Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ...
78-355
1.57e-19
Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyse bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome.
The actual alignment was detected with superfamily member pfam00443:
Pssm-ID: 470612 [Multi-domain] Cd Length: 310 Bit Score: 90.58 E-value: 1.57e-19
Domain of unknown function (DUF545); Family of uncharacterized C. elegans proteins. The region ...
473-589
5.60e-18
Domain of unknown function (DUF545); Family of uncharacterized C. elegans proteins. The region represented by this family can is found to be repeated up to four time in some proteins.
The actual alignment was detected with superfamily member smart00583:
Pssm-ID: 472233 Cd Length: 114 Bit Score: 80.30 E-value: 5.60e-18
Protein Kinases, catalytic domain; The protein kinase superfamily is mainly composed of the ...
673-854
4.42e-07
Protein Kinases, catalytic domain; The protein kinase superfamily is mainly composed of the catalytic domains of serine/threonine-specific and tyrosine-specific protein kinases. It also includes RIO kinases, which are atypical serine protein kinases, aminoglycoside phosphotransferases, and choline kinases. These proteins catalyze the transfer of the gamma-phosphoryl group from ATP to hydroxyl groups in specific substrates such as serine, threonine, or tyrosine residues of proteins.
The actual alignment was detected with superfamily member smart00220:
Pssm-ID: 473864 [Multi-domain] Cd Length: 254 Bit Score: 52.15 E-value: 4.42e-07
A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are ...
169-371
2.48e-17
A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome.
Pssm-ID: 239130 [Multi-domain] Cd Length: 228 Bit Score: 82.22 E-value: 2.48e-17
Domain of unknown function (DUF545); Family of uncharacterized C. elegans proteins. The region ...
477-582
3.72e-14
Domain of unknown function (DUF545); Family of uncharacterized C. elegans proteins. The region represented by this family can is found to be repeated up to four time in some proteins.
Pssm-ID: 461308 Cd Length: 104 Bit Score: 69.09 E-value: 3.72e-14
Catalytic domain of STE family Protein Kinases; PKs catalyze the transfer of the ...
673-848
8.58e-07
Catalytic domain of STE family Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. This family is composed of STKs, and some dual-specificity PKs that phosphorylate both threonine and tyrosine residues of target proteins. Most members are kinases involved in mitogen-activated protein kinase (MAPK) signaling cascades, acting as MAPK kinases (MAPKKs), MAPKK kinases (MAPKKKs), or MAPKKK kinases (MAP4Ks). The MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The pathways involve a triple kinase core cascade comprising of the MAPK, which is phosphorylated and activated by a MAPKK, which itself is phosphorylated and activated by a MAPKKK. Each MAPK cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAPKKK to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. Other STE family members include p21-activated kinases (PAKs) and class III myosins, among others. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. Class III myosins are motor proteins containing an N-terminal kinase catalytic domain and a C-terminal actin-binding domain, which can phosphorylate several cytoskeletal proteins, conventional myosin regulatory light chains, as well as autophosphorylate the C-terminal motor domain. They play an important role in maintaining the structural integrity of photoreceptor cell microvilli. The STE family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.
Pssm-ID: 270692 [Multi-domain] Cd Length: 254 Bit Score: 51.43 E-value: 8.58e-07
A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are ...
169-371
2.48e-17
A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome.
Pssm-ID: 239130 [Multi-domain] Cd Length: 228 Bit Score: 82.22 E-value: 2.48e-17
Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ...
168-371
2.10e-15
Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyse bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome.
Pssm-ID: 239072 [Multi-domain] Cd Length: 255 Bit Score: 77.14 E-value: 2.10e-15
Domain of unknown function (DUF545); Family of uncharacterized C. elegans proteins. The region ...
477-582
3.72e-14
Domain of unknown function (DUF545); Family of uncharacterized C. elegans proteins. The region represented by this family can is found to be repeated up to four time in some proteins.
Pssm-ID: 461308 Cd Length: 104 Bit Score: 69.09 E-value: 3.72e-14
A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are ...
79-357
9.27e-10
A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome.
Pssm-ID: 239124 [Multi-domain] Cd Length: 334 Bit Score: 61.12 E-value: 9.27e-10
A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are ...
78-351
2.63e-09
A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome.
Pssm-ID: 239126 [Multi-domain] Cd Length: 304 Bit Score: 59.60 E-value: 2.63e-09
A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are ...
79-371
8.95e-09
A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyse bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome.
Pssm-ID: 239122 [Multi-domain] Cd Length: 305 Bit Score: 57.73 E-value: 8.95e-09
Catalytic domain of STE family Protein Kinases; PKs catalyze the transfer of the ...
673-848
8.58e-07
Catalytic domain of STE family Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. This family is composed of STKs, and some dual-specificity PKs that phosphorylate both threonine and tyrosine residues of target proteins. Most members are kinases involved in mitogen-activated protein kinase (MAPK) signaling cascades, acting as MAPK kinases (MAPKKs), MAPKK kinases (MAPKKKs), or MAPKKK kinases (MAP4Ks). The MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The pathways involve a triple kinase core cascade comprising of the MAPK, which is phosphorylated and activated by a MAPKK, which itself is phosphorylated and activated by a MAPKKK. Each MAPK cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAPKKK to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. Other STE family members include p21-activated kinases (PAKs) and class III myosins, among others. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. Class III myosins are motor proteins containing an N-terminal kinase catalytic domain and a C-terminal actin-binding domain, which can phosphorylate several cytoskeletal proteins, conventional myosin regulatory light chains, as well as autophosphorylate the C-terminal motor domain. They play an important role in maintaining the structural integrity of photoreceptor cell microvilli. The STE family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.
