bromodomain adjacent to zinc finger domain protein 2A isoform 2 [Homo sapiens]
List of domain hits
Name | Accession | Description | Interval | E-value | |||
Bromo_BAZ2A_B_like | cd05503 | Bromodomain, BAZ2A/BAZ2B_like subfamily. Bromo adjacent to zinc finger 2A (BAZ2A) and 2B ... |
1796-1892 | 3.70e-63 | |||
Bromodomain, BAZ2A/BAZ2B_like subfamily. Bromo adjacent to zinc finger 2A (BAZ2A) and 2B (BAZ2B) were identified as a novel human bromodomain gene by cDNA library screening. BAZ2A is also known as Tip5 (Transcription termination factor I-interacting protein 5) and hWALp3. The proteins may play roles in transcriptional regulation. Human Tip5 is part of a complex termed NoRC (nucleolar remodeling complex), which induces nucleosome sliding and may play a role in the regulation of the rDNA locus. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. : Pssm-ID: 99935 Cd Length: 97 Bit Score: 209.92 E-value: 3.70e-63
|
|||||||
HAT_MBD | cd01397 | Methyl-CpG binding domains (MBD) present in putative chromatin remodelling factor such as ... |
549-621 | 2.31e-41 | |||
Methyl-CpG binding domains (MBD) present in putative chromatin remodelling factor such as BAZ2A; BAZ2A contains a MBD, DDT, PHD-type zinc finger and Bromo domain suggesting that BAZ2A might be associated with histone acetyltransferase (HAT) activity. The Drosophila melanogaster toutatis protein, a putative subunit of the chromatin-remodeling complex, and other such proteins in this group share a similar domain architecture with BAZ2A, as does the Caenorhabditis elegans flectin homolog. : Pssm-ID: 238691 [Multi-domain] Cd Length: 73 Bit Score: 146.40 E-value: 2.31e-41
|
|||||||
PHD_BAZ2A | cd15629 | PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A); BAZ2A, also ... |
1676-1722 | 1.09e-31 | |||
PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A); BAZ2A, also termed transcription termination factor I-interacting protein 5 (TTF-I-interacting protein 5, or Tip5), or WALp3, is an epigenetic regulator. It has been implicated in epigenetic rRNA gene silencing, as the large subunit of the SNF2h-containing chromatin-remodeling complex NoRC that induces nucleosome sliding in an ATP- and histone H4 tail-dependent fashion. BAZ2A has also been shown to be broadly overexpressed in prostate cancer, to regulate numerous protein-coding genes and to cooperate with EZH2 (enhancer of zeste homolog 2) to maintain epigenetic silencing at genes repressed in prostate cancer metastasis. Its overexpression is tightly associated with a prostate cancer subtype displaying CpG island methylator phenotype (CIMP) in tumors and with prostate cancer recurrence in patients. It contains a TAM (TIP5/ARBP/MBD) domain, a DDT domain, four AT-hooks, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. : Pssm-ID: 277099 Cd Length: 47 Bit Score: 118.03 E-value: 1.09e-31
|
|||||||
DDT | smart00571 | domain in different transcription and chromosome remodeling factors; |
846-911 | 3.67e-15 | |||
domain in different transcription and chromosome remodeling factors; : Pssm-ID: 214726 Cd Length: 63 Bit Score: 71.51 E-value: 3.67e-15
|
|||||||
WSD | pfam15613 | Williams-Beuren syndrome DDT (WSD), D-TOX E motif; This family represents the combined ... |
1437-1471 | 4.13e-08 | |||
Williams-Beuren syndrome DDT (WSD), D-TOX E motif; This family represents the combined alpha-helical module found in diverse eukaryotic chromatin proteins. Based on the Ioc3 structure, the N-terminus of this module is inferred to interact with nucleosomal linker DNA and the SLIDE domain of ISWI proteins. The resulting complex forms a protein ruler that measures out the spacing between two adjacent nucleosomes. The acidic residue from the GxD signature at the N-terminus is a major determinant of the interaction between the ISWI and WHIM motifs. The N-terminal portion also contacts the inter-nucleosomal linker DNA. The module shows a great domain architectural diversity and is often combined with other modified histone peptide recognizing and DNA binding domains, some of which discriminate methylated DNA. The WSD module constitutes the inter-nucleosomal linker DNA binding site in the major groove of DNA, and was first identified as WSD, the D-TOX E motif of plant homeodomains homologous with the mutant transcription factor causing Williams-Beuren syndrome in association with the DDT-domain. : Pssm-ID: 464775 [Multi-domain] Cd Length: 69 Bit Score: 51.76 E-value: 4.13e-08
|
|||||||
WSD super family | cl21412 | Williams-Beuren syndrome DDT (WSD), D-TOX E motif; This family represents the combined ... |
1109-1164 | 2.58e-07 | |||
Williams-Beuren syndrome DDT (WSD), D-TOX E motif; This family represents the combined alpha-helical module found in diverse eukaryotic chromatin proteins. Based on the Ioc3 structure, the N-terminus of this module is inferred to interact with nucleosomal linker DNA and the SLIDE domain of ISWI proteins. The resulting complex forms a protein ruler that measures out the spacing between two adjacent nucleosomes. The acidic residue from the GxD signature at the N-terminus is a major determinant of the interaction between the ISWI and WHIM motifs. The N-terminal portion also contacts the inter-nucleosomal linker DNA. The module shows a great domain architectural diversity and is often combined with other modified histone peptide recognizing and DNA binding domains, some of which discriminate methylated DNA. The WSD module constitutes the inter-nucleosomal linker DNA binding site in the major groove of DNA, and was first identified as WSD, the D-TOX E motif of plant homeodomains homologous with the mutant transcription factor causing Williams-Beuren syndrome in association with the DDT-domain. The actual alignment was detected with superfamily member pfam15613: Pssm-ID: 464775 [Multi-domain] Cd Length: 69 Bit Score: 49.45 E-value: 2.58e-07
|
|||||||
PRK10856 super family | cl35960 | cytoskeleton protein RodZ; |
390-522 | 9.41e-07 | |||
cytoskeleton protein RodZ; The actual alignment was detected with superfamily member PRK10856: Pssm-ID: 236776 [Multi-domain] Cd Length: 331 Bit Score: 53.11 E-value: 9.41e-07
|
|||||||
PHA03378 super family | cl33729 | EBNA-3B; Provisional |
1325-1428 | 1.24e-04 | |||
EBNA-3B; Provisional The actual alignment was detected with superfamily member PHA03378: Pssm-ID: 223065 [Multi-domain] Cd Length: 991 Bit Score: 47.37 E-value: 1.24e-04
|
|||||||
Name | Accession | Description | Interval | E-value | |||
Bromo_BAZ2A_B_like | cd05503 | Bromodomain, BAZ2A/BAZ2B_like subfamily. Bromo adjacent to zinc finger 2A (BAZ2A) and 2B ... |
1796-1892 | 3.70e-63 | |||
Bromodomain, BAZ2A/BAZ2B_like subfamily. Bromo adjacent to zinc finger 2A (BAZ2A) and 2B (BAZ2B) were identified as a novel human bromodomain gene by cDNA library screening. BAZ2A is also known as Tip5 (Transcription termination factor I-interacting protein 5) and hWALp3. The proteins may play roles in transcriptional regulation. Human Tip5 is part of a complex termed NoRC (nucleolar remodeling complex), which induces nucleosome sliding and may play a role in the regulation of the rDNA locus. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99935 Cd Length: 97 Bit Score: 209.92 E-value: 3.70e-63
|
|||||||
