uncharacterized protein AT3G01510 [Arabidopsis thaliana]
glycogen-binding domain-containing protein( domain architecture ID 12998398)
glycogen-binding domain-containing protein similar to Saccharomyces cerevisiae cruciform DNA-recognizing protein 1 and signal transduction protein MDG1, which is involved in G-protein mediated signal transduction and in the regulation of polarized cell growth in pheromone-induced cells
List of domain hits
Name | Accession | Description | Interval | E-value | |||
DSP_laforin-like | cd14526 | dual specificity phosphatase domain of laforin and similar domains; This family is composed of ... |
148-293 | 1.04e-69 | |||
dual specificity phosphatase domain of laforin and similar domains; This family is composed of glucan phosphatases including vertebrate dual specificity protein phosphatase laforin, also called lafora PTPase (LAFPTPase), and plant starch excess4 (SEX4). Laforin is a glycogen phosphatase; its gene is mutated in Lafora progressive myoclonus epilepsy or Lafora disease (LD), a fatal autosomal recessive neurodegenerative disorder characterized by the presence of progressive neurological deterioration, myoclonus, and epilepsy. One characteristic of LD is the accumulation of insoluble glucans. Laforin prevents LD by at least two mechanisms: by preventing hyperphosphorylation of glycogen by dephosphorylating it, allowing proper glycogen formation, and by promoting the ubiquitination of proteins involved in glycogen metabolism via its interaction with malin. Laforin contains an N-terminal CBM20 (carbohydrate-binding module, family 20) domain and a C-terminal catalytic dual specificity phosphatase (DSP) domain. Plant SEX4 regulate starch metabolism by selectively dephosphorylating glucose moieties within starch glucan chains. It contains an N-terminal catalytic DSP domain and a C-terminal Early (E) set domain. : Pssm-ID: 350375 [Multi-domain] Cd Length: 146 Bit Score: 217.83 E-value: 1.04e-69
|
|||||||
E_set_AMPKbeta_like_N | cd02859 | N-terminal Early set domain, a glycogen binding domain, associated with the catalytic domain ... |
314-394 | 2.09e-28 | |||
N-terminal Early set domain, a glycogen binding domain, associated with the catalytic domain of AMP-activated protein kinase beta subunit; E or "early" set domains are associated with the catalytic domain of AMP-activated protein kinase beta subunit glycogen binding domain at the N-terminal end. AMPK is a metabolic stress sensing protein that senses AMP/ATP and has recently been found to act as a glycogen sensor as well. The protein functions as an alpha-beta-gamma heterotrimer. This N-terminal domain is the glycogen binding domain of the beta subunit. This domain is also a member of the CBM48 (Carbohydrate Binding Module 48) family whose members include pullulanase, maltooligosyl trehalose synthase, starch branching enzyme, glycogen branching enzyme, glycogen debranching enzyme, and isoamylase. : Pssm-ID: 199889 [Multi-domain] Cd Length: 80 Bit Score: 106.91 E-value: 2.09e-28
|
|||||||
Name | Accession | Description | Interval | E-value | |||
DSP_laforin-like | cd14526 | dual specificity phosphatase domain of laforin and similar domains; This family is composed of ... |
148-293 | 1.04e-69 | |||
dual specificity phosphatase domain of laforin and similar domains; This family is composed of glucan phosphatases including vertebrate dual specificity protein phosphatase laforin, also called lafora PTPase (LAFPTPase), and plant starch excess4 (SEX4). Laforin is a glycogen phosphatase; its gene is mutated in Lafora progressive myoclonus epilepsy or Lafora disease (LD), a fatal autosomal recessive neurodegenerative disorder characterized by the presence of progressive neurological deterioration, myoclonus, and epilepsy. One characteristic of LD is the accumulation of insoluble glucans. Laforin prevents LD by at least two mechanisms: by preventing hyperphosphorylation of glycogen by dephosphorylating it, allowing proper glycogen formation, and by promoting the ubiquitination of proteins involved in glycogen metabolism via its interaction with malin. Laforin contains an N-terminal CBM20 (carbohydrate-binding module, family 20) domain and a C-terminal catalytic dual specificity phosphatase (DSP) domain. Plant SEX4 regulate starch metabolism by selectively dephosphorylating glucose moieties within starch glucan chains. It contains an N-terminal catalytic DSP domain and a C-terminal Early (E) set domain. Pssm-ID: 350375 [Multi-domain] Cd Length: 146 Bit Score: 217.83 E-value: 1.04e-69
