NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|2172663981|ref|NP_001386013|]
View 

DCC-interacting protein 13-alpha [Rattus norvegicus]

Protein Classification

DCC-interacting protein 13-alpha( domain architecture ID 10166334)

DCC-interacting protein 13-alpha (DIP13A) is a multifunctional adapter protein that binds to various membrane receptors, nuclear factors and signaling proteins to regulate many processes, such as cell proliferation, immune response, endosomal trafficking and cell metabolism

Gene Symbol:  APPL1

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
BAR_APPL1 cd07631
The Bin/Amphiphysin/Rvs (BAR) domain of Adaptor protein, Phosphotyrosine interaction, PH ...
20-234 2.54e-160

The Bin/Amphiphysin/Rvs (BAR) domain of Adaptor protein, Phosphotyrosine interaction, PH domain and Leucine zipper containing 1; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Adaptor protein, Phosphotyrosine interaction, PH domain and Leucine zipper containing (APPL) proteins are effectors of the small GTPase Rab5 that function in endosome-mediated signaling. They contain BAR, pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains. They form homo- and hetero-oligomers that are mediated by their BAR domains. Vertebrates contain two APPL proteins, APPL1 and APPL2. APPL1 interacts with diverse receptors (e.g. NGF receptor TrkA, FSHR, adiponectin receptors) and signaling proteins (e.g. Akt, PI3K), and may function as an adaptor linked to many distinct signaling pathways. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions.


:

Pssm-ID: 153315  Cd Length: 215  Bit Score: 460.71  E-value: 2.54e-160
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  20 RSLLGVFEEDATAISNYMNQLYQAMHRIYDAQNELSAATHLTSKLLKEYEKQRFPLGGDDEVMSSTLQQFSKVIDELSSC 99
Cdd:cd07631     1 RSLLGVFEEDAAAISNYFNQLFQAMHRIYDAQNELSAATHLTSKLLKEYEKQRFPLGGDDEVMSSTLQQFSKVIDELSSC 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 100 HAVLSTQLADAMMFPISQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKKRENDKVKYEVTEDVYTSRKKQHQTMM 179
Cdd:cd07631    81 HAVLSTQLADAMMFPITQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKRRENEKVKYEVTEDVYTSRKKQHQTMM 160
                         170       180       190       200       210
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 2172663981 180 HYFCALNTLQYKKKIALLEPLLGYMQAQISFFKMGSENLNGQLEEFLANIGTSVQ 234
Cdd:cd07631   161 HYFCALNTLQYKKKIALLEPLLGYMQAQISFFKMGSENLNEQLEEFLTNIGTSVQ 215
PTB_APPL cd13158
Adaptor protein containing PH domain, PTB domain, and Leucine zipper motif (APPL; also called ...
489-624 1.36e-81

Adaptor protein containing PH domain, PTB domain, and Leucine zipper motif (APPL; also called DCC-interacting protein (DIP)-13alpha) Phosphotyrosine-binding (PTB) domain; APPL interacts with oncoprotein serine/threonine kinase AKT2, tumor suppressor protein DCC (deleted in colorectal cancer), Rab5, GIPC (GAIP-interacting protein, C terminus), human follicle-stimulating hormone receptor (FSHR), and the adiponectin receptors AdipoR1 and AdipoR2. There are two isoforms of human APPL: APPL1 and APPL2, which share about 50% sequence identity. APPL has a BAR and a PH domain near its N terminus, and the two domains are thought to function as a unit (BAR-PH domain). C-terminal to this is a PTB domain. Lipid binding assays show that the BAR, PH, and PTB domains can bind phospholipids. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains.


:

Pssm-ID: 269980  Cd Length: 135  Bit Score: 254.97  E-value: 1.36e-81
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 489 KSETEDSILHQLFIVRFLGSMEVKSDDHPDVVYETMRQILAARAIHNIFRMTESHLLVTCDCLKLIDPQTQVTRLTFPLP 568
Cdd:cd13158     1 SSEDEDSLLQQLFIVRFLGSMEVKSDRTSEVIYEAMRQVLAARAIHNIFRMTESHLLVTSDCLRLIDPQTQVTRARFPLA 80
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 2172663981 569 YVVLYATHQENKRLFGFVLRTSGGRSESNlSSVCYIFESNNEGEKICDSVGLAKQI 624
Cdd:cd13158    81 DVVQFAAHQENKRLFGFVVRTPEGDGEEP-SFSCYVFESNTEGEKICDAIALAKQI 135
BAR-PH_APPL cd13247
Adaptor protein containing PH domain, PTB domain, and Leucine zipper motif Bin1/amphiphysin ...
252-376 2.37e-74

Adaptor protein containing PH domain, PTB domain, and Leucine zipper motif Bin1/amphiphysin/Rvs167 (BAR)-Pleckstrin homology (PH) domain; APPL (also called DCC-interacting protein (DIP)-13alpha) interacts with oncoprotein serine/threonine kinase AKT2, tumor suppressor protein DCC (deleted in colorectal cancer), Rab5, GIPC (GAIP-interacting protein, C terminus), human follicle-stimulating hormone receptor (FSHR), and the adiponectin receptors AdipoR1 and AdipoR2. There are two isoforms of human APPL: APPL1 and APPL2, which share about 50% sequence identity. APPL has a BAR and a PH domain near its N terminus, and the two domains are thought to function as a unit (BAR-PH domain). C-terminal to this is a PTB domain. Lipid binding assays show that the BAR, PH, and PTB domains can bind phospholipids. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270067  Cd Length: 125  Bit Score: 235.73  E-value: 2.37e-74
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 252 EDLEVASDPLYLPDPDPTKFPVNRNLTRKAGYLNARNKTGLVSSTWDRQFYFTQGGNLMSQARGDVAGGLAMDIDNCSVM 331
Cdd:cd13247     1 EELSSSADYFYEGDPDETQAAPNRNLTQKAGYLFIRSKTGLVTNKWDRTYFFTQGGNLMSQPRDEVAGSLVLDLDNCSVQ 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*
gi 2172663981 332 AVDCEDRRYCFQITSFDGKKSSILQAESKKDHEEWICTINNISKQ 376
Cdd:cd13247    81 AADCEDRRNVFQITSPDGKKAIVLQAESKKDYEEWIATINNISQQ 125
 
Name Accession Description Interval E-value
BAR_APPL1 cd07631
The Bin/Amphiphysin/Rvs (BAR) domain of Adaptor protein, Phosphotyrosine interaction, PH ...
20-234 2.54e-160

The Bin/Amphiphysin/Rvs (BAR) domain of Adaptor protein, Phosphotyrosine interaction, PH domain and Leucine zipper containing 1; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Adaptor protein, Phosphotyrosine interaction, PH domain and Leucine zipper containing (APPL) proteins are effectors of the small GTPase Rab5 that function in endosome-mediated signaling. They contain BAR, pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains. They form homo- and hetero-oligomers that are mediated by their BAR domains. Vertebrates contain two APPL proteins, APPL1 and APPL2. APPL1 interacts with diverse receptors (e.g. NGF receptor TrkA, FSHR, adiponectin receptors) and signaling proteins (e.g. Akt, PI3K), and may function as an adaptor linked to many distinct signaling pathways. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions.


Pssm-ID: 153315  Cd Length: 215  Bit Score: 460.71  E-value: 2.54e-160
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  20 RSLLGVFEEDATAISNYMNQLYQAMHRIYDAQNELSAATHLTSKLLKEYEKQRFPLGGDDEVMSSTLQQFSKVIDELSSC 99
Cdd:cd07631     1 RSLLGVFEEDAAAISNYFNQLFQAMHRIYDAQNELSAATHLTSKLLKEYEKQRFPLGGDDEVMSSTLQQFSKVIDELSSC 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 100 HAVLSTQLADAMMFPISQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKKRENDKVKYEVTEDVYTSRKKQHQTMM 179
Cdd:cd07631    81 HAVLSTQLADAMMFPITQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKRRENEKVKYEVTEDVYTSRKKQHQTMM 160
                         170       180       190       200       210
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 2172663981 180 HYFCALNTLQYKKKIALLEPLLGYMQAQISFFKMGSENLNGQLEEFLANIGTSVQ 234
Cdd:cd07631   161 HYFCALNTLQYKKKIALLEPLLGYMQAQISFFKMGSENLNEQLEEFLTNIGTSVQ 215
BAR_3 pfam16746
BAR domain of APPL family; BAR_12 is the BAR coiled-coil domain at the N-terminus of APPL or ...
7-247 5.10e-82

BAR domain of APPL family; BAR_12 is the BAR coiled-coil domain at the N-terminus of APPL or adaptor protein containing PH domain, PTB domain, and leucine zipper motif proteins in higher eukaryotes. This BAR domain contains four helices whereas the other classical BAR domains contain only three helices. The first three helices form an antiparallel coiled-coil, while the fourth helix, is unique to APPL1. BAR domains take part in many varied biological processes such as fission of synaptic vesicles, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, apoptosis, secretory vesicle fusion, and tissue differentiation.


