FYVE, RhoGEF and PH domain-containing protein tag-77 [Caenorhabditis elegans]
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
PH1_FGD5_FGD6 | cd13389 | FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6, N-terminal ... |
407-531 | 3.80e-48 | ||||
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6, N-terminal Pleckstrin Homology (PH) domain; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. : Pssm-ID: 275424 Cd Length: 124 Bit Score: 166.68 E-value: 3.80e-48
|
||||||||
RhoGEF | cd00160 | Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous ... |
195-389 | 1.47e-31 | ||||
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. : Pssm-ID: 238091 [Multi-domain] Cd Length: 181 Bit Score: 121.64 E-value: 1.47e-31
|
||||||||
FYVE | smart00064 | Protein present in Fab1, YOTB, Vac1, and EEA1; The FYVE zinc finger is named after four ... |
612-679 | 1.93e-21 | ||||
Protein present in Fab1, YOTB, Vac1, and EEA1; The FYVE zinc finger is named after four proteins where it was first found: Fab1, YOTB/ZK632.12, Vac1, and EEA1. The FYVE finger has been shown to bind two Zn2+ ions. The FYVE finger has eight potential zinc coordinating cysteine positions. The FYVE finger is structurally related to the PHD finger and the RING finger. Many members of this family also include two histidines in a motif R+HHC+XCG, where + represents a charged residue and X any residue. The FYVE finger functions in the membrane recruitment of cytosolic proteins by binding to phosphatidylinositol 3-phosphate (PI3P), which is prominent on endosomes. The R+HHC+XCG motif is critical for PI3P binding. : Pssm-ID: 214499 [Multi-domain] Cd Length: 68 Bit Score: 88.64 E-value: 1.93e-21
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
PH1_FGD5_FGD6 | cd13389 | FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6, N-terminal ... |
407-531 | 3.80e-48 | ||||
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6, N-terminal Pleckstrin Homology (PH) domain; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275424 Cd Length: 124 Bit Score: 166.68 E-value: 3.80e-48
|
||||||||
RhoGEF | cd00160 | Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous ... |
195-389 | 1.47e-31 | ||||
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Pssm-ID: 238091 [Multi-domain] Cd Length: 181 Bit Score: 121.64 E-value: 1.47e-31
|
||||||||
RhoGEF | smart00325 | Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange ... |
198-390 | 1.49e-24 | ||||
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Improved coverage. Pssm-ID: 214619 [Multi-domain] Cd Length: 180 Bit Score: 101.22 E-value: 1.49e-24
|
||||||||
FYVE | smart00064 | Protein present in Fab1, YOTB, Vac1, and EEA1; The FYVE zinc finger is named after four ... |
612-679 | 1.93e-21 | ||||
Protein present in Fab1, YOTB, Vac1, and EEA1; The FYVE zinc finger is named after four proteins where it was first found: Fab1, YOTB/ZK632.12, Vac1, and EEA1. The FYVE finger has been shown to bind two Zn2+ ions. The FYVE finger has eight potential zinc coordinating cysteine positions. The FYVE finger is structurally related to the PHD finger and the RING finger. Many members of this family also include two histidines in a motif R+HHC+XCG, where + represents a charged residue and X any residue. The FYVE finger functions in the membrane recruitment of cytosolic proteins by binding to phosphatidylinositol 3-phosphate (PI3P), which is prominent on endosomes. The R+HHC+XCG motif is critical for PI3P binding. Pssm-ID: 214499 [Multi-domain] Cd Length: 68 Bit Score: 88.64 E-value: 1.93e-21
|
||||||||
FYVE | pfam01363 | FYVE zinc finger; The FYVE zinc finger is named after four proteins that it has been found in: ... |
613-676 | 2.79e-17 | ||||
FYVE zinc finger; The FYVE zinc finger is named after four proteins that it has been found in: Fab1, YOTB/ZK632.12, Vac1, and EEA1. The FYVE finger has been shown to bind two Zn++ ions. The FYVE finger has eight potential zinc coordinating cysteine positions. Many members of this family also include two histidines in a motif R+HHC+XCG, where + represents a charged residue and X any residue. We have included members which do not conserve these histidine residues but are clearly related. Pssm-ID: 426221 [Multi-domain] Cd Length: 68 Bit Score: 76.65 E-value: 2.79e-17
|
||||||||
FYVE_LST2 | cd15731 | FYVE domain found in lateral signaling target protein 2 homolog (Lst2) and similar proteins; ... |
613-675 | 3.36e-16 | ||||
FYVE domain found in lateral signaling target protein 2 homolog (Lst2) and similar proteins; Lst2, also termed zinc finger FYVE domain-containing protein 28, is a monoubiquitinylated phosphoprotein that functions as a negative regulator of epidermal growth factor receptor (EGFR) signaling. Unlike other FYVE domain-containing proteins, Lst2 displays primarily non-endosomal localization. Its endosomal localization is regulated by monoubiquitinylation. Lst2 physically binds Trim3, also known as BERP or RNF22, which is a coordinator of endosomal trafficking and interacts with Hrs and a complex that biases cargo recycling. Pssm-ID: 277270 [Multi-domain] Cd Length: 65 Bit Score: 73.53 E-value: 3.36e-16
|
||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
420-515 | 1.09e-07 | ||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 50.62 E-value: 1.09e-07
|
||||||||
RhoGEF | pfam00621 | RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called ... |
248-389 | 1.62e-04 | ||||
RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that pfam00169 domains invariably occur C-terminal to RhoGEF/DH domains. Pssm-ID: 459876 [Multi-domain] Cd Length: 176 Bit Score: 43.06 E-value: 1.62e-04
|
||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
420-515 | 3.47e-03 | ||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 37.93 E-value: 3.47e-03
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
PH1_FGD5_FGD6 | cd13389 | FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6, N-terminal ... |
407-531 | 3.80e-48 | ||||
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6, N-terminal Pleckstrin Homology (PH) domain; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275424 Cd Length: 124 Bit Score: 166.68 E-value: 3.80e-48
|
||||||||
RhoGEF | cd00160 | Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous ... |
195-389 | 1.47e-31 | ||||
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Pssm-ID: 238091 [Multi-domain] Cd Length: 181 Bit Score: 121.64 E-value: 1.47e-31
|
||||||||
RhoGEF | smart00325 | Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange ... |
198-390 | 1.49e-24 | ||||
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Improved coverage. Pssm-ID: 214619 [Multi-domain] Cd Length: 180 Bit Score: 101.22 E-value: 1.49e-24
|
||||||||
FYVE | smart00064 | Protein present in Fab1, YOTB, Vac1, and EEA1; The FYVE zinc finger is named after four ... |
612-679 | 1.93e-21 | ||||