HAT_MBD | cd01397 | Methyl-CpG binding domains (MBD) present in putative chromatin remodelling factor such as ... |
549-621 | 2.31e-41 | |||
Methyl-CpG binding domains (MBD) present in putative chromatin remodelling factor such as BAZ2A; BAZ2A contains a MBD, DDT, PHD-type zinc finger and Bromo domain suggesting that BAZ2A might be associated with histone acetyltransferase (HAT) activity. The Drosophila melanogaster toutatis protein, a putative subunit of the chromatin-remodeling complex, and other such proteins in this group share a similar domain architecture with BAZ2A, as does the Caenorhabditis elegans flectin homolog. Pssm-ID: 238691 [Multi-domain] Cd Length: 73 Bit Score: 146.40 E-value: 2.31e-41
|
|||||||
BROMO | smart00297 | bromo domain; |
1798-1895 | 1.71e-35 | |||
bromo domain; Pssm-ID: 197636 [Multi-domain] Cd Length: 107 Bit Score: 131.25 E-value: 1.71e-35
|
|||||||
PHD_BAZ2A | cd15629 | PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A); BAZ2A, also ... |
1676-1722 | 1.09e-31 | |||
PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A); BAZ2A, also termed transcription termination factor I-interacting protein 5 (TTF-I-interacting protein 5, or Tip5), or WALp3, is an epigenetic regulator. It has been implicated in epigenetic rRNA gene silencing, as the large subunit of the SNF2h-containing chromatin-remodeling complex NoRC that induces nucleosome sliding in an ATP- and histone H4 tail-dependent fashion. BAZ2A has also been shown to be broadly overexpressed in prostate cancer, to regulate numerous protein-coding genes and to cooperate with EZH2 (enhancer of zeste homolog 2) to maintain epigenetic silencing at genes repressed in prostate cancer metastasis. Its overexpression is tightly associated with a prostate cancer subtype displaying CpG island methylator phenotype (CIMP) in tumors and with prostate cancer recurrence in patients. It contains a TAM (TIP5/ARBP/MBD) domain, a DDT domain, four AT-hooks, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. Pssm-ID: 277099 Cd Length: 47 Bit Score: 118.03 E-value: 1.09e-31
|
|||||||
MBD | smart00391 | Methyl-CpG binding domain; Methyl-CpG binding domain, also known as the TAM (TTF-IIP5, ARBP, ... |
547-622 | 1.85e-29 | |||
Methyl-CpG binding domain; Methyl-CpG binding domain, also known as the TAM (TTF-IIP5, ARBP, MeCP1) domain Pssm-ID: 128673 Cd Length: 77 Bit Score: 112.85 E-value: 1.85e-29
|
|||||||
MBD | pfam01429 | Methyl-CpG binding domain; The Methyl-CpG binding domain (MBD) binds to DNA that contains one ... |
544-618 | 1.41e-26 | |||
Methyl-CpG binding domain; The Methyl-CpG binding domain (MBD) binds to DNA that contains one or more symmetrically methylated CpGs. DNA methylation in animals is associated with alterations in chromatin structure and silencing of gene expression. MBD has negligible non-specific affinity for DNA. In vitro foot-printing with MeCP2 showed the MBD can protect a 12 nucleotide region surrounding a methyl CpG pair. MBDs are found in several Methyl-CpG binding proteins and also DNA demethylase. Pssm-ID: 396147 [Multi-domain] Cd Length: 76 Bit Score: 104.36 E-value: 1.41e-26
|
|||||||
Bromodomain | pfam00439 | Bromodomain; Bromodomains are 110 amino acid long domains, that are found in many chromatin ... |
1800-1883 | 1.30e-20 | |||
Bromodomain; Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 425683 [Multi-domain] Cd Length: 84 Bit Score: 87.75 E-value: 1.30e-20
|
|||||||
PHD | pfam00628 | PHD-finger; PHD folds into an interleaved type of Zn-finger chelating 2 Zn ions in a similar ... |
1677-1721 | 1.95e-16 | |||
PHD-finger; PHD folds into an interleaved type of Zn-finger chelating 2 Zn ions in a similar manner to that of the RING and FYVE domains. Several PHD fingers have been identified as binding modules of methylated histone H3. Pssm-ID: 425785 [Multi-domain] Cd Length: 51 Bit Score: 74.84 E-value: 1.95e-16
|
|||||||
DDT | smart00571 | domain in different transcription and chromosome remodeling factors; |
846-911 | 3.67e-15 | |||
domain in different transcription and chromosome remodeling factors; Pssm-ID: 214726 Cd Length: 63 Bit Score: 71.51 E-value: 3.67e-15
|
|||||||
PHD | smart00249 | PHD zinc finger; The plant homeodomain (PHD) finger is a C4HC3 zinc-finger-like motif found in ... |
1676-1721 | 4.96e-14 | |||
PHD zinc finger; The plant homeodomain (PHD) finger is a C4HC3 zinc-finger-like motif found in nuclear proteins thought to be involved in epigenetics and chromatin-mediated transcriptional regulation. The PHD finger binds two zinc ions using the so-called 'cross-brace' motif and is thus structurally related to the RING finger and the FYVE finger. It is not yet known if PHD fingers have a common molecular function. Several reports suggest that it can function as a protein-protein interacton domain and it was recently demonstrated that the PHD finger of p300 can cooperate with the adjacent BROMO domain in nucleosome binding in vitro. Other reports suggesting that the PHD finger is a ubiquitin ligase have been refuted as these domains were RING fingers misidentified as PHD fingers. Pssm-ID: 214584 [Multi-domain] Cd Length: 47 Bit Score: 68.01 E-value: 4.96e-14
|
|||||||
COG5076 | COG5076 | Transcription factor involved in chromatin remodeling, contains bromodomain [Chromatin ... |
1814-1895 | 2.72e-13 | |||
Transcription factor involved in chromatin remodeling, contains bromodomain [Chromatin structure and dynamics / Transcription]; Pssm-ID: 227408 [Multi-domain] Cd Length: 371 Bit Score: 73.69 E-value: 2.72e-13
|
|||||||
DDT | pfam02791 | DDT domain; The DDT domain is named after (DNA binding homeobox and Different Transcription ... |
848-908 | 3.97e-11 | |||
DDT domain; The DDT domain is named after (DNA binding homeobox and Different Transcription factors) and is approximately 60 residues in length. Along with the WHIM motifs, it comprises an entirely alpha helical module found in diverse eukaryotic chromatin proteins. Based on the structure of Ioc3, this module is inferred to interact with nucleosomal linker DNA and the SLIDE domain of ISWI proteins. The resulting complex forms a protein ruler that measures out the spacing between two adjacent nucleosomes. In particular, the DDT domain, in combination with the WHIM1 and WHIM2 motifs form the SLIDE domain binding pocket. Pssm-ID: 460696 Cd Length: 58 Bit Score: 59.83 E-value: 3.97e-11
|
|||||||
WSD | pfam15613 | Williams-Beuren syndrome DDT (WSD), D-TOX E motif; This family represents the combined ... |
1437-1471 | 4.13e-08 | |||
Williams-Beuren syndrome DDT (WSD), D-TOX E motif; This family represents the combined alpha-helical module found in diverse eukaryotic chromatin proteins. Based on the Ioc3 structure, the N-terminus of this module is inferred to interact with nucleosomal linker DNA and the SLIDE domain of ISWI proteins. The resulting complex forms a protein ruler that measures out the spacing between two adjacent nucleosomes. The acidic residue from the GxD signature at the N-terminus is a major determinant of the interaction between the ISWI and WHIM motifs. The N-terminal portion also contacts the inter-nucleosomal linker DNA. The module shows a great domain architectural diversity and is often combined with other modified histone peptide recognizing and DNA binding domains, some of which discriminate methylated DNA. The WSD module constitutes the inter-nucleosomal linker DNA binding site in the major groove of DNA, and was first identified as WSD, the D-TOX E motif of plant homeodomains homologous with the mutant transcription factor causing Williams-Beuren syndrome in association with the DDT-domain. Pssm-ID: 464775 [Multi-domain] Cd Length: 69 Bit Score: 51.76 E-value: 4.13e-08