Pssm-ID: 465256  Cd Length: 235  Bit Score: 259.80  E-value: 5.10e-82
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981   7 LPIEETLEDSPQTRSLLGVFEEDATAISNYMNQLYQAMHRIYDAQNELSAATHLTSKLLKEYEKQRfplgGDDEVMSSTL 86
Cdd:pfam16746   1 LEFEECLKDSPQFRSLLEEHEAELDELEKKLKKLLKLCKRMIEAGKEYSAAQRLFANSLLDFKFEF----IGDEETDESL 76
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  87 QQFSKVIDELSSCHAVLSTQLADAMMFPISQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKKRENDKVKyEVTED 166
Cdd:pfam16746  77 KKFSQLLQEMENFHTILLDQAQRTIIKPLENFRKEDLKEVKELKKKFDKASEKLDAALEKNAQLSKKKKPSELE-EADNE 155
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 167 VYTSRKKQHQTMMHYFCALNTLQYKKKIALLEPLLGYMQAQISFFKMGSENLNgQLEEFLANIGTSVQNVRREMDGDVET 246
Cdd:pfam16746 156 LAATRKCFHHASLDYVLQINELQERKKFEILEPLLSFMHAQFTFFHQGYELFK-DLEPFMKDLQAQLQQTREDTREEKEE 234

                  .
gi 2172663981 247 M 247
Cdd:pfam16746 235 L 235
PTB_APPL cd13158
Adaptor protein containing PH domain, PTB domain, and Leucine zipper motif (APPL; also called ...
489-624 1.36e-81

Adaptor protein containing PH domain, PTB domain, and Leucine zipper motif (APPL; also called DCC-interacting protein (DIP)-13alpha) Phosphotyrosine-binding (PTB) domain; APPL interacts with oncoprotein serine/threonine kinase AKT2, tumor suppressor protein DCC (deleted in colorectal cancer), Rab5, GIPC (GAIP-interacting protein, C terminus), human follicle-stimulating hormone receptor (FSHR), and the adiponectin receptors AdipoR1 and AdipoR2. There are two isoforms of human APPL: APPL1 and APPL2, which share about 50% sequence identity. APPL has a BAR and a PH domain near its N terminus, and the two domains are thought to function as a unit (BAR-PH domain). C-terminal to this is a PTB domain. Lipid binding assays show that the BAR, PH, and PTB domains can bind phospholipids. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains.


Pssm-ID: 269980  Cd Length: 135  Bit Score: 254.97  E-value: 1.36e-81
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 489 KSETEDSILHQLFIVRFLGSMEVKSDDHPDVVYETMRQILAARAIHNIFRMTESHLLVTCDCLKLIDPQTQVTRLTFPLP 568
Cdd:cd13158     1 SSEDEDSLLQQLFIVRFLGSMEVKSDRTSEVIYEAMRQVLAARAIHNIFRMTESHLLVTSDCLRLIDPQTQVTRARFPLA 80
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 2172663981 569 YVVLYATHQENKRLFGFVLRTSGGRSESNlSSVCYIFESNNEGEKICDSVGLAKQI 624
Cdd:cd13158    81 DVVQFAAHQENKRLFGFVVRTPEGDGEEP-SFSCYVFESNTEGEKICDAIALAKQI 135
BAR-PH_APPL cd13247
Adaptor protein containing PH domain, PTB domain, and Leucine zipper motif Bin1/amphiphysin ...
252-376 2.37e-74

Adaptor protein containing PH domain, PTB domain, and Leucine zipper motif Bin1/amphiphysin/Rvs167 (BAR)-Pleckstrin homology (PH) domain; APPL (also called DCC-interacting protein (DIP)-13alpha) interacts with oncoprotein serine/threonine kinase AKT2, tumor suppressor protein DCC (deleted in colorectal cancer), Rab5, GIPC (GAIP-interacting protein, C terminus), human follicle-stimulating hormone receptor (FSHR), and the adiponectin receptors AdipoR1 and AdipoR2. There are two isoforms of human APPL: APPL1 and APPL2, which share about 50% sequence identity. APPL has a BAR and a PH domain near its N terminus, and the two domains are thought to function as a unit (BAR-PH domain). C-terminal to this is a PTB domain. Lipid binding assays show that the BAR, PH, and PTB domains can bind phospholipids. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270067  Cd Length: 125  Bit Score: 235.73  E-value: 2.37e-74
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 252 EDLEVASDPLYLPDPDPTKFPVNRNLTRKAGYLNARNKTGLVSSTWDRQFYFTQGGNLMSQARGDVAGGLAMDIDNCSVM 331
Cdd:cd13247     1 EELSSSADYFYEGDPDETQAAPNRNLTQKAGYLFIRSKTGLVTNKWDRTYFFTQGGNLMSQPRDEVAGSLVLDLDNCSVQ 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*
gi 2172663981 332 AVDCEDRRYCFQITSFDGKKSSILQAESKKDHEEWICTINNISKQ 376
Cdd:cd13247    81 AADCEDRRNVFQITSPDGKKAIVLQAESKKDYEEWIATINNISQQ 125
PTB smart00462
Phosphotyrosine-binding domain, phosphotyrosine-interaction (PI) domain; PTB/PI domain ...
498-633 1.36e-11

Phosphotyrosine-binding domain, phosphotyrosine-interaction (PI) domain; PTB/PI domain structure similar to those of pleckstrin homology (PH) and IRS-1-like PTB domains.


Pssm-ID: 214675  Cd Length: 134  Bit Score: 62.33  E-value: 1.36e-11
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  498 HQLFIVRFLGSMEVKSDDHPDVVYETMRQILAARAIHNIfRMTESHLLVTCDCLKLIDPQTQVTRLTFPLPYVVLYATHQ 577
Cdd:smart00462   3 GVSFRVKYLGSVEVPEARGLQVVQEAIRKLRAAQGSEKK-EPQKVILSISSRGVKLIDEDTKAVLHEHPLRRISFCAVGP 81
                           90       100       110       120       130
                   ....*....|....*....|....*....|....*....|....*....|....*.
gi 2172663981  578 ENKRLFGFVLRTSGGRSESnlssvCYIFESNNEGEKICDSVGLAKQIALHAELDRR 633
Cdd:smart00462  82 DDLDVFGYIARDPGSSRFA-----CHVFRCEKAAEDIALAIGQAFQLAYELKLKAR 132
PID pfam00640
Phosphotyrosine interaction domain (PTB/PID);
501-625 2.16e-06

Phosphotyrosine interaction domain (PTB/PID);


Pssm-ID: 395515  Cd Length: 133  Bit Score: 47.36  E-value: 2.16e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 501 FIVRFLGSMEVKSDDHPD------VVYETMRQILAA------RAIHNIFRMTESHLLVTCDCLKLIDPQTQVTRLTFPLP 568
Cdd:pfam00640   1 FAVRYLGSVEVPEERAPDkntrmqQAREAIRRVKAAkinkirGLSGETGPGTKVDLFISTDGLKLLNPDTQELIHDHPLV 80
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 2172663981 569 YVVLYA-THQENKRLFGFVLRtsGGRSESNLssvCYIFESNNEGEKICDSVGLAKQIA 625
Cdd:pfam00640  81 SISFCAdGDPDLMRYFAYIAR--DKATNKFA---CHVFESEDGAQDIAQSIGQAFALA 133
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
278-375 6.52e-05

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 42.54  E-value: 6.52e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  278 TRKAGYLnaRNKTGLVSSTWDRQFYFTQGGNLM----SQARGDVAGGLAMDIDNCSVMAVDCED---RRYCFQITSFDGK 350
Cdd:smart00233   1 VIKEGWL--YKKSGGGKKSWKKRYFVLFNSTLLyyksKKDKKSYKPKGSIDLSGCTVREAPDPDsskKPHCFEIKTSDRK 78
                           90       100
                   ....*....|....*....|....*
gi 2172663981  351 kSSILQAESKKDHEEWICTINNISK 375
Cdd:smart00233  79 -TLLLQAESEEEREKWVEALRKAIA 102
PH pfam00169
PH domain; PH stands for pleckstrin homology.
280-375 3.57e-04

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 40.62  E-value: 3.57e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 280 KAGYLnaRNKTGLVSSTWDRQFYFTQGGNLMSQARGDVAGGLA----MDIDNCSVMAVDCED---RRYCFQI--TSFDGK 350
Cdd:pfam00169   3 KEGWL--LKKGGGKKKSWKKRYFVLFDGSLLYYKDDKSGKSKEpkgsISLSGCEVVEVVASDspkRKFCFELrtGERTGK 80
                          90       100
                  ....*....|....*....|....*
gi 2172663981 351 KSSILQAESKKDHEEWICTINNISK 375
Cdd:pfam00169  81 RTYLLQAESEEERKDWIKAIQSAIR 105
 
Name Accession Description Interval E-value
BAR_APPL1 cd07631
The Bin/Amphiphysin/Rvs (BAR) domain of Adaptor protein, Phosphotyrosine interaction, PH ...
20-234 2.54e-160

The Bin/Amphiphysin/Rvs (BAR) domain of Adaptor protein, Phosphotyrosine interaction, PH domain and Leucine zipper containing 1; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Adaptor protein, Phosphotyrosine interaction, PH domain and Leucine zipper containing (APPL) proteins are effectors of the small GTPase Rab5 that function in endosome-mediated signaling. They contain BAR, pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains. They form homo- and hetero-oligomers that are mediated by their BAR domains. Vertebrates contain two APPL proteins, APPL1 and APPL2. APPL1 interacts with diverse receptors (e.g. NGF receptor TrkA, FSHR, adiponectin receptors) and signaling proteins (e.g. Akt, PI3K), and may function as an adaptor linked to many distinct signaling pathways. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions.