Protein present in Fab1, YOTB, Vac1, and EEA1; The FYVE zinc finger is named after four proteins where it was first found: Fab1, YOTB/ZK632.12, Vac1, and EEA1. The FYVE finger has been shown to bind two Zn2+ ions. The FYVE finger has eight potential zinc coordinating cysteine positions. The FYVE finger is structurally related to the PHD finger and the RING finger. Many members of this family also include two histidines in a motif R+HHC+XCG, where + represents a charged residue and X any residue. The FYVE finger functions in the membrane recruitment of cytosolic proteins by binding to phosphatidylinositol 3-phosphate (PI3P), which is prominent on endosomes. The R+HHC+XCG motif is critical for PI3P binding. Pssm-ID: 214499 [Multi-domain] Cd Length: 68 Bit Score: 88.64 E-value: 1.93e-21
|
||||||||
FYVE | pfam01363 | FYVE zinc finger; The FYVE zinc finger is named after four proteins that it has been found in: ... |
613-676 | 2.79e-17 | ||||
FYVE zinc finger; The FYVE zinc finger is named after four proteins that it has been found in: Fab1, YOTB/ZK632.12, Vac1, and EEA1. The FYVE finger has been shown to bind two Zn++ ions. The FYVE finger has eight potential zinc coordinating cysteine positions. Many members of this family also include two histidines in a motif R+HHC+XCG, where + represents a charged residue and X any residue. We have included members which do not conserve these histidine residues but are clearly related. Pssm-ID: 426221 [Multi-domain] Cd Length: 68 Bit Score: 76.65 E-value: 2.79e-17
|
||||||||
FYVE_LST2 | cd15731 | FYVE domain found in lateral signaling target protein 2 homolog (Lst2) and similar proteins; ... |
613-675 | 3.36e-16 | ||||
FYVE domain found in lateral signaling target protein 2 homolog (Lst2) and similar proteins; Lst2, also termed zinc finger FYVE domain-containing protein 28, is a monoubiquitinylated phosphoprotein that functions as a negative regulator of epidermal growth factor receptor (EGFR) signaling. Unlike other FYVE domain-containing proteins, Lst2 displays primarily non-endosomal localization. Its endosomal localization is regulated by monoubiquitinylation. Lst2 physically binds Trim3, also known as BERP or RNF22, which is a coordinator of endosomal trafficking and interacts with Hrs and a complex that biases cargo recycling. Pssm-ID: 277270 [Multi-domain] Cd Length: 65 Bit Score: 73.53 E-value: 3.36e-16
|
||||||||
FYVE_FGD6 | cd15743 | FYVE domain found in FYVE, RhoGEF and PH domain-containing protein 6 (FGD6) and similar ... |
613-674 | 7.23e-14 | ||||
FYVE domain found in FYVE, RhoGEF and PH domain-containing protein 6 (FGD6) and similar proteins; FGD6, also termed zinc finger FYVE domain-containing protein 24 is a putative Cdc42-specific guanine nucleotide exchange factor (GEF) whose biological function remains unclear. It is a homologue of FGD1 and contains a DBL homology (DH) domain and pleckstrin homology (PH) domain in the middle region, a FYVE domain, and another PH domain in the C-terminus, but lacks the N-terminal proline-rich domain (PRD) found in FGD1. Moreover, the FYVE domain of FGD6 is a canonical FYVE domain, which has been found in many proteins involved in membrane trafficking and phosphoinositide metabolism, and has been defined by three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCR patch, and a C-terminal RVC motif, which form a compact phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding site. Pssm-ID: 277282 [Multi-domain] Cd Length: 61 Bit Score: 66.69 E-value: 7.23e-14
|
||||||||
FYVE_PKHF | cd15717 | FYVE domain found in protein containing both PH and FYVE domains 1 (phafin-1), 2 (phafin-2), ... |
614-674 | 3.69e-13 | ||||
FYVE domain found in protein containing both PH and FYVE domains 1 (phafin-1), 2 (phafin-2), and similar proteins; This family includes protein containing both PH and FYVE domains 1 (phafin-1) and 2 (phafin-2). Phafin-1 is a representative of a novel family of PH and FYVE domain-containing proteins called phafins. It is a ubiquitously expressed pro-apoptotic protein via translocating to lysosomes, facilitating apoptosis induction through a lysosomal-mitochondrial apoptotic pathway. Phafin-2 is a ubiquitously expressed endoplasmic reticulum-associated protein that facilitates tumor necrosis factor alpha (TNF-alpha)-triggered cellular apoptosis through endoplasmic reticulum (ER)-mitochondrial apoptotic pathway. It is an endosomal phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) effector, as well as an interactor of the endosomal-tethering protein EEA1. It regulates endosome fusion upstream of Rab5. Phafin-2 also functions as a novel regulator of endocytic epidermal growth factor receptor (EGFR) degradation through a role in endosomal fusion. Pssm-ID: 277257 [Multi-domain] Cd Length: 61 Bit Score: 64.69 E-value: 3.69e-13
|
||||||||
FYVE_endofin | cd15729 | FYVE domain found in endofin and similar proteins; Endofin, also termed zinc finger FYVE ... |
611-674 | 1.73e-12 | ||||
FYVE domain found in endofin and similar proteins; Endofin, also termed zinc finger FYVE domain-containing protein 16 (ZFY16), or endosome-associated FYVE domain protein, is a FYVE domain-containing protein that is localized to EEA1-containing endosomes. It is regulated by phosphoinositol lipid and engaged in endosome-mediated receptor modulation. Endofin is involved in Bone morphogenetic protein (BMP) signaling through interacting with Smad1 preferentially and enhancing Smad1 phosphorylation and nuclear localization upon BMP stimulation. It also functions as a scaffold protein that brings Smad4 to the proximity of the receptor complex in Transforming growth factor (TGF)-beta signaling. Moreover, endofin is a novel tyrosine phosphorylation target downstream of epidermal growth factor receptor (EGFR) in EGF-signaling. In addition, endofin plays a role in endosomal trafficking by recruiting cytosolic TOM1, an important molecule for membrane recruitment of clathrin, onto endosomal membranes. Pssm-ID: 277268 [Multi-domain] Cd Length: 68 Bit Score: 63.14 E-value: 1.73e-12
|
||||||||
FYVE_MTMR4 | cd15733 | FYVE domain found in myotubularin-related protein 4 (MTMR4) and similar proteins; MTMR4, also ... |
615-674 | 5.00e-12 | ||||
FYVE domain found in myotubularin-related protein 4 (MTMR4) and similar proteins; MTMR4, also termed FYVE domain-containing dual specificity protein phosphatase 2 (FYVE-DSP2), or zinc finger FYVE domain-containing protein 11, is an dual specificity protein phosphatase that specifically dephosphorylates phosphatidylinositol 3-phosphate (PtdIns3P or PI3P). It is localizes to early endosomes, as well as to Rab11- and Sec15-positive recycling endosomes, and regulates sorting from early endosomes. Moreover, MTMR4 is preferentially associated with and dephosphorylated the activated regulatory Smad proteins (R-Smads) in cytoplasm to keep transforming growth factor (TGF) beta signaling in homeostasis. It also functions as an essential negative modulator for the homeostasis of bone morphogenetic protein (BMP)/decapentaplegic (Dpp) signaling. In addition, MTMR4 acts as a novel interactor of the ubiquitin ligase Nedd4 (neural-precursor-cell-expressed developmentally down-regulated 4) and may play a role in the biological process of muscle breakdown. MTMR4 contains an N-terminal PH-GRAM (PH-G) domain, a MTM phosphatase domain, a coiled-coil region, and a C-terminal FYVE domain. Pssm-ID: 277272 [Multi-domain] Cd Length: 60 Bit Score: 61.68 E-value: 5.00e-12
|
||||||||
