class VII myosin, motor domain; These monomeric myosins have been associated with functions in ...
79-748
0e+00
class VII myosin, motor domain; These monomeric myosins have been associated with functions in sensory systems such as vision and hearing. Mammalian myosin VII has a tail with 2 MyTH4 domains, 2 FERM domains, and a SH3 domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
:
Pssm-ID: 276832 Cd Length: 648 Bit Score: 1287.59 E-value: 0e+00
FERM domain C-lobe, repeat 2, of Myosin VII (MyoVII, Myo7); MyoVII, a MyTH-FERM myosin, is an ...
2005-2100
4.14e-58
FERM domain C-lobe, repeat 2, of Myosin VII (MyoVII, Myo7); MyoVII, a MyTH-FERM myosin, is an actin-based motor protein essential for a variety of biological processes in the actin cytoskeleton function. Mutations in MyoVII leads to problems in sensory perception: deafness and blindness in humans (Usher Syndrome), retinal defects and deafness in mice (shaker 1), and aberrant auditory and vestibular function in zebrafish. Myosin VIIAs have plus (barbed) end-directed motor activity on actin filaments and a characteristic actin-activated ATPase activity. MyoVII consists of a conserved spectrin-like, SH3 subdomain N-terminal region, a motor/head region, a neck made of 4-5 IQ motifs, and a tail consisting of a coiled-coil domain, followed by a tandem repeat of myosin tail homology 4 (MyTH4) domains and partial FERM domains that are separated by an SH3 subdomain and are thought to mediate dimerization and binding to other proteins or cargo. Members include: MyoVIIa, MyoVIIb, and MyoVII members that do not have distinct myosin VIIA and myosin VIIB genes. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.
:
Pssm-ID: 270020 Cd Length: 96 Bit Score: 195.55 E-value: 4.14e-58
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 1, F1 sub-domain, found in Myosin-VIIa, ...
1193-1291
3.96e-54
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 1, F1 sub-domain, found in Myosin-VIIa, Myosin-VIIb, and similar proteins; This family includes two nontraditional members of the myosin superfamily, myosin-VIIa and myosin-VIIb. Myosin-VIIa, also termed myosin-7a (Myo7a), has been implicated in the structural organization of hair bundles at the apex of sensory hair cells (SHCs) where it serves mechanotransduction in the process of hearing and balance. Mutations in the MYO7A gene may be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Myosin-VIIb, also termed myosin-7b (Myo7b), is a high duty ratio motor adapted for generating and maintaining tension. It associates with harmonin and ANKS4B to form a stable ternary complex for anchoring microvilli tip-link cadherins. Like other unconventional myosins, myosin-VII is composed of a conserved motor head, a neck region and a tail region containing two MyTH4 domains, a SH3 domain, and two FERM domains. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to the F1 sub-domain of the first FERM domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).
:
Pssm-ID: 340612 Cd Length: 99 Bit Score: 184.00 E-value: 3.96e-54
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 2, F1 sub-domain, found in Myosin-VIIa, ...
1795-1892
1.33e-49
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 2, F1 sub-domain, found in Myosin-VIIa, Myosin-VIIb, and similar proteins; This family includes two nontraditional members of myosin superfamily, myosin-VIIa and myosin-VIIb. Myosin-VIIa, also termed myosin-7a (Myo7a), has been implicated in the structural organization of hair bundles at the apex of sensory hair cells (SHCs) where it serves mechanotransduction in the process of hearing and balance. Mutations in MYO7A gene may be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Myosin-VIIb, also termed myosin-7b (Myo7b), is a high duty ratio motor adapted for generating and maintaining tension. It associates with harmonin and ANKS4B to form a stable ternary complex for anchoring microvilli tip-link cadherins. Like other unconventional myosins, myosin-VII is composed of a conserved motor head, a neck region and a tail region containing two MyTH4 domains, a SH3 domain, and two FERM domains. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to the F1 sub-domain of the second FERM domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).
:
Pssm-ID: 340613 Cd Length: 98 Bit Score: 171.27 E-value: 1.33e-49
FERM domain C-lobe, repeat 1, of Myosin VII (MyoVII/Myo7); MyoVII, a MyTH-FERM myosin, is an ...
1403-1499
9.72e-34
FERM domain C-lobe, repeat 1, of Myosin VII (MyoVII/Myo7); MyoVII, a MyTH-FERM myosin, is an actin-based motor protein essential for a variety of biological processes in the actin cytoskeleton function. Mutations in MyoVII leads to problems in sensory perception: deafness and blindness in humans (Usher Syndrome), retinal defects and deafness in mice (shaker 1), and aberrant auditory and vestibular function in zebrafish. Myosin VIIAs have plus (barbed) end-directed motor activity on actin filaments and a characteristic actin-activated ATPase activity. MyoVII consists of a conserved spectrin-like, SH3 subdomain N-terminal region, a motor/head region, a neck made of 4-5 IQ motifs, and a tail consisting of a coiled-coil domain, followed by a tandem repeat of myosin tail homology 4 (MyTH4) domains and partial FERM domains that are separated by an SH3 subdomain and are thought to mediate dimerization and binding to other proteins or cargo. Members include: MyoVIIa, MyoVIIb, and MyoVII members that do not have distinct myosin VIIA and myosin VIIB genes. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.
:
Pssm-ID: 270019 Cd Length: 99 Bit Score: 125.79 E-value: 9.72e-34
Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in ...
1797-2009
3.16e-30
Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in myosins, ezrin, radixin, moesin, protein tyrosine phosphatases. Plasma membrane-binding domain. These proteins play structural and regulatory roles in the assembly and stabilization of specialized plasmamembrane domains. Some PDZ domain containing proteins bind one or more of this family. Now includes JAKs.
:
Pssm-ID: 214604 [Multi-domain] Cd Length: 201 Bit Score: 119.71 E-value: 3.16e-30
Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in ...
1196-1409
1.40e-14
Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in myosins, ezrin, radixin, moesin, protein tyrosine phosphatases. Plasma membrane-binding domain. These proteins play structural and regulatory roles in the assembly and stabilization of specialized plasmamembrane domains. Some PDZ domain containing proteins bind one or more of this family. Now includes JAKs.
:
Pssm-ID: 214604 [Multi-domain] Cd Length: 201 Bit Score: 74.64 E-value: 1.40e-14
Src Homology 3 domain superfamily; Src Homology 3 (SH3) domains are protein interaction ...
1500-1560
2.86e-09
Src Homology 3 domain superfamily; Src Homology 3 (SH3) domains are protein interaction domains that bind proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. Thus, they are referred to as proline-recognition domains (PRDs). SH3 domains are less selective and show more diverse specificity compared to other PRDs. They have been shown to bind peptide sequences that lack the PxxP motif; examples include the PxxDY motif of Eps8 and the RKxxYxxY sequence in SKAP55. SH3 domain containing proteins play versatile and diverse roles in the cell, including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies, among others. Many members of this superfamily are adaptor proteins that associate with a number of protein partners, facilitating complex formation and signal transduction.
The actual alignment was detected with superfamily member cd11881:
Pssm-ID: 473055 Cd Length: 64 Bit Score: 54.83 E-value: 2.86e-09
class VII myosin, motor domain; These monomeric myosins have been associated with functions in ...
79-748
0e+00
class VII myosin, motor domain; These monomeric myosins have been associated with functions in sensory systems such as vision and hearing. Mammalian myosin VII has a tail with 2 MyTH4 domains, 2 FERM domains, and a SH3 domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276832 Cd Length: 648 Bit Score: 1287.59 E-value: 0e+00
Myosin. Large ATPases; ATPase; molecular motor. Muscle contraction consists of a cyclical ...
60-759
0e+00
Myosin. Large ATPases; ATPase; molecular motor. Muscle contraction consists of a cyclical interaction between myosin and actin. The core of the myosin structure is similar in fold to that of kinesin.
Pssm-ID: 214580 [Multi-domain] Cd Length: 677 Bit Score: 963.16 E-value: 0e+00
FERM domain C-lobe, repeat 2, of Myosin VII (MyoVII, Myo7); MyoVII, a MyTH-FERM myosin, is an ...
2005-2100
4.14e-58
FERM domain C-lobe, repeat 2, of Myosin VII (MyoVII, Myo7); MyoVII, a MyTH-FERM myosin, is an actin-based motor protein essential for a variety of biological processes in the actin cytoskeleton function. Mutations in MyoVII leads to problems in sensory perception: deafness and blindness in humans (Usher Syndrome), retinal defects and deafness in mice (shaker 1), and aberrant auditory and vestibular function in zebrafish. Myosin VIIAs have plus (barbed) end-directed motor activity on actin filaments and a characteristic actin-activated ATPase activity. MyoVII consists of a conserved spectrin-like, SH3 subdomain N-terminal region, a motor/head region, a neck made of 4-5 IQ motifs, and a tail consisting of a coiled-coil domain, followed by a tandem repeat of myosin tail homology 4 (MyTH4) domains and partial FERM domains that are separated by an SH3 subdomain and are thought to mediate dimerization and binding to other proteins or cargo. Members include: MyoVIIa, MyoVIIb, and MyoVII members that do not have distinct myosin VIIA and myosin VIIB genes. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.
Pssm-ID: 270020 Cd Length: 96 Bit Score: 195.55 E-value: 4.14e-58
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 1, F1 sub-domain, found in Myosin-VIIa, ...
1193-1291
3.96e-54
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 1, F1 sub-domain, found in Myosin-VIIa, Myosin-VIIb, and similar proteins; This family includes two nontraditional members of the myosin superfamily, myosin-VIIa and myosin-VIIb. Myosin-VIIa, also termed myosin-7a (Myo7a), has been implicated in the structural organization of hair bundles at the apex of sensory hair cells (SHCs) where it serves mechanotransduction in the process of hearing and balance. Mutations in the MYO7A gene may be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Myosin-VIIb, also termed myosin-7b (Myo7b), is a high duty ratio motor adapted for generating and maintaining tension. It associates with harmonin and ANKS4B to form a stable ternary complex for anchoring microvilli tip-link cadherins. Like other unconventional myosins, myosin-VII is composed of a conserved motor head, a neck region and a tail region containing two MyTH4 domains, a SH3 domain, and two FERM domains. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to the F1 sub-domain of the first FERM domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).