|
|||||||
E_set_AMPKbeta_like_N | cd02859 | N-terminal Early set domain, a glycogen binding domain, associated with the catalytic domain ... |
314-394 | 2.09e-28 | |||
N-terminal Early set domain, a glycogen binding domain, associated with the catalytic domain of AMP-activated protein kinase beta subunit; E or "early" set domains are associated with the catalytic domain of AMP-activated protein kinase beta subunit glycogen binding domain at the N-terminal end. AMPK is a metabolic stress sensing protein that senses AMP/ATP and has recently been found to act as a glycogen sensor as well. The protein functions as an alpha-beta-gamma heterotrimer. This N-terminal domain is the glycogen binding domain of the beta subunit. This domain is also a member of the CBM48 (Carbohydrate Binding Module 48) family whose members include pullulanase, maltooligosyl trehalose synthase, starch branching enzyme, glycogen branching enzyme, glycogen debranching enzyme, and isoamylase. Pssm-ID: 199889 [Multi-domain] Cd Length: 80 Bit Score: 106.91 E-value: 2.09e-28
|
|||||||
AMPK1_CBM | pfam16561 | Glycogen recognition site of AMP-activated protein kinase; AMPK1_CBM is a family found in ... |
315-394 | 3.55e-21 | |||
Glycogen recognition site of AMP-activated protein kinase; AMPK1_CBM is a family found in close association with AMPKBI pfam04739. The surface of AMPK1_CBM reveals a carbohydrate-binding pocket. Pssm-ID: 465176 [Multi-domain] Cd Length: 85 Bit Score: 87.20 E-value: 3.55e-21
|
|||||||
DSPc | smart00195 | Dual specificity phosphatase, catalytic domain; |
151-278 | 1.33e-11 | |||
Dual specificity phosphatase, catalytic domain; Pssm-ID: 214551 [Multi-domain] Cd Length: 138 Bit Score: 61.91 E-value: 1.33e-11
|
|||||||
Name | Accession | Description | Interval | E-value | |||
DSP_laforin-like | cd14526 | dual specificity phosphatase domain of laforin and similar domains; This family is composed of ... |
148-293 | 1.04e-69 | |||
dual specificity phosphatase domain of laforin and similar domains; This family is composed of glucan phosphatases including vertebrate dual specificity protein phosphatase laforin, also called lafora PTPase (LAFPTPase), and plant starch excess4 (SEX4). Laforin is a glycogen phosphatase; its gene is mutated in Lafora progressive myoclonus epilepsy or Lafora disease (LD), a fatal autosomal recessive neurodegenerative disorder characterized by the presence of progressive neurological deterioration, myoclonus, and epilepsy. One characteristic of LD is the accumulation of insoluble glucans. Laforin prevents LD by at least two mechanisms: by preventing hyperphosphorylation of glycogen by dephosphorylating it, allowing proper glycogen formation, and by promoting the ubiquitination of proteins involved in glycogen metabolism via its interaction with malin. Laforin contains an N-terminal CBM20 (carbohydrate-binding module, family 20) domain and a C-terminal catalytic dual specificity phosphatase (DSP) domain. Plant SEX4 regulate starch metabolism by selectively dephosphorylating glucose moieties within starch glucan chains. It contains an N-terminal catalytic DSP domain and a C-terminal Early (E) set domain. Pssm-ID: 350375 [Multi-domain] Cd Length: 146 Bit Score: 217.83 E-value: 1.04e-69
|
|||||||
E_set_AMPKbeta_like_N | cd02859 | N-terminal Early set domain, a glycogen binding domain, associated with the catalytic domain ... |
314-394 | 2.09e-28 | |||
N-terminal Early set domain, a glycogen binding domain, associated with the catalytic domain of AMP-activated protein kinase beta subunit; E or "early" set domains are associated with the catalytic domain of AMP-activated protein kinase beta subunit glycogen binding domain at the N-terminal end. AMPK is a metabolic stress sensing protein that senses AMP/ATP and has recently been found to act as a glycogen sensor as well. The protein functions as an alpha-beta-gamma heterotrimer. This N-terminal domain is the glycogen binding domain of the beta subunit. This domain is also a member of the CBM48 (Carbohydrate Binding Module 48) family whose members include pullulanase, maltooligosyl trehalose synthase, starch branching enzyme, glycogen branching enzyme, glycogen debranching enzyme, and isoamylase. Pssm-ID: 199889 [Multi-domain] Cd Length: 80 Bit Score: 106.91 E-value: 2.09e-28