Pssm-ID: 153315  Cd Length: 215  Bit Score: 460.71  E-value: 2.54e-160
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  20 RSLLGVFEEDATAISNYMNQLYQAMHRIYDAQNELSAATHLTSKLLKEYEKQRFPLGGDDEVMSSTLQQFSKVIDELSSC 99
Cdd:cd07631     1 RSLLGVFEEDAAAISNYFNQLFQAMHRIYDAQNELSAATHLTSKLLKEYEKQRFPLGGDDEVMSSTLQQFSKVIDELSSC 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 100 HAVLSTQLADAMMFPISQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKKRENDKVKYEVTEDVYTSRKKQHQTMM 179
Cdd:cd07631    81 HAVLSTQLADAMMFPITQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKRRENEKVKYEVTEDVYTSRKKQHQTMM 160
                         170       180       190       200       210
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 2172663981 180 HYFCALNTLQYKKKIALLEPLLGYMQAQISFFKMGSENLNGQLEEFLANIGTSVQ 234
Cdd:cd07631   161 HYFCALNTLQYKKKIALLEPLLGYMQAQISFFKMGSENLNEQLEEFLTNIGTSVQ 215
BAR_APPL cd07601
The Bin/Amphiphysin/Rvs (BAR) domain of Adaptor protein, Phosphotyrosine interaction, PH ...
20-234 3.99e-125

The Bin/Amphiphysin/Rvs (BAR) domain of Adaptor protein, Phosphotyrosine interaction, PH domain and Leucine zipper containing proteins; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Adaptor protein, Phosphotyrosine interaction, PH domain and Leucine zipper containing (APPL) proteins are effectors of the small GTPase Rab5 that function in endosome-mediated signaling. They contain BAR, pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains. They form homo- and hetero-oligomers that are mediated by their BAR domains, and are localized to cytoplasmic membranes. Vertebrates contain two APPL proteins, APPL1 and APPL2. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions.


Pssm-ID: 153285  Cd Length: 215  Bit Score: 370.78  E-value: 3.99e-125
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  20 RSLLGVFEEDATAISNYMNQLYQAMHRIYDAQNELSAATHLTSKLLKEYEKQRFPLGGDDEVMSSTLQQFSKVIDELSSC 99
Cdd:cd07601     1 RSLLNVFEEDALQLSSYMNQLLQACKRVYDAQNELKSATQALSKKLGEYEKQKFELGRDDEILVSTLKQFSKVVDELSTM 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 100 HAVLSTQLADAMMFPISQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKKRENDKVKYEVTEDVYTSRKKQHQTMM 179
Cdd:cd07601    81 HSTLSSQLADTVLHPISQFMESDLAEIMTLKELFKAASNDHDGVLSKYSRLSKKRENTKVKIEVNDEVYACRKKQHQTAM 160
                         170       180       190       200       210
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 2172663981 180 HYFCALNTLQYKKKIALLEPLLGYMQAQISFFKMGSENLNGQLEEFLANIGTSVQ 234
Cdd:cd07601   161 NYYCALNLLQYKKTTALLEPMIGYLQAQIAFFKMGPEMFTRQTEEFLSDINTSVQ 215
BAR_APPL2 cd07632
The Bin/Amphiphysin/Rvs (BAR) domain of Adaptor protein, Phosphotyrosine interaction, PH ...
20-234 2.71e-89

The Bin/Amphiphysin/Rvs (BAR) domain of Adaptor protein, Phosphotyrosine interaction, PH domain and Leucine zipper containing 2; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Adaptor protein, Phosphotyrosine interaction, PH domain and Leucine zipper containing (APPL) proteins are effectors of the small GTPase Rab5 that function in endosome-mediated signaling. They contain BAR, pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains. They form homo- and hetero-oligomers that are mediated by their BAR domains. Vertebrates contain two APPL proteins, APPL1 and APPL2. Both APPL proteins interact with the transcriptional repressor Reptin, acting as activators of beta-catenin/TCF-mediated trancription. APPL2 is essential for cell proliferation. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions.


Pssm-ID: 153316  Cd Length: 215  Bit Score: 278.06  E-value: 2.71e-89
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  20 RSLLGVFEEDATAISNYMNQLYQAMHRIYDAQNELSAATHLTSKLLKEYEKQRFPLGGDDEVMSSTLQQFSKVIDELSSC 99
Cdd:cd07632     1 RSLLSVFEEDAGTLTDYTNQLLQAMQRVYGAQNEMCLATQQLSKQLLAYEKQNFALGKGDEEVISTLQYFAKVVDELNVL 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 100 HAVLSTQLADAMMFPISQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKKRENDKVKYEVTEDVYTSRKKQHQTMM 179
Cdd:cd07632    81 HSELAKQLADTMVLPIIQFREKDLTEVSTLKDLFGIASNEHDLSMAKYSRLPKKRENEKVKAEVAKEVAYSRRKQHLSSL 160
                         170       180       190       200       210
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 2172663981 180 HYFCALNTLQYKKKIALLEPLLGYMQAQISFFKMGSENLNGQLEEFLANIGTSVQ 234
Cdd:cd07632   161 QYYCALNALQYRKRVAMLEPMLGYTHGQINFFKKGAELFSKKLDSFLSSVSDMNQ 215
BAR_3 pfam16746
BAR domain of APPL family; BAR_12 is the BAR coiled-coil domain at the N-terminus of APPL or ...
7-247 5.10e-82

BAR domain of APPL family; BAR_12 is the BAR coiled-coil domain at the N-terminus of APPL or adaptor protein containing PH domain, PTB domain, and leucine zipper motif proteins in higher eukaryotes. This BAR domain contains four helices whereas the other classical BAR domains contain only three helices. The first three helices form an antiparallel coiled-coil, while the fourth helix, is unique to APPL1. BAR domains take part in many varied biological processes such as fission of synaptic vesicles, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, apoptosis, secretory vesicle fusion, and tissue differentiation.


Pssm-ID: 465256  Cd Length: 235  Bit Score: 259.80  E-value: 5.10e-82
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981   7 LPIEETLEDSPQTRSLLGVFEEDATAISNYMNQLYQAMHRIYDAQNELSAATHLTSKLLKEYEKQRfplgGDDEVMSSTL 86
Cdd:pfam16746   1 LEFEECLKDSPQFRSLLEEHEAELDELEKKLKKLLKLCKRMIEAGKEYSAAQRLFANSLLDFKFEF----IGDEETDESL 76
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  87 QQFSKVIDELSSCHAVLSTQLADAMMFPISQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKKRENDKVKyEVTED 166
Cdd:pfam16746  77 KKFSQLLQEMENFHTILLDQAQRTIIKPLENFRKEDLKEVKELKKKFDKASEKLDAALEKNAQLSKKKKPSELE-EADNE 155
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 167 VYTSRKKQHQTMMHYFCALNTLQYKKKIALLEPLLGYMQAQISFFKMGSENLNgQLEEFLANIGTSVQNVRREMDGDVET 246
Cdd:pfam16746 156 LAATRKCFHHASLDYVLQINELQERKKFEILEPLLSFMHAQFTFFHQGYELFK-DLEPFMKDLQAQLQQTREDTREEKEE 234

                  .
gi 2172663981 247 M 247
Cdd:pfam16746 235 L 235
PTB_APPL cd13158
Adaptor protein containing PH domain, PTB domain, and Leucine zipper motif (APPL; also called ...
489-624 1.36e-81

Adaptor protein containing PH domain, PTB domain, and Leucine zipper motif (APPL; also called DCC-interacting protein (DIP)-13alpha) Phosphotyrosine-binding (PTB) domain; APPL interacts with oncoprotein serine/threonine kinase AKT2, tumor suppressor protein DCC (deleted in colorectal cancer), Rab5, GIPC (GAIP-interacting protein, C terminus), human follicle-stimulating hormone receptor (FSHR), and the adiponectin receptors AdipoR1 and AdipoR2. There are two isoforms of human APPL: APPL1 and APPL2, which share about 50% sequence identity. APPL has a BAR and a PH domain near its N terminus, and the two domains are thought to function as a unit (BAR-PH domain). C-terminal to this is a PTB domain. Lipid binding assays show that the BAR, PH, and PTB domains can bind phospholipids. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains.