Pssm-ID: 340612 Cd Length: 99 Bit Score: 184.00 E-value: 3.96e-54
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 2, F1 sub-domain, found in Myosin-VIIa, ...
1795-1892
1.33e-49
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 2, F1 sub-domain, found in Myosin-VIIa, Myosin-VIIb, and similar proteins; This family includes two nontraditional members of myosin superfamily, myosin-VIIa and myosin-VIIb. Myosin-VIIa, also termed myosin-7a (Myo7a), has been implicated in the structural organization of hair bundles at the apex of sensory hair cells (SHCs) where it serves mechanotransduction in the process of hearing and balance. Mutations in MYO7A gene may be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Myosin-VIIb, also termed myosin-7b (Myo7b), is a high duty ratio motor adapted for generating and maintaining tension. It associates with harmonin and ANKS4B to form a stable ternary complex for anchoring microvilli tip-link cadherins. Like other unconventional myosins, myosin-VII is composed of a conserved motor head, a neck region and a tail region containing two MyTH4 domains, a SH3 domain, and two FERM domains. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to the F1 sub-domain of the second FERM domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).
Pssm-ID: 340613 Cd Length: 98 Bit Score: 171.27 E-value: 1.33e-49
FERM domain C-lobe, repeat 1, of Myosin VII (MyoVII/Myo7); MyoVII, a MyTH-FERM myosin, is an ...
1403-1499
9.72e-34
FERM domain C-lobe, repeat 1, of Myosin VII (MyoVII/Myo7); MyoVII, a MyTH-FERM myosin, is an actin-based motor protein essential for a variety of biological processes in the actin cytoskeleton function. Mutations in MyoVII leads to problems in sensory perception: deafness and blindness in humans (Usher Syndrome), retinal defects and deafness in mice (shaker 1), and aberrant auditory and vestibular function in zebrafish. Myosin VIIAs have plus (barbed) end-directed motor activity on actin filaments and a characteristic actin-activated ATPase activity. MyoVII consists of a conserved spectrin-like, SH3 subdomain N-terminal region, a motor/head region, a neck made of 4-5 IQ motifs, and a tail consisting of a coiled-coil domain, followed by a tandem repeat of myosin tail homology 4 (MyTH4) domains and partial FERM domains that are separated by an SH3 subdomain and are thought to mediate dimerization and binding to other proteins or cargo. Members include: MyoVIIa, MyoVIIb, and MyoVII members that do not have distinct myosin VIIA and myosin VIIB genes. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.
Pssm-ID: 270019 Cd Length: 99 Bit Score: 125.79 E-value: 9.72e-34
Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in ...
1797-2009
3.16e-30
Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in myosins, ezrin, radixin, moesin, protein tyrosine phosphatases. Plasma membrane-binding domain. These proteins play structural and regulatory roles in the assembly and stabilization of specialized plasmamembrane domains. Some PDZ domain containing proteins bind one or more of this family. Now includes JAKs.
Pssm-ID: 214604 [Multi-domain] Cd Length: 201 Bit Score: 119.71 E-value: 3.16e-30
FERM domain B-lobe; The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C ...
1907-2001
2.25e-15
FERM domain B-lobe; The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases, the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains and consequently is capable of binding to both peptides and phospholipids at different sites.
Pssm-ID: 271216 Cd Length: 99 Bit Score: 73.43 E-value: 2.25e-15
Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in ...
1196-1409
1.40e-14
Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in myosins, ezrin, radixin, moesin, protein tyrosine phosphatases. Plasma membrane-binding domain. These proteins play structural and regulatory roles in the assembly and stabilization of specialized plasmamembrane domains. Some PDZ domain containing proteins bind one or more of this family. Now includes JAKs.
Pssm-ID: 214604 [Multi-domain] Cd Length: 201 Bit Score: 74.64 E-value: 1.40e-14
Src Homology 3 domain of Myosin VIIa and similar proteins; Myo7A is an uncoventional myosin ...
1500-1560
2.86e-09
Src Homology 3 domain of Myosin VIIa and similar proteins; Myo7A is an uncoventional myosin that is involved in organelle transport. It is required for sensory function in both Drosophila and mammals. Mutations in the Myo7A gene cause both syndromic deaf-blindness [Usher syndrome I (USH1)] and nonsyndromic (DFNB2 and DFNA11) deafness in humans. It contains an N-terminal motor domain, light chain-binding IQ motifs, a coiled-coil region for heavy chain dimerization, and a tail consisting of a pair of MyTH4-FERM tandems separated by a SH3 domain. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies.
Pssm-ID: 212814 Cd Length: 64 Bit Score: 54.83 E-value: 2.86e-09
Src homology 3 domains; Src homology 3 (SH3) domains bind to target proteins through sequences ...
1499-1559
2.15e-05
Src homology 3 domains; Src homology 3 (SH3) domains bind to target proteins through sequences containing proline and hydrophobic amino acids. Pro-containing polypeptides may bind to SH3 domains in 2 different binding orientations.
Pssm-ID: 214620 [Multi-domain] Cd Length: 56 Bit Score: 43.68 E-value: 2.15e-05
IQ (isoleucine-glutamine) motif containing D (IQCD); IQCD, also called dynein regulatory ...
780-807
3.14e-03
IQ (isoleucine-glutamine) motif containing D (IQCD); IQCD, also called dynein regulatory complex protein 10 (DRC10), belongs to the IQ motif-containing protein family which contains a C-terminal conserved IQ motif domain and two coiled-coil domains. The IQ motif ([ILV]QxxxRxxxx[RK]), where x stands for any amino-acid residue, interacts with calmodulin (CaM) in a calcium-independent manner and is present in proteins with a wide diversity of biological functions. The IQCD protein was found to primarily accumulate in the acrosome area of round and elongating spermatids of the testis during late stage of spermiogenesis and was then localized to the acrosome and tail regions of mature spermatozoa. The expression of IQCD follows the trajectory of acrosome development during spermatogenesis. IQCD is associated with neuroblastoma and neurodegenerative diseases, and is reported to interact with the nuclear retinoid X receptor in the presence of 9-cis-retinoic acid, thereby activating the transcriptional activity of the receptor.
Pssm-ID: 467745 [Multi-domain] Cd Length: 37 Bit Score: 37.14 E-value: 3.14e-03
class VII myosin, motor domain; These monomeric myosins have been associated with functions in ...
79-748
0e+00
class VII myosin, motor domain; These monomeric myosins have been associated with functions in sensory systems such as vision and hearing. Mammalian myosin VII has a tail with 2 MyTH4 domains, 2 FERM domains, and a SH3 domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276832 Cd Length: 648 Bit Score: 1287.59 E-value: 0e+00
Myosin. Large ATPases; ATPase; molecular motor. Muscle contraction consists of a cyclical ...
60-759
0e+00
Myosin. Large ATPases; ATPase; molecular motor. Muscle contraction consists of a cyclical interaction between myosin and actin. The core of the myosin structure is similar in fold to that of kinesin.
Pssm-ID: 214580 [Multi-domain] Cd Length: 677 Bit Score: 963.16 E-value: 0e+00
Myosin motor domain superfamily; Myosin motor domain. The catalytic (head) domain has ATPase ...
79-748
0e+00
Myosin motor domain superfamily; Myosin motor domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276950 [Multi-domain] Cd Length: 633 Bit Score: 874.22 E-value: 0e+00
class XXII myosin, motor domain; These myosins possess an extended neck with multiple IQ ...
80-748
0e+00
class XXII myosin, motor domain; These myosins possess an extended neck with multiple IQ motifs such as found in class V, VIII, XI, and XIII myosins. These myosins are defined by two tandem MyTH4 and FERM domains. The apicomplexan, but not diatom myosins contain 4-6 WD40 repeats near the end of the C-terminal tail which suggests a possible function of these myosins in signal transduction and transcriptional regulation. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276849 [Multi-domain] Cd Length: 661 Bit Score: 791.91 E-value: 0e+00
class V myosin, motor domain; Myo5, also called heavy chain 12, myoxin, are dimeric myosins ...
81-748
0e+00
class V myosin, motor domain; Myo5, also called heavy chain 12, myoxin, are dimeric myosins that transport a variety of intracellular cargo processively along actin filaments, such as melanosomes, synaptic vesicles, vacuoles, and mRNA. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. It also contains a IQ domain and a globular DIL domain. Myosin V is a class of actin-based motor proteins involved in cytoplasmic vesicle transport and anchorage, spindle-pole alignment and mRNA translocation. The protein encoded by this gene is abundant in melanocytes and nerve cells. Mutations in this gene cause Griscelli syndrome type-1 (GS1), Griscelli syndrome type-3 (GS3) and neuroectodermal melanolysosomal disease, or Elejalde disease. Multiple alternatively spliced transcript variants encoding different isoforms have been reported, but the full-length nature of some variants has not been determined. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. Note that the Dictyostelium myoVs are not contained in this child group. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276831 [Multi-domain] Cd Length: 629 Bit Score: 755.15 E-value: 0e+00
class I myosin, motor domain; Myosin I generates movement at the leading edge in cell motility, ...
84-748
0e+00
class I myosin, motor domain; Myosin I generates movement at the leading edge in cell motility, and class I myosins have been implicated in phagocytosis and vesicle transport. Myosin I, an unconventional myosin, does not form dimers. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. There are 5 myosin subclasses with subclasses c/h, d/g, and a/b have an IQ domain and a TH1 domain. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276829 Cd Length: 652 Bit Score: 727.80 E-value: 0e+00
class II myosins, motor domain; Myosin motor domain in class II myosins. Class II myosins, ...