|
|||||||
WSD | pfam15613 | Williams-Beuren syndrome DDT (WSD), D-TOX E motif; This family represents the combined ... |
1109-1164 | 2.58e-07 | |||
Williams-Beuren syndrome DDT (WSD), D-TOX E motif; This family represents the combined alpha-helical module found in diverse eukaryotic chromatin proteins. Based on the Ioc3 structure, the N-terminus of this module is inferred to interact with nucleosomal linker DNA and the SLIDE domain of ISWI proteins. The resulting complex forms a protein ruler that measures out the spacing between two adjacent nucleosomes. The acidic residue from the GxD signature at the N-terminus is a major determinant of the interaction between the ISWI and WHIM motifs. The N-terminal portion also contacts the inter-nucleosomal linker DNA. The module shows a great domain architectural diversity and is often combined with other modified histone peptide recognizing and DNA binding domains, some of which discriminate methylated DNA. The WSD module constitutes the inter-nucleosomal linker DNA binding site in the major groove of DNA, and was first identified as WSD, the D-TOX E motif of plant homeodomains homologous with the mutant transcription factor causing Williams-Beuren syndrome in association with the DDT-domain. Pssm-ID: 464775 [Multi-domain] Cd Length: 69 Bit Score: 49.45 E-value: 2.58e-07
|
|||||||
PRK10856 | PRK10856 | cytoskeleton protein RodZ; |
390-522 | 9.41e-07 | |||
cytoskeleton protein RodZ; Pssm-ID: 236776 [Multi-domain] Cd Length: 331 Bit Score: 53.11 E-value: 9.41e-07
|
|||||||
Herpes_BLLF1 | pfam05109 | Herpes virus major outer envelope glycoprotein (BLLF1); This family consists of the BLLF1 ... |
399-509 | 1.04e-04 | |||
Herpes virus major outer envelope glycoprotein (BLLF1); This family consists of the BLLF1 viral late glycoprotein, also termed gp350/220. It is the most abundantly expressed glycoprotein in the viral envelope of the Herpesviruses and is the major antigen responsible for stimulating the production of neutralising antibodies in vivo. Pssm-ID: 282904 [Multi-domain] Cd Length: 886 Bit Score: 47.22 E-value: 1.04e-04
|
|||||||
PHA03378 | PHA03378 | EBNA-3B; Provisional |
1325-1428 | 1.24e-04 | |||
EBNA-3B; Provisional Pssm-ID: 223065 [Multi-domain] Cd Length: 991 Bit Score: 47.37 E-value: 1.24e-04
|
|||||||
COG5141 | COG5141 | PHD zinc finger-containing protein [General function prediction only]; |
1677-1722 | 1.79e-03 | |||
PHD zinc finger-containing protein [General function prediction only]; Pssm-ID: 227470 [Multi-domain] Cd Length: 669 Bit Score: 43.05 E-value: 1.79e-03
|
|||||||
half-pint | TIGR01645 | poly-U binding splicing factor, half-pint family; The proteins represented by this model ... |
409-499 | 3.61e-03 | |||
poly-U binding splicing factor, half-pint family; The proteins represented by this model contain three RNA recognition motifs (rrm: pfam00076) and have been characterized as poly-pyrimidine tract binding proteins associated with RNA splicing factors. In the case of PUF60 (GP|6176532), in complex with p54, and in the presence of U2AF, facilitates association of U2 snRNP with pre-mRNA. Pssm-ID: 130706 [Multi-domain] Cd Length: 612 Bit Score: 42.36 E-value: 3.61e-03
|
|||||||
Name | Accession | Description | Interval | E-value | ||||
Bromo_BAZ2A_B_like | cd05503 | Bromodomain, BAZ2A/BAZ2B_like subfamily. Bromo adjacent to zinc finger 2A (BAZ2A) and 2B ... |
1796-1892 | 3.70e-63 | ||||
Bromodomain, BAZ2A/BAZ2B_like subfamily. Bromo adjacent to zinc finger 2A (BAZ2A) and 2B (BAZ2B) were identified as a novel human bromodomain gene by cDNA library screening. BAZ2A is also known as Tip5 (Transcription termination factor I-interacting protein 5) and hWALp3. The proteins may play roles in transcriptional regulation. Human Tip5 is part of a complex termed NoRC (nucleolar remodeling complex), which induces nucleosome sliding and may play a role in the regulation of the rDNA locus. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99935 Cd Length: 97 Bit Score: 209.92 E-value: 3.70e-63
|
||||||||
HAT_MBD | cd01397 | Methyl-CpG binding domains (MBD) present in putative chromatin remodelling factor such as ... |
549-621 | 2.31e-41 | ||||
Methyl-CpG binding domains (MBD) present in putative chromatin remodelling factor such as BAZ2A; BAZ2A contains a MBD, DDT, PHD-type zinc finger and Bromo domain suggesting that BAZ2A might be associated with histone acetyltransferase (HAT) activity. The Drosophila melanogaster toutatis protein, a putative subunit of the chromatin-remodeling complex, and other such proteins in this group share a similar domain architecture with BAZ2A, as does the Caenorhabditis elegans flectin homolog. Pssm-ID: 238691 [Multi-domain] Cd Length: 73 Bit Score: 146.40 E-value: 2.31e-41
|
||||||||
BROMO | smart00297 | bromo domain; |
1798-1895 | 1.71e-35 | ||||
bromo domain; Pssm-ID: 197636 [Multi-domain] Cd Length: 107 Bit Score: 131.25 E-value: 1.71e-35
|
||||||||
PHD_BAZ2A | cd15629 | PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A); BAZ2A, also ... |
1676-1722 | 1.09e-31 | ||||
PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A); BAZ2A, also termed transcription termination factor I-interacting protein 5 (TTF-I-interacting protein 5, or Tip5), or WALp3, is an epigenetic regulator. It has been implicated in epigenetic rRNA gene silencing, as the large subunit of the SNF2h-containing chromatin-remodeling complex NoRC that induces nucleosome sliding in an ATP- and histone H4 tail-dependent fashion. BAZ2A has also been shown to be broadly overexpressed in prostate cancer, to regulate numerous protein-coding genes and to cooperate with EZH2 (enhancer of zeste homolog 2) to maintain epigenetic silencing at genes repressed in prostate cancer metastasis. Its overexpression is tightly associated with a prostate cancer subtype displaying CpG island methylator phenotype (CIMP) in tumors and with prostate cancer recurrence in patients. It contains a TAM (TIP5/ARBP/MBD) domain, a DDT domain, four AT-hooks, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. Pssm-ID: 277099 Cd Length: 47 Bit Score: 118.03 E-value: 1.09e-31
|
||||||||
Bromodomain | cd04369 | Bromodomain. Bromodomains are found in many chromatin-associated proteins and in nuclear ... |
1799-1892 | 4.85e-31 | ||||
Bromodomain. Bromodomains are found in many chromatin-associated proteins and in nuclear histone acetyltransferases. They interact specifically with acetylated lysine. Pssm-ID: 99922 [Multi-domain] Cd Length: 99 Bit Score: 118.24 E-value: 4.85e-31
|
||||||||
Bromo_tif1_like | cd05502 | Bromodomain; tif1_like subfamily. Tif1 (transcription intermediary factor 1) is a member of ... |
1794-1896 | 6.63e-30 | ||||