Pssm-ID: 270692 [Multi-domain] Cd Length: 254 Bit Score: 51.43 E-value: 8.58e-07
Catalytic domain of Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group ...
678-873
9.45e-07
Catalytic domain of Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. PKs make up a large family of serine/threonine kinases (STKs), protein tyrosine kinases (PTKs), and dual-specificity PKs that phosphorylate both serine/threonine and tyrosine residues of target proteins. Majority of protein phosphorylation occurs on serine residues while only 1% occurs on tyrosine residues. Protein phosphorylation is a mechanism by which a wide variety of cellular proteins, such as enzymes and membrane channels, are reversibly regulated in response to certain stimuli. PKs often function as components of signal transduction pathways in which one kinase activates a second kinase, which in turn, may act on other kinases; this sequential action transmits a signal from the cell surface to target proteins, which results in cellular responses. The PK family is one of the largest known protein families with more than 100 homologous yeast enzymes and more than 500 human proteins. A fraction of PK family members are pseudokinases that lack crucial residues for catalytic activity. The mutiplicity of kinases allows for specific regulation according to substrate, tissue distribution, and cellular localization. PKs regulate many cellular processes including proliferation, division, differentiation, motility, survival, metabolism, cell-cycle progression, cytoskeletal rearrangement, immunity, and neuronal functions. Many kinases are implicated in the development of various human diseases including different types of cancer. The PK family is part of a larger superfamily that includes the catalytic domains of RIO kinases, aminoglycoside phosphotransferase, choline kinase, phosphoinositide 3-kinase (PI3K), and actin-fragmin kinase.
Pssm-ID: 270622 [Multi-domain] Cd Length: 215 Bit Score: 50.73 E-value: 9.45e-07
A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are ...
79-344
1.46e-05
A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome.
Pssm-ID: 239133 [Multi-domain] Cd Length: 324 Bit Score: 48.19 E-value: 1.46e-05
Catalytic domain of the Serine/Threonine Kinases, Mammalian STe20-like protein kinase 1 and 2; ...
673-841
1.75e-04
Catalytic domain of the Serine/Threonine Kinases, Mammalian STe20-like protein kinase 1 and 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of MST1, MST2, and related proteins including Drosophila Hippo and Dictyostelium discoideum Krs1 (kinase responsive to stress 1). MST1/2 and Hippo are involved in a conserved pathway that governs cell contact inhibition, organ size control, and tumor development. MST1 activates the mitogen-activated protein kinases (MAPKs) p38 and c-Jun N-terminal kinase (JNK) through MKK7 and MEKK1 by acting as a MAPK kinase kinase kinase. Activation of JNK by MST1 leads to caspase activation and apoptosis. MST1 has also been implicated in cell proliferation and differentiation. Krs1 may regulate cell growth arrest and apoptosis in response to cellular stress. The MST1/2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.
Pssm-ID: 132943 [Multi-domain] Cd Length: 256 Bit Score: 44.18 E-value: 1.75e-04
A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are ...
79-343
2.17e-04
A subfamily of Peptidase C19. Peptidase C19 contains ubiquitinyl hydrolases. They are intracellular peptidases that remove ubiquitin molecules from polyubiquinated peptides by cleavage of isopeptide bonds. They hydrolyze bonds involving the carboxyl group of the C-terminal Gly residue of ubiquitin. The purpose of the de-ubiquitination is thought to be editing of the ubiquitin conjugates, which could rescue them from degradation, as well as recycling of the ubiquitin. The ubiquitin/proteasome system is responsible for most protein turnover in the mammalian cell, and with over 50 members, family C19 is one of the largest families of peptidases in the human genome.
Pssm-ID: 239123 [Multi-domain] Cd Length: 311 Bit Score: 44.24 E-value: 2.17e-04
Catalytic domain of the dual-specificity Protein Kinase, Mitogen-Activated Protein Kinase ...
670-841
3.34e-04
Catalytic domain of the dual-specificity Protein Kinase, Mitogen-Activated Protein Kinase Kinase; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. MAPKKs are dual-specificity PKs that phosphorylate their downstream targets, MAPKs, at specific threonine and tyrosine residues. The MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The pathways involve a triple kinase core cascade comprising the MAPK, which is phosphorylated and activated by a MAPK kinase (MAPKK or MKK or MAP2K), which itself is phosphorylated and activated by a MAPKK kinase (MAPKKK or MKKK or MAP3K). There are three MAPK subfamilies: extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. In mammalian cells, there are seven MAPKKs (named MKK1-7) and 20 MAPKKKs. Each MAPK subfamily can be activated by at least two cognate MAPKKs and by multiple MAPKKKs. The MAPKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.
Pssm-ID: 270782 [Multi-domain] Cd Length: 265 Bit Score: 43.49 E-value: 3.34e-04
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options