79-748
0e+00
class II myosins, motor domain; Myosin motor domain in class II myosins. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. Thus, myosin II has two heads. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276951 [Multi-domain] Cd Length: 662 Bit Score: 717.32 E-value: 0e+00
class X myosin, motor domain; Myosin X is an unconventional myosin motor that functions as a ...
79-748
0e+00
class X myosin, motor domain; Myosin X is an unconventional myosin motor that functions as a monomer. In mammalian cells, the motor is found to localize to filopodia. Myosin X walks towards the barbed ends of filaments and is thought to walk on bundles of actin, rather than single filaments, a unique behavior. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. C-terminal to the head domain are a variable number of IQ domains, 2 PH domains, a MyTH4 domain, and a FERM domain. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276840 [Multi-domain] Cd Length: 651 Bit Score: 708.87 E-value: 0e+00
class XI myosin, motor domain; These plant-specific type XI myosin are involved in organelle ...
79-748
0e+00
class XI myosin, motor domain; These plant-specific type XI myosin are involved in organelle transport. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle.
Pssm-ID: 276835 Cd Length: 647 Bit Score: 707.90 E-value: 0e+00
class VIII myosin, motor domain; These plant-specific type VIII myosins has been associated ...
81-748
0e+00
class VIII myosin, motor domain; These plant-specific type VIII myosins has been associated with endocytosis, cytokinesis, cell-to-cell coupling and gating at plasmodesmata. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. It also contains IQ domains Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276834 Cd Length: 647 Bit Score: 695.99 E-value: 0e+00
class IX myosin, motor domain; Myosin IX is a processive single-headed motor, which might play ...
84-748
0e+00
class IX myosin, motor domain; Myosin IX is a processive single-headed motor, which might play a role in signalling. It has a N-terminal RA domain, an IQ domain, a C1_1 domain, and a RhoGAP domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276836 [Multi-domain] Cd Length: 690 Bit Score: 690.65 E-value: 0e+00
class XV mammal-like myosin, motor domain; The class XV myosins are monomeric. In vertebrates, ...
79-748
0e+00
class XV mammal-like myosin, motor domain; The class XV myosins are monomeric. In vertebrates, myosin XV appears to be expressed in sensory tissue and play a role in hearing. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. C-terminal to the head domain are 2 MyTH4 domain, a FERM domain, and a SH3 domain. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276838 [Multi-domain] Cd Length: 657 Bit Score: 678.78 E-value: 0e+00
class III myosin, motor domain; Myosin III has been shown to play a role in the vision process ...
81-748
0e+00
class III myosin, motor domain; Myosin III has been shown to play a role in the vision process in insects and in hearing in mammals. Myosin III, an unconventional myosin, does not form dimers. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. They are characterized by an N-terminal protein kinase domain and several IQ domains. Some members also contain WW, SH2, PH, and Y-phosphatase domains. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276830 [Multi-domain] Cd Length: 633 Bit Score: 651.26 E-value: 0e+00
class IV myosin, motor domain; These myosins all possess a WW domain either N-terminal or ...
79-745
0e+00
class IV myosin, motor domain; These myosins all possess a WW domain either N-terminal or C-terminal to their motor domain and a tail with a MyTH4 domain followed by a SH3 domain in some instances. The monomeric Acanthamoebas were the first identified members of this group and have been joined by Stramenopiles. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276839 Cd Length: 644 Bit Score: 625.65 E-value: 0e+00
class XXIX myosin, motor domain; Class XXIX myosins are comprised of Stramenopiles and have ...
79-748
0e+00
class XXIX myosin, motor domain; Class XXIX myosins are comprised of Stramenopiles and have very long tail domains consisting of three IQ motifs, short coiled-coil regions, up to 18 CBS domains, a PB1 domain, and a carboxy-terminal transmembrane domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276855 [Multi-domain] Cd Length: 662 Bit Score: 619.48 E-value: 0e+00
class XXXVI myosin, motor domain; This class of molluscan myosins contains a motor domain ...
81-748
0e+00
class XXXVI myosin, motor domain; This class of molluscan myosins contains a motor domain followed by a GlcAT-I (Beta1,3-glucuronyltransferase I) domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276862 [Multi-domain] Cd Length: 635 Bit Score: 614.01 E-value: 0e+00
class XXVIII myosin, motor domain; These myosins are found in fish, chicken, and mollusks. The ...
85-748
0e+00
class XXVIII myosin, motor domain; These myosins are found in fish, chicken, and mollusks. The tail regions of these class-XXVIII myosins consist of an IQ motif, a short coiled-coil region, and an SH2 domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276854 Cd Length: 659 Bit Score: 599.20 E-value: 0e+00
class XXVII myosin, motor domain; Not much is known about this myosin class. The catalytic ...
79-748
0e+00
class XXVII myosin, motor domain; Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276853 [Multi-domain] Cd Length: 667 Bit Score: 597.44 E-value: 0e+00
class XLVI myosin, motor domain; The class XLVI myosins are comprised of Alveolata. Not much ...
79-748
0e+00
class XLVI myosin, motor domain; The class XLVI myosins are comprised of Alveolata. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276872 [Multi-domain] Cd Length: 669 Bit Score: 586.23 E-value: 0e+00
class VI myosin, motor domain; Myosin VI is a monomeric myosin, which moves towards the ...
79-748
0e+00
class VI myosin, motor domain; Myosin VI is a monomeric myosin, which moves towards the minus-end of actin filaments, in contrast to most other myosins which moves towards the plus-end of actin filaments. It is thought that myosin VI, unlike plus-end directed myosins, does not use a pure lever arm mechanism, but instead steps with a mechanism analogous to the kinesin neck-linker uncoupling model. It has been implicated in a myriad of functions including: the transport of cytoplasmic organelles, maintenance of normal Golgi morphology, endocytosis, secretion, cell migration, border cell migration during development, and in cancer metastasis playing roles in deafness and retinal development among others. While how this is accomplished is largely unknown there are several interacting proteins that have been identified such as disabled homolog 2 (DAB2), GIPC1, synapse-associated protein 97 (SAP97; also known as DLG1) and optineurin, which have been found to target myosin VI to different cellular compartments. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the minus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276833 Cd Length: 649 Bit Score: 579.59 E-value: 0e+00
class XL myosin, motor domain; The class XL myosins are comprised of Stramenopiles. Not much ...
79-747
4.91e-179
class XL myosin, motor domain; The class XL myosins are comprised of Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276866 [Multi-domain] Cd Length: 655 Bit Score: 560.56 E-value: 4.91e-179
class XLII myosin, motor domain; The class XLII myosins are comprised of Stramenopiles. Not ...
79-748
3.74e-177
class XLII myosin, motor domain; The class XLII myosins are comprised of Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276868 [Multi-domain] Cd Length: 658 Bit Score: 555.54 E-value: 3.74e-177
class XXXI myosin, motor domain; Class XXXI myosins have a very long neck region consisting of ...
85-748
1.22e-175
class XXXI myosin, motor domain; Class XXXI myosins have a very long neck region consisting of 17 IQ motifs and 2 tandem ANK repeats that are separated by a PH domain. The myosin classes XXX to XXXIV contain members from Phytophthora species and Hyaloperonospora parasitica. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276857 [Multi-domain] Cd Length: 656 Bit Score: 551.29 E-value: 1.22e-175
class II myosin heavy chain 10, motor domain; Myosin motor domain of non-muscle myosin heavy ...
79-748
1.93e-164
class II myosin heavy chain 10, motor domain; Myosin motor domain of non-muscle myosin heavy chain 10 (also called NMMHCB). Mutations in this gene have been associated with May-Hegglin anomaly and developmental defects in brain and heart. Multiple transcript variants encoding different isoforms have been found for this gene. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276952 [Multi-domain] Cd Length: 673 Bit Score: 521.11 E-value: 1.93e-164
class II myosin heavy chain 1, motor domain; Myosin motor domain of type IIx skeletal muscle ...
79-748
2.66e-162
class II myosin heavy chain 1, motor domain; Myosin motor domain of type IIx skeletal muscle myosin heavy chain 1 (also called MYHSA1, MYHa, MyHC-2X/D, MGC133384) in insects and crustaceans. Myh1 is a type I skeletal muscle myosin that in Humans is encoded by the MYH1 gene. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276874 Cd Length: 666 Bit Score: 515.16 E-value: 2.66e-162
class XXXV myosin, motor domain; This class of metazoan myosins contains 2 IQ motifs, 2 MyTH4 ...
81-748
4.56e-159
class XXXV myosin, motor domain; This class of metazoan myosins contains 2 IQ motifs, 2 MyTH4 domains, a single FERM domain, and an SH3 domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276861 [Multi-domain] Cd Length: 644 Bit Score: 505.47 E-value: 4.56e-159
class II myosin heavy chain 15, motor domain; Myosin motor domain of sarcomeric myosin heavy ...
79-748
2.20e-158
class II myosin heavy chain 15, motor domain; Myosin motor domain of sarcomeric myosin heavy chain 15 in mammals (also called KIAA1000) . MYH15 is a slow-twitch myosin. Myh15 is a ventricular myosin heavy chain. Myh15 is absent in embryonic and fetal muscles and is found in orbital layer of extraocular muscles at birth. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276892 [Multi-domain] Cd Length: 662 Bit Score: 504.12 E-value: 2.20e-158
class II myosin heavy chain 7b, motor domain; Myosin motor domain of cardiac muscle, beta ...
79-748
2.49e-157
class II myosin heavy chain 7b, motor domain; Myosin motor domain of cardiac muscle, beta myosin heavy chain 7b (also called KIAA1512, dJ756N5.1, MYH14, MHC14). MYH7B is a slow-twitch myosin. Mutations in this gene result in one form of autosomal dominant hearing impairment. Multiple transcript variants encoding different isoforms have been found for this gene. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276953 [Multi-domain] Cd Length: 676 Bit Score: 501.79 E-value: 2.49e-157
class XLIII myosin, motor domain; The class XLIII myosins are comprised of Stramenopiles. Not ...