Pssm-ID: 269980  Cd Length: 135  Bit Score: 254.97  E-value: 1.36e-81
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 489 KSETEDSILHQLFIVRFLGSMEVKSDDHPDVVYETMRQILAARAIHNIFRMTESHLLVTCDCLKLIDPQTQVTRLTFPLP 568
Cdd:cd13158     1 SSEDEDSLLQQLFIVRFLGSMEVKSDRTSEVIYEAMRQVLAARAIHNIFRMTESHLLVTSDCLRLIDPQTQVTRARFPLA 80
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 2172663981 569 YVVLYATHQENKRLFGFVLRTSGGRSESNlSSVCYIFESNNEGEKICDSVGLAKQI 624
Cdd:cd13158    81 DVVQFAAHQENKRLFGFVVRTPEGDGEEP-SFSCYVFESNTEGEKICDAIALAKQI 135
BAR-PH_APPL cd13247
Adaptor protein containing PH domain, PTB domain, and Leucine zipper motif Bin1/amphiphysin ...
252-376 2.37e-74

Adaptor protein containing PH domain, PTB domain, and Leucine zipper motif Bin1/amphiphysin/Rvs167 (BAR)-Pleckstrin homology (PH) domain; APPL (also called DCC-interacting protein (DIP)-13alpha) interacts with oncoprotein serine/threonine kinase AKT2, tumor suppressor protein DCC (deleted in colorectal cancer), Rab5, GIPC (GAIP-interacting protein, C terminus), human follicle-stimulating hormone receptor (FSHR), and the adiponectin receptors AdipoR1 and AdipoR2. There are two isoforms of human APPL: APPL1 and APPL2, which share about 50% sequence identity. APPL has a BAR and a PH domain near its N terminus, and the two domains are thought to function as a unit (BAR-PH domain). C-terminal to this is a PTB domain. Lipid binding assays show that the BAR, PH, and PTB domains can bind phospholipids. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270067  Cd Length: 125  Bit Score: 235.73  E-value: 2.37e-74
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 252 EDLEVASDPLYLPDPDPTKFPVNRNLTRKAGYLNARNKTGLVSSTWDRQFYFTQGGNLMSQARGDVAGGLAMDIDNCSVM 331
Cdd:cd13247     1 EELSSSADYFYEGDPDETQAAPNRNLTQKAGYLFIRSKTGLVTNKWDRTYFFTQGGNLMSQPRDEVAGSLVLDLDNCSVQ 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*
gi 2172663981 332 AVDCEDRRYCFQITSFDGKKSSILQAESKKDHEEWICTINNISKQ 376
Cdd:cd13247    81 AADCEDRRNVFQITSPDGKKAIVLQAESKKDYEEWIATINNISQQ 125
BAR cd07307
The Bin/Amphiphysin/Rvs (BAR) domain, a dimerization module that binds membranes and detects ...
29-219 9.18e-28

The Bin/Amphiphysin/Rvs (BAR) domain, a dimerization module that binds membranes and detects membrane curvature; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions including organelle biogenesis, membrane trafficking or remodeling, and cell division and migration. Mutations in BAR containing proteins have been linked to diseases and their inactivation in cells leads to altered membrane dynamics. A BAR domain with an additional N-terminal amphipathic helix (an N-BAR) can drive membrane curvature. These N-BAR domains are found in amphiphysins and endophilins, among others. BAR domains are also frequently found alongside domains that determine lipid specificity, such as the Pleckstrin Homology (PH) and Phox Homology (PX) domains which are present in beta centaurins (ACAPs and ASAPs) and sorting nexins, respectively. A FES-CIP4 Homology (FCH) domain together with a coiled coil region is called the F-BAR domain and is present in Pombe/Cdc15 homology (PCH) family proteins, which include Fes/Fes tyrosine kinases, PACSIN or syndapin, CIP4-like proteins, and srGAPs, among others. The Inverse (I)-BAR or IRSp53/MIM homology Domain (IMD) is found in multi-domain proteins, such as IRSp53 and MIM, that act as scaffolding proteins and transducers of a variety of signaling pathways that link membrane dynamics and the underlying actin cytoskeleton. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The I-BAR domain induces membrane protrusions in the opposite direction compared to classical BAR and F-BAR domains, which produce membrane invaginations. BAR domains that also serve as protein interaction domains include those of arfaptin and OPHN1-like proteins, among others, which bind to Rac and Rho GAP domains, respectively.


Pssm-ID: 153271 [Multi-domain]  Cd Length: 194  Bit Score: 111.00  E-value: 9.18e-28
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  29 DATAISNYMNQLYQAMHRIYDAQNELSAATHLTSKLLKEYEKQRFPLGgdDEVMSSTLQQFSKVIDELSSCHAVLSTQLA 108
Cdd:cd07307     1 KLDELEKLLKKLIKDTKKLLDSLKELPAAAEKLSEALQELGKELPDLS--NTDLGEALEKFGKIQKELEEFRDQLEQKLE 78
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 109 DAMMFPISQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKKRENDKVKYEVTEDVYTSRKKQHQTMMHYFCALNTL 188
Cdd:cd07307    79 NKVIEPLKEYLKKDLKEIKKRRKKLDKARLDYDAAREKLKKLRKKKKDSSKLAEAEEELQEAKEKYEELREELIEDLNKL 158
                         170       180       190
                  ....*....|....*....|....*....|.
gi 2172663981 189 QYKKKIALLEPLLGYMQAQISFFKMGSENLN 219
Cdd:cd07307   159 EEKRKELFLSLLLSFIEAQSEFFKEVLKILE 189
PTB cd00934
Phosphotyrosine-binding (PTB) PH-like fold; PTB domains have a common PH-like fold and are ...
499-621 6.67e-20

Phosphotyrosine-binding (PTB) PH-like fold; PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to bind peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains.


Pssm-ID: 269911  Cd Length: 120  Bit Score: 85.64  E-value: 6.67e-20
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 499 QLFIVRFLGSMEVKSDDHPDVVYETMRqILAARAIHNIFRMTESHLLVTCDCLKLIDPQTQVTRLTFPLPYVVLYATHQE 578
Cdd:cd00934     1 ASFQVKYLGSVEVGSSRGVDVVEEALK-ALAAALKSSKRKPGPVLLEVSSKGVKLLDLDTKELLLRHPLHRISYCGRDPD 79
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*
gi 2172663981 579 NKRLFGFVLRTSGGRsesnlSSVCYIFESNN--EGEKICDSVGLA 621
Cdd:cd00934    80 NPNVFAFIAGEEGGS-----GFRCHVFQCEDeeEAEEILQAIGQA 119
BAR_ACAPs cd07603
The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain ...
78-226 3.93e-15

The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain containing proteins; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. This subfamily is composed of ACAPs (ArfGAP with Coiled-coil, ANK repeat and PH domain containing proteins), which are Arf GTPase activating proteins (GAPs) containing an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, and C-terminal ankyrin (ANK) repeats. Vertebrates contain at least three members, ACAP1, ACAP2, and ACAP3. ACAP1 and ACAP2 are Arf6-specific GAPs, involved in the regulation of endocytosis, phagocytosis, cell adhesion and migration, by mediating Arf6 signaling. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions.


Pssm-ID: 153287  Cd Length: 200  Bit Score: 74.65  E-value: 3.93e-15
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  78 DDEVMSSTLQQFSKVIDELSSCHAVLSTQLADAMMFPISQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKKREND 157
Cdd:cd07603    55 DDSLVQNCLNKFIQALQEMNNFHTILLDQAQRTVSTQLQNFVKEDIKKVKESKKHFEKISDDLDNALVKNAQAPRSKPQE 134
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2172663981 158 kvkYEVTEDVYTSRKK--QHQTMMHYFCaLNTLQYKKKIALLEPLLGYMQAQISFFKMGSENLNGqLEEFL 226
Cdd:cd07603   135 ---AEEATNILTATRScfRHTALDYVLQ-INVLQAKKRHEILSTLLSYMHAQFTFFHQGYDLLED-LEPYM 200
PH_ACAP cd13250
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ...
280-376 2.41e-13

ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270070  Cd Length: 98  Bit Score: 66.47  E-value: 2.41e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 280 KAGYLNARNKTGLvsSTWDRQFYFTQGGNLMSQARGDVAGGLAM--DIDNCSVMAVDCEDRRYCFQITSfdGKKSSILQA 357
Cdd:cd13250     1 KEGYLFKRSSNAF--KTWKRRWFSLQNGQLYYQKRDKKDEPTVMveDLRLCTVKPTEDSDRRFCFEVIS--PTKSYMLQA 76
                          90       100
                  ....*....|....*....|
gi 2172663981 358 ESKKDHEEWICTINN-ISKQ 376
Cdd:cd13250    77 ESEEDRQAWIQAIQSaIASA 96
BAR_GRAF2 cd07635
The Bin/Amphiphysin/Rvs (BAR) domain of GTPase Regulator Associated with Focal adhesion 2; BAR ...
36-216 6.54e-13

The Bin/Amphiphysin/Rvs (BAR) domain of GTPase Regulator Associated with Focal adhesion 2; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. GTPase Regulator Associated with Focal adhesion kinase 2 (GRAF2), also called Rho GTPase activating protein 10 (ARHGAP10) or PS-GAP, is a GAP with activity towards Cdc42 and RhoA which regulates caspase-activated p21-activated protein kinase-2 (PAK-2p34). GRAF2 interacts with PAK-2p34, leading to its stabilization and decrease of cell death. It is highly expressed in skeletal muscle and also interacts with PKNbeta, which is a target of Rho. GRAF2 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, a Rho GAP domain, and a C-terminal SH3 domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The BAR domain of the related protein GRAF directly interacts with its Rho GAP domain and inhibits its activity. Autoinhibited GRAF is capable of binding membranes and tubulating liposomes, showing that the membrane-tubulation and GAP-inhibitory functions of the BAR domain can occur simultaneously.