PH_Phafin2-like | cd01218 | Phafin2 (also called EAPF, FLJ13187, ZFYVE18 or PLEKHF2) Pleckstrin Homology (PH) domain; ... |
414-513 | 5.40e-12 | ||||
Phafin2 (also called EAPF, FLJ13187, ZFYVE18 or PLEKHF2) Pleckstrin Homology (PH) domain; Phafin2 is differentially expressed in the liver cancer cell and regulates the structure and function of the endosomes through Rab5-dependent processes. Phafin2 modulates the cell's response to extracellular stimulation by modulating the receptor density on the cell surface. Phafin2 contains a PH domain and a FYVE domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269927 [Multi-domain] Cd Length: 123 Bit Score: 63.43 E-value: 5.40e-12
|
||||||||
FYVE_ZF21 | cd15727 | FYVE domain found in zinc finger FYVE domain-containing protein 21 (ZF21) and similar proteins; ... |
613-673 | 6.35e-12 | ||||
FYVE domain found in zinc finger FYVE domain-containing protein 21 (ZF21) and similar proteins; ZF21 is phosphoinositide-binding protein that functions as a regulator of focal adhesions and cell movement through interaction with focal adhesion kinase. It can also bind to the cytoplasmic tail of membrane type 1 matrix metalloproteinase, a potent invasion-promoting protease, and play a key role in regulating multiple aspects of cancer cell migration and invasion. ZF21 contains a FYVE domain, which corresponds to this model. Pssm-ID: 277266 [Multi-domain] Cd Length: 64 Bit Score: 61.24 E-value: 6.35e-12
|
||||||||
PH1_FGD6 | cd15793 | FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 6, N-terminal Pleckstrin ... |
413-518 | 2.08e-11 | ||||
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 6, N-terminal Pleckstrin Homology (PH) domain; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275436 Cd Length: 123 Bit Score: 61.97 E-value: 2.08e-11
|
||||||||
FYVE_like_SF | cd00065 | FYVE domain like superfamily; FYVE domain is a 60-80 residue double zinc finger ... |
628-674 | 4.16e-11 | ||||
FYVE domain like superfamily; FYVE domain is a 60-80 residue double zinc finger motif-containing module named after the four proteins, Fab1, YOTB, Vac1, and EEA1. The canonical FYVE domains are distinguished from other zinc fingers by three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif, which form a compact phosphatidylinositol 3-phosphate (PtdIns3P, also termed PI3P)-binding site. They are found in many membrane trafficking regulators, including EEA1, Hrs, Vac1p, Vps27p, and FENS-1, which locate to early endosomes, specifically bind PtdIns3P, and play important roles in vesicular traffic and in signal transduction. Some proteins, such as rabphilin-3A and alpha-Rab3-interacting molecules (RIMs), are also involved in membrane trafficking and bind to members of the Rab subfamily of GTP hydrolases. However, they contain FYVE-related domains that are structurally similar to the canonical FYVE domains but lack the three signature sequences. At this point, they may not bind to phosphoinositides. In addition, this superfamily also contains the third group of proteins, caspase-associated ring proteins CARP1 and CARP2. They do not localize to membranes in the cell and are involved in the negative regulation of apoptosis, specifically targeting two initiator caspases, caspase 8 and caspase 10, which are distinguished from other FYVE-type proteins. Moreover, these proteins have an altered sequence in the basic ligand binding patch and lack the WxxD motif that is conserved only in phosphoinositide binding FYVE domains. Thus they constitute a family of unique FYVE-type domains called FYVE-like domains. The FYVE domain is structurally similar to the RING domain and the PHD finger. This superfamily also includes ADDz zinc finger domain, which is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger. Pssm-ID: 277249 [Multi-domain] Cd Length: 52 Bit Score: 58.70 E-value: 4.16e-11
|
||||||||
PH1_FARP1-like | cd01220 | FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin ... |
413-513 | 1.51e-10 | ||||
FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin Homology (PH) domain, repeat 1; Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FARP6 (also called Zinc finger FYVE domain-containing protein 24). They are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. Little is known about FARP1 and FARP6, though FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. FARP1 and FARP2 are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. FARP6 is composed of Dbl-homology (DH), and two C-terminal PH domains separated by a FYVE domain. This hierarchy contains the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269928 Cd Length: 109 Bit Score: 58.87 E-value: 1.51e-10
|
||||||||
FYVE_ANFY1 | cd15728 | FYVE domain found in ankyrin repeat and FYVE domain-containing protein 1 (ANFY1) and similar ... |
629-675 | 7.96e-10 | ||||
FYVE domain found in ankyrin repeat and FYVE domain-containing protein 1 (ANFY1) and similar proteins; ANFY1, also termed ankyrin repeats hooked to a zinc finger motif (Ankhzn), is a novel cytoplasmic protein that belongs to a new group of double zinc finger proteins involved in vesicle or protein transport. It is ubiquitously expressed in a spatiotemporal-specific manner and is located on endosomes. ANFY1 contains an N-terminal coiled-coil region and a BTB/POZ domain, ankyrin repeats in the middle, and a C-terminal FYVE domain. Pssm-ID: 277267 [Multi-domain] Cd Length: 63 Bit Score: 55.51 E-value: 7.96e-10
|
||||||||
FYVE_FGD1_2_4 | cd15741 | FYVE domain found in FYVE, RhoGEF and PH domain-containing protein facio-genital dysplasia ... |
613-675 | 1.18e-09 | ||||
FYVE domain found in FYVE, RhoGEF and PH domain-containing protein facio-genital dysplasia FGD1, FGD2, FGD4; This family represents a group of Rho GTPase cell division cycle 42 (Cdc42)-specific guanine nucleotide exchange factors (GEFs), including FYVE, RhoGEF and PH domain-containing protein FGD1, FGD2 and FGD4. FGD1, also termed faciogenital dysplasia 1 protein, or Rho/Rac guanine nucleotide exchange factor FGD1 (Rho/Rac GEF), or zinc finger FYVE domain-containing protein 3, is a central regulator of extracellular matrix remodeling and belongs to the DBL family of GEFs that regulate the activation of the Rho GTPases. FGD1 is encoded by gene FGD1. Disabling mutations in the FGD1 gene cause the human X-linked developmental disorder faciogenital dysplasia (FGDY, also known as Aarskog-Scott syndrome). FGD2, also termed zinc finger FYVE domain-containing protein 4, is expressed in antigen-presenting cells, including B lymphocytes, macrophages, and dendritic cells. It localizes to early endosomes and active membrane ruffles. It plays a role in leukocyte signaling and vesicle trafficking in cells specialized to present antigen in the immune system. FGD4, also termed actin filament-binding protein frabin, or FGD1-related F-actin-binding protein, or zinc finger FYVE domain-containing protein 6, functions as an F-actin-binding (FAB) protein showing significant homology to FGD1. It induces the formation of filopodia through the activation of Cdc42 in fibroblasts. Those FGD proteins possess a similar domain organization that contains a DBL homology (DH) domain, a pleckstrin homology (PH) domain, a FYVE domain, and another PH domain in the C-terminus. However, each FGD has a unique N-terminal region that may directly or indirectly interact with F-actin. FGD1 and FGD4 have an N-terminal proline-rich domain (PRD) and an N-terminal F-actin binding (FAB) domain, respectively. This model corresponds to the FYVE domain, which has been found in many proteins involved in membrane trafficking and phosphoinositide metabolism, and has been defined by three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCR patch, and a C-terminal RVC motif, which form a compact phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding site. FGD1 possesses a FYVE-like domain that lack the N-terminal WxxD motif. Moreover, FGD2 is the only known RhoGEF family member shown to have a functional FYVE domain and endosomal binding activity. Pssm-ID: 277280 [Multi-domain] Cd Length: 65 Bit Score: 55.19 E-value: 1.18e-09