79-748
6.32e-157
class XLIII myosin, motor domain; The class XLIII myosins are comprised of Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276869 Cd Length: 653 Bit Score: 499.85 E-value: 6.32e-157
class XXXIV myosin, motor domain; Class XXXIV myosins are composed of an IQ motif, a short ...
82-748
1.75e-154
class XXXIV myosin, motor domain; Class XXXIV myosins are composed of an IQ motif, a short coiled-coil region, 5 tandem ANK repeats, and a carboxy-terminal FYVE domain. The myosin classes XXX to XXXIV contain members from Phytophthora species and Hyaloperonospora parasitica. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276860 [Multi-domain] Cd Length: 704 Bit Score: 494.86 E-value: 1.75e-154
class II myosin heavy chain 2, motor domain; Myosin motor domain of type IIa skeletal muscle ...
79-748
2.82e-153
class II myosin heavy chain 2, motor domain; Myosin motor domain of type IIa skeletal muscle myosin heavy chain 2 (also called MYH2A, MYHSA2, MyHC-IIa, MYHas8, MyHC-2A) in insects and mollusks. This gene encodes a member of the class II or conventional myosin heavy chains, and functions in skeletal muscle contraction. Mutations in this gene results in inclusion body myopathy-3 and familial congenital myopathy. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276876 [Multi-domain] Cd Length: 674 Bit Score: 490.26 E-value: 2.82e-153
class XLI myosin, motor domain; The class XLI myosins are comprised of Stramenopiles. Not much ...
79-736
4.13e-153
class XLI myosin, motor domain; The class XLI myosins are comprised of Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276867 [Multi-domain] Cd Length: 716 Bit Score: 491.33 E-value: 4.13e-153
class XLVII myosin, motor domain; The class XLVII myosins are comprised of Stramenopiles. Not ...
79-748
4.91e-152
class XLVII myosin, motor domain; The class XLVII myosins are comprised of Stramenopiles. Not much is known about this myosin class. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276873 [Multi-domain] Cd Length: 682 Bit Score: 487.11 E-value: 4.91e-152
class XXX myosin, motor domain; Myosins of class XXX are composed of an amino-terminal ...
79-748
5.51e-151
class XXX myosin, motor domain; Myosins of class XXX are composed of an amino-terminal SH3-like domain, two IQ motifs, a coiled-coil region and a PX domain. The myosin classes XXX to XXXIV contain members from Phytophthora species and Hyaloperonospora parasitica. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276856 Cd Length: 645 Bit Score: 483.01 E-value: 5.51e-151
class XXXIX myosin, motor domain; The class XXXIX myosins are found in Stramenopiles. Not much ...
88-707
1.28e-150
class XXXIX myosin, motor domain; The class XXXIX myosins are found in Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276865 Cd Length: 627 Bit Score: 481.34 E-value: 1.28e-150
class II myosin heavy chain 16, motor domain; Myosin motor domain of myosin heavy chain 16 ...
79-748
3.49e-148
class II myosin heavy chain 16, motor domain; Myosin motor domain of myosin heavy chain 16 pseudogene (also called MHC20, MYH16, and myh5), encoding a sarcomeric myosin heavy chain expressed in nonhuman primate masticatory muscles, is inactivated in humans. This cd contains Myh16 in mammals. MYH16 has intermediate fibres between that of slow type 1 and fast 2B fibres, but exert more force than any other fibre type examined. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. Some of the data used for this classification were produced by the CyMoBase team at the Max-Planck-Institute for Biophysical Chemistry. The sequence names are composed of the species abbreviation followed by the protein abbreviation and optional protein classifier and variant designations.
Pssm-ID: 276896 [Multi-domain] Cd Length: 659 Bit Score: 475.67 E-value: 3.49e-148
class XIV myosin, motor domain; These myosins localize to plasma membranes of the ...
88-748
3.71e-148
class XIV myosin, motor domain; These myosins localize to plasma membranes of the intracellular parasites and may be involved in the cell invasion process. Their known functions include: transporting phagosomes to the nucleus and perturbing the developmentally regulated elimination of the macronucleus during conjugation. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. C-terminal to their motor domain these myosins have a MyTH4-FERM protein domain combination. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276843 Cd Length: 649 Bit Score: 475.25 E-value: 3.71e-148
class II myosin heavy chain 18, motor domain; Myosin motor domain of muscle myosin heavy chain ...
79-748
2.16e-147
class II myosin heavy chain 18, motor domain; Myosin motor domain of muscle myosin heavy chain 18. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276895 [Multi-domain] Cd Length: 676 Bit Score: 474.13 E-value: 2.16e-147
class II myosin heavy chain 3, motor domain; Myosin motor domain of fetal skeletal muscle ...
80-748
9.61e-145
class II myosin heavy chain 3, motor domain; Myosin motor domain of fetal skeletal muscle myosin heavy chain 3 (MYHC-EMB, MYHSE1, HEMHC, SMHCE) in tetrapods including mammals, lizards, and frogs. This gene is a member of the MYH family and encodes a protein with an IQ domain and a myosin head-like domain. Mutations in this gene have been associated with two congenital contracture (arthrogryposis) syndromes, Freeman-Sheldon syndrome and Sheldon-Hall syndrome. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276878 [Multi-domain] Cd Length: 668 Bit Score: 466.45 E-value: 9.61e-145
class XIX myosin, motor domain; Monomeric myosin-XIX (Myo19) functions as an actin-based motor ...
79-747
8.35e-144
class XIX myosin, motor domain; Monomeric myosin-XIX (Myo19) functions as an actin-based motor for mitochondrial movement in vertebrate cells. It contains a variable number of IQ domains. Human myo19 contains a motor domain, three IQ motifs, and a short tail. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276846 [Multi-domain] Cd Length: 658 Bit Score: 463.17 E-value: 8.35e-144
class XLV myosin, motor domain; The class XLVI myosins are comprised of slime molds ...
79-713
6.76e-143
class XLV myosin, motor domain; The class XLVI myosins are comprised of slime molds Dictyostelium and Polysphondylium. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276871 [Multi-domain] Cd Length: 715 Bit Score: 462.91 E-value: 6.76e-143
class II myosin heavy chain 11, motor domain; Myosin motor domain of smooth muscle myosin ...
79-748
1.94e-142
class II myosin heavy chain 11, motor domain; Myosin motor domain of smooth muscle myosin heavy chain 11 (also called SMMHC, SMHC). The gene product is a subunit of a hexameric protein that consists of two heavy chain subunits and two pairs of non-identical light chain subunits. It functions as a major contractile protein, converting chemical energy into mechanical energy through the hydrolysis of ATP. The gene encoding a human ortholog of rat NUDE1 is transcribed from the reverse strand of this gene, and its 3' end overlaps with that of the latter. Inversion of the MYH11 locus is one of the most frequent chromosomal aberrations found in acute myeloid leukemia. Alternative splicing generates isoforms that are differentially expressed, with ratios changing during muscle cell maturation. Mutations in MYH11 have been described in individuals with thoracic aortic aneurysms leading to acute aortic dissections with patent ductus arteriosus. MYH11 mutations are also thought to contribute to human colorectal cancer and are also associated with Peutz-Jeghers syndrome. The mutations found in human intestinal neoplasia result in unregulated proteins with constitutive motor activity, similar to the mutant myh11 zebrafish. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276885 [Multi-domain] Cd Length: 673 Bit Score: 460.25 E-value: 1.94e-142
class II myosin heavy chain 9, motor domain; Myosin motor domain of non-muscle myosin heavy ...
79-748
2.67e-142
class II myosin heavy chain 9, motor domain; Myosin motor domain of non-muscle myosin heavy chain 9 (also called NMMHCA, NMHC-II-A, MHA, FTNS, EPSTS, and DFNA17). Myosin is a hexameric protein composed of a pair of myosin heavy chains (MYH) and two pairs of nonidentical light chains. The encoded protein is a myosin IIA heavy chain that contains an IQ domain and a myosin head-like domain which is involved in several important functions, including cytokinesis, cell motility and maintenance of cell shape. Defects in this gene have been associated with non-syndromic sensorineural deafness autosomal dominant type 17, Epstein syndrome, Alport syndrome with macrothrombocytopenia, Sebastian syndrome, Fechtner syndrome and macrothrombocytopenia with progressive sensorineural deafness. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276883 [Multi-domain] Cd Length: 670 Bit Score: 459.56 E-value: 2.67e-142
class II myosin heavy chain 7, motor domain; Myosin motor domain of beta (or slow) type I ...
80-748
5.69e-140
class II myosin heavy chain 7, motor domain; Myosin motor domain of beta (or slow) type I cardiac muscle myosin heavy chain 7 (also called CMH1, MPD1, and CMD1S). Muscle myosin is a hexameric protein containing 2 heavy chain subunits, 2 alkali light chain subunits, and 2 regulatory light chain subunits. It is expressed predominantly in normal human ventrical and in skeletal muscle tissues rich in slow-twitch type I muscle fibers. Changes in the relative abundance of this protein and the alpha (or fast) heavy subunit of cardiac myosin correlate with the contractile velocity of cardiac muscle. Its expression is also altered during thyroid hormone depletion and hemodynamic overloading. Mutations in this gene are associated with familial hypertrophic cardiomyopathy, myosin storage myopathy, dilated cardiomyopathy, and Laing early-onset distal myopathy. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276881 [Multi-domain] Cd Length: 668 Bit Score: 453.02 E-value: 5.69e-140
class II myosin heavy chain19, motor domain; Myosin motor domain of muscle myosin heavy chain ...
79-748
1.00e-138
class II myosin heavy chain19, motor domain; Myosin motor domain of muscle myosin heavy chain 19. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276899 [Multi-domain] Cd Length: 675 Bit Score: 449.52 E-value: 1.00e-138
class II myosin heavy chain 2, motor domain; Myosin motor domain of type IIa skeletal muscle ...