|
|||||||
AMPK1_CBM | pfam16561 | Glycogen recognition site of AMP-activated protein kinase; AMPK1_CBM is a family found in ... |
315-394 | 3.55e-21 | |||
Glycogen recognition site of AMP-activated protein kinase; AMPK1_CBM is a family found in close association with AMPKBI pfam04739. The surface of AMPK1_CBM reveals a carbohydrate-binding pocket. Pssm-ID: 465176 [Multi-domain] Cd Length: 85 Bit Score: 87.20 E-value: 3.55e-21
|
|||||||
DSP | cd14498 | dual-specificity phosphatase domain; The dual-specificity phosphatase domain is found in ... |
151-278 | 2.81e-17 | |||
dual-specificity phosphatase domain; The dual-specificity phosphatase domain is found in typical and atypical dual-specificity phosphatases (DUSPs), which function as protein-serine/threonine phosphatases (EC 3.1.3.16) and protein-tyrosine-phosphatases (EC 3.1.3.48). Typical DUSPs, also called mitogen-activated protein kinase (MAPK) phosphatases (MKPs), deactivate MAPKs by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. All MKPs contain an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. Atypical DUSPs contain the catalytic dual specificity phosphatase domain but lack the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. Also included in this family are dual specificity phosphatase-like domains of catalytically inactive members such as serine/threonine/tyrosine-interacting protein (STYX) and serine/threonine/tyrosine interacting like 1 (STYXL1), as well as active phosphatases with substrates that are not phosphoproteins such as PTP localized to the mitochondrion 1 (PTPMT1), which is a lipid phosphatase, and laforin, which is a glycogen phosphatase. Pssm-ID: 350348 [Multi-domain] Cd Length: 135 Bit Score: 77.97 E-value: 2.81e-17
|
|||||||
DSPc | smart00195 | Dual specificity phosphatase, catalytic domain; |
151-278 | 1.33e-11 | |||
Dual specificity phosphatase, catalytic domain; Pssm-ID: 214551 [Multi-domain] Cd Length: 138 Bit Score: 61.91 E-value: 1.33e-11
|
|||||||
DSP_MKP | cd14512 | dual specificity phosphatase domain of mitogen-activated protein kinase phosphatase; ... |
152-292 | 1.21e-07 | |||
dual specificity phosphatase domain of mitogen-activated protein kinase phosphatase; Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are eukaryotic dual-specificity phosphatases (DUSPs) that act on MAPKs, which are involved in gene regulation, cell proliferation, programmed cell death and stress responses, as an important feedback control mechanism that limits MAPK cascades. MKPs, also referred to as typical DUSPs, function as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). They deactivate MAPKs by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. All MKPs contain an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. Based on sequence homology, subcellular localization and substrate specificity, 10 MKPs can be subdivided into three subfamilies (class I-III). Pssm-ID: 350362 [Multi-domain] Cd Length: 136 Bit Score: 50.56 E-value: 1.21e-07
|
|||||||
DSP_DUSP12 | cd14520 | dual specificity phosphatase domain of dual specificity protein phosphatase 12 and similar ... |
152-287 | 3.35e-07 | |||
dual specificity phosphatase domain of dual specificity protein phosphatase 12 and similar proteins; Dual specificity protein phosphatase 12 (DUSP12), also called YVH1, functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. DUSP12 is an atypical DUSP; it contains the catalytic dual specificity phosphatase domain but lacks the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. It targets p38 MAPK to regulate macrophage response to bacterial infection. It also ameliorates cardiac hypertrophy in response to pressure overload through c-Jun N-terminal kinase (JNK) inhibition. DUSP12 has been identified as a modulator of cell cycle progression, a function independent of phosphatase activity and mediated by its C-terminal zinc-binding domain. Pssm-ID: 350370 [Multi-domain] Cd Length: 144 Bit Score: 49.56 E-value: 3.35e-07
|
|||||||
E_set | cd02688 | Early set domain associated with the catalytic domain of sugar utilizing enzymes at either the ... |
314-392 | 5.58e-07 | |||