|
||||||||
FYVE_PKHF2 | cd15755 | FYVE domain found in protein containing both PH and FYVE domains 2 (phafin-2) and similar ... |
614-675 | 2.84e-09 | ||||
FYVE domain found in protein containing both PH and FYVE domains 2 (phafin-2) and similar proteins; Phafin-2, also termed endoplasmic reticulum-associated apoptosis-involved protein containing PH and FYVE domains (EAPF), or pleckstrin homology domain-containing family F member 2 (PKHF2), or PH domain-containing family F member 2, or PH and FYVE domain-containing protein 2, or zinc finger FYVE domain-containing protein 18, is a ubiquitously expressed endoplasmic reticulum-associated protein that facilitates tumor necrosis factor alpha (TNF-alpha)-triggered cellular apoptosis through endoplasmic reticulum (ER)-mitochondrial apoptotic pathway. It is an endosomal phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) effector, as well as an interactor of the endosomal-tethering protein EEA1. It regulates endosome fusion upstream of Rab5. Phafin-2 also functions as a novel regulator of endocytic epidermal growth factor receptor (EGFR) degradation through a role in endosomal fusion. Pssm-ID: 277294 [Multi-domain] Cd Length: 64 Bit Score: 53.89 E-value: 2.84e-09
|
||||||||
FYVE_MTMR3 | cd15732 | FYVE domain found in myotubularin-related protein 3 (MTMR3) and similar proteins; MTMR3, also ... |
615-674 | 4.53e-09 | ||||
FYVE domain found in myotubularin-related protein 3 (MTMR3) and similar proteins; MTMR3, also termed Myotubularin-related phosphatase 3, or FYVE domain-containing dual specificity protein phosphatase 1 (FYVE-DSP1), or zinc finger FYVE domain-containing protein 10, is a ubiquitously expressed phosphoinositide 3-phosphatase specific for phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) and phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) and PIKfyve, which produces PtdIns(3,5)P2 from PtdIns3P. It regulates cell migration through modulating phosphatidylinositol 5-phosphate (PtdIns5P) levels. MTMR3 contains an N-terminal PH-GRAM (PH-G) domain, a MTM phosphatase domain, a coiled-coil region, and a C-terminal FYVE domain. Unlike conventional FYVE domains, the FYVE domain of MTMR3 neither confers endosomal localization nor binds to PtdIns3P. It is also not required for the enzyme activity of MTMR3. In contrast, the PH-G domain binds phosphoinositides. Pssm-ID: 277271 [Multi-domain] Cd Length: 61 Bit Score: 53.36 E-value: 4.53e-09
|
||||||||
FYVE_PKHF1 | cd15754 | FYVE domain found in protein containing both PH and FYVE domains 1 (phafin-1) and similar ... |
615-674 | 5.61e-09 | ||||
FYVE domain found in protein containing both PH and FYVE domains 1 (phafin-1) and similar proteins; Phafin-1, also termed lysosome-associated apoptosis-inducing protein containing PH (pleckstrin homology) and FYVE domains (LAPF), or pleckstrin homology domain-containing family F member 1 (PKHF1), or PH domain-containing family F member 1, or apoptosis-inducing protein, or PH and FYVE domain-containing protein 1, or zinc finger FYVE domain-containing protein 15, is a representative of a novel family of PH and FYVE domain-containing proteins called phafins. It is a ubiquitously expressed pro-apoptotic protein via translocating to lysosomes, facilitating apoptosis induction through a lysosomal-mitochondrial apoptotic pathway. Pssm-ID: 277293 [Multi-domain] Cd Length: 64 Bit Score: 53.04 E-value: 5.61e-09
|
||||||||
FYVE_EEA1 | cd15730 | FYVE domain found in early endosome antigen 1 (EEA1) and similar proteins; EEA1, also termed ... |
613-675 | 7.99e-09 | ||||
FYVE domain found in early endosome antigen 1 (EEA1) and similar proteins; EEA1, also termed endosome-associated protein p162, or zinc finger FYVE domain-containing protein 2, is an essential component of the endosomal fusion machinery and required for the fusion and maturation of early endosomes in endocytosis. It forms a parallel coiled-coil homodimer in cells. EEA1 serves as the p97 ATPase substrate and the p97 ATPase may regulate the size of early endosomes by governing the oligomeric state of EEA1. It can interact with the GTP-bound form of Rab22a and be involved in endosomal membrane trafficking. EEA1 also functions as an obligate scaffold for angiotensin II-induced Akt activation in early endosomes. It can be phosphorylated by p38 mitogen-activated protein kinase (MAPK) and further regulate mu opioid receptor endocytosis. EEA1 consists of an N-terminal C2H2 Zn2+ finger, four long heptad repeats, and a C-terminal region containing a calmodulin binding (IQ) motif, a Rab5 interaction site, and a FYVE domain. This model corresponds to the FYVE domain that is responsible for binding phosphatidyl inositol-3-phosphate (PtdIns3P or PI3P) on the membrane. Pssm-ID: 277269 [Multi-domain] Cd Length: 63 Bit Score: 52.40 E-value: 7.99e-09
|
||||||||
FYVE_ZFY19 | cd15749 | FYVE-related domain found in FYVE domain-containing protein 19 (ZFY19) and similar proteins; ... |
628-674 | 8.07e-09 | ||||
FYVE-related domain found in FYVE domain-containing protein 19 (ZFY19) and similar proteins; ZFY19, also termed mixed lineage leukemia (MLL) partner containing FYVE domain, is encoded by a novel gene, MLL partner containing FYVE domain (MPFYVE). The FYVE domain of ZFY19 resembles FYVE-related domains that are structurally similar to the canonical FYVE domains but lack the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. The biological function of ZFY19 remains unclear. Pssm-ID: 277288 [Multi-domain] Cd Length: 51 Bit Score: 52.12 E-value: 8.07e-09
|
||||||||
FYVE_PIKfyve_Fab1 | cd15725 | FYVE domain found in metazoan PIKfyve, fungal and plant Fab1, and similar proteins; PIKfyve, ... |
615-674 | 9.77e-09 | ||||