80-748
3.78e-138
class II myosin heavy chain 2, motor domain; Myosin motor domain of type IIa skeletal muscle myosin heavy chain 2 (also called MYH2A, MYHSA2, MyHC-IIa, MYHas8, MyHC-2A) in mammals. Mutations in this gene results in inclusion body myopathy-3 and familial congenital myopathy. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276877 [Multi-domain] Cd Length: 673 Bit Score: 448.03 E-value: 3.78e-138
class II myosin heavy chain 6, motor domain; Myosin motor domain of alpha (or fast) cardiac ...
80-748
1.95e-135
class II myosin heavy chain 6, motor domain; Myosin motor domain of alpha (or fast) cardiac muscle myosin heavy chain 6. Cardiac muscle myosin is a hexamer consisting of two heavy chain subunits, two light chain subunits, and two regulatory subunits. This gene encodes the alpha heavy chain subunit of cardiac myosin. Mutations in this gene cause familial hypertrophic cardiomyopathy and atrial septal defect. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276880 [Multi-domain] Cd Length: 670 Bit Score: 440.26 E-value: 1.95e-135
class II myosin heavy chain 1, motor domain; Myosin motor domain of type IIx skeletal muscle ...
80-748
2.88e-135
class II myosin heavy chain 1, motor domain; Myosin motor domain of type IIx skeletal muscle myosin heavy chain 1 (also called MYHSA1, MYHa, MyHC-2X/D, MGC133384) in mammals. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276875 [Multi-domain] Cd Length: 671 Bit Score: 439.94 E-value: 2.88e-135
class II myosin heavy chain 8, motor domain; Myosin motor domain of perinatal skeletal muscle ...
80-748
2.30e-134
class II myosin heavy chain 8, motor domain; Myosin motor domain of perinatal skeletal muscle myosin heavy chain 8 (also called MyHC-peri, MyHC-pn). Myosin is a hexameric protein composed of a pair of myosin heavy chains (MYH) and two pairs of nonidentical light chains. A mutation in this gene results in trismus-pseudocamptodactyly syndrome. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276882 [Multi-domain] Cd Length: 668 Bit Score: 437.24 E-value: 2.30e-134
class XIII myosin, motor domain; These myosins have an N-terminal motor domain, a light-chain ...
79-748
6.40e-134
class XIII myosin, motor domain; These myosins have an N-terminal motor domain, a light-chain binding domain, and a C-terminal GPA/Q-rich domain. There is little known about the function of this myosin class. Two of the earliest members identified in this class are green alga Acetabularia cliftonii, Aclmyo1 and Aclmyo2. They are striking with their short tail of Aclmyo1 of 18 residues and the maximum of 7 IQ motifs in Aclmyo2. It is thought that these myosins are involved in organelle transport and tip growth. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276842 [Multi-domain] Cd Length: 664 Bit Score: 435.78 E-value: 6.40e-134
class XXV myosin, motor domain; These myosins are MyTH-FERM myosins that play a role in cell ...
81-748
1.50e-133
class XXV myosin, motor domain; These myosins are MyTH-FERM myosins that play a role in cell adhesion and filopodia formation. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276851 Cd Length: 650 Bit Score: 433.93 E-value: 1.50e-133
class II myosin heavy chain 14 motor domain; Myosin motor domain of non-muscle myosin heavy ...
79-748
1.03e-132
class II myosin heavy chain 14 motor domain; Myosin motor domain of non-muscle myosin heavy chain 14 (also called FLJ13881, KIAA2034, MHC16, MYH17). Its members include mammals, chickens, and turtles. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. Some of the data used for this classification were produced by the CyMoBase team at the Max-Planck-Institute for Biophysical Chemistry. The sequence names are composed of the species abbreviation followed by the protein abbreviation and optional protein classifier and variant designations.
Pssm-ID: 276893 [Multi-domain] Cd Length: 670 Bit Score: 432.60 E-value: 1.03e-132
class II myosin heavy chain 4, motor domain; Myosin motor domain of skeletal muscle myosin ...
80-748
1.14e-132
class II myosin heavy chain 4, motor domain; Myosin motor domain of skeletal muscle myosin heavy chain 4 (also called MYH2B, MyHC-2B, MyHC-IIb). Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276879 [Multi-domain] Cd Length: 671 Bit Score: 432.23 E-value: 1.14e-132
class II myosin heavy chain 13, motor domain; Myosin motor domain of skeletal muscle myosin ...
80-748
1.57e-132
class II myosin heavy chain 13, motor domain; Myosin motor domain of skeletal muscle myosin heavy chain 13 (also called MyHC-eo) in mammals, chicken, and green anole. Myh13 is a myosin whose expression is restricted primarily to the extrinsic eye muscles which are specialized for function in eye movement. Class II myosins, also called conventional myosins, are the myosin type responsible for producing muscle contraction in muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276887 [Multi-domain] Cd Length: 671 Bit Score: 431.80 E-value: 1.57e-132
class XVII myosin, motor domain; This fungal myosin which is also known as chitin synthase ...
76-747
3.44e-126
class XVII myosin, motor domain; This fungal myosin which is also known as chitin synthase uses its motor domain to tether its vesicular cargo to peripheral actin. It works in opposition to dynein, contributing to the retention of Mcs1 vesicles at the site of cell growth and increasing vesicle fusion necessary for polarized growth. Class 17 myosins consist of a N-terminal myosin motor domain with Cyt-b5, chitin synthase 2, and a DEK_C domains at it C-terminus. The chitin synthase region contains several transmembrane domains by which myosin 17 is thought to bind secretory vesicles. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276845 [Multi-domain] Cd Length: 647 Bit Score: 413.10 E-value: 3.44e-126
class XXXVIII myosin; The class XXXVIII myosins are comprised of Stramenopiles. Not much is ...
79-723
1.55e-125
class XXXVIII myosin; The class XXXVIII myosins are comprised of Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276864 [Multi-domain] Cd Length: 717 Bit Score: 413.72 E-value: 1.55e-125
class XVI myosin, motor domain; These XVI type myosins are also known as Neuronal ...
88-748
2.12e-115
class XVI myosin, motor domain; These XVI type myosins are also known as Neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adapter 3/NYAP3. Myo16 is thought to play a regulatory role in cell cycle progression and has been recently implicated in Schizophrenia. Class XVI myosins are characterized by an N-terminal ankyrin repeat domain and some with chitin synthase domains that arose independently from the ones in the class XVII fungal myosins. They bind protein phosphatase 1 catalytic subunits 1alpha/PPP1CA and 1gamma/PPP1CC. Human Myo16 interacts with ACOT9, ARHGAP26 and PIK3R2 and with components of the WAVE1 complex, CYFIP1 and NCKAP1. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276844 [Multi-domain] Cd Length: 656 Bit Score: 382.24 E-value: 2.12e-115
class XXIV A myosin, motor domain; These myosins have a 1-2 IQ motifs in their neck and a ...
79-748
3.27e-109
class XXIV A myosin, motor domain; These myosins have a 1-2 IQ motifs in their neck and a coiled-coil region in their C-terminal tail. The function of the class XXIV myosins remain elusive. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276897 Cd Length: 637 Bit Score: 363.57 E-value: 3.27e-109
class XXVI myosin, motor domain; These MyTH-FERM myosins are thought to be related to the ...
84-748
4.06e-108
class XXVI myosin, motor domain; These MyTH-FERM myosins are thought to be related to the other myosins that have a MyTH4 domain such as class III, VII, IX, X , XV, XVI, XVII, XX, XXII, XXV, and XXXIV. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276852 Cd Length: 725 Bit Score: 363.58 E-value: 4.06e-108
class XXXIII myosin, motor domain; Little is known about the XXXIII class of myosins. They ...
79-748
2.06e-102
class XXXIII myosin, motor domain; Little is known about the XXXIII class of myosins. They are found predominately in nematodes. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276841 [Multi-domain] Cd Length: 628 Bit Score: 343.78 E-value: 2.06e-102
class XXXVII myosin, motor domain; The class XXXVIII myosins are comprised of fungi. Not much ...
88-748
3.87e-101
class XXXVII myosin, motor domain; The class XXXVIII myosins are comprised of fungi. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276863 Cd Length: 578 Bit Score: 338.03 E-value: 3.87e-101
class XXIII myosin, motor domain; These myosins are predicted to have a neck region with 1-2 ...
79-748
2.72e-99
class XXIII myosin, motor domain; These myosins are predicted to have a neck region with 1-2 IQ motifs and a single MyTH4 domain in its C-terminal tail. The lack of a FERM domain here is odd since MyTH4 domains are usually found alongside FERM domains where they bind to microtubules. At any rate these Class XXIII myosins are still proposed to function in the apicomplexan microtubule cytoskeleton. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276850 [Multi-domain] Cd Length: 685 Bit Score: 336.49 E-value: 2.72e-99
class XLIV myosin, motor domain; There is little known about the function of the myosin XLIV ...
88-748
8.52e-97
class XLIV myosin, motor domain; There is little known about the function of the myosin XLIV class. Members here include cellular slime mold Polysphondylium and soil-living amoeba Dictyostelium. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276870 Cd Length: 673 Bit Score: 328.98 E-value: 8.52e-97
class XX myosin, motor domain; These class 20 myosins are primarily insect myosins with such ...
81-747
1.10e-95
class XX myosin, motor domain; These class 20 myosins are primarily insect myosins with such members as Drosophila, Daphnia, and mosquitoes. These myosins contain a single IQ motif in the neck region. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276847 [Multi-domain] Cd Length: 633 Bit Score: 324.37 E-value: 1.10e-95
class XVIII myosin, motor domain; Many members of this class contain a N-terminal PDZ domain ...
79-748
8.04e-85
class XVIII myosin, motor domain; Many members of this class contain a N-terminal PDZ domain which is commonly found in proteins establishing molecular complexes. The motor domain itself does not exhibit ATPase activity, suggesting that it functions as an actin tether protein. It also has two IQ domains that probably bind light chains or related calmodulins and a C-terminal tail with two sections of coiled-coil domains, which are thought to mediate homodimerization. The function of these myosins are largely unknown. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276837 [Multi-domain] Cd Length: 689 Bit Score: 294.22 E-value: 8.04e-85
class XXI myosin, motor domain; The myosins here are comprised of insects. Leishmania class ...