Pssm-ID: 153319  Cd Length: 207  Bit Score: 68.10  E-value: 6.54e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  36 YMNQLYQAMHRIYDAQNELSAATHLTSKLLKEYekqRFPLGGDDEV-----MSSTLQQFSKVIDELSSCHAVLSTQLADA 110
Cdd:cd07635    17 FIKELLKDGKNLIAATKSLSAAQRKFAHSLRDF---KFEFIGDAETddercIDASLQEFSNFLKNLEEQREIMALNVTET 93
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 111 MMFPISQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKKRENDKVKyEVTEDVYTSRKKQHQTMMHYFCALNTLQY 190
Cdd:cd07635    94 LIKPLERFRKEQLGAVKEEKKKFDKETEKNYSLLEKHLNLSAKKKEPQLQ-EADVQVEQNRQHFYELSLEYVCKLQEIQE 172
                         170       180
                  ....*....|....*....|....*.
gi 2172663981 191 KKKIALLEPLLGYMQAQISFFKMGSE 216
Cdd:cd07635   173 RKKFECVEPMLSFFQGVFTFYHQGYE 198
BAR_SFC_plant cd07606
The Bin/Amphiphysin/Rvs (BAR) domain of the plant protein SCARFACE (SFC); BAR domains are ...
27-225 6.31e-12

The Bin/Amphiphysin/Rvs (BAR) domain of the plant protein SCARFACE (SFC); BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions including organelle biogenesis, membrane trafficking or remodeling, and cell division and migration. The plant protein SCARFACE (SFC), also called VAscular Network 3 (VAN3), is a plant ACAP (ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein), an Arf GTPase Activating Protein (GAP) that plays a role in the trafficking of auxin efflux regulators from the plasma membrane to the endosome. It is required for the normal vein patterning in leaves. SCF contains an N-terminal BAR domain, followed by a Pleckstrin Homology (PH) domain, an Arf GAP domain, and C-terminal ankyrin (ANK) repeats. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions.


Pssm-ID: 153290  Cd Length: 202  Bit Score: 65.20  E-value: 6.31e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  27 EEDATAISNYMNQLYQAMHRIYDAQNELSAATHLTSKLLKEyekqrFPLGGDDEVMSST----LQQFSKVIDELSSCHAV 102
Cdd:cd07606     7 EGSADELRDRSLKLYKGCRKYRDALGEAYDGDSAFAESLEE-----FGGGHDDPISVAVggpvMTKFTSALREIGSYKEV 81
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 103 LSTQLADAMMFPISQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKKRENDKVKyEVTEDVYTSRKKQHQTMMHYF 182
Cdd:cd07606    82 LRSQVEHMLNDRLAQFADTDLQEVKDARRRFDKASLDYEQARSKFLSLTKDAKPEILA-AAEEDLGTTRSAFETARFDLM 160
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|...
gi 2172663981 183 CALNTLQYKKKIALLEPLLGYMQAQISFFKMGSENLnGQLEEF 225
Cdd:cd07606   161 NRLHAADARKRVEFLERLSGSMDAHLAFFKSGYELL-RQLEPY 202
PTB smart00462
Phosphotyrosine-binding domain, phosphotyrosine-interaction (PI) domain; PTB/PI domain ...
498-633 1.36e-11

Phosphotyrosine-binding domain, phosphotyrosine-interaction (PI) domain; PTB/PI domain structure similar to those of pleckstrin homology (PH) and IRS-1-like PTB domains.


Pssm-ID: 214675  Cd Length: 134  Bit Score: 62.33  E-value: 1.36e-11
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  498 HQLFIVRFLGSMEVKSDDHPDVVYETMRQILAARAIHNIfRMTESHLLVTCDCLKLIDPQTQVTRLTFPLPYVVLYATHQ 577
Cdd:smart00462   3 GVSFRVKYLGSVEVPEARGLQVVQEAIRKLRAAQGSEKK-EPQKVILSISSRGVKLIDEDTKAVLHEHPLRRISFCAVGP 81
                           90       100       110       120       130
                   ....*....|....*....|....*....|....*....|....*....|....*.
gi 2172663981  578 ENKRLFGFVLRTSGGRSESnlssvCYIFESNNEGEKICDSVGLAKQIALHAELDRR 633
Cdd:smart00462  82 DDLDVFGYIARDPGSSRFA-----CHVFRCEKAAEDIALAIGQAFQLAYELKLKAR 132
BAR_ACAP3 cd07637
The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain ...
79-226 1.28e-10

The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein 3; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. ACAP3 (ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein 3), also called centaurin beta-5, is presumed to be an Arf GTPase activating protein (GAP) based on its similarity to the Arf6-specific GAPs ACAP1 and ACAP2. The specific function of ACAP3 is still unknown. ACAP3 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, and C-terminal ankyrin (ANK) repeats. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions.


Pssm-ID: 153321  Cd Length: 200  Bit Score: 61.56  E-value: 1.28e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  79 DEVMSSTLQQFSKVIDELSSCHAVLSTQLADAMMFPISQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKKRENDK 158
Cdd:cd07637    56 DEMISECLDKFGDSLQEMVNYHMILFDQAQRSVRQQLHSFVKEDVRKFKETKKQFDKVREDLEIALVKNAQAPRHKPHEV 135
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2172663981 159 vkYEVTEDVYTSRKKQHQTMMHYFCALNTLQYKKKIALLEPLLGYMQAQISFFKMGSENLNgQLEEFL 226
Cdd:cd07637   136 --EEATSTLTITRKCFRHLALDYVLQINVLQAKKKFEILDSMLSFMHAQYTFFQQGYSLLH-ELDPYM 200
BAR_ACAP2 cd07638
The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain ...
79-226 1.28e-10

The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein 2; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein 2), also called centaurin beta-2, is an Arf6-specific GTPase activating protein (GAP) which mediates Arf6 signaling. Arf6 is involved in the regulation of endocytosis, phagocytosis, cell adhesion and migration. ACAP2 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, and C-terminal ankyrin (ANK) repeats. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions.


Pssm-ID: 153322  Cd Length: 200  Bit Score: 61.56  E-value: 1.28e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  79 DEVMSSTLQQFSKVIDELSSCHAVLSTQLADAMMFPISQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKKRENDK 158
Cdd:cd07638    56 DAVIETSLTKFSDTLQEMINYHTILFDQAQRSIKAQLQTFVKEDLRKFKDAKKQFDKVSEEKENALVKNAQVQRNKQHEV 135
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2172663981 159 vkYEVTEDVYTSRKKQHQTMMHYFCALNTLQYKKKIALLEPLLGYMQAQISFFKMGSEnLNGQLEEFL 226
Cdd:cd07638   136 --EEATNILTATRKCFRHIALDYVLQINVLQSKRRSEILKSMLSFMYAHLTFFHQGYD-LFSELGPYM 200
BAR_GAP10-like cd07634
The Bin/Amphiphysin/Rvs (BAR) domain of Rho GTPase activating protein 10-like; BAR domains are ...
20-216 1.26e-08

The Bin/Amphiphysin/Rvs (BAR) domain of Rho GTPase activating protein 10-like; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. This group is composed of uncharacterized proteins called Rho GTPase activating protein (GAP) 10-like. GAP10-like may be a GAP with activity towards RhoA and Cdc42. Similar to GRAF and GRAF2, it contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, a Rho GAP domain, and a C-terminal SH3 domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The BAR domains of the related proteins GRAF and OPHN1, directly interact with their Rho GAP domains and inhibit theiractivity. The autoinhibited proteins are capable of binding membranes and tubulating liposomes, showing that the membrane-tubulation and GAP-inhibitory functions of the BAR domain can occur simultaneously.


Pssm-ID: 153318 [Multi-domain]  Cd Length: 207  Bit Score: 55.81  E-value: 1.26e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  20 RSLLGVFEEDATAISNYMNQLYQAMHRIYDAQNELSAATHLTSKLLKEYEkqrFPLGGD----DEV-MSSTLQQFSKVID 94
Cdd:cd07634     1 RERLQCHEIELERTNKFIKELIKDGSLLIGALRNLSMAVQKFSQSLQDFQ---FECIGDaetdDEIsIAQSLKEFARLLI 77
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  95 ELSSCHAVLSTQLADAMMFPISQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKKRENDKVKYEVTEdVYTSRKKQ 174
Cdd:cd07634    78 AVEEERRRLIQNANDVLIAPLEKFRKEQIGAAKDGKKKFDKESEKYYSILEKHLNLSAKKKESHLQRADTQ-IDREHQNF 156
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|..
gi 2172663981 175 HQTMMHYFCALNTLQYKKKIALLEPLLGYMQAQISFFKMGSE 216
Cdd:cd07634   157 YEASLEYVFKIQEVQEKKKFEFVEPLLAFLQGLFTFYHEGYE 198
BAR_RhoGAP_OPHN1-like cd07602
The Bin/Amphiphysin/Rvs (BAR) domain of Oligophrenin1-like Rho GTPase Activating Proteins; BAR ...
47-216 2.72e-08

The Bin/Amphiphysin/Rvs (BAR) domain of Oligophrenin1-like Rho GTPase Activating Proteins; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. This subfamily is composed of Rho and Rac GTPase activating proteins (GAPs) with similarity to oligophrenin1 (OPHN1). Members contain an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, and a Rho GAP domain. Some members contain a C-terminal SH3 domain. Vertebrates harbor at least three Rho GAPs in this subfamily including OPHN1, GTPase Regulator Associated with Focal adhesion kinase (GRAF), GRAF2, and an uncharacterized protein called GAP10-like. OPHN1, GRAF and GRAF2 show GAP activity towards RhoA and Cdc42. In addition, OPHN1 is active towards Rac. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The BAR domains of OPHN1 and GRAF directly interact with their Rho GAP domains and inhibit their activity. The autoinhibited proteins are able to bind membranes and tubulate liposomes, showing that the membrane-tubulation and GAP-inhibitory functions of the BAR domains can occur simultaneously.