FYVE domain found in metazoan PIKfyve, fungal and plant Fab1, and similar proteins; PIKfyve, also termed FYVE finger-containing phosphoinositide kinase, or 1-phosphatidylinositol 3-phosphate 5-kinase, or phosphatidylinositol 3-phosphate 5-kinase (PIP5K3), or phosphatidylinositol 3-phosphate 5-kinase type III (PIPkin-III or type III PIP kinase), is a phosphoinositide 5-kinase that forms a complex with its regulators, the scaffolding protein Vac14 and the lipid phosphatase Fig4. The complex is responsible for synthesizing phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] from phosphatidylinositol 3-phosphate (PtdIns3P or PI3P). Then phosphatidylinositol-5-phosphate (PtdIns5P) is generated directly from PtdIns(3,5)P2. PtdIns(3,5)P2 and PtdIns5P regulate endosomal trafficking and responses to extracellular stimuli. At this point, PIKfyve is vital in early embryonic development. Moreover, PIKfyve forms a complex with ArPIKfyve (associated regulator of PIKfyve) and SAC3 at the endomembranes, which plays a role in receptor tyrosine kinase (RTK) degradation. The phosphorylation of PIKfyve by AKT can facilitate Epidermal growth factor receptor (EGFR) degradation. In addition, PIKfyve may participate in the regulation of the glutamate transporters EAAT2, EAAT3 and EAAT4, and the cystic fibrosis transmembrane conductance regulator (CFTR). It is also essential for systemic glucose homeostasis and insulin-regulated glucose uptake/GLUT4 translocation in skeletal muscle. It can be activated by protein kinase B (PKB/Akt) and further up-regulates human ether-a-go-go (hERG) channels. This family also includes the yeast and plant orthologs of human PIKfyve, Fab1. PIKfyve and its orthologs share a similar architecture. They contain an N-terminal FYVE domain, a middle region related to the CCT/TCP-1/Cpn60 chaperonins that are involved in productive folding of actin and tubulin, a second middle domain that contains a number of conserved cysteine residues (CCR) unique to this family, and a C-terminal lipid kinase domain related to PtdInsP kinases. Pssm-ID: 277264 [Multi-domain] Cd Length: 62 Bit Score: 52.33 E-value: 9.77e-09
|
||||||||
FYVE_Hrs | cd15720 | FYVE domain found in hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) ... |
622-676 | 1.94e-08 | ||||
FYVE domain found in hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) and similar proteins; Hrs, also termed protein pp110, is a tyrosine phosphorylated protein that plays an important role in the signaling pathway of HGF. It is localized to early endosomes and an essential component of the endosomal sorting and trafficking machinery. Hrs interacts with hypertonia-associated protein Trak1, a novel regulator of endosome-to-lysosome trafficking. It can also forms an Hrs/actinin-4/BERP/myosin V protein complex that is required for efficient transferrin receptor (TfR) recycling but not for epidermal growth factor receptor (EGFR) degradation. Moreover, Hrs, together with STAM proteins, STAM1 and STAM2, and EPs15, forms a multivalent ubiquitin-binding complex that sorts ubiquitinated proteins into the multivesicular body pathway, and plays a regulatory role in endocytosis/exocytosis. Furthermore, Hrs functions as an interactor of the neurofibromatosis 2 tumor suppressor protein schwannomin/merlin. It is also involved in the inhibition of citron kinase-mediated HIV-1 budding. Hrs contains a single ubiquitin-interacting motif (UIM) that is crucial for its function in receptor sorting, and a FYVE domain that harbors double Zn2+ binding sites. Pssm-ID: 277260 [Multi-domain] Cd Length: 61 Bit Score: 51.23 E-value: 1.94e-08
|
||||||||
FYVE_FYCO1 | cd15726 | FYVE domain found in FYVE and coiled-coil domain-containing protein 1 (FYCO1) and similar ... |
615-674 | 2.09e-08 | ||||
FYVE domain found in FYVE and coiled-coil domain-containing protein 1 (FYCO1) and similar proteins; FYCO1, also termed zinc finger FYVE domain-containing protein 7, is a phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding protein that is associated with the exterior of autophagosomes and mediates microtubule plus-end-directed vesicle transport. It acts as an effector of GTP-bound Rab7, a GTPase that recruits FYCO1 to autophagosomes and has been implicated in autophagosome-lysosomal fusion. FYCO1 also interacts with two microtubule motor proteins, kinesin (KIF) 5B and KIF23, and thus functions as a platform for assembly of vesicle fusion and trafficking factors. FYCO1 contains an N-terminal alpha-helical RUN domain followed by a long central coiled-coil region, a FYVE domain and a GOLD (Golgi dynamics) domain in C-terminus. Pssm-ID: 277265 [Multi-domain] Cd Length: 58 Bit Score: 51.41 E-value: 2.09e-08
|
||||||||
FYVE_ZFY26 | cd15724 | FYVE domain found in FYVE domain-containing protein 26 (ZFY26 or ZFYVE26); ZFY26, also termed ... |
615-675 | 8.33e-08 | ||||
FYVE domain found in FYVE domain-containing protein 26 (ZFY26 or ZFYVE26); ZFY26, also termed FYVE domain-containing centrosomal protein (FYVE-CENT), or spastizin, is a phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding protein that localizes to the centrosome and midbody. ZFY26 and its interacting partners TTC19 and KIF13A are required for cytokinesis. It also interacts with Beclin 1, a subunit of class III phosphatidylinositol 3-kinase complex, and may have potential implications for carcinogenesis. In addition, it has been considered as the causal agent of a rare form of hereditary spastic paraplegia. ZFY26 contains a FYVE domain that is important for targeting of FYVE-CENT to the midbody. Pssm-ID: 277263 [Multi-domain] Cd Length: 61 Bit Score: 49.82 E-value: 8.33e-08
|
||||||||
FYVE_RBNS5 | cd15716 | FYVE domain found in FYVE finger-containing Rab5 effector protein rabenosyn-5 (Rbsn-5) and ... |
615-653 | 9.66e-08 | ||||
FYVE domain found in FYVE finger-containing Rab5 effector protein rabenosyn-5 (Rbsn-5) and similar proteins; Rbsn-5, also termed zinc finger FYVE domain-containing protein 20, is a novel Rab5 effector that is complexed to the Sec1-like protein VPS45 and recruited in a phosphatidylinositol-3-kinase-dependent fashion to early endosomes. It also binds to Rab4 and EHD1/RME-1, two regulators of the recycling route, and is involved in cargo recycling to the plasma membrane. Moreover, Rbsn-5 regulates endocytosis at the apical side of the wing epithelium and plays a role of the apical endocytic trafficking of Fmi in the establishment of planar cell polarity (PCP). Pssm-ID: 277256 [Multi-domain] Cd Length: 61 Bit Score: 49.26 E-value: 9.66e-08
|
||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
420-515 | 1.09e-07 | ||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 50.62 E-value: 1.09e-07
|
||||||||
FYVE_RUFY1_like | cd15721 | FYVE domain found in RUN and FYVE domain-containing protein RUFY1, RUFY2 and similar proteins; ... |
615-653 | 1.45e-07 | ||||
FYVE domain found in RUN and FYVE domain-containing protein RUFY1, RUFY2 and similar proteins; This family includes RUN and FYVE domain-containing protein RUFY1 and RUFY2. RUFY1, also termed FYVE-finger protein EIP1, or La-binding protein 1, or Rab4-interacting protein (Rabip4), or Zinc finger FYVE domain-containing protein 12 (ZFY12), a human homologue of mouse Rabip4, an effector of Rab4 GTPase that regulates recycling of endocytosed cargo. RUFY1 is an endosomal protein that functions as a dual effector of Rab4 and Rab14 and is involved in efficient recycling of transferrin (Tfn). It is a downstream effector of Etk, a downstream tyrosine kinase of PI3-kinase that is involved in regulation of vesicle trafficking. RUFY2, also termed Rab4-interacting protein related, is a novel embryonic factor that is present in the nucleus at early stages of embryonic development. It may have both endosomal functions in the cytoplasm and nuclear functions. Both RUFY1 and RUFY2 contain an N-terminal RUN domain and a C-terminal FYVE domain with two coiled-coil domains in-between. Pssm-ID: 277261 [Multi-domain] Cd Length: 58 Bit Score: 48.92 E-value: 1.45e-07