Bromodomain; tif1_like subfamily. Tif1 (transcription intermediary factor 1) is a member of the tripartite motif (TRIM) protein family, which is characterized by a particular domain architecture. It functions by recruiting coactivators and/or corepressors to modulate transcription. Vertebrate Tif1-gamma, also labeled E3 ubiquitin-protein ligase TRIM33, plays a role in the control of hematopoiesis. Its homologue in Xenopus laevis, Ectodermin, has been shown to function in germ-layer specification and control of cell growth during embryogenesis. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99934 [Multi-domain] Cd Length: 109 Bit Score: 115.08 E-value: 6.63e-30
|
||||||||
MBD | smart00391 | Methyl-CpG binding domain; Methyl-CpG binding domain, also known as the TAM (TTF-IIP5, ARBP, ... |
547-622 | 1.85e-29 | ||||
Methyl-CpG binding domain; Methyl-CpG binding domain, also known as the TAM (TTF-IIP5, ARBP, MeCP1) domain Pssm-ID: 128673 Cd Length: 77 Bit Score: 112.85 E-value: 1.85e-29
|
||||||||
Bromo_gcn5_like | cd05509 | Bromodomain; Gcn5_like subfamily. Gcn5p is a histone acetyltransferase (HAT) which mediates ... |
1795-1895 | 1.92e-29 | ||||
Bromodomain; Gcn5_like subfamily. Gcn5p is a histone acetyltransferase (HAT) which mediates acetylation of histones at lysine residues; such acetylation is generally correlated with the activation of transcription. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99941 [Multi-domain] Cd Length: 101 Bit Score: 113.42 E-value: 1.92e-29
|
||||||||
PHD_BAZ2A_like | cd15545 | PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A) and 2B ... |
1676-1721 | 1.25e-28 | ||||
PHD finger found in bromodomain adjacent to zinc finger domain protein 2A (BAZ2A) and 2B (BAZ2B); BAZ2A, also termed transcription termination factor I-interacting protein 5 (TTF-I-interacting protein 5, or Tip5), or WALp3, is an epigenetic regulator. It has been implicated in epigenetic rRNA gene silencing, as the large subunit of the SNF2h-containing chromatin-remodeling complex NoRC that induces nucleosome sliding in an ATP- and histone H4 tail-dependent fashion. BAZ2A has also been shown to be broadly overexpressed in prostate cancer, to regulate numerous protein-coding genes and to cooperate with EZH2 (enhancer of zeste homolog 2) to maintain epigenetic silencing at genes repressed in prostate cancer metastasis. Its overexpression is tightly associated with a prostate cancer subtype displaying CpG island methylator phenotype (CIMP) in tumors and with prostate cancer recurrence in patients. BAZ2B, also termed WALp4, is a bromodomain-containing protein whose biological role is still elusive. It shows high sequence similarly with BAZ2A. Both BAZ2A and BAZ2B contain a TAM (TIP5/ARBP/MBD) domain, a DDT domain, four AT-hooks, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. BAZ2B also harbors an extra Apolipophorin-III like domain in its N-terminal region. Pssm-ID: 277020 [Multi-domain] Cd Length: 46 Bit Score: 109.32 E-value: 1.25e-28
|
||||||||
Bromo_Acf1_like | cd05504 | Bromodomain; Acf1_like or BAZ1A_like subfamily. Bromo adjacent to zinc finger 1A (BAZ1A) was ... |
1785-1894 | 4.25e-28 | ||||
Bromodomain; Acf1_like or BAZ1A_like subfamily. Bromo adjacent to zinc finger 1A (BAZ1A) was identified as a novel human bromodomain gene by cDNA library screening. The Drosophila homologue, Acf1, is part of the CHRAC (chromatin accessibility complex) and regulates ISWI-induced nucleosome remodeling. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99936 Cd Length: 115 Bit Score: 110.18 E-value: 4.25e-28
|
||||||||
MBD | pfam01429 | Methyl-CpG binding domain; The Methyl-CpG binding domain (MBD) binds to DNA that contains one ... |
544-618 | 1.41e-26 | ||||
Methyl-CpG binding domain; The Methyl-CpG binding domain (MBD) binds to DNA that contains one or more symmetrically methylated CpGs. DNA methylation in animals is associated with alterations in chromatin structure and silencing of gene expression. MBD has negligible non-specific affinity for DNA. In vitro foot-printing with MeCP2 showed the MBD can protect a 12 nucleotide region surrounding a methyl CpG pair. MBDs are found in several Methyl-CpG binding proteins and also DNA demethylase. Pssm-ID: 396147 [Multi-domain] Cd Length: 76 Bit Score: 104.36 E-value: 1.41e-26
|
||||||||
Bromo_Brdt_II_like | cd05498 | Bromodomain, Brdt_like subfamily, repeat II. Human Brdt is a testis-specific member of the BET ... |
1797-1892 | 1.63e-25 | ||||
Bromodomain, Brdt_like subfamily, repeat II. Human Brdt is a testis-specific member of the BET subfamily of bromodomain proteins; the first bromodomain in Brdt has been shown to be essential for male germ cell differentiation. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99930 Cd Length: 102 Bit Score: 102.36 E-value: 1.63e-25
|
||||||||
Bromo_BDF1_2_II | cd05499 | Bromodomain. BDF1/BDF2 like subfamily, restricted to fungi, repeat II. BDF1 and BDF2 are yeast ... |
1796-1892 | 2.01e-24 | ||||
Bromodomain. BDF1/BDF2 like subfamily, restricted to fungi, repeat II. BDF1 and BDF2 are yeast transcription factors involved in the expression of a wide range of genes, including snRNAs; they are required for sporulation and DNA repair and protect histone H4 from deacetylation. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99931 Cd Length: 102 Bit Score: 99.28 E-value: 2.01e-24
|
||||||||
MBD | cd00122 | MeCP2, MBD1, MBD2, MBD3, MBD4, CLLD8-like, and BAZ2A-like proteins constitute a family of ... |
549-610 | 2.54e-24 | ||||
MeCP2, MBD1, MBD2, MBD3, MBD4, CLLD8-like, and BAZ2A-like proteins constitute a family of proteins that share the methyl-CpG-binding domain (MBD). The MBD consists of about 70 residues and is defined as the minimal region required for binding to methylated DNA by a methyl-CpG-binding protein which binds specifically to methylated DNA. The MBD can recognize a single symmetrically methylated CpG either as naked DNA or within chromatin. MeCP2, MBD1 and MBD2 (and likely MBD3) form complexes with histone deacetylase and are involved in histone deacetylase-dependent repression of transcription. MBD4 is an endonuclease that forms a complex with the DNA mismatch-repair protein MLH1. The MBDs present in putative chromatin remodelling subunit, BAZ2A, and putative histone methyltransferase, CLLD8, represent two phylogenetically distinct groups within the MBD protein family. Pssm-ID: 238069 Cd Length: 62 Bit Score: 97.39 E-value: 2.54e-24
|
||||||||
PHD_BAZ2B | cd15630 | PHD finger found in bromodomain adjacent to zinc finger domain protein 2B (BAZ2B); BAZ2B, also ... |
1675-1723 | 1.85e-22 | ||||
PHD finger found in bromodomain adjacent to zinc finger domain protein 2B (BAZ2B); BAZ2B, also termed WALp4, is a bromodomain-containing protein whose biological role is still elusive. It shows high sequence similarly with BAZ2A, which is the large subunit of the SNF2h-containing chromatin-remodeling complex NoRC that induces nucleosome sliding in an ATP-and histone H4 tail-dependent fashion. BAZ2B contains a TAM (TIP5/ARBP/MBD) domain, an Apolipophorin-III like domain, a DDT domain, four AT-hooks, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. Pssm-ID: 277100 Cd Length: 49 Bit Score: 91.96 E-value: 1.85e-22
|
||||||||
Bromo_plant1 | cd05506 | Bromodomain, uncharacterized subfamily specific to plants. Might function as a global ... |
1800-1892 | 2.41e-22 | ||||