Pssm-ID: 153286  Cd Length: 207  Bit Score: 54.63  E-value: 2.72e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  47 IYDAQNELSAATHLT------SKLLKEYekqRFPLGG----DDE-VMSSTLQQFSKVIDELSSCHAVLSTQLADAMMFPI 115
Cdd:cd07602    22 IKECKNLISATKNLSkaqrsfAQTLQNF---KFECIGetqtDDEiEIAESLKEFGRLIETVEDERDRMLENAEEQLIEPL 98
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 116 SQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKKRENDKVKyEVTEDVYTSRKKQHQTMMHYFCALNTLQYKKKIA 195
Cdd:cd07602    99 EKFRKEQIGGAKEEKKKFDKETEKFCSSLEKHLNLSTKKKENQLQ-EADAQLDMERRNFHQASLEYVFKLQEVQERKKFE 177
                         170       180
                  ....*....|....*....|.
gi 2172663981 196 LLEPLLGYMQAQISFFKMGSE 216
Cdd:cd07602   178 FVETLLSFMYGWLTFYHQGHE 198
PTB_CED-6 cd01273
Cell death protein 6 homolog (CED-6/GULP1) Phosphotyrosine-binding (PTB) domain; CED6 (also ...
498-625 4.91e-08

Cell death protein 6 homolog (CED-6/GULP1) Phosphotyrosine-binding (PTB) domain; CED6 (also known as GULP1: engulfment adaptor PTB domain containing 1) is an adaptor protein involved in the specific recognition and engulfment of apoptotic cells. CED6 has been shown to interact with the cytoplasmic tail of another protein involved in the engulfment of apoptotic cells, CED1. CED6 has a C-terminal PTB domain, which can bind to NPXY motifs. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup.


Pssm-ID: 269971  Cd Length: 144  Bit Score: 52.67  E-value: 4.91e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 498 HQLFIVRFLGSMEVKSDDHPDVVYETMRQILAARAIHNI--FRMTESHLLVTCDCLKLIDPQTQVTRLTFPLPYVVLYAT 575
Cdd:cd01273    11 HVAYLVKFLGCTEVEQPKGTEVVKEAIRKLKFARQLKKSegAKLPKVELQISIDGVKIQDPKTKVIMHQFPLHRISFCAD 90
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|
gi 2172663981 576 HQENKRLFGFVLRTSGGRSESnlssvCYIFESNNEGEKICDSVGLAKQIA 625
Cdd:cd01273    91 DKTDKRIFSFIAKDSESEKHL-----CFVFDSEKLAEEITLTIGQAFDLA 135
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
280-370 6.60e-08

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 50.62  E-value: 6.60e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 280 KAGYLnaRNKTGLVSSTW-DRQFYFTQGGNLMSQARGDVAGGLAMDID---NCSVMAVDCEDRRYCFQITSFDGkKSSIL 355
Cdd:cd00821     1 KEGYL--LKRGGGGLKSWkKRWFVLFEGVLLYYKSKKDSSYKPKGSIPlsgILEVEEVSPKERPHCFELVTPDG-RTYYL 77
                          90
                  ....*....|....*
gi 2172663981 356 QAESKKDHEEWICTI 370
Cdd:cd00821    78 QADSEEERQEWLKAL 92
BAR_ASAPs cd07604
The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with SH3 domain, ANK repeat and PH domain ...
78-214 8.48e-08

The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with SH3 domain, ANK repeat and PH domain containing proteins; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. This subfamily is composed of ASAPs (ArfGAP with SH3 domain, ANK repeat and PH domain containing proteins), which are Arf GTPase activating proteins (GAPs) with similarity to ACAPs (ArfGAP with Coiled-coil, ANK repeat and PH domain containing proteins) in that they contain an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, and ankyrin (ANK) repeats. However, ASAPs contain an additional C-terminal SH3 domain. ASAPs function in regulating cell growth, migration, and invasion. Vertebrates contain at least three members, ASAP1, ASAP2, and ASAP3. ASAP1 and ASAP2 shows GTPase activating protein (GAP) activity towards Arf1 and Arf5. They do not show GAP activity towards Arf6, but is able to mediate Arf6 signaling by binding stably to GTP-Arf6. ASAP3 is an Arf6-specific GAP. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The BAR domain of ASAP1 mediates membrane bending, is essential for function, and autoinhibits GAP activity by interacting with the PH and/or Arf GAP domains.


Pssm-ID: 153288  Cd Length: 215  Bit Score: 53.19  E-value: 8.48e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  78 DDEVMSSTLQQFSKVIDELSSCHAVLSTQLADAMMFPISQFKERDLKEI-LTLKEVFQIASND---HDAAINRYSRLSKK 153
Cdd:cd07604    57 EEEDLGAAFLKFSVFTKELAALFKNLMQNLNNIIMFPLDSLLKGDLKGSkGDLKKPFDKAWKDyetKASKIEKEKKQLAK 136
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2172663981 154 R----ENDKVKYEVTEDVYTSRKKQHQTMMHYFCALNTLQYKKKIALLEPLLGYMQAQISFFKMG 214
Cdd:cd07604   137 EagmiRTEITGAEIAEEMEKERRMFQLQMCEYLIKVNEIKTKKGVDLLQHLVEYYHAQNSYFQDG 201
PH_SIP3 cd13280
Snf1p-interacting protein 3 Pleckstrin homology (PH) domain; SIP3 interacts with SNF1 protein ...
279-380 8.70e-08

Snf1p-interacting protein 3 Pleckstrin homology (PH) domain; SIP3 interacts with SNF1 protein kinase and activates transcription when anchored to DNA. It may function in the SNF1 pathway. SIP3 contain an N-terminal Bin/Amphiphysin/Rvs (BAR) domain followed by a PH domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270098  Cd Length: 105  Bit Score: 50.72  E-value: 8.70e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 279 RKAGYLNARNKTGLVS-STWDRQFYFTQGG----NLMSQARGDVAGGLAMDIDNCSVMAVDCEDRRYCFQITSFDgKKSS 353
Cdd:cd13280     1 EKSGWLYMKTSVGKPNrTIWVRRWCFVKNGvfgmLSLSPSKTYVEETDKFGVLLCSVRYAPEEDRRFCFEVKIFK-DISI 79
                          90       100
                  ....*....|....*....|....*..
gi 2172663981 354 ILQAESKKDHEEWICTINNiSKQIYLS 380
Cdd:cd13280    80 ILQAETLKELKSWLTVFEN-AKRYALQ 105
BAR_ASAP2 cd07642
The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with SH3 domain, ANK repeat and PH domain ...
78-225 1.15e-07

The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with SH3 domain, ANK repeat and PH domain containing protein 2; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. ASAP2 (ArfGAP with SH3 domain, ANK repeat and PH domain containing protein 2) is also known as DDEF2 (Development and Differentiation Enhancing Factor 2), AMAP2, centaurin beta-3, or PAG3. ASAP2 mediates the functions of Arf GTPases vial dual mechanisms: it exhibits GTPase activating protein (GAP) activity towards class I (Arf1) and II (Arf5) Arfs; and binds class III Arfs (GTP-Arf6) stably without GAP activity. It binds paxillin and is implicated in Fcgamma receptor-mediated phagocytosis in macrophages and in cell migration. ASAP2 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, ankyrin (ANK) repeats, and a C-terminal SH3 domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The BAR domain of the related protein ASAP1 mediates membrane bending, is essential for function, and autoinhibits GAP activity by interacting with the PH and/or Arf GAP domains.