|
||||||||
FYVE_scVPS27p_like | cd15760 | FYVE domain found in Saccharomyces cerevisiae vacuolar protein sorting-associated protein 27 ... |
615-674 | 2.00e-07 | ||||
FYVE domain found in Saccharomyces cerevisiae vacuolar protein sorting-associated protein 27 (scVps27p) and similar proteins; scVps27p, also termed Golgi retention defective protein 11, is the putative yeast counterpart of the mammalian protein Hrs and is involved in endosome maturation. It is a mono-ubiquitin-binding protein that interacts with ubiquitinated cargoes, such as Hse1p, and is required for protein sorting into the multivesicular body. Vps27p forms a complex with Hse1p. The complex binds ubiquitin and mediates endosomal protein sorting. At the endosome, Vps27p and a trimeric protein complex, ESCRT-1, bind ubiquitin and are important for multivesicular body (MVB) sorting. Vps27p contains an N-terminal VHS (Vps27/Hrs/STAM) domain, a FYVE domain that binds PtdIns3P, followed by two ubiquitin-interacting motifs (UIMs), and a C-terminal clathrin-binding motif. Pssm-ID: 277299 [Multi-domain] Cd Length: 59 Bit Score: 48.45 E-value: 2.00e-07
|
||||||||
FYVE_RUFY1 | cd15758 | FYVE domain found in RUN and FYVE domain-containing protein 1 (RUFY1) and similar proteins; ... |
615-673 | 2.23e-07 | ||||
FYVE domain found in RUN and FYVE domain-containing protein 1 (RUFY1) and similar proteins; RUFY1, also termed FYVE-finger protein EIP1, or La-binding protein 1, or Rab4-interacting protein (Rabip4), or Zinc finger FYVE domain-containing protein 12 (ZFY12), a human homologue of mouse Rabip4, an effector of Rab4 GTPase that regulates recycling of endocytosed cargo. RUFY1 is an endosomal protein that functions as a dual effector of Rab4 and Rab14 and is involved in efficient recycling of transferrin (Tfn). It is a downstream effector of Etk, a downstream tyrosine kinase of PI3-kinase that is involved in regulation of vesicle trafficking. RUFY1 contains an N-terminal RUN domain and a C-terminal FYVE domain with two coiled-coil domains in-between. Pssm-ID: 277297 [Multi-domain] Cd Length: 71 Bit Score: 48.91 E-value: 2.23e-07
|
||||||||
FYVE_WDFY3 | cd15719 | FYVE domain found in WD40 repeat and FYVE domain-containing protein 3 (WDFY3) and similar ... |
615-676 | 2.67e-07 | ||||
FYVE domain found in WD40 repeat and FYVE domain-containing protein 3 (WDFY3) and similar proteins; WDFY3, also termed autophagy-linked FYVE protein (Alfy), is a ubiquitously expressed phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding protein required for selective macroautophagic degradation of aggregated proteins. It regulates the protein degradation through the direct interaction with the autophagy protein Atg5. Moreover, WDFY3 acts as a scaffold that bridges its cargo to the macroautophagic machinery via the creation of a greater complex with Atg12, Atg16L, and LC3. It also functionally associates with sequestosome-1/p62 (SQSTM1) in osteoclasts. WDFY3 shuttles between the nucleus and cytoplasm. It predominantly localizes to the nucleus and nuclear membrane under basal conditions, but is recruited to cytoplasmic ubiquitin-positive protein aggregates under stress conditions. WDFY3 contains a PH-BEACH domain assemblage, five WD40 repeats and a PtdIns3P-binding FYVE domain. Pssm-ID: 277259 [Multi-domain] Cd Length: 65 Bit Score: 48.15 E-value: 2.67e-07
|
||||||||
FYVE_MTMR_unchar | cd15738 | FYVE-related domain found in uncharacterized myotubularin-related proteins mainly from ... |
622-674 | 1.20e-06 | ||||
FYVE-related domain found in uncharacterized myotubularin-related proteins mainly from eumetazoa; This family includes a group of uncharacterized myotubularin-related proteins mainly found in eumetazoa. Although their biological functions remain unclear, they share similar domain architecture that consists of an N-terminal pleckstrin homology (PH) domain, a highly conserved region related to myotubularin proteins, a C-terminal FYVE domain. The model corresponds to the FYVE domain, which resembles the FYVE-related domain as it has an altered sequence in the basic ligand binding patch. Pssm-ID: 277277 [Multi-domain] Cd Length: 61 Bit Score: 46.17 E-value: 1.20e-06
|
||||||||
FYVE2_Vac1p_like | cd15737 | FYVE domain 2 found in yeast protein VAC1 (Vac1p) and similar proteins; Vac1p, also termed ... |
615-650 | 2.89e-06 | ||||
FYVE domain 2 found in yeast protein VAC1 (Vac1p) and similar proteins; Vac1p, also termed vacuolar segregation protein Pep7p, or carboxypeptidase Y-deficient protein 7, or vacuolar protein sorting-associated protein 19 (Vps19p), or vacuolar protein-targeting protein 19, is a phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding protein that interacts with a Rab GTPase, GTP-bound form of Vps21p, and a Sec1p homologue, Vps45p, to facilitate Vps45p-dependent vesicle-mediated vacuolar protein sorting. It also acts as a novel regulator of vesicle docking and/or fusion at the endosome and functions in vesicle-mediated transport of Golgi precursor carboxypeptidase Y (CPY), protease A (PrA), protease B (PrB), but not alkaline phosphatase (ALP) from the trans-Golgi network-like compartment (TGN) to the endosome. Vac1p contains an N-terminal classical TFIIIA-like zinc finger, two putative zinc-binding FYVE fingers, and a C-terminal coiled coil region. The family corresponds to the second FYVE domain that is responsible for the ability of Pep7p to efficiently interact with Vac1p and Vps45p. Pssm-ID: 277276 [Multi-domain] Cd Length: 83 Bit Score: 45.96 E-value: 2.89e-06
|
||||||||
FYVE_spVPS27p_like | cd15735 | FYVE domain found in Schizosaccharomyces pombe vacuolar protein sorting-associated protein 27 ... |
617-674 | 3.96e-06 | ||||
FYVE domain found in Schizosaccharomyces pombe vacuolar protein sorting-associated protein 27 (spVps27p) and similar proteins; spVps27p, also termed suppressor of ste12 deletion protein 4 (Sst4p), is a conserved homolog of budding Saccharomyces cerevisiae Vps27 and of mammalian Hrs. It functions as a downstream factor for phosphatidylinositol 3-kinase (PtdIns 3-kinase) in forespore membrane formation with normal morphology. It colocalizes and interacts with Hse1p, a homolog of Saccharomyces cerevisiae Hse1p and of mammalian STAM, to form a complex whose ubiquitin-interacting motifs (UIMs) are important for sporulation. spVps27p contains a VHS (Vps27p/Hrs/Stam) domain, a FYVE domain, and two UIMs. Pssm-ID: 277274 [Multi-domain] Cd Length: 59 Bit Score: 44.83 E-value: 3.96e-06
|
||||||||
FYVE_FGD5 | cd15742 | FYVE-like domain found in FYVE, RhoGEF and PH domain-containing protein 5 (FGD5) and similar ... |
613-674 | 1.60e-05 | ||||