Early set domain associated with the catalytic domain of sugar utilizing enzymes at either the N or C terminus; The E or "early" set domains of sugar utilizing enzymes are associated with different types of catalytic domains at either the N-terminal or C-terminal end. These domains may be related to the immunoglobulin and/or fibronectin type III superfamilies. Members of this family include alpha amylase, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase. A subset of these members were recently identified as members of the CBM48 (Carbohydrate Binding Module 48) family. Members of the CBM48 family include pullulanase, maltooligosyl trehalose synthase, starch branching enzyme, glycogen branching enzyme, glycogen debranching enzyme, isoamylase, and the beta subunit of AMP-activated protein kinase. Pssm-ID: 199878 [Multi-domain] Cd Length: 82 Bit Score: 47.15 E-value: 5.58e-07
|
|||||||
DSP_MKP_classIII | cd14568 | dual specificity phosphatase domain of class III mitogen-activated protein kinase phosphatase; ... |
151-292 | 1.16e-05 | |||
dual specificity phosphatase domain of class III mitogen-activated protein kinase phosphatase; Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are eukaryotic dual-specificity phosphatases (DUSPs) that act on MAPKs and function as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). They deactivate MAPKs by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. Based on sequence homology, subcellular localization and substrate specificity, 10 MKPs can be subdivided into three subfamilies (class I-III). Class III MKPs consist of DUSP8, DUSP10/MKP-5 and DUSP16/MKP-7, and are JNK/p38-selective phosphatases, which are found in both the cell nucleus and cytoplasm. All MKPs contain an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. Pssm-ID: 350416 [Multi-domain] Cd Length: 140 Bit Score: 45.10 E-value: 1.16e-05
|
|||||||
DSP_MKP_classI | cd14565 | dual specificity phosphatase domain of class I mitogen-activated protein kinase phosphatase; ... |
157-292 | 1.22e-05 | |||
dual specificity phosphatase domain of class I mitogen-activated protein kinase phosphatase; Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are eukaryotic dual-specificity phosphatases (DUSPs) that act on MAPKs and function as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). They deactivate MAPKs by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. Based on sequence homology, subcellular localization and substrate specificity, 10 MKPs can be subdivided into three subfamilies (class I-III). Class I MKPs consist of DUSP1/MKP-1, DUSP2 (PAC1), DUSP4/MKP-2 and DUSP5. They are all mitogen- and stress-inducible nuclear MKPs. All MKPs contain an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. Pssm-ID: 350413 [Multi-domain] Cd Length: 138 Bit Score: 44.69 E-value: 1.22e-05
|
|||||||
DSP_MKP_classII | cd14566 | dual specificity phosphatase domain of class II mitogen-activated protein kinase phosphatase; ... |
152-287 | 1.44e-04 | |||
dual specificity phosphatase domain of class II mitogen-activated protein kinase phosphatase; Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are eukaryotic dual-specificity phosphatases (DUSPs) that act on MAPKs and function as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). They deactivate MAPKs by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. Based on sequence homology, subcellular localization and substrate specificity, 10 MKPs can be subdivided into three subfamilies (class I-III). Class II MKPs consist of DUSP6/MKP-3, DUSP7/MKP-X and DUSP9/MKP-4, and are ERK-selective cytoplasmic MKPs. All MKPs contain an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. Pssm-ID: 350414 [Multi-domain] Cd Length: 137 Bit Score: 41.54 E-value: 1.44e-04
|
|||||||
E_set_Isoamylase_like_N | cd07184 | N-terminal Early set domain associated with the catalytic domain of isoamylase-like (also ... |
315-394 | 1.71e-04 | |||