Pssm-ID: 153326  Cd Length: 215  Bit Score: 53.11  E-value: 1.15e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  78 DDEVMSSTLQQFSKVIDELSSCHAVLSTQLADAMMFPISQFKERDLKEIL-TLKEVFQIASNDHDAAINRYSRlsKKREN 156
Cdd:cd07642    57 DDPDLGSAFLKFSVFTKELTALFKNLVQNMNNIITFPLDSLLKGDLKGVKgDLKKPFDKAWKDYETKVTKIEK--EKKEH 134
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 157 DKVK---------YEVTEDVYTSRKKQHQTMMHYFCALNTLQYKKKIALLEPLLGYMQAQISFFKMG---SENLNGQLEE 224
Cdd:cd07642   135 AKMHgmirteisgAEIAEEMEKERRFFQLQMCEYLLKVNEIKIKKGVDLLQNLIKYFHAQCNFFQDGlkaVETLKPSIEK 214

                  .
gi 2172663981 225 F 225
Cdd:cd07642   215 L 215
BAR-PH_GRAF_family cd01249
GTPase Regulator Associated with Focal adhesion and related proteins Pleckstrin homology (PH) ...
280-367 6.32e-07

GTPase Regulator Associated with Focal adhesion and related proteins Pleckstrin homology (PH) domain; This hierarchy contains GRAF family members: OPHN1/oligophrenin1, GRAF1 (also called ARHGAP26/Rho GTPase activating protein 26), GRAF2 (also called ARHGAP10/ARHGAP42), AK057372, and LOC129897, all of which are members of the APPL family. OPHN1 is a RhoGAP involved in X-linked mental retardation, epilepsy, rostral ventricular enlargement, and cerebellar hypoplasia. Affected individuals have morphological abnormalities of their brain with enlargement of the cerebral ventricles and cerebellar hypoplasia. OPHN1 negatively regulates RhoA, Cdc42, and Rac1 in neuronal and non-neuronal cells. GRAF1 sculpts the endocytic membranes of the CLIC/GEEC (clathrin-independent carriers/GPI-enriched early endosomal compartments) endocytic pathway. It strongly interacts with dynamin and inhibition of dynamin abolishes CLIC/GEEC endocytosis. GRAF2, GRAF3 and oligophrenin are likely to play similar roles during clathrin-independent endocytic events. GRAF1 mutations are linked to leukaemia. All members are composed of a N-terminal BAR-PH domain, followed by a RhoGAP domain, a proline rich region, and a C-terminal SH3 domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269953  Cd Length: 105  Bit Score: 48.10  E-value: 6.32e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 280 KAGYLNARNKTGLvSSTWDRQFY-FTQGGNLM------SQARGDVAGGLAMDIDNCSVMAVDCEDRRYCFQITSFDGKKS 352
Cdd:cd01249     2 KEGYLYLQEKKPL-GSTWTKHYCtYRKESKMFtmipynQQSSGKLGTTEVVTLKSCVRRKTDSIDRRFCFDIEVVDRPTV 80
                          90
                  ....*....|....*
gi 2172663981 353 SILQAESKKDHEEWI 367
Cdd:cd01249    81 LTLQALSEEDRKLWL 95
BAR_GRAF cd07636
The Bin/Amphiphysin/Rvs (BAR) domain of GTPase Regulator Associated with Focal adhesion kinase; ...
20-216 1.52e-06

The Bin/Amphiphysin/Rvs (BAR) domain of GTPase Regulator Associated with Focal adhesion kinase; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. GTPase Regulator Associated with Focal adhesion kinase (GRAF), also called Rho GTPase activating protein 26 (ARHGAP26), is a GAP with activity towards RhoA and Cdc42 and is only weakly active towards Rac1. It influences Rho-mediated cytoskeletal rearrangements and binds focal adhesion kinase (FAK), which is a critical component of integrin signaling. GRAF contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, a Rho GAP domain, and a C-terminal SH3 domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The BAR domain of GRAF directly interacts with its Rho GAP domain and inhibits its activity. Autoinhibited GRAF is capable of binding membranes and tubulating liposomes, showing that the membrane-tubulation and GAP-inhibitory functions of the BAR domain can occur simultaneously.


Pssm-ID: 153320 [Multi-domain]  Cd Length: 207  Bit Score: 49.67  E-value: 1.52e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  20 RSLLGVFEEDATAISNYMNQLYQAMHRIYDAQNELSAATHLTSKLLKEYekqRFPLGGD----DEV-MSSTLQQFSKVID 94
Cdd:cd07636     1 RERLKSHEAELDKTNKFIKELIKDGKSLIAALKNLSSAKRKFADSLNEF---KFQCIGDaetdDEIcIARSLQEFAAVLR 77
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  95 ELSSCHAVLSTQLADAMMFPISQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKKRENDKVkYEVTEDVYTSRKKQ 174
Cdd:cd07636    78 NLEDERTRMIENASEVLITPLEKFRKEQIGAAKEAKKKYDKETEKYCAVLEKHLNLSSKKKESQL-HEADSQVDLVRQHF 156
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|..
gi 2172663981 175 HQTMMHYFCALNTLQYKKKIALLEPLLGYMQAQISFFKMGSE 216
Cdd:cd07636   157 YEVSLEYVFKVQEVQERKMFEFVEPLLAFLQGLFTFYHHGYE 198
PID pfam00640
Phosphotyrosine interaction domain (PTB/PID);
501-625 2.16e-06

Phosphotyrosine interaction domain (PTB/PID);


Pssm-ID: 395515  Cd Length: 133  Bit Score: 47.36  E-value: 2.16e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 501 FIVRFLGSMEVKSDDHPD------VVYETMRQILAA------RAIHNIFRMTESHLLVTCDCLKLIDPQTQVTRLTFPLP 568
Cdd:pfam00640   1 FAVRYLGSVEVPEERAPDkntrmqQAREAIRRVKAAkinkirGLSGETGPGTKVDLFISTDGLKLLNPDTQELIHDHPLV 80
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 2172663981 569 YVVLYA-THQENKRLFGFVLRtsGGRSESNLssvCYIFESNNEGEKICDSVGLAKQIA 625
Cdd:pfam00640  81 SISFCAdGDPDLMRYFAYIAR--DKATNKFA---CHVFESEDGAQDIAQSIGQAFALA 133
PH_Ses cd13288
Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 ...
280-367 4.90e-06

Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 mammalian members: Ses1 and Ses2, which are also callled 7 kDa inositol polyphosphate phosphatase-interacting protein 1 and 2. They play a role in endocytic trafficking and are required for receptor recycling from endosomes, both to the trans-Golgi network and the plasma membrane. Members of this family form homodimers and heterodimers. Sesquipedalian interacts with inositol polyphosphate 5-phosphatase OCRL-1 (INPP5F) also known as Lowe oculocerebrorenal syndrome protein, a phosphatase enzyme that is involved in actin polymerization and is found in the trans-Golgi network and INPP5B. Sesquipedalian contains a single PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270105 [Multi-domain]  Cd Length: 120  Bit Score: 46.08  E-value: 4.90e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 280 KAGYLNarnKTGLVSSTWDRQfYFTQGGNLM----SQARGDVAGGLAMDidNCSVMAVDCEDRrYCFQITsFDGK--KSS 353
Cdd:cd13288    10 KEGYLW---KKGERNTSYQKR-WFVLKGNLLfyfeKKGDREPLGVIVLE--GCTVELAEDAEP-YAFAIR-FDGPgaRSY 81
                          90
                  ....*....|....
gi 2172663981 354 ILQAESKKDHEEWI 367
Cdd:cd13288    82 VLAAENQEDMESWM 95
BAR_ASAP1 cd07641
The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with SH3 domain, ANK repeat and PH domain ...
20-214 2.02e-05

The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with SH3 domain, ANK repeat and PH domain containing protein 1; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. ASAP1 (ArfGAP with SH3 domain, ANK repeat and PH domain containing protein 1) is also known as DDEF1 (Development and Differentiation Enhancing Factor 1), AMAP1, centaurin beta-4, or PAG2. ASAP1 is an Arf GTPase activating protein (GAP) with activity towards Arf1 and Arf5 but not Arf6 However, it has been shown to bind GTP-Arf6 stably without GAP activity. It has been implicated in cell growth, migration, and survival, as well as in tumor invasion and malignancy. It binds paxillin and cortactin, two components of invadopodia which are essential for tumor invasiveness. It also binds focal adhesion kinase (FAK) and the SH2/SH3 adaptor CrkL. ASAP1 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, ankyrin (ANK) repeats, and a C-terminal SH3 domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions. The BAR domain of ASAP1 mediates membrane bending, is essential for function, and autoinhibits GAP activity by interacting with the PH and/or Arf GAP domains.


Pssm-ID: 153325  Cd Length: 215  Bit Score: 46.21  E-value: 2.02e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  20 RSLLGVFEEDATAISNYMNQLYQAMHRIYDAQNELSAATHLTSKLLKEYEKQRfpLGGDDEVMSSTLQQFSKVIDELSSC 99
Cdd:cd07641     1 RNTVNVLEEALDQDRTALQKVKKSVKAIYNSGQDHVQNEENYAQALDKFGSNF--LSRDNPDLGTAFVKFSTLTKELSTL 78
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 100 HAVLSTQLADAMMFPISQFKERDLKEIL-TLKEVFQIASNDHDAAINRYSRlsKKRENDK---------VKYEVTEDVYT 169
Cdd:cd07641    79 LKNLLQGLSHNVIFTLDSLLKGDLKGVKgDLKKPFDKAWKDYETKFTKIEK--EKREHAKqhgmirteiTGAEIAEEMEK 156
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|....*
gi 2172663981 170 SRKKQHQTMMHYFCALNTLQYKKKIALLEPLLGYMQAQISFFKMG 214
Cdd:cd07641   157 ERRLFQLQMCEYLIKVNEIKTKKGVDLLQNLIKYYHAQCNFFQDG 201
BAR_ACAP1 cd07639
The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain ...
75-218 3.53e-05

The Bin/Amphiphysin/Rvs (BAR) domain of ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein 1; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. ACAP1 (ArfGAP with Coiled-coil, ANK repeat and PH domain containing protein 1), also called centaurin beta-1, is an Arf6-specific GTPase activating protein (GAP) which mediates Arf6 signaling. Arf6 is involved in the regulation of endocytosis, phagocytosis, cell adhesion and migration. ACAP1 also participates in the cargo sorting and recycling of the transferrin receptor and integrin beta1. It may also play a role in innate immune responses. ACAP1 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, an Arf GAP domain, and C-terminal ankyrin (ANK) repeats. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions.