FYVE-like domain found in FYVE, RhoGEF and PH domain-containing protein 5 (FGD5) and similar proteins; FGD5, also termed zinc finger FYVE domain-containing protein 23, is an endothelial cell (EC)-specific guanine nucleotide exchange factor (GEF) that regulates endothelial adhesion, survival, and angiogenesis by modulating phosphatidylinositol 3-kinase signaling. It functions as a novel genetic regulator of vascular pruning by activation of endothelial cell-targeted apoptosis. FGD5 is a homologue of FGD1 and contains a DBL homology (DH) domain, a pleckstrin homology (PH) domain, a FYVE domain, and another PH domain in the C-terminus, but lacks the N-terminal proline-rich domain (PRD) found in FGD1. The FYVE domain of FGD5 resembles a FYVE-like domain that is different from the canonical FYVE domains, since it lacks one of the three conserved signature motifs (the WxxD motif) that are involved in phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding and exhibits altered lipid binding specificities. Pssm-ID: 277281 [Multi-domain] Cd Length: 67 Bit Score: 43.38 E-value: 1.60e-05
|
||||||||
FYVE_FGD3 | cd15740 | FYVE-like domain found in FYVE, RhoGEF and PH domain-containing protein 3 (FGD3) and similar ... |
627-674 | 2.86e-05 | ||||
FYVE-like domain found in FYVE, RhoGEF and PH domain-containing protein 3 (FGD3) and similar proteins; FGD3, also termed zinc finger FYVE domain-containing protein 5, is a putative Cdc42-specific guanine nucleotide exchange factor (GEF) that undergoes the ubiquitin ligase SCFFWD1/beta-TrCP-mediated proteasomal degradation. It is a homologue of FGD1 and contains a DBL homology (DH) domain and pleckstrin homology (PH) domain in the middle region, a FYVE domain, and another PH domain in the C-terminus, but lacks the N-terminal proline-rich domain (PRD) found in FGD1. Due to this difference, FGD3 may play different roles from that of FGD1 to regulate cell morphology or motility. The FYVE domain of FGD3 resembles a FYVE-like domain that is different from the canonical FYVE domains, since it lacks one of the three conserved signature motifs (the WxxD motif) that are involved in phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding and exhibits altered lipid binding specificities. Pssm-ID: 277279 [Multi-domain] Cd Length: 54 Bit Score: 42.30 E-value: 2.86e-05
|
||||||||
FYVE_RUFY2 | cd15759 | FYVE domain found in RUN and FYVE domain-containing protein 2 (RUFY2) and similar proteins; ... |
614-653 | 2.91e-05 | ||||
FYVE domain found in RUN and FYVE domain-containing protein 2 (RUFY2) and similar proteins; RUFY2, also termed Rab4-interacting protein related, is a novel embryonic factor that contains an N-terminal RUN domain and a C-terminal FYVE domain with two coiled-coil domains in-between. It is present in the nucleus at early stages of embryonic development. It may have both endosomal functions in the cytoplasm and nuclear functions. Pssm-ID: 277298 [Multi-domain] Cd Length: 71 Bit Score: 42.70 E-value: 2.91e-05
|
||||||||
FYVE_ZFYV1 | cd15734 | FYVE domains found in zinc finger FYVE domain-containing protein 1 (ZFYV1) and similar ... |
615-653 | 4.02e-05 | ||||
FYVE domains found in zinc finger FYVE domain-containing protein 1 (ZFYV1) and similar proteins; ZFYV1, also termed double FYVE-containing protein 1 (DFCP1), or SR3, or tandem FYVE fingers-1, is a novel tandem FYVE domain containing protein that binds phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) with high specificity over other phosphoinositides. The subcellular distribution of exogenously-expressed ZFYV1 to Golgi, endoplasmic reticulum (ER) and vesicular is governed in part by its FYVE domains but unaffected by wortmannin, a PI3-kinase inhibitor. In addition to C-terminal tandem FYVE domain, ZFYV1 contains an N-terminal putative C2H2 type zinc finger and a possible nucleotide binding P-loop. Pssm-ID: 277273 [Multi-domain] Cd Length: 61 Bit Score: 41.93 E-value: 4.02e-05
|
||||||||
PH1_FGD5 | cd15792 | FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 5, N-terminal Pleckstrin ... |
410-533 | 4.15e-05 | ||||
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 5, N-terminal Pleckstrin Homology (PH) domain; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275435 Cd Length: 123 Bit Score: 43.67 E-value: 4.15e-05
|
||||||||
FYVE_scVPS27p_Vac1p_like | cd15736 | FYVE domain found in Saccharomyces cerevisiae vacuolar protein sorting-associated protein 27 ... |
629-674 | 4.16e-05 | ||||
FYVE domain found in Saccharomyces cerevisiae vacuolar protein sorting-associated protein 27 (scVps27p) and FYVE-related domain 1 found in yeast protein VAC1 (Vac1p) and similar proteins; The family includes Saccharomyces cerevisiae vacuolar protein sorting-associated protein 27 (scVps27p) and protein VAC1 (Vac1p). scVps27p, also termed Golgi retention defective protein 11, is the putative yeast counterpart of the mammalian protein Hrs and is involved in endosome maturation. It is a mono-ubiquitin-binding protein that interacts with ubiquitinated cargoes, such as Hse1p, and is required for protein sorting into the multivesicular body. Vps27p forms a complex with Hse1p. The complex binds ubiquitin and mediates endosomal protein sorting. At the endosome, Vps27p and a trimeric protein complex, ESCRT-1, bind ubiquitin and are important for multivesicular body (MVB) sorting. Vps27p contains an N-terminal VHS (Vps27/Hrs/STAM) domain, a FYVE domain that binds PtdIns3P, followed by two ubiquitin-interacting motifs (UIMs), and a C-terminal clathrin-binding motif. Vac1p, also termed vacuolar segregation protein Pep7p, or carboxypeptidase Y-deficient protein 7, or vacuolar protein sorting-associated protein 19 (Vps19p), or vacuolar protein-targeting protein 19, is a phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding protein that interacts with a Rab GTPase, GTP-bound form of Vps21p, and a Sec1p homologue, Vps45p, to facilitate Vps45p-dependent vesicle-mediated vacuolar protein sorting. It also acts as a novel regulator of vesicle docking and/or fusion at the endosome and functions in vesicle-mediated transport of Golgi precursor carboxypeptidase Y (CPY), protease A (PrA), protease B (PrB), but not alkaline phosphatase (ALP) from the trans-Golgi network-like compartment (TGN) to the endosome. Vac1p contains an N-terminal classical TFIIIA-like zinc finger, two putative zinc-binding FYVE fingers, and a C-terminal coiled coil region. The FYVE domain in both Vps27p and Vac1p harbors a zinc-binding site composed of seven Cysteines and one Histidine, which is different from that of other FYVE domain containing proteins. Pssm-ID: 277275 [Multi-domain] Cd Length: 56 Bit Score: 41.79 E-value: 4.16e-05
|
||||||||
FYVE_SlaC2-c | cd15753 | FYVE-related domain found in Slp homolog lacking C2 domains c (SlaC2-c) and similar proteins; ... |
624-653 | 7.87e-05 | ||||
FYVE-related domain found in Slp homolog lacking C2 domains c (SlaC2-c) and similar proteins; SlaC2-c, also termed Rab effector MyRIP, or exophilin-8, or myosin-VIIa- and Rab-interacting protein, or synaptotagmin-like protein lacking C2 domains c, is a GTP-bound form of Rab27A-, myosin Va/VIIa-, and actin-binding protein mainly present on retinal melanosomes and secretory granules. It may play a role in insulin granule exocytosis. It is also involved in the control of isoproterenol (IPR)-induced amylase release from parotid acinar cells. SlaC2-c belongs to the Slp homolog lacking C2 domains (Slac2) family. It contains an N-terminal Slp homology domain (SHD), but lacks tandem C2 domains. The SHD consists of two conserved regions, designated SHD1 (Slp homology domain 1) and SHD2, which may function as protein interaction sites. The SHD1 and SHD2 of SlaC2-c are separated by a putative FYVE zinc finger, which resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. Moreover, Slac2-c has a middle myosin-binding domain and a C-terminal actin-binding domain. Pssm-ID: 277292 Cd Length: 49 Bit Score: 40.85 E-value: 7.87e-05