N-terminal Early set domain associated with the catalytic domain of isoamylase-like (also called glycogen 6-glucanohydrolase) proteins; E or "early" set domains are associated with the catalytic domain of isoamylase-like proteins at the N-terminal end. Isoamylase is one of the starch-debranching enzymes that catalyze the hydrolysis of alpha-1,6-glucosidic linkages specific in alpha-glucans such as amylopectin or glycogen. Isoamylase contains a bound calcium ion, but this is not in the same position as the conserved calcium ion that has been reported in other alpha-amylase family enzymes. The N-terminal domain of isoamylase may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase. This domain is also a member of the CBM48 (Carbohydrate Binding Module 48) family whose members include pullulanase, maltooligosyl trehalose synthase, starch branching enzyme, glycogen branching enzyme, glycogen debranching enzyme, and the beta subunit of AMP-activated protein kinase. Pssm-ID: 199892 [Multi-domain] Cd Length: 86 Bit Score: 40.30 E-value: 1.71e-04
|
|||||||
DSP_fungal_YVH1 | cd14518 | dual specificity phosphatase domain of fungal YVH1-like dual specificity protein phosphatase; ... |
151-292 | 1.84e-04 | |||
dual specificity phosphatase domain of fungal YVH1-like dual specificity protein phosphatase; This family is composed of Saccharomyces cerevisiae dual specificity protein phosphatase Yvh1 and similar fungal proteins. Yvh1 could function as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It regulates cell growth, sporulation, and glycogen accumulation. It plays an important role in ribosome assembly. Yvh1 associates transiently with late pre-60S particles and is required for the release of the nucleolar/nuclear pre-60S factor Mrt4, which is necessary to construct a translation-competent 60S subunit and mature ribosome stalk. Yvh1 contains an N-terminal catalytic dual specificity phosphatase domain and a C-terminal tail. Pssm-ID: 350368 [Multi-domain] Cd Length: 153 Bit Score: 41.53 E-value: 1.84e-04
|
|||||||
DSP_DUSP19 | cd14523 | dual specificity phosphatase domain of dual specificity protein phosphatase 19; Dual ... |
152-291 | 1.89e-04 | |||
dual specificity phosphatase domain of dual specificity protein phosphatase 19; Dual specificity protein phosphatase 19 (DUSP19), also called low molecular weight dual specificity phosphatase 3 (LMW-DSP3) or stress-activated protein kinase (SAPK) pathway-regulating phosphatase 1 (SKRP1), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It is an atypical DUSP; it contains the catalytic dual specificity phosphatase domain but lacks the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. DUSP19 interacts with the MAPK kinase MKK7, a JNK activator, and inactivates the JNK MAPK pathway. Pssm-ID: 350373 [Multi-domain] Cd Length: 137 Bit Score: 41.19 E-value: 1.89e-04
|
|||||||
DUSP3-like | cd14515 | dual specificity protein phosphatases 3, 13, 26, 27, and similar domains; This family is ... |
157-263 | 9.55e-04 | |||
dual specificity protein phosphatases 3, 13, 26, 27, and similar domains; This family is composed of dual specificity protein phosphatase 3 (DUSP3, also known as VHR), 13B (DUSP13B, also known as TMDP), 26 (DUSP26, also known as MPK8), 13A (DUSP13A, also known as MDSP), dual specificity phosphatase and pro isomerase domain containing 1 (DUPD1), and inactive DUSP27. In general, DUSPs function as protein-serine/threonine phosphatases (EC 3.1.3.16) and protein-tyrosine-phosphatases (EC 3.1.3.48). Members of this family are atypical DUSPs; they contain the catalytic dual specificity phosphatase domain but lack the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. Inactive DUSP27 contains a dual specificity phosphatase-like domain with the active site cysteine substituted to serine. Pssm-ID: 350365 [Multi-domain] Cd Length: 148 Bit Score: 39.50 E-value: 9.55e-04
|
|||||||
DSP_STYXL1 | cd14517 | dual specificity phosphatase-like domain of serine/threonine/tyrosine interacting like 1; ... |
204-289 | 1.13e-03 | |||
dual specificity phosphatase-like domain of serine/threonine/tyrosine interacting like 1; Serine/threonine/tyrosine interacting like 1 (STYXL1), also known as DUSP24 and MK-STYX, is a catalytically inactive phosphatase with homology to the mitogen-activated protein kinase (MAPK) phosphatases (MKPs). STYXL1 plays a role in regulating pathways by competing with active phosphatases for binding to MAPKs. Similar to MKPs, STYXL1 contains an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, however its C-terminal dual specificity phosphatase-like domain is a pseudophosphatase missing the catalytic cysteine. Pssm-ID: 350367 [Multi-domain] Cd Length: 155 Bit Score: 39.57 E-value: 1.13e-03
|
|||||||