Bromodomain, uncharacterized subfamily specific to plants. Might function as a global transcription factor. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99938 Cd Length: 99 Bit Score: 93.16 E-value: 2.41e-22
|
||||||||
Bromodomain | pfam00439 | Bromodomain; Bromodomains are 110 amino acid long domains, that are found in many chromatin ... |
1800-1883 | 1.30e-20 | ||||
Bromodomain; Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 425683 [Multi-domain] Cd Length: 84 Bit Score: 87.75 E-value: 1.30e-20
|
||||||||
PHD_BAZ1A | cd15627 | PHD finger found in bromodomain adjacent to zinc finger domain protein 1A (BAZ1A); BAZ1A, also ... |
1677-1721 | 1.63e-20 | ||||
PHD finger found in bromodomain adjacent to zinc finger domain protein 1A (BAZ1A); BAZ1A, also termed ATP-dependent chromatin-remodeling protein, or ATP-utilizing chromatin assembly and remodeling factor 1 (ACF1), or CHRAC subunit ACF1, or Williams syndrome transcription factor-related chromatin-remodeling factor 180 (WCRF180), or WALp1, is a subunit of the conserved imitation switch (ISWI)-family ATP-dependent chromatin assembly and remodeling factor (ACF)/chromatin accessibility complex (CHRAC) chromatin remodeling complex, which is required for DNA replication through heterochromatin. It alters the remodeling properties of the ATPase motor protein sucrose nonfermenting-2 homolog (SNF2H). Moreover, BAZ1A and its complexes play important roles in DNA double-strand break (DSB) repair. It is essential for averting improper gene expression during spermatogenesis. It also regulates transcriptional repression of vitamin D3 receptor-regulated genes. BAZ1A contains a WAC motif, a DDT domain, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. Pssm-ID: 277097 [Multi-domain] Cd Length: 46 Bit Score: 86.29 E-value: 1.63e-20
|
||||||||
Bromo_TFIID | cd05511 | Bromodomain, TFIID-like subfamily. Human TAFII250 (or TAF250) is the largest subunit of TFIID, ... |
1801-1875 | 6.65e-20 | ||||
Bromodomain, TFIID-like subfamily. Human TAFII250 (or TAF250) is the largest subunit of TFIID, a large multi-domain complex, which initiates the assembly of the transcription machinery. TAFII250 contains two bromodomains that specifically bind to acetylated histone H4. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99943 [Multi-domain] Cd Length: 112 Bit Score: 86.93 E-value: 6.65e-20
|
||||||||
Bromo_BDF1_2_I | cd05500 | Bromodomain. BDF1/BDF2 like subfamily, restricted to fungi, repeat I. BDF1 and BDF2 are yeast ... |
1810-1889 | 2.17e-18 | ||||
Bromodomain. BDF1/BDF2 like subfamily, restricted to fungi, repeat I. BDF1 and BDF2 are yeast transcription factors involved in the expression of a wide range of genes, including snRNAs; they are required for sporulation and DNA repair and protect histone H4 from deacetylation. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99932 Cd Length: 103 Bit Score: 81.98 E-value: 2.17e-18
|
||||||||
PHD_BAZ1A_like | cd15544 | PHD finger found in bromodomain adjacent to zinc finger domain protein BAZ1A and BAZ1B; BAZ1A, ... |
1677-1721 | 8.00e-18 | ||||
PHD finger found in bromodomain adjacent to zinc finger domain protein BAZ1A and BAZ1B; BAZ1A, also termed ATP-dependent chromatin-remodeling protein, or ATP-utilizing chromatin assembly and remodeling factor 1 (ACF1), or CHRAC subunit ACF1, or Williams syndrome transcription factor-related chromatin-remodeling factor 180 (WCRF180), or WALp1, is a subunit of the conserved imitation switch (ISWI)-family ATP-dependent chromatin assembly and remodeling factor (ACF)/chromatin accessibility complex (CHRAC) chromatin remodeling complex, which is required for DNA replication through heterochromatin. It alters the remodeling properties of the ATPase motor protein sucrose nonfermenting-2 homolog (SNF2H). Moreover, BAZ1A and its complexes play important roles in DNA double-strand break (DSB) repair. It is essential for averting improper gene expression during spermatogenesis. It also regulates transcriptional repression of vitamin D3 receptor-regulated genes. BAZ1B, also termed Tyrosine-protein kinase BAZ1B, or Williams syndrome transcription factor (WSTF), or Williams-Beuren syndrome chromosomal region 10 protein, Williams-Beuren syndrome chromosomal region 9 protein, or WALp2, is a multifunctional protein implicated in several nuclear processes, including replication, transcription, and the DNA damage response. BAZ1B/WSTF, together with the imitation switch (ISWI) ATPase, forms a WSTF-ISWI chromatin remodeling complex (WICH), which transiently associates with the human inactive X chromosome (Xi) during late S-phase prior to BRCA1 and gamma-H2AX. Moreover, BAZ1B/WSTF, SNF2h, and nuclear myosin 1 (NM1) forms the chromatin remodeling complex B-WICH that is involved in regulating rDNA transcription. Both BAZ1A and BAZ1B contain a WAC motif, a DDT domain, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. Pssm-ID: 277019 Cd Length: 46 Bit Score: 78.61 E-value: 8.00e-18
|
||||||||
Bromo_SPT7_like | cd05510 | Bromodomain; SPT7_like subfamily. SPT7 is a yeast protein that functions as a component of the ... |
1800-1886 | 5.76e-17 | ||||
Bromodomain; SPT7_like subfamily. SPT7 is a yeast protein that functions as a component of the transcription regulatory histone acetylation (HAT) complexes SAGA, SALSA, and SLIK. SAGA is involved in the RNA polymerase II-dependent transcriptional regulation of about 10% of all yeast genes. The SPT7 bromodomain has been shown to weakly interact with acetylated histone H3, but not H4. The human representative of this subfamily is cat eye syndrome critical region protein 2 (CECR2). Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99942 [Multi-domain] Cd Length: 112 Bit Score: 78.25 E-value: 5.76e-17
|
||||||||
PHD | pfam00628 | PHD-finger; PHD folds into an interleaved type of Zn-finger chelating 2 Zn ions in a similar ... |
1677-1721 | 1.95e-16 | ||||
PHD-finger; PHD folds into an interleaved type of Zn-finger chelating 2 Zn ions in a similar manner to that of the RING and FYVE domains. Several PHD fingers have been identified as binding modules of methylated histone H3. Pssm-ID: 425785 [Multi-domain] Cd Length: 51 Bit Score: 74.84 E-value: 1.95e-16
|
||||||||
PHD1_Lid2p_like | cd15519 | PHD finger 1 found in Schizosaccharomyces pombe Lid2 complex component Lid2p and similar ... |
1676-1721 | 2.25e-16 | ||||
PHD finger 1 found in Schizosaccharomyces pombe Lid2 complex component Lid2p and similar proteins; Lid2p is a trimethyl H3K4 (H3K4me3) demethylase responsible for H3K4 hypomethylation in heterochromatin. It interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, and mediates H3K9 methylation and small RNA production. It also acts cooperatively with the histone modification enzymes Set1 and Lsd1 and plays an essential role in cross-talk between H3K4 and H3K9 methylation in euchromatin. Lid2p contains a JmjC domain, three PHD fingers and a JmjN domain. This model corresponds to the first PHD finger. Pssm-ID: 276994 [Multi-domain] Cd Length: 46 Bit Score: 74.42 E-value: 2.25e-16
|
||||||||
PHD_RSF1 | cd15543 | PHD finger found in Remodeling and spacing factor 1 (Rsf-1); Rsf-1, also termed HBV ... |
1677-1721 | 7.90e-16 | ||||