|
||||||||
RhoGEF | pfam00621 | RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called ... |
248-389 | 1.62e-04 | ||||
RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that pfam00169 domains invariably occur C-terminal to RhoGEF/DH domains. Pssm-ID: 459876 [Multi-domain] Cd Length: 176 Bit Score: 43.06 E-value: 1.62e-04
|
||||||||
FYVE_RABE_unchar | cd15739 | FYVE domain found in uncharacterized rab GTPase-binding effector proteins from bilateria; This ... |
617-674 | 4.10e-04 | ||||
FYVE domain found in uncharacterized rab GTPase-binding effector proteins from bilateria; This family includes a group of uncharacterized rab GTPase-binding effector proteins found in bilateria. Although their biological functions remain unclear, they all contain a FYVE domain that harbors a putative phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding site. Pssm-ID: 277278 [Multi-domain] Cd Length: 73 Bit Score: 39.63 E-value: 4.10e-04
|
||||||||
PH_Cool_Pix | cd01225 | Cloned out of library/PAK-interactive exchange factor pleckstrin homology (PH) domain; There ... |
421-515 | 5.09e-04 | ||||
Cloned out of library/PAK-interactive exchange factor pleckstrin homology (PH) domain; There are two forms of Pix proteins: alpha Pix (also called Rho guanine nucleotide exchange factor (GEF) 6/90Cool-2) and beta Pix (GEF7/p85Cool-1). betaPix contains an N-terminal SH3 domain, a RhoGEF/DH domain, a PH domain, a GIT1 binding domain (GBD), and a C-terminal coiled-coil (CC) domain. alphaPix differs in that it contains a calponin homology (CH) domain, which interacts with beta-parvin, N-terminal to the SH3 domain. alphaPix is an exchange factor for Rac1 and Cdc42 and mediates Pak activation on cell adhesion to fibronectin. Mutations in alphaPix can cause X-linked mental retardation. alphaPix also interacts with Huntington's disease protein (htt), and enhances the aggregation of mutant htt (muthtt) by facilitating SDS-soluble muthtt-muthtt interactions. The DH-PH domain of a Pix was required for its binding to htt. In the majority of Rho GEF proteins, the DH-PH domain is responsible for the exchange activity. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269932 Cd Length: 100 Bit Score: 39.99 E-value: 5.09e-04
|
||||||||
FYVE_WDFY1 | cd15756 | FYVE domain found in WD40 repeat and FYVE domain-containing protein 1 (WDFY1) and similar ... |
613-675 | 5.40e-04 | ||||
FYVE domain found in WD40 repeat and FYVE domain-containing protein 1 (WDFY1) and similar proteins; WDFY1, also termed FYVE domain containing protein localized to endosomes-1 (FENS-1), or phosphoinositide-binding protein 1, or zinc finger FYVE domain-containing protein 17, is a novel single FYVE domain containing protein that binds phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) with high specificity over other phosphoinositides. WDFY1 to early endosomes requires an intact FYVE domain and is inhibited by wortmannin, a PI3-kinase inhibitor. In addition to FYVE domain, WDFY1 harbors multiple WD-40 repeats. Pssm-ID: 277295 [Multi-domain] Cd Length: 76 Bit Score: 39.28 E-value: 5.40e-04
|
||||||||
PH_RARhoGAP | cd13319 | RA and RhoGAP domain-containing protein Pleckstrin homology PH domain; RARhoGAP (also called ... |
418-506 | 9.80e-04 | ||||
RA and RhoGAP domain-containing protein Pleckstrin homology PH domain; RARhoGAP (also called Rho GTPase-activating protein 20 and ARHGAP20 ) is thought to function in rearrangements of the cytoskeleton and cell signaling events that occur during spermatogenesis. RARhoGAP was also shown to be activated by Rap1 and to induce inactivation of Rho, resulting in the neurite outgrowth. Recent findings show that ARHGAP20, even although it is located in the middle of the MDR on 11q22-23, is expressed at higher levels in chronic lymphocytic leukemia patients with 11q22-23 and/or 13q14 deletions and its expression pattern suggests a functional link between cases with 11q22-23 and 13q14 deletions. The mechanism needs to be further studied. RARhoGAP contains a PH domain, a Ras-associating domain, a Rho-GAP domain, and ANXL repeats. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270129 Cd Length: 97 Bit Score: 39.14 E-value: 9.80e-04
|
||||||||
PH1_FDG_family | cd13328 | FYVE, RhoGEF and PH domain containing/faciogenital dysplasia family proteins, N-terminal ... |
422-506 | 9.85e-04 | ||||
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia family proteins, N-terminal Pleckstrin homology (PH) domain; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Mutations in the FGD1 gene are responsible for the X-linked disorder known as faciogenital dysplasia (FGDY). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275410 Cd Length: 92 Bit Score: 39.01 E-value: 9.85e-04
|
||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
420-515 | 3.47e-03 | ||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 37.93 E-value: 3.47e-03
|
||||||||
FYVE_protrudin | cd15723 | FYVE-related domain found in protrudin and similar proteins; Protrudin, also termed zinc ... |
628-675 | 4.60e-03 | ||||
FYVE-related domain found in protrudin and similar proteins; Protrudin, also termed zinc finger FYVE domain-containing protein 27 (ZFY27 or ZFYVE27), is a FYVE domain-containing protein involved in transport of neuronal cargoes and implicated in the onset of hereditary spastic paraplegia (HSP). It is involved in neurite outgrowth through binding to spastin. Moreover, it functions as a key regulator of the Rab11-dependent membrane trafficking during neurite extension. It serves as an adaptor molecule that links its associated proteins, such as Rab11-GDP, VAP-A and -B, Surf4, and RTN3, to KIF5, a motor protein that mediates anterograde vesicular transport in neurons, and thus plays a key role in the maintenance of neuronal function. The FYVE domain of protrudin resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. In addition, unlike canonical FYVE domains that is located to early endosomes and specifically binds to phosphatidylinositol 3-phosphate (PtdIns3P or PI3P), the FYVE domain of protrudin is located to plasma membrane and preferentially binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3). In addition to FYVE-related domain, protrudin also contains a Rab11-binding domain (RBD11), two hydrophobic domains, HP-1 and HP-2, an FFAT motif, and a coiled-coil domain. Pssm-ID: 277262 [Multi-domain] Cd Length: 62 Bit Score: 36.32 E-value: 4.60e-03
|
||||||||
PH | cd00821 | Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ... |
430-510 | 4.67e-03 | ||||
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275388 [Multi-domain] Cd Length: 92 Bit Score: 37.14 E-value: 4.67e-03
|
||||||||
Blast search parameters | ||||
|