DSP_DUSP10 | cd14567 | dual specificity phosphatase domain of dual specificity protein phosphatase 10; Dual ... |
214-292 | 1.15e-03 | |||
dual specificity phosphatase domain of dual specificity protein phosphatase 10; Dual specificity protein phosphatase 10 (DUSP10), also called mitogen-activated protein kinase (MAPK) phosphatase 5 (MKP-5), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). Like other MKPs, it deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. It belongs to the class III subfamily and is a JNK/p38-selective cytoplasmic MKP. DUSP10/MKP-5 coordinates skeletal muscle regeneration by negatively regulating mitochondria-mediated apoptosis. It is also an important regulator of intestinal epithelial barrier function and a suppressor of colon tumorigenesis. DUSP10/MKP-5 contains an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. Pssm-ID: 350415 [Multi-domain] Cd Length: 152 Bit Score: 39.35 E-value: 1.15e-03
|
|||||||
DSP_DUSP2 | cd14641 | dual specificity phosphatase domain of dual specificity protein phosphatase 2; Dual ... |
152-278 | 1.42e-03 | |||
dual specificity phosphatase domain of dual specificity protein phosphatase 2; Dual specificity protein phosphatase 2 (DUSP2), also called dual specificity protein phosphatase PAC-1, functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). Like other mitogen-activated protein kinase (MAPK) phosphatases (MKPs), it deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. It belongs to the class I subfamily and is a mitogen- and stress-inducible nuclear MKP. DUSP2 can preferentially dephosphorylate ERK1/2 and p38, but not JNK in vitro. It is predominantly expressed in hematopoietic tissues with high T-cell content, such as thymus, spleen, lymph nodes, peripheral blood and other organs such as the brain and liver. It has a critical and positive role in inflammatory responses. DUSP2 mRNA and protein are significantly reduced in most solid cancers including breast, colon, lung, ovary, kidney and prostate, and the suppression of DUSP2 is associated with tumorigenesis and malignancy. DUSP2 contains an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. Pssm-ID: 350489 [Multi-domain] Cd Length: 144 Bit Score: 39.08 E-value: 1.42e-03
|
|||||||
DUSP22 | cd14581 | dual specificity protein phosphatase 22; Dual specificity protein phosphatase 22 (DUSP22), ... |
147-284 | 1.57e-03 | |||
dual specificity protein phosphatase 22; Dual specificity protein phosphatase 22 (DUSP22), also called JNK-stimulatory phosphatase-1 (JSP-1), low molecular weight dual specificity phosphatase 2 (LMW-DSP2), mitogen-activated protein kinase phosphatase x (MKP-x) or VHR-related MKPx (VHX), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. DUSP22 is an atypical DUSP; it contains the catalytic dual specificity phosphatase domain but lacks the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. DUSP22 negatively regulates the estrogen receptor-alpha-mediated signaling pathway and the IL6-leukemia inhibitory factor (LIF)-STAT3-mediated signaling pathway. It also regulates cell death by acting as a scaffold protein for the ASK1-MKK7-JNK signal transduction pathway independently of its phosphatase activity. Pssm-ID: 350429 [Multi-domain] Cd Length: 149 Bit Score: 39.01 E-value: 1.57e-03
|
|||||||
DSP_DUSP7 | cd14643 | dual specificity phosphatase domain of dual specificity protein phosphatase 7; Dual ... |
152-278 | 1.93e-03 | |||
dual specificity phosphatase domain of dual specificity protein phosphatase 7; Dual specificity protein phosphatase 7 (DUSP7), also called mitogen-activated protein kinase (MAPK) phosphatase X (MKP-X) or dual specificity protein phosphatase PYST2, functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). Like other MKPs, it deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. It belongs to the class II subfamily and is an ERK-selective cytoplasmic MKP. DUSP7 has been shown as an essential regulator of multiple steps in oocyte meiosis. Due to alternative promoter usage, the PYST2 gene gives rise to two isoforms, PYST2-S and PYST2-L. PYST2-L is over-expressed in leukocytes derived from AML and ALL patients as well as in some solid tumors and lymphoblastoid cell lines; it plays a role in cell-crowding. It contains an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. Pssm-ID: 350491 [Multi-domain] Cd Length: 149 Bit Score: 38.85 E-value: 1.93e-03