PHD finger found in Remodeling and spacing factor 1 (Rsf-1); Rsf-1, also termed HBV pX-associated protein 8, or Hepatitis B virus X-associated protein alpha (HBxAPalpha), or p325 subunit of RSF chromatin-remodeling complex, is a novel nuclear protein with histone chaperon function. It is a subunit of an ISWI chromatin remodeling complex, remodeling and spacing factor (RSF), and plays a role in mediating ATPase-dependent chromatin remodeling and conferring tumor aggressiveness in common carcinomas. As an ataxia-telangiectasia mutated (ATM)-dependent chromatin remodeler, Rsf-1 facilitates DNA damage checkpoints and homologous recombination repair. It regulates the mitotic spindle checkpoint and chromosome instability through the association with serine/threonine kinase BubR1 (BubR1) and Hepatitis B virus (HBV) X protein (HBx) in the chromatin fraction during mitosis. It also interacts with cyclin E1 and promotes tumor development. Rsf-1 contains a plant homeodomain (PHD) finger. Pssm-ID: 277018 [Multi-domain] Cd Length: 46 Bit Score: 73.07 E-value: 7.90e-16
|
||||||||
DDT | smart00571 | domain in different transcription and chromosome remodeling factors; |
846-911 | 3.67e-15 | ||||
domain in different transcription and chromosome remodeling factors; Pssm-ID: 214726 Cd Length: 63 Bit Score: 71.51 E-value: 3.67e-15
|
||||||||
Bromo_WSTF_like | cd05505 | Bromodomain; Williams syndrome transcription factor-like subfamily (WSTF-like). The ... |
1796-1877 | 8.49e-15 | ||||
Bromodomain; Williams syndrome transcription factor-like subfamily (WSTF-like). The Williams-Beuren syndrome deletion transcript 9 is a putative transcriptional regulator. WSTF was found to play a role in vitamin D-mediated transcription as part of two chromatin remodeling complexes, WINAC and WICH. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99937 Cd Length: 97 Bit Score: 71.80 E-value: 8.49e-15
|
||||||||
PHD1_KDM5A_like | cd15515 | PHD finger 1 found in Lysine-specific demethylase KDM5A, KDM5B, KDM5C, KDM5D and similar ... |
1677-1721 | 1.41e-14 | ||||
PHD finger 1 found in Lysine-specific demethylase KDM5A, KDM5B, KDM5C, KDM5D and similar proteins; The JARID subfamily within the JmjC proteins includes Lysine-specific demethylase KDM5A, KDM5B, KDM5C, KDM5D and a Drosophila homolog, protein little imaginal discs (Lid). KDM5A was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interacting with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK and BMAL1. KDM5B has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of the pregnant female and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. Both KDM5A and KDM5B function as trimethylated histone H3 lysine 4 (H3K4me3) demethylases. KDM5C is a H3K4 trimethyl-histone demethylase that catalyzes demethylation of H3K4me3 and H3K4me2 to H3K4me1. It plays a role in neuronal survival and dendrite development. KDM5C defects are associated with X-linked mental retardation (XLMR). KDM5D is a male-specific antigen that shows a demethylase activity specific for di- and tri-methylated histone H3K4 (H3K4me2 and H3K4me3), and has a male-specific function as a histone H3K4 demethylase by recruiting a meiosis-regulatory protein, MSH5, to condensed DNA. KDM5D directly interacts with a polycomb-like protein Ring6a/MBLR, and plays a role in regulation of transcriptional initiation through H3K4 demethylation. This family also includes Drosophila melanogaster protein little imaginal discs (Lid) that functions as a JmjC-dependent H3K4me3 demethylase, which is required for dMyc-induced cell growth. It positively regulates Hox gene expression in S2 cells. Members in this family contain the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as two or three plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger. Pssm-ID: 276990 Cd Length: 46 Bit Score: 69.34 E-value: 1.41e-14
|
||||||||
PHD2_KAT6A_6B | cd15527 | PHD finger 2 found in monocytic leukemia zinc-finger protein (MOZ) and its factor (MORF); MOZ, ... |
1676-1721 | 1.42e-14 | ||||
PHD finger 2 found in monocytic leukemia zinc-finger protein (MOZ) and its factor (MORF); MOZ, also termed histone acetyltransferase KAT6A, YBF2/SAS3, SAS2 and TIP60 protein 3 (MYST-3), or runt-related transcription factor-binding protein 2, or zinc finger protein 220, is a MYST-type histone acetyltransferase (HAT) that functions as a coactivator for acute myeloid leukemia 1 protein (AML1)- and p53-dependent transcription. It possesses intrinsic HAT activity to acetylate both itself and lysine (K) residues on histone H2B, histone H3 (K14) and histone H4 (K5, K8, K12 and K16) in vitro and H3K9 in vivo. MOZ-related factor (MORF), also termed MOZ2, or histone acetyltransferase KAT6B, or MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4 (MYST4), is a ubiquitously expressed transcriptional regulator with intrinsic HAT activity. It can interact with the Runt-domain transcription factor Runx2 and form a tetrameric complex with BRPFs, ING5, and EAF6. Both MOZ and MORF are catalytic subunits of HAT complexes that are required for normal developmental programs, such as hematopoiesis, neurogenesis, and skeletogenesis, and are also implicated in human leukemias. MOZ is also the catalytic subunit of a tetrameric inhibitor of growth 5 (ING5) complex, which specifically acetylates nucleosomal histone H3K14. Moreover, MOZ and MORF are involved in regulating transcriptional activation mediated by Runx2 (or Cbfa1), a Runt-domain transcription factor known to play important roles in T cell lymphomagenesis and bone development, and its homologs. MOZ contains a linker histone 1 and histone 5 domains and two plant homeodomain (PHD) fingers. In contrast, MORF contains an N-terminal region containing two PHD fingers, a putative HAT domain, an acidic region, and a C-terminal Ser/Met-rich domain. The family corresponds to the first PHD finger. Pssm-ID: 277002 Cd Length: 46 Bit Score: 69.33 E-value: 1.42e-14
|
||||||||
PHD | smart00249 | PHD zinc finger; The plant homeodomain (PHD) finger is a C4HC3 zinc-finger-like motif found in ... |
1676-1721 | 4.96e-14 | ||||
PHD zinc finger; The plant homeodomain (PHD) finger is a C4HC3 zinc-finger-like motif found in nuclear proteins thought to be involved in epigenetics and chromatin-mediated transcriptional regulation. The PHD finger binds two zinc ions using the so-called 'cross-brace' motif and is thus structurally related to the RING finger and the FYVE finger. It is not yet known if PHD fingers have a common molecular function. Several reports suggest that it can function as a protein-protein interacton domain and it was recently demonstrated that the PHD finger of p300 can cooperate with the adjacent BROMO domain in nucleosome binding in vitro. Other reports suggesting that the PHD finger is a ubiquitin ligase have been refuted as these domains were RING fingers misidentified as PHD fingers. Pssm-ID: 214584 [Multi-domain] Cd Length: 47 Bit Score: 68.01 E-value: 4.96e-14
|
||||||||
Bromo_brd1_like | cd05512 | Bromodomain; brd1_like subfamily. BRD1 is a mammalian gene which encodes for a nuclear protein ... |
1803-1885 | 9.10e-14 | ||||
Bromodomain; brd1_like subfamily. BRD1 is a mammalian gene which encodes for a nuclear protein assumed to be a transcriptional regulator. BRD1 has been implicated with brain development and susceptibility to schizophrenia and bipolar affective disorder. Bromodomains are 110 amino acid long domains that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99944 Cd Length: 98 Bit Score: 68.97 E-value: 9.10e-14
|
||||||||
COG5076 | COG5076 | Transcription factor involved in chromatin remodeling, contains bromodomain [Chromatin ... |
1814-1895 | 2.72e-13 | ||||
Transcription factor involved in chromatin remodeling, contains bromodomain [Chromatin structure and dynamics / Transcription]; Pssm-ID: 227408 [Multi-domain] Cd Length: 371 Bit Score: 73.69 E-value: 2.72e-13
|
||||||||
PHD2_d4 | cd15530 | PHD finger 2 found in d4 gene family proteins; The family includes proteins coded by three ... |
1676-1721 | 3.48e-13 | ||||
PHD finger 2 found in d4 gene family proteins; The family includes proteins coded by three members of the d4 gene family, DPF1 (neuro-d4), DPF2 (ubi-d4/Requiem), and DPF3 (cer-d4), which function as transcription factors and are involved in transcriptional regulation of genes by changing the condensed/decondensed state of chromatin in the nucleus. DPF2 is ubiquitously expressed and it acts as a transcription factor that may participate in developmentally programmed cell death. DPF1 and DPF3 are expressed predominantly in neural tissues, and they may be involved in the transcription regulation of neuro-specific gene clusters. The d4 family proteins show distinct domain organization with domain 2/3 in the N-terminal region, a Cys2His2 (C2H2) zinc finger or Kruppel-type zinc finger in the central part and two adjacent plant homeodomain (PHD) fingers (d4-domain) in the C-terminal part of the molecule. This model corresponds to the second PHD finger. Pssm-ID: 277005 Cd Length: 46 Bit Score: 65.48 E-value: 3.48e-13
|
||||||||
PHD_BAZ1B | cd15628 | PHD finger found in bromodomain adjacent to zinc finger domain protein 1B (BAZ1B); BAZ1B, also ... |
1677-1721 | 3.70e-13 | ||||
PHD finger found in bromodomain adjacent to zinc finger domain protein 1B (BAZ1B); BAZ1B, also termed Tyrosine-protein kinase BAZ1B, or Williams syndrome transcription factor (WSTF), or Williams-Beuren syndrome chromosomal region 10 protein, Williams-Beuren syndrome chromosomal region 9 protein, or WALp2, is a multifunctional protein implicated in several nuclear processes, including replication, transcription, and the DNA damage response. BAZ1B/WSTF, together with the imitation switch (ISWI) ATPase, forms a WSTF-ISWI chromatin remodeling complex (WICH), which transiently associates with the human inactive X chromosome (Xi) during late S-phase prior to BRCA1 and gamma-H2AX. Moreover, BAZ1B/WSTF, SNF2h, and nuclear myosin 1 (NM1) forms the chromatin remodeling complex B-WICH that is involved in regulating rDNA transcription. BAZ1B contains a WAC motif, a DDT domain, BAZ 1 and BAZ 2 motifs, a WAKZ (WSTF/Acf1/KIAA0314/ZK783.4) motif, a plant homeodomain (PHD) finger, and a bromodomain. Pssm-ID: 277098 Cd Length: 46 Bit Score: 65.15 E-value: 3.70e-13
|
||||||||
Bromo_WDR9_II | cd05496 | Bromodomain; WDR9 repeat II_like subfamily. WDR9 is a human gene located in the Down Syndrome ... |
1800-1871 | 1.28e-12 | ||||
Bromodomain; WDR9 repeat II_like subfamily. WDR9 is a human gene located in the Down Syndrome critical region-2 of chromosome 21. It encodes for a nuclear protein containing WD40 repeats and two bromodomains, which may function as a transcriptional regulator involved in chromatin remodeling and play a role in embryonic development. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99928 Cd Length: 119 Bit Score: 66.33 E-value: 1.28e-12
|
||||||||
PHD1_KDM5A | cd15602 | PHD finger 1 found in Lysine-specific demethylase 5A (KDM5A); KDM5A (also termed Histone ... |
1677-1724 | 1.41e-12 | ||||
PHD finger 1 found in Lysine-specific demethylase 5A (KDM5A); KDM5A (also termed Histone demethylase JARID1A, Jumonji/ARID domain-containing protein 1A, or Retinoblastoma-binding protein 2 (RBBP-2 or RBP2)) was originally identified as a retinoblastoma protein (Rb)-binding partner and its inactivation may be important for Rb to promote differentiation. It is involved in transcription through interacting with TBP, p107, nuclear receptors, Myc, Sin3/HDAC, Mad1, RBP-J, CLOCK and BMAL1. KDM5A functions as a trimethylated histone H3 lysine 4 (H3K4me3) demethylase that belongs to the JARID subfamily within the JmjC proteins. It also displays DNA-binding activities that can recognize the specific DNA sequence CCGCCC. KDM5A contains the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger. Pssm-ID: 277075 Cd Length: 49 Bit Score: 63.82 E-value: 1.41e-12
|
||||||||
PHD1_Lid_like | cd15605 | PHD finger 1 found in Drosophila melanogaster protein little imaginal discs (Lid) and similar ... |
1677-1721 | 2.21e-12 | ||||
PHD finger 1 found in Drosophila melanogaster protein little imaginal discs (Lid) and similar proteins; Drosophila melanogaster Lid, also termed Retinoblastoma-binding protein 2 homolog, is identified genetically as a trithorax group (trxG) protein that is a Drosophila homolog of the human protein JARID1A/kdm5A, a member of the JARID subfamily within the JmjC proteins. Lid functions as a JmjC-dependent trimethyl histone H3K4 (H3K4me3) demethylase, which is required for dMyc-induced cell growth. It positively regulates Hox gene expression in S2 cells. Lid contains the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger of Lid. Pssm-ID: 277078 Cd Length: 46 Bit Score: 63.24 E-value: 2.21e-12
|
||||||||
Bromo_AAA | cd05528 | Bromodomain; sub-family co-occurring with AAA domains. Bromodomains are 110 amino acid long ... |
1815-1879 | 3.69e-12 | ||||
Bromodomain; sub-family co-occurring with AAA domains. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. The structure(2DKW) in this alignment is an uncharacterized protein predicted from analysis of cDNA clones from human fetal liver Pssm-ID: 99957 Cd Length: 112 Bit Score: 64.69 E-value: 3.69e-12
|
||||||||
Bromo_brd7_like | cd05513 | Bromodomain, brd7_like subgroup. The BRD7 gene encodes a nuclear protein that has been shown ... |
1816-1880 | 4.70e-12 | ||||
Bromodomain, brd7_like subgroup. The BRD7 gene encodes a nuclear protein that has been shown to inhibit cell growth and the progression of the cell cycle by regulating cell-cycle genes at the transcriptional level. BRD7 has been identified as a gene involved in nasopharyngeal carcinoma. The protein interacts with acetylated histone H3 via its bromodomain. Bromodomains are 110 amino acid long domains that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99945 Cd Length: 98 Bit Score: 63.97 E-value: 4.70e-12
|
||||||||
Bromo_Brdt_I_like | cd05497 | Bromodomain, Brdt_like subfamily, repeat I. Human Brdt is a testis-specific member of the BET ... |
1810-1874 | 8.15e-12 | ||||
Bromodomain, Brdt_like subfamily, repeat I. Human Brdt is a testis-specific member of the BET subfamily of bromodomain proteins; the first bromodomain in Brdt has been shown to be essential for male germ cell differentiation. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99929 Cd Length: 107 Bit Score: 63.59 E-value: 8.15e-12
|
||||||||
Bromodomain_1 | cd05494 | Bromodomain; uncharacterized subfamily. Bromodomains are found in many chromatin-associated ... |
1796-1849 | 1.17e-11 | ||||