85-748
3.63e-81
class XXI myosin, motor domain; The myosins here are comprised of insects. Leishmania class XXI myosins do not group with them. Myo21, unlike other myosin proteins, contains UBA-like protein domains and has no structural or functional relationship with the myosins present in other organisms possessing cilia or flagella. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. They have diverse tails with IQ, WW, PX, and Tub domains. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276848 Cd Length: 642 Bit Score: 282.01 E-value: 3.63e-81
class XXXII myosin, motor domain; Class XXXII myosins do not contain any IQ motifs, but ...
82-747
3.30e-79
class XXXII myosin, motor domain; Class XXXII myosins do not contain any IQ motifs, but possess tandem MyTH4 and FERM domains. The myosin classes XXX to XXXIV contain members from Phytophthora species and Hyaloperonospora parasitica. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276858 Cd Length: 741 Bit Score: 279.16 E-value: 3.30e-79
FERM domain C-lobe, repeat 2, of Myosin VII (MyoVII, Myo7); MyoVII, a MyTH-FERM myosin, is an ...
2005-2100
4.14e-58
FERM domain C-lobe, repeat 2, of Myosin VII (MyoVII, Myo7); MyoVII, a MyTH-FERM myosin, is an actin-based motor protein essential for a variety of biological processes in the actin cytoskeleton function. Mutations in MyoVII leads to problems in sensory perception: deafness and blindness in humans (Usher Syndrome), retinal defects and deafness in mice (shaker 1), and aberrant auditory and vestibular function in zebrafish. Myosin VIIAs have plus (barbed) end-directed motor activity on actin filaments and a characteristic actin-activated ATPase activity. MyoVII consists of a conserved spectrin-like, SH3 subdomain N-terminal region, a motor/head region, a neck made of 4-5 IQ motifs, and a tail consisting of a coiled-coil domain, followed by a tandem repeat of myosin tail homology 4 (MyTH4) domains and partial FERM domains that are separated by an SH3 subdomain and are thought to mediate dimerization and binding to other proteins or cargo. Members include: MyoVIIa, MyoVIIb, and MyoVII members that do not have distinct myosin VIIA and myosin VIIB genes. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.
Pssm-ID: 270020 Cd Length: 96 Bit Score: 195.55 E-value: 4.14e-58
class XXIV B myosin, motor domain; These myosins have a 1-2 IQ motifs in their neck and a ...
81-747
2.18e-57
class XXIV B myosin, motor domain; These myosins have a 1-2 IQ motifs in their neck and a coiled-coil region in their C-terminal tail. The functions of these myosins remain elusive. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276898 [Multi-domain] Cd Length: 713 Bit Score: 213.54 E-value: 2.18e-57
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 1, F1 sub-domain, found in Myosin-VIIa, ...
1193-1291
3.96e-54
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 1, F1 sub-domain, found in Myosin-VIIa, Myosin-VIIb, and similar proteins; This family includes two nontraditional members of the myosin superfamily, myosin-VIIa and myosin-VIIb. Myosin-VIIa, also termed myosin-7a (Myo7a), has been implicated in the structural organization of hair bundles at the apex of sensory hair cells (SHCs) where it serves mechanotransduction in the process of hearing and balance. Mutations in the MYO7A gene may be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Myosin-VIIb, also termed myosin-7b (Myo7b), is a high duty ratio motor adapted for generating and maintaining tension. It associates with harmonin and ANKS4B to form a stable ternary complex for anchoring microvilli tip-link cadherins. Like other unconventional myosins, myosin-VII is composed of a conserved motor head, a neck region and a tail region containing two MyTH4 domains, a SH3 domain, and two FERM domains. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to the F1 sub-domain of the first FERM domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).
Pssm-ID: 340612 Cd Length: 99 Bit Score: 184.00 E-value: 3.96e-54
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 2, F1 sub-domain, found in Myosin-VIIa, ...
1795-1892
1.33e-49
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 2, F1 sub-domain, found in Myosin-VIIa, Myosin-VIIb, and similar proteins; This family includes two nontraditional members of myosin superfamily, myosin-VIIa and myosin-VIIb. Myosin-VIIa, also termed myosin-7a (Myo7a), has been implicated in the structural organization of hair bundles at the apex of sensory hair cells (SHCs) where it serves mechanotransduction in the process of hearing and balance. Mutations in MYO7A gene may be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Myosin-VIIb, also termed myosin-7b (Myo7b), is a high duty ratio motor adapted for generating and maintaining tension. It associates with harmonin and ANKS4B to form a stable ternary complex for anchoring microvilli tip-link cadherins. Like other unconventional myosins, myosin-VII is composed of a conserved motor head, a neck region and a tail region containing two MyTH4 domains, a SH3 domain, and two FERM domains. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to the F1 sub-domain of the second FERM domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).
Pssm-ID: 340613 Cd Length: 98 Bit Score: 171.27 E-value: 1.33e-49
Myosin and Kinesin motor domain; Myosin and Kinesin motor domain. These ATPases belong to the ...
101-219
5.00e-40
Myosin and Kinesin motor domain; Myosin and Kinesin motor domain. These ATPases belong to the P-loop NTPase family and provide the driving force in myosin and kinesin mediated processes. Some of the names do not match with what is given in the sequence list. This is because they are based on the current nomenclature by Kollmar/Sebe-Pedros.
Pssm-ID: 276814 [Multi-domain] Cd Length: 170 Bit Score: 146.72 E-value: 5.00e-40
FERM domain C-lobe, repeat 1, of Myosin VII (MyoVII/Myo7); MyoVII, a MyTH-FERM myosin, is an ...
1403-1499
9.72e-34
FERM domain C-lobe, repeat 1, of Myosin VII (MyoVII/Myo7); MyoVII, a MyTH-FERM myosin, is an actin-based motor protein essential for a variety of biological processes in the actin cytoskeleton function. Mutations in MyoVII leads to problems in sensory perception: deafness and blindness in humans (Usher Syndrome), retinal defects and deafness in mice (shaker 1), and aberrant auditory and vestibular function in zebrafish. Myosin VIIAs have plus (barbed) end-directed motor activity on actin filaments and a characteristic actin-activated ATPase activity. MyoVII consists of a conserved spectrin-like, SH3 subdomain N-terminal region, a motor/head region, a neck made of 4-5 IQ motifs, and a tail consisting of a coiled-coil domain, followed by a tandem repeat of myosin tail homology 4 (MyTH4) domains and partial FERM domains that are separated by an SH3 subdomain and are thought to mediate dimerization and binding to other proteins or cargo. Members include: MyoVIIa, MyoVIIb, and MyoVII members that do not have distinct myosin VIIA and myosin VIIB genes. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.
Pssm-ID: 270019 Cd Length: 99 Bit Score: 125.79 E-value: 9.72e-34
Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in ...
1797-2009
3.16e-30
Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in myosins, ezrin, radixin, moesin, protein tyrosine phosphatases. Plasma membrane-binding domain. These proteins play structural and regulatory roles in the assembly and stabilization of specialized plasmamembrane domains. Some PDZ domain containing proteins bind one or more of this family. Now includes JAKs.
Pssm-ID: 214604 [Multi-domain] Cd Length: 201 Bit Score: 119.71 E-value: 3.16e-30
class myosin, motor domain; Class XXXIII myosins have variable numbers of IQ domain and 2 ...
189-686
2.43e-29
class myosin, motor domain; Class XXXIII myosins have variable numbers of IQ domain and 2 tandem ANK repeats that are separated by a PH domain. The myosin classes XXX to XXXIV contain members from Phytophthora species and Hyaloperonospora parasitica. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
Pssm-ID: 276859 [Multi-domain] Cd Length: 871 Bit Score: 127.94 E-value: 2.43e-29
FERM domain B-lobe; The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C ...
1907-2001
2.25e-15
FERM domain B-lobe; The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases, the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains and consequently is capable of binding to both peptides and phospholipids at different sites.
Pssm-ID: 271216 Cd Length: 99 Bit Score: 73.43 E-value: 2.25e-15
Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in ...
1196-1409
1.40e-14
Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in myosins, ezrin, radixin, moesin, protein tyrosine phosphatases. Plasma membrane-binding domain. These proteins play structural and regulatory roles in the assembly and stabilization of specialized plasmamembrane domains. Some PDZ domain containing proteins bind one or more of this family. Now includes JAKs.
Pssm-ID: 214604 [Multi-domain] Cd Length: 201 Bit Score: 74.64 E-value: 1.40e-14
FERM domain C-lobe; The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N ...
2005-2096
1.79e-13
FERM domain C-lobe; The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.
Pssm-ID: 275389 Cd Length: 93 Bit Score: 67.79 E-value: 1.79e-13
FERM domain C-lobe of Myosin XV (MyoXV/Myo15); MyoXV, a MyTH-FERM myosin, are actin-based ...
2005-2078
1.46e-10
FERM domain C-lobe of Myosin XV (MyoXV/Myo15); MyoXV, a MyTH-FERM myosin, are actin-based motor proteins essential for a variety of biological processes in actin cytoskeleton function. Specifically MyoXV functions in the actin organization in hair cells of the organ of Corti. Mutations in Human MyoXVa causes non-syndromic deafness, DFNB3 and the mouse shaker-2 mutation. MyoXV consists of a N-terminal motor/head region, a neck made of 1-3 IQ motifs, and a tail that consists of either a myosin tail homology 4 (MyTH4) domains, followed by an SH3 domain, and a MyTH-FERM domains as in rat Myo15 or two MyTH-FERM domains separated by a SH3 domain as in human Myo15A. The MyTH-FERM domains are thought to mediate dimerization and binding to other proteins or cargo. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.
Pssm-ID: 270022 Cd Length: 101 Bit Score: 59.93 E-value: 1.46e-10
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain and F1 sub-domain, found ...