Pssm-ID: 153323  Cd Length: 200  Bit Score: 45.29  E-value: 3.53e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  75 LGGDDEVMSSTLQQFSKVIDELSSCHAVLSTQLADAMMFPISQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKKR 154
Cdd:cd07639    52 HGPKDPMMAECLEKFSDGLNHILDSHAELLEATQFSFKQQLQLLVKEDLRGFRDARKEFERGAESLEAALQHNAETPRRK 131
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2172663981 155 ENDKvkYEVTEDVYTSRKKQHQTMMHYFCALNTLQYKKKIALLEPLLGYMQAQISFFKMGSENL 218
Cdd:cd07639   132 AQEV--EEAAAALLGARATFRDRALDYALQINVIEDKKKFDILEFMLQLMEAQASFFQQGHEAL 193
BAR_OPHN1 cd07633
The Bin/Amphiphysin/Rvs (BAR) domain of Oligophrenin-1; BAR domains are dimerization, lipid ...
20-206 3.62e-05

The Bin/Amphiphysin/Rvs (BAR) domain of Oligophrenin-1; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Oligophrenin-1 (OPHN1) is a GTPase activating protein (GAP) with activity towards RhoA, Rac, and Cdc42, that is expressed in developing spinal cord and in adult brain areas with high plasticity. It plays a role in regulating the actin cystoskeleton as well as morphology changes in axons and dendrites, and may also function in modulating neuronal connectivity. Mutations in the OPHN1 gene causes X-linked mental retardation associated with cerebellar hypoplasia, lateral ventricle enlargement and epilepsy. OPHN1 contains an N-terminal BAR domain, followed by a Pleckstrin homology (PH) domain, and a Rho GAP domain. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions.


Pssm-ID: 153317 [Multi-domain]  Cd Length: 207  Bit Score: 45.38  E-value: 3.62e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  20 RSLLGVFEEDATAISNYMNQLYQAMHRIYDAQNELSAATHLTSKLLKEYEkqrFPLGGD----DEV-MSSTLQQFSKVID 94
Cdd:cd07633     1 RERLKCYEQELERTNKFIKDVIKDGNALISAIKEYSSAVQKFSQTLQSFQ---FDFIGDtltdDEInIAESFKEFAELLQ 77
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  95 ELSSCHAVLSTQLADAMMFPISQFKERDLKEILTLKEVFQIASNDHDAAINRYSRLSKKRENDKVKyEVTEDVYTSRKKQ 174
Cdd:cd07633    78 EVEEERMMMVQNASDLLIKPLENFRKEQIGFTKERKKKFEKDSEKFYSLLDRHVNLSSKKKESQLQ-EADLQVDKERQNF 156
                         170       180       190
                  ....*....|....*....|....*....|..
gi 2172663981 175 HQTMMHYFCALNTLQYKKKIALLEPLLGYMQA 206
Cdd:cd07633   157 YESSLEYVYQIQEVQESKKFDVVEPVLAFLHS 188
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
278-375 6.52e-05

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 42.54  E-value: 6.52e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981  278 TRKAGYLnaRNKTGLVSSTWDRQFYFTQGGNLM----SQARGDVAGGLAMDIDNCSVMAVDCED---RRYCFQITSFDGK 350
Cdd:smart00233   1 VIKEGWL--YKKSGGGKKSWKKRYFVLFNSTLLyyksKKDKKSYKPKGSIDLSGCTVREAPDPDsskKPHCFEIKTSDRK 78
                           90       100
                   ....*....|....*....|....*
gi 2172663981  351 kSSILQAESKKDHEEWICTINNISK 375
Cdd:smart00233  79 -TLLLQAESEEEREKWVEALRKAIA 102
PTB_TK_HMTK cd13161
Tyrosine-specific kinase/HM-motif TK (TM/HMTK) Phosphotyrosine-binding (PTB) PH-like fold; TK ...
500-625 2.20e-04

Tyrosine-specific kinase/HM-motif TK (TM/HMTK) Phosphotyrosine-binding (PTB) PH-like fold; TK kinases catalyzes the transfer of the terminal phosphate of ATP to a specific tyrosine residue on its target protein. TK kinases play significant roles in development and cell division. Tyrosine-protein kinases can be divided into two subfamilies: receptor tyrosine kinases, which have an intracellular tyrosine kinase domain, a transmembrane domain and an extracellular ligand-binding domain; and non-receptor (cytoplasmic) tyrosine kinases, which are soluble, cytoplasmic kinases. In HMTK the conserved His-Arg-Asp sequence within the catalytic loop is replaced by a His-Met sequence. TM/HMTK have are 2-3 N-terminal PTB domains. PTB domains in TKs are thought to function analogously to the membrane targeting (PH, myristoylation) and pTyr binding (SH2) domains of Src subgroup kinases. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the Dab-like subgroup.


Pssm-ID: 269983  Cd Length: 120  Bit Score: 41.46  E-value: 2.20e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 500 LFIVRFLGSMEVKSDDHPDVVYEtmrqilAARAIHNIFRM-TESHLLVTCDCLKLIDPQTQVTRLTFPLPYVVLYATHQE 578
Cdd:cd13161     3 VFEAKYLGSVPVKEPKGNDVVMA------AVKRLKDLKLKpKPVVLVVSSEGIRVVERLTGEVLTNVPIKDISFVTVDPK 76
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*..
gi 2172663981 579 NKRLFGFVLRTSggRSESNLssvCYIFESNNEGEKICDSVGLAKQIA 625
Cdd:cd13161    77 DKKLFAFISHDP--RLGRIT---CHVFRCKRGAQEICDTIAEAFKAA 118
PH pfam00169
PH domain; PH stands for pleckstrin homology.
280-375 3.57e-04

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 40.62  E-value: 3.57e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 280 KAGYLnaRNKTGLVSSTWDRQFYFTQGGNLMSQARGDVAGGLA----MDIDNCSVMAVDCED---RRYCFQI--TSFDGK 350
Cdd:pfam00169   3 KEGWL--LKKGGGKKKSWKKRYFVLFDGSLLYYKDDKSGKSKEpkgsISLSGCEVVEVVASDspkRKFCFELrtGERTGK 80
                          90       100
                  ....*....|....*....|....*
gi 2172663981 351 KSSILQAESKKDHEEWICTINNISK 375
Cdd:pfam00169  81 RTYLLQAESEEERKDWIKAIQSAIR 105
PH1_PLEKHH1_PLEKHH2 cd13282
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ...
280-373 3.73e-04

Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241436  Cd Length: 96  Bit Score: 39.97  E-value: 3.73e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2172663981 280 KAGYLNarnKTGLVSSTWDRQFYFTQGGNLMS-QARGDVA----GGLAMDiDNCSVMavdCEDRRYCFQITSfdGKKSSI 354
Cdd:cd13282     1 KAGYLT---KLGGKVKTWKRRWFVLKNGELFYyKSPNDVIrkpqGQIALD-GSCEIA---RAEGAQTFEIVT--EKRTYY 71
                          90
                  ....*....|....*....
gi 2172663981 355 LQAESKKDHEEWICTINNI 373
Cdd:cd13282    72 LTADSENDLDEWIRVIQNV 90
PH_DOCK-D cd13267
Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also ...
338-376 4.19e-03

Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also called Zizimin subfamily) consists of Dock9/Zizimin1, Dock10/Zizimin3, and Dock11/Zizimin2. DOCK-D has a N-terminal DUF3398 domain, a PH-like domain, a Dock Homology Region 1, DHR1 (also called CZH1), a C2 domain, and a C-terminal DHR2 domain (also called CZH2). Zizimin1 is enriched in the brain, lung, and kidney; zizimin2 is found in B and T lymphocytes, and zizimin3 is enriched in brain, lung, spleen and thymus. Zizimin1 functions in autoinhibition and membrane targeting. Zizimin2 is an immune-related and age-regulated guanine nucleotide exchange factor, which facilitates filopodial formation through activation of Cdc42, which results in activation of cell migration. No function has been determined for Zizimin3 to date. The N-terminal half of zizimin1 binds to the GEF domain through three distinct areas, including CZH1, to inhibit the interaction with Cdc42. In addition its PH domain binds phosphoinositides and mediates zizimin1 membrane targeting. DOCK is a family of proteins involved in intracellular signalling networks. They act as guanine nucleotide exchange factors for small G proteins of the Rho family, such as Rac and Cdc42. There are 4 subfamilies of DOCK family proteins based on their sequence homology: A-D. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270087  Cd Length: 126  Bit Score: 37.69  E-value: 4.19e-03
                          10        20        30
                  ....*....|....*....|....*....|....*....
gi 2172663981 338 RRYCFQItSFDGKKSSILQAESKKDHEEWICTINNISKQ 376
Cdd:cd13267    78 RKFCFEL-RMQDKKSYVLAAESEAEMDEWISKLNKILQS 115
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH