Tpt phosphate/phosphoenolpyruvate translocator; The 6-8 TMS Triose-phosphate Transporter (TPT) ...
19-306
1.19e-12
Tpt phosphate/phosphoenolpyruvate translocator; The 6-8 TMS Triose-phosphate Transporter (TPT) Family (TC 2.A.7.9)Functionally characterized members of the TPT family are derived from the inner envelope membranes of chloroplasts and nongreen plastids of plants. However,homologues are also present in yeast. Saccharomyces cerevisiae has three functionally uncharacterized TPT paralogues encoded within its genome. Under normal physiologicalconditions, chloroplast TPTs mediate a strict antiport of substrates, frequently exchanging an organic three carbon compound phosphate ester for inorganic phosphate (Pi).Normally, a triose-phosphate, 3-phosphoglycerate, or another phosphorylated C3 compound made in the chloroplast during photosynthesis, exits the organelle into thecytoplasm of the plant cell in exchange for Pi. However, experiments with reconstituted translocator in artificial membranes indicate that transport can also occur by achannel-like uniport mechanism with up to 10-fold higher transport rates. Channel opening may be induced by a membrane potential of large magnitude and/or by high substrateconcentrations. Nongreen plastid and chloroplast carriers, such as those from maize endosperm and root membranes, mediate transport of C3 compounds phosphorylated atcarbon atom 2, particularly phosphenolpyruvate, in exchange for Pi. These are the phosphoenolpyruvate:Pi antiporters (PPT). Glucose-6-P has also been shown to be asubstrate of some plastid translocators (GPT). The three types of proteins (TPT, PPT and GPT) are divergent in sequence as well as substrate specificity, but their substratespecificities overlap. [Hypothetical proteins, Conserved]
Pssm-ID: 129898 [Multi-domain] Cd Length: 302 Bit Score: 67.06 E-value: 1.19e-12
Permease of the drug/metabolite transporter (DMT) superfamily [Carbohydrate transport and ...
41-299
1.98e-09
Permease of the drug/metabolite transporter (DMT) superfamily [Carbohydrate transport and metabolism, Amino acid transport and metabolism, General function prediction only];
Pssm-ID: 440461 [Multi-domain] Cd Length: 290 Bit Score: 57.54 E-value: 1.98e-09
solute carrier family 35 member C2, member of the triose-phosphate transporter family; Solute ...
96-299
7.95e-08
solute carrier family 35 member C2, member of the triose-phosphate transporter family; Solute carrier family 35 member C2 (S35C2 or Slc35c2), also called ovarian cancer-overexpressed gene 1 protein (OVCOV1), is a member of the triose-phosphate transporter (TPT) family, which is part of the drug/metabolite transporter (DMT) superfamily. It may function either as a GDP-fucose transporter that competes with Slc35c1 (S35C1) for GDP-fucose, or a factor that otherwise enhances the fucosylation of Notch and is required for optimal Notch signaling in mammalian cells.
Pssm-ID: 411044 Cd Length: 248 Bit Score: 52.27 E-value: 7.95e-08
Tpt phosphate/phosphoenolpyruvate translocator; The 6-8 TMS Triose-phosphate Transporter (TPT) ...
19-306
1.19e-12
Tpt phosphate/phosphoenolpyruvate translocator; The 6-8 TMS Triose-phosphate Transporter (TPT) Family (TC 2.A.7.9)Functionally characterized members of the TPT family are derived from the inner envelope membranes of chloroplasts and nongreen plastids of plants. However,homologues are also present in yeast. Saccharomyces cerevisiae has three functionally uncharacterized TPT paralogues encoded within its genome. Under normal physiologicalconditions, chloroplast TPTs mediate a strict antiport of substrates, frequently exchanging an organic three carbon compound phosphate ester for inorganic phosphate (Pi).Normally, a triose-phosphate, 3-phosphoglycerate, or another phosphorylated C3 compound made in the chloroplast during photosynthesis, exits the organelle into thecytoplasm of the plant cell in exchange for Pi. However, experiments with reconstituted translocator in artificial membranes indicate that transport can also occur by achannel-like uniport mechanism with up to 10-fold higher transport rates. Channel opening may be induced by a membrane potential of large magnitude and/or by high substrateconcentrations. Nongreen plastid and chloroplast carriers, such as those from maize endosperm and root membranes, mediate transport of C3 compounds phosphorylated atcarbon atom 2, particularly phosphenolpyruvate, in exchange for Pi. These are the phosphoenolpyruvate:Pi antiporters (PPT). Glucose-6-P has also been shown to be asubstrate of some plastid translocators (GPT). The three types of proteins (TPT, PPT and GPT) are divergent in sequence as well as substrate specificity, but their substratespecificities overlap. [Hypothetical proteins, Conserved]
Pssm-ID: 129898 [Multi-domain] Cd Length: 302 Bit Score: 67.06 E-value: 1.19e-12
Permease of the drug/metabolite transporter (DMT) superfamily [Carbohydrate transport and ...
41-299
1.98e-09
Permease of the drug/metabolite transporter (DMT) superfamily [Carbohydrate transport and metabolism, Amino acid transport and metabolism, General function prediction only];
Pssm-ID: 440461 [Multi-domain] Cd Length: 290 Bit Score: 57.54 E-value: 1.98e-09
solute carrier family 35 member C2, member of the triose-phosphate transporter family; Solute ...
96-299
7.95e-08
solute carrier family 35 member C2, member of the triose-phosphate transporter family; Solute carrier family 35 member C2 (S35C2 or Slc35c2), also called ovarian cancer-overexpressed gene 1 protein (OVCOV1), is a member of the triose-phosphate transporter (TPT) family, which is part of the drug/metabolite transporter (DMT) superfamily. It may function either as a GDP-fucose transporter that competes with Slc35c1 (S35C1) for GDP-fucose, or a factor that otherwise enhances the fucosylation of Notch and is required for optimal Notch signaling in mammalian cells.
Pssm-ID: 411044 Cd Length: 248 Bit Score: 52.27 E-value: 7.95e-08
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options