: 291 Bit Score: 191.64 E-value: 1.08e-59
3-hydroxyisobutyrate dehydrogenase; 3-hydroxyisobutyrate dehydrogenase is an enzyme that ...
6-287
3.65e-49
3-hydroxyisobutyrate dehydrogenase; 3-hydroxyisobutyrate dehydrogenase is an enzyme that catalyzes the NAD+-dependent oxidation of 3-hydroxyisobutyrate to methylmalonate semialdehyde of the valine catabolism pathway. In Pseudomonas aeruginosa, 3-hydroxyisobutyrate dehydrogenase (mmsB) is co-induced with methylmalonate-semialdehyde dehydrogenase (mmsA) when grown on medium containing valine as the sole carbon source. The positive transcriptional regulator of this operon (mmsR) is located upstream of these genes and has been identified as a member of the XylS/AraC family of transcriptional regulators. 3-hydroxyisobutyrate dehydrogenase shares high sequence homology to the characterized 3-hydroxyisobutyrate dehydrogenase from rat liver with conservation of proposed NAD+ binding residues at the N-terminus (G-8,10,13,24 and D-31). This enzyme belongs to the 3-hydroxyacid dehydrogenase family, sharing a common evolutionary origin and enzymatic mechanism with 6-phosphogluconate. HIBADH exhibits sequence similarity to the NAD binding domain of 6-phosphogluconate dehydrogenase above trusted (pfam03446). [Energy metabolism, Amino acids and amines]
Pssm-ID: 130753 [Multi-domain] Cd Length: 288 Bit Score: 164.59 E-value: 3.65e-49
NAD-binding of NADP-dependent 3-hydroxyisobutyrate dehydrogenase; 3-Hydroxyisobutyrate is a ...
166-283
7.66e-36
NAD-binding of NADP-dependent 3-hydroxyisobutyrate dehydrogenase; 3-Hydroxyisobutyrate is a central metabolite in the valine catabolic pathway, and is reversibly oxidized to methylmalonate semi-aldehyde by a specific dehydrogenase belonging to the 3-hydroxyacid dehydrogenase family. The reaction is NADP-dependent and this region of the enzyme binds NAD. The NAD-binding domain of 6-phosphogluconate dehydrogenase adopts an alpha helical structure.
Pssm-ID: 434252 [Multi-domain] Cd Length: 122 Bit Score: 124.56 E-value: 7.66e-36
Pyrroline-5-carboxylate reductase [Amino acid transport and metabolism]; ...
4-66
3.99e-06
Pyrroline-5-carboxylate reductase [Amino acid transport and metabolism]; Pyrroline-5-carboxylate reductase is part of the Pathway/BioSystem: Proline biosynthesis
Pssm-ID: 440114 [Multi-domain] Cd Length: 267 Bit Score: 46.98 E-value: 3.99e-06
NADP-binding domain of glutamyl-tRNA reductase; Glutamyl-tRNA reductase catalyzes the ...
4-67
6.96e-03
NADP-binding domain of glutamyl-tRNA reductase; Glutamyl-tRNA reductase catalyzes the conversion of glutamyl-tRNA to glutamate-1-semialdehyde, initiating the synthesis of tetrapyrrole. Whereas tRNAs are generally associated with peptide bond formation in protein translation, here the tRNA activates glutamate in the initiation of tetrapyrrole biosynthesis in archaea, plants and many bacteria. In the first step, activated glutamate is reduced to glutamate-1-semi-aldehyde via the NADPH dependent glutamyl-tRNA reductase. Glutamyl-tRNA reductase forms a V-shaped dimer. Each monomer has 3 domains: an N-terminal catalytic domain, a classic nucleotide binding domain, and a C-terminal dimerization domain. Although the representative structure 1GPJ lacks a bound NADPH, a theoretical binding pocket has been described. (PMID 11172694). Amino acid dehydrogenase (DH)-like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts.
Pssm-ID: 133452 [Multi-domain] Cd Length: 311 Bit Score: 37.25 E-value: 6.96e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options