1194-1286
1.44e-09
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain and F1 sub-domain, found in FERM (Four.1/Ezrin/Radixin/Moesin) family proteins; FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain is present at the N-terminus of a large and diverse group of proteins that mediate linkage of the cytoskeleton to the plasma membrane. FERM-containing proteins are ubiquitous components of the cytocortex and are involved in cell transport, cell structure and signaling functions. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N), which is structurally similar to ubiquitin.
Pssm-ID: 340464 Cd Length: 80 Bit Score: 56.44 E-value: 1.44e-09
Src Homology 3 domain of Myosin VIIa and similar proteins; Myo7A is an uncoventional myosin ...
1500-1560
2.86e-09
Src Homology 3 domain of Myosin VIIa and similar proteins; Myo7A is an uncoventional myosin that is involved in organelle transport. It is required for sensory function in both Drosophila and mammals. Mutations in the Myo7A gene cause both syndromic deaf-blindness [Usher syndrome I (USH1)] and nonsyndromic (DFNB2 and DFNA11) deafness in humans. It contains an N-terminal motor domain, light chain-binding IQ motifs, a coiled-coil region for heavy chain dimerization, and a tail consisting of a pair of MyTH4-FERM tandems separated by a SH3 domain. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies.
Pssm-ID: 212814 Cd Length: 64 Bit Score: 54.83 E-value: 2.86e-09
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain and F1 sub-domain, found ...
1796-1890
2.55e-08
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain and F1 sub-domain, found in FERM (Four.1/Ezrin/Radixin/Moesin) family proteins; FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain is present at the N-terminus of a large and diverse group of proteins that mediate linkage of the cytoskeleton to the plasma membrane. FERM-containing proteins are ubiquitous components of the cytocortex and are involved in cell transport, cell structure and signaling functions. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N), which is structurally similar to ubiquitin.
Pssm-ID: 340464 Cd Length: 80 Bit Score: 52.98 E-value: 2.55e-08
FERM domain C-lobe, repeat 2, of Myosin-like proteins; These myosin-like proteins are ...
2005-2091
6.73e-08
FERM domain C-lobe, repeat 2, of Myosin-like proteins; These myosin-like proteins are unidentified though they are sequence similar to myosin 1/myo1, myosin 7/myoVII, and myosin 10/myoX. These myosin-like proteins contain an N-terminal motor/head region and a C-terminal tail consisting of two myosin tail homology 4 (MyTH4) and twos FERM domains. In myoX the FERM domain forms a supramodule with its MyTH4 domain which binds to the negatively charged E-hook region in the tails of alpha- and beta-tubulin forming a proposed motorized link between actin filaments and microtubules and a similar thing might happen in these myosins. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The second FERM_N repeat is present in this hierarchy. The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.
Pssm-ID: 270025 Cd Length: 93 Bit Score: 52.05 E-value: 6.73e-08
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 2, F1 sub-domain, found in Myosin-VIIa, ...
1194-1270
5.53e-07
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 2, F1 sub-domain, found in Myosin-VIIa, Myosin-VIIb, and similar proteins; This family includes two nontraditional members of myosin superfamily, myosin-VIIa and myosin-VIIb. Myosin-VIIa, also termed myosin-7a (Myo7a), has been implicated in the structural organization of hair bundles at the apex of sensory hair cells (SHCs) where it serves mechanotransduction in the process of hearing and balance. Mutations in MYO7A gene may be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Myosin-VIIb, also termed myosin-7b (Myo7b), is a high duty ratio motor adapted for generating and maintaining tension. It associates with harmonin and ANKS4B to form a stable ternary complex for anchoring microvilli tip-link cadherins. Like other unconventional myosins, myosin-VII is composed of a conserved motor head, a neck region and a tail region containing two MyTH4 domains, a SH3 domain, and two FERM domains. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to the F1 sub-domain of the second FERM domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).
Pssm-ID: 340613 Cd Length: 98 Bit Score: 49.54 E-value: 5.53e-07
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 1, F1 sub-domain, found in Myosin-VIIa, ...
1800-1890
7.36e-07
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 1, F1 sub-domain, found in Myosin-VIIa, Myosin-VIIb, and similar proteins; This family includes two nontraditional members of the myosin superfamily, myosin-VIIa and myosin-VIIb. Myosin-VIIa, also termed myosin-7a (Myo7a), has been implicated in the structural organization of hair bundles at the apex of sensory hair cells (SHCs) where it serves mechanotransduction in the process of hearing and balance. Mutations in the MYO7A gene may be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Myosin-VIIb, also termed myosin-7b (Myo7b), is a high duty ratio motor adapted for generating and maintaining tension. It associates with harmonin and ANKS4B to form a stable ternary complex for anchoring microvilli tip-link cadherins. Like other unconventional myosins, myosin-VII is composed of a conserved motor head, a neck region and a tail region containing two MyTH4 domains, a SH3 domain, and two FERM domains. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to the F1 sub-domain of the first FERM domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).
Pssm-ID: 340612 Cd Length: 99 Bit Score: 49.18 E-value: 7.36e-07
Src Homology 3 domain superfamily; Src Homology 3 (SH3) domains are protein interaction ...
1502-1558
1.17e-05
Src Homology 3 domain superfamily; Src Homology 3 (SH3) domains are protein interaction domains that bind proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. Thus, they are referred to as proline-recognition domains (PRDs). SH3 domains are less selective and show more diverse specificity compared to other PRDs. They have been shown to bind peptide sequences that lack the PxxP motif; examples include the PxxDY motif of Eps8 and the RKxxYxxY sequence in SKAP55. SH3 domain containing proteins play versatile and diverse roles in the cell, including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies, among others. Many members of this superfamily are adaptor proteins that associate with a number of protein partners, facilitating complex formation and signal transduction.
Pssm-ID: 212690 [Multi-domain] Cd Length: 51 Bit Score: 44.38 E-value: 1.17e-05
FERM domain C-lobe, repeat 1, of Myosin-like proteins; These myosin-like proteins are ...
2005-2053
2.08e-05
FERM domain C-lobe, repeat 1, of Myosin-like proteins; These myosin-like proteins are unidentified though they are sequence similar to myosin 1/myo1, myosin 7/myoVII, and myosin 10/myoX. These myosin-like proteins contain an N-terminal motor/head region and a C-terminal tail consisting of two myosin tail homology 4 (MyTH4) and twos FERM domains. In myoX the FERM domain forms a supramodule with its MyTH4 domain which binds to the negatively charged E-hook region in the tails of alpha- and beta-tubulin forming a proposed motorized link between actin filaments and microtubules and a similar thing might happen in these myosins. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The first FERM_N repeat is present in this hierarchy. The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.
Pssm-ID: 270024 Cd Length: 97 Bit Score: 45.11 E-value: 2.08e-05
Src homology 3 domains; Src homology 3 (SH3) domains bind to target proteins through sequences ...
1499-1559
2.15e-05
Src homology 3 domains; Src homology 3 (SH3) domains bind to target proteins through sequences containing proline and hydrophobic amino acids. Pro-containing polypeptides may bind to SH3 domains in 2 different binding orientations.
Pssm-ID: 214620 [Multi-domain] Cd Length: 56 Bit Score: 43.68 E-value: 2.15e-05
Src Homology 3 domain of Myosin XV; This subfamily is composed of proteins with similarity to ...
1502-1558
5.68e-04
Src Homology 3 domain of Myosin XV; This subfamily is composed of proteins with similarity to Myosin XVa. Myosin XVa is an unconventional myosin that is critical for the normal growth of mechanosensory stereocilia of inner ear hair cells. Mutations in the myosin XVa gene are associated with nonsyndromic hearing loss. Myosin XVa contains a unique N-terminal extension followed by a motor domain, light chain-binding IQ motifs, and a tail consisting of a pair of MyTH4-FERM tandems separated by a SH3 domain, and a PDZ domain. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies.
Pssm-ID: 212817 [Multi-domain] Cd Length: 56 Bit Score: 39.62 E-value: 5.68e-04
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in unconventional ...
1194-1287
6.42e-04
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in unconventional myosin-X and similar proteins; Myosin-X, also termed myosin-10 (Myo10), is an untraditional member of myosin superfamily. It is an actin-based motor protein that plays a critical role in diverse cellular motile events, such as filopodia formation/extension, phagocytosis, cell migration, and mitotic spindle maintenance, as well as a number of disease states including cancer metastasis and pathogen infection. Myosin-X functions as an important regulator of cytoskeleton that modulates cell motilities in many different cellular contexts. It regulates neuronal radial migration through interacting with N-cadherin. Like other unconventional myosins, Myosin-X is composed of a conserved motor head, a neck region and a variable tail. The neck region consists of three IQ motifs (light chain-binding sites), and a predicted stalk of coiled coil. The tail contains three PEST regions, three PH domains, a MyTH4 domain, and a FERM domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). Amoebozoan Dictyostelium discoideum myosin VII (DdMyo7) and uncharacterized pleckstrin homology domain-containing family H member 3 (PLEKHH3) are also included in this family. Like metazoan Myo10, DdMyo7 is essential for the extension of filopodia, plasma membrane protrusions filled with parallel bundles of F-actin.
Pssm-ID: 340630 Cd Length: 97 Bit Score: 40.83 E-value: 6.42e-04
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in Dictyostelium ...
1203-1287
7.01e-04
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in Dictyostelium discoideum Myosin-VIIa (DdMyo7) and similar proteins; DdMyo7, also termed Myosin-I heavy chain, or class VII unconventional myosin, or M7, plays a role in adhesion in Dictyostelium where it is a component of a complex of proteins that serve to link membrane receptors to the underlying actin cytoskeleton. It interacts with talinA, an actin-binding protein with a known role in cell-substrate adhesion. DdMyo7 is required for phagocytosis. It is also essential for the extension of filopodia, plasma membrane protrusions filled with parallel bundles of F-actin. Members in this family contain a myosin motor domain, two MyTH4 domains, two FERM (Band 4.1, ezrin, radixin, moesin) domains, and two Pleckstrin homology (PH) domains. Some family members contain an extra SH3 domain. Each FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).