|
|||||||
DSP_DUSP16 | cd14646 | dual specificity phosphatase domain of dual specificity protein phosphatase 16; Dual ... |
151-292 | 2.73e-03 | |||
dual specificity phosphatase domain of dual specificity protein phosphatase 16; Dual specificity protein phosphatase 16 (DUSP16), also called mitogen-activated protein kinase (MAPK) phosphatase 7 (MKP-7), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). Like other MKPs, it deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. It belongs to the class III subfamily and is a JNK/p38-selective cytoplasmic MKP. DUSP16/MKP-7 plays an essential role in perinatal survival and selectively controls the differentiation and cytokine production of myeloid cells. It is acetylated by Mycobacterium tuberculosis Eis protein, which leads to the inhibition of JNK-dependent autophagy, phagosome maturation, and ROS generation, and thus, initiating suppression of host immune responses. DUSP16/MKP-7 contains an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. Pssm-ID: 350494 [Multi-domain] Cd Length: 145 Bit Score: 38.08 E-value: 2.73e-03
|
|||||||
DUSP14-like | cd14514 | dual specificity protein phosphatases 14, 18, 21, 28 and similar proteins; This family is ... |
150-291 | 2.94e-03 | |||
dual specificity protein phosphatases 14, 18, 21, 28 and similar proteins; This family is composed of dual specificity protein phosphatase 14 (DUSP14, also known as MKP-6), 18 (DUSP18), 21 (DUSP21), 28 (DUSP28), and similar proteins. They function as protein-serine/threonine phosphatases (EC 3.1.3.16) and protein-tyrosine-phosphatases (EC 3.1.3.48), and are atypical DUSPs. They contain the catalytic dual specificity phosphatase domain but lack the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. DUSP14 directly interacts and dephosphorylates TGF-beta-activated kinase 1 (TAK1)-binding protein 1 (TAB1) in T cells, and negatively regulates TCR signaling and immune responses. DUSP18 has been shown to interact and dephosphorylate SAPK/JNK, and may play a role in regulating the SAPK/JNK pathway. DUSP18 and DUSP21 target to opposing sides of the mitochondrial inner membrane. DUSP28 has been implicated in hepatocellular carcinoma progression and in migratory activity and drug resistance of pancreatic cancer cells. Pssm-ID: 350364 [Multi-domain] Cd Length: 133 Bit Score: 37.92 E-value: 2.94e-03
|
|||||||
DSP_DUSP9 | cd14644 | dual specificity phosphatase domain of dual specificity protein phosphatase 9; Dual ... |
152-278 | 4.34e-03 | |||
dual specificity phosphatase domain of dual specificity protein phosphatase 9; Dual specificity protein phosphatase 9 (DUSP9), also called mitogen-activated protein kinase (MAPK) phosphatase 4 (MKP-4), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). Like other MKPs, it deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. It belongs to the class II subfamily and is an ERK-selective cytoplasmic MKP. DUSP9 is a mediator of bone morphogenetic protein (BMP) signaling to control the appropriate ERK activity critical for the determination of embryonic stem cell fate. Down-regulation of DUSP9 expression has been linked to severe pre-eclamptic placenta as well as cancers such as hepatocellular carcinoma. DUSP9 contains an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. Pssm-ID: 350492 [Multi-domain] Cd Length: 145 Bit Score: 37.67 E-value: 4.34e-03
|
|||||||
DUSP3 | cd14579 | dual specificity protein phosphatase 3; Dual specificity protein phosphatase 3 (DUSP3), also ... |
150-263 | 5.28e-03 | |||
dual specificity protein phosphatase 3; Dual specificity protein phosphatase 3 (DUSP3), also called vaccinia H1-related phosphatase (VHR), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. DUSP3 is an atypical DUSP; it contains the catalytic dual specificity phosphatase domain but lacks the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. It favors bisphosphorylated substrates over monophosphorylated ones, and prefers pTyr peptides over pSer/pThr peptides. Reported physiological substrates includes MAPKs ERK1/2, JNK, and p38, as well as STAT5, EGFR, and ErbB2. DUSP3 has been linked to breast and prostate cancer, and may also play a role in thrombosis. Pssm-ID: 350427 [Multi-domain] Cd Length: 168 Bit Score: 37.82 E-value: 5.28e-03
|
|||||||
Blast search parameters | ||||
|