Pssm-ID: 340728 Cd Length: 98 Bit Score: 40.70 E-value: 7.01e-04
FERM domain C-lobe/F3 of Talin; Talin (also called filopodin) plays an important role in ...
2005-2096
7.72e-04
FERM domain C-lobe/F3 of Talin; Talin (also called filopodin) plays an important role in initiating actin filament growth in motile cell protrusions. It is responsible for linking the cytoplasmic domains of integrins to the actin-based cytoskeleton, and is involved in vinculin, integrin and actin interactions. At the leading edge of motile cells, talin colocalises with the hyaluronan receptor layilin in transient adhesions, some of which become more stable focal adhesions (FA). During this maturation process, layilin is replaced with integrins, where localized production of PI(4,5)P(2) by type 1 phosphatidyl inositol phosphate kinase type 1gamma (PIPK1gamma) is thought to play a role in FA assembly. Talins are composed of a N-terminal region FERM domain which us made up of 3 subdomains (N, alpha-, and C-lobe; or- A-lobe, B-lobe, and C-lobe; or F1, F2, and F3) connected by short linkers, a talin rod which binds vinculin, and a conserved C-terminal region with actin- and integrin-binding sites. There are 2 additional actin-binding domains, one in the talin rod and the other in the FERM domain. Both the F2 and F3 FERM subdomains contribute to F-actin binding. Subdomain F3 of the FERM domain contains overlapping binding sites for integrin cytoplasmic domains and for the type 1 gamma isoform of PIP-kinase (phosphatidylinositol 4-phosphate 5-kinase). The FERM domain has a cloverleaf tripart structure . F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.
Pssm-ID: 269973 Cd Length: 92 Bit Score: 40.40 E-value: 7.72e-04
IQ (isoleucine-glutamine) motif containing D (IQCD); IQCD, also called dynein regulatory ...
780-807
3.14e-03
IQ (isoleucine-glutamine) motif containing D (IQCD); IQCD, also called dynein regulatory complex protein 10 (DRC10), belongs to the IQ motif-containing protein family which contains a C-terminal conserved IQ motif domain and two coiled-coil domains. The IQ motif ([ILV]QxxxRxxxx[RK]), where x stands for any amino-acid residue, interacts with calmodulin (CaM) in a calcium-independent manner and is present in proteins with a wide diversity of biological functions. The IQCD protein was found to primarily accumulate in the acrosome area of round and elongating spermatids of the testis during late stage of spermiogenesis and was then localized to the acrosome and tail regions of mature spermatozoa. The expression of IQCD follows the trajectory of acrosome development during spermatogenesis. IQCD is associated with neuroblastoma and neurodegenerative diseases, and is reported to interact with the nuclear retinoid X receptor in the presence of 9-cis-retinoic acid, thereby activating the transcriptional activity of the receptor.
Pssm-ID: 467745 [Multi-domain] Cd Length: 37 Bit Score: 37.14 E-value: 3.14e-03
N-terminal Src Homology 3 domain of Ct10 Regulator of Kinase adaptor proteins; CRK adaptor ...
1505-1567
3.33e-03
N-terminal Src Homology 3 domain of Ct10 Regulator of Kinase adaptor proteins; CRK adaptor proteins consists of SH2 and SH3 domains, which bind tyrosine-phosphorylated peptides and proline-rich motifs, respectively. They function downstream of protein tyrosine kinases in many signaling pathways started by various extracellular signals, including growth and differentiation factors. Cellular CRK (c-CRK) contains a single SH2 domain, followed by N-terminal and C-terminal SH3 domains. It is involved in the regulation of many cellular processes including cell growth, motility, adhesion, and apoptosis. CRK has been implicated in the malignancy of various human cancers. The N-terminal SH3 domain of CRK binds a number of target proteins including DOCK180, C3G, SOS, and cABL. The CRK family includes two alternatively spliced protein forms, CRKI and CRKII, that are expressed by the CRK gene, and the CRK-like (CRKL) protein, which is expressed by a distinct gene (CRKL). SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.
Pssm-ID: 212692 [Multi-domain] Cd Length: 55 Bit Score: 37.73 E-value: 3.33e-03
ATP-binding cassette domain of nickel/oligopeptides specific transporters; The ABC transporter ...
113-181
4.37e-03
ATP-binding cassette domain of nickel/oligopeptides specific transporters; The ABC transporter subfamily specific for the transport of dipeptides, oligopeptides (OppD), and nickel (NikDE). The NikABCDE system of E. coli belongs to this family and is composed of the periplasmic binding protein NikA, two integral membrane components (NikB and NikC), and two ATPase (NikD and NikE). The NikABCDE transporter is synthesized under anaerobic conditions to meet the increased demand for nickel resulting from hydrogenase synthesis. The molecular mechanism of nickel uptake in many bacteria and most archaea is not known. Many other members of this ABC family are also involved in the uptake of dipeptides and oligopeptides. The oligopeptide transport system (Opp) is a five-component ABC transport composed of a membrane-anchored substrate binding proteins (SRP), OppA, two transmembrane proteins, OppB and OppC, and two ATP-binding domains, OppD and OppF.
Pssm-ID: 213224 [Multi-domain] Cd Length: 228 Bit Score: 40.95 E-value: 4.37e-03
SH3 domain; SH3 (Src homology 3) domains are often indicative of a protein involved in signal ...
1518-1556
4.78e-03
SH3 domain; SH3 (Src homology 3) domains are often indicative of a protein involved in signal transduction related to cytoskeletal organization. First described in the Src cytoplasmic tyrosine kinase. The structure is a partly opened beta barrel.
Pssm-ID: 394975 [Multi-domain] Cd Length: 47 Bit Score: 36.80 E-value: 4.78e-03
Src Homology 3 domain of Insulin Receptor tyrosine kinase Substrate p53, Brain-specific Angiogenesis Inhibitor 1-Associated Protein 2 (BAIAP2)-Like proteins, and similar proteins; Proteins in this family include IRSp53, BAIAP2L1, BAIAP2L2, and similar proteins. They all contain an Inverse-Bin/Amphiphysin/Rvs (I-BAR) or IMD domain in addition to the SH3 domain. IRSp53, also known as BAIAP2, is a scaffolding protein that takes part in many signaling pathways including Cdc42-induced filopodia formation, Rac-mediated lamellipodia extension, and spine morphogenesis. IRSp53 exists as multiple splicing variants that differ mainly at the C-termini. BAIAP2L1, also called IRTKS (Insulin Receptor Tyrosine Kinase Substrate), serves as a substrate for the insulin receptor and binds the small GTPase Rac. It plays a role in regulating the actin cytoskeleton and colocalizes with F-actin, cortactin, VASP, and vinculin. IRSp53 and IRTKS also mediate the recruitment of effector proteins Tir and EspFu, which regulate host cell actin reorganization, to bacterial attachment sites. BAIAP2L2 co-localizes with clathrin plaques but its function has not been determined. The SH3 domains of IRSp53 and IRTKS have been shown to bind the proline-rich C-terminus of EspFu. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.
Pssm-ID: 212713 [Multi-domain] Cd Length: 57 Bit Score: 37.30 E-value: 4.80e-03
Variant SH3 domain; SH3 (Src homology 3) domains are often indicative of a protein involved in ...
1502-1559
6.39e-03
Variant SH3 domain; SH3 (Src homology 3) domains are often indicative of a protein involved in signal transduction related to cytoskeletal organization. First described in the Src cytoplasmic tyrosine kinase. The structure is a partly opened beta barrel.
Pssm-ID: 429575 [Multi-domain] Cd Length: 54 Bit Score: 36.81 E-value: 6.39e-03
Myosin and Kinesin motor domain; Myosin and Kinesin motor domain. These ATPases belong to the ...
633-657
6.82e-03
Myosin and Kinesin motor domain; Myosin and Kinesin motor domain. These ATPases belong to the P-loop NTPase family and provide the driving force in myosin and kinesin mediated processes. Some of the names do not match with what is given in the sequence list. This is because they are based on the current nomenclature by Kollmar/Sebe-Pedros.
Pssm-ID: 276814 [Multi-domain] Cd Length: 170 Bit Score: 39.64 E-value: 6.82e-03
Src homology 3 domain of Src kinase-like Protein Tyrosine Kinases; Src subfamily members ...
1508-1555
9.46e-03
Src homology 3 domain of Src kinase-like Protein Tyrosine Kinases; Src subfamily members include Src, Lck, Hck, Blk, Lyn, Fgr, Fyn, Yrk, Yes, and Brk. Src (or c-Src) proteins are cytoplasmic (or non-receptor) PTKs which are anchored to the plasma membrane. They contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). However, Brk lacks the N-terminal myristoylation sites. Src proteins are involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. They were identified as the first proto-oncogene products, and they regulate cell adhesion, invasion, and motility in cancer cells, and tumor vasculature, contributing to cancer progression and metastasis. Src kinases are overexpressed in a variety of human cancers, making them attractive targets for therapy. They are also implicated in acute inflammatory responses and osteoclast function. Src, Fyn, Yes, and Yrk are widely expressed, while Blk, Lck, Hck, Fgr, Lyn, and Brk show a limited expression pattern. This subfamily also includes Drosophila Src42A, Src oncogene at 42A (also known as Dsrc41) which accumulates at sites of cell-cell or cell-matrix adhesion, and participates in Drosphila development and wound healing. It has been shown to promote tube elongation in the tracheal system, is essential for proper cell-cell matching during dorsal closure, and regulates cell-cell contacts in developing Drosophila eyes. The SH3 domain of Src kinases contributes to substrate recruitment by binding adaptor proteins/substrates, and regulation of kinase activity through an intramolecular interaction. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.
Pssm-ID: 212779 [Multi-domain] Cd Length: 52 Bit Score: 36.02 E-value: 9.46e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options