Bromodomain; uncharacterized subfamily. Bromodomains are found in many chromatin-associated proteins and in nuclear histone acetyltransferases. They interact specifically with acetylated lysine. Pssm-ID: 99926 [Multi-domain] Cd Length: 114 Bit Score: 63.23 E-value: 1.17e-11
|
||||||||
PHD1_KDM5B | cd15603 | PHD finger 1 found in lysine-specific demethylase 5B (KDM5B); KDM5B (also termed Cancer/testis ... |
1677-1721 | 1.90e-11 | ||||
PHD finger 1 found in lysine-specific demethylase 5B (KDM5B); KDM5B (also termed Cancer/testis antigen 31 (CT31), Histone demethylase JARID1B, Jumonji/ARID domain-containing protein 1B (JARID1B), PLU-1, or retinoblastoma-binding protein 2 homolog 1 (RBP2-H1 or RBBP2H1A)) is a member of the JARID subfamily within the JmjC proteins. It has a restricted expression pattern in the testis, ovary, and transiently in the mammary gland of pregnant females and has been shown to be upregulated in breast cancer, prostate cancer, and lung cancer, suggesting a potential role in tumorigenesis. KDM5B acts as a histone demethylase that catalyzes the removal of trimethylation of lysine 4 on histone H3 (H3K4me3), induced by polychlorinated biphenyls (PCBs). It also mediates demethylation of H3K4me2 and H3K4me1. Moreover, KDM5B functions as a negative regulator of hematopoietic stem cell (HSC) self-renewal and progenitor cell activity. KDM5B has also been shown to interact with the DNA binding transcription factors BF-1 and PAX9, as well as TIEG1/KLF10 (transforming growth factor-beta inducible early gene-1/Kruppel-like transcription factor 10), and possibly function as a transcriptional corepressor. KDM5B contains the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as three plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger. Pssm-ID: 277076 Cd Length: 46 Bit Score: 60.35 E-value: 1.90e-11
|
||||||||
PHD_PHRF1 | cd15536 | PHD finger found in PHD and RING finger domain-containing protein 1 (PHRF1); PHRF1, also ... |
1677-1721 | 2.37e-11 | ||||
PHD finger found in PHD and RING finger domain-containing protein 1 (PHRF1); PHRF1, also termed KIAA1542, or CTD-binding SR-like protein rA9, is a ubiquitin ligase that induces the ubiquitination of TGIF (TG-interacting factor) at lysine 130. It acts as a tumor suppressor that promotes the transforming growth factor (TGF)-beta cytostatic program through selective release of TGIF-driven promyelocytic leukemia protein (PML) inactivation. PHRF1 contains a plant homeodomain (PHD) finger and a RING finger. Pssm-ID: 277011 Cd Length: 46 Bit Score: 60.12 E-value: 2.37e-11
|
||||||||
PHD1_KDM5C_5D | cd15604 | PHD finger 1 found in Lysine-specific demethylase 5C (KDM5C) and 5D (KDM5D); The family ... |
1677-1721 | 2.67e-11 | ||||
PHD finger 1 found in Lysine-specific demethylase 5C (KDM5C) and 5D (KDM5D); The family includes KDM5C and KDM5D, both of which belong to the JARID subfamily within the JmjC proteins. KDM5C (also termed Histone demethylase JARID1C, Jumonji/ARID domain-containing protein 1C, SmcX, or Xe169) is a H3K4 trimethyl-histone demethylase that catalyzes demethylation of H3K4me3 and H3K4me2 to H3K4me1. It plays a role in neuronal survival and dendrite development. KDM5C defects are associated with X-linked mental retardation (XLMR). KDM5D (also termed Histocompatibility Y antigen (H-Y), Histone demethylase JARID1D, Jumonji/ARID domain-containing protein 1D, or SmcY) is a male-specific antigen that shows a demethylase activity specific for di- and tri-methylated histone H3K4 (H3K4me3 andH3K4me2), and has a male-specific function as a histone H3K4 demethylase by recruiting a meiosis-regulatory protein, MSH5, to condensed DNA. KDM5D directly interacts with a polycomb-like protein Ring6a/MBLR, and plays a role in regulation of transcriptional initiation through H3K4 demethylation. Both KDM5C and KDM5D contain the catalytic JmjC domain, JmjN, the BRIGHT domain, which is an AT-rich interacting domain (ARID), and a Cys5HisCys2 zinc finger, as well as two plant homeodomain (PHD) fingers. This model corresponds to the first PHD finger. Pssm-ID: 277077 Cd Length: 46 Bit Score: 60.24 E-value: 2.67e-11
|
||||||||
Bromo_cbp_like | cd05495 | Bromodomain, cbp_like subfamily. Cbp (CREB binding protein or CREBBP) is an acetyltransferase ... |
1813-1891 | 3.28e-11 | ||||
Bromodomain, cbp_like subfamily. Cbp (CREB binding protein or CREBBP) is an acetyltransferase acting on histone, which gives a specific tag for transcriptional activation and also acetylates non-histone proteins. CREBBP binds specifically to phosphorylated CREB protein and augments the activity of phosphorylated CREB to activate transcription of cAMP-responsive genes. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99927 Cd Length: 108 Bit Score: 61.69 E-value: 3.28e-11
|
||||||||
DDT | pfam02791 | DDT domain; The DDT domain is named after (DNA binding homeobox and Different Transcription ... |
848-908 | 3.97e-11 | ||||
DDT domain; The DDT domain is named after (DNA binding homeobox and Different Transcription factors) and is approximately 60 residues in length. Along with the WHIM motifs, it comprises an entirely alpha helical module found in diverse eukaryotic chromatin proteins. Based on the structure of Ioc3, this module is inferred to interact with nucleosomal linker DNA and the SLIDE domain of ISWI proteins. The resulting complex forms a protein ruler that measures out the spacing between two adjacent nucleosomes. In particular, the DDT domain, in combination with the WHIM1 and WHIM2 motifs form the SLIDE domain binding pocket. Pssm-ID: 460696 Cd Length: 58 Bit Score: 59.83 E-value: 3.97e-11
|
||||||||
PHD_SF | cd15489 | PHD finger superfamily; The PHD finger superfamily includes a canonical plant homeodomain (PHD) ... |
1676-1721 | 4.76e-11 | ||||
PHD finger superfamily; The PHD finger superfamily includes a canonical plant homeodomain (PHD) finger typically characterized as Cys4HisCys3, and a non-canonical extended PHD finger, characterized as Cys2HisCys5HisCys2His. Variations include the RAG2 PHD finger characterized by Cys3His2Cys2His and the PHD finger 5 found in nuclear receptor-binding SET domain-containing proteins characterized by Cys4HisCys2His. The PHD finger is also termed LAP (leukemia-associated protein) motif or TTC (trithorax consensus) domain. Single or multiple copies of PHD fingers have been found in a variety of eukaryotic proteins involved in the control of gene transcription and chromatin dynamics. PHD fingers can recognize the unmodified and modified histone H3 tail, and some have been found to interact with non-histone proteins. They also function as epigenome readers controlling gene expression through molecular recruitment of multi-protein complexes of chromatin regulators and transcription factors. The PHD finger domain SF is structurally similar to the RING and FYVE_like superfamilies. Pssm-ID: 276966 [Multi-domain] Cd Length: 48 Bit Score: 59.25 E-value: 4.76e-11
|
||||||||
PHD2_KMT2C_like | cd15510 | PHD finger 2 found in Histone-lysine N-methyltransferase 2C (KMT2C) and 2D (KMT2D); KMT2C, ... |
1677-1721 | 5.20e-11 | ||||
PHD finger 2 found in Histone-lysine N-methyltransferase 2C (KMT2C) and 2D (KMT2D); KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3) or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named MLL4, a fourth human homolog of Drosophila trithorax, located on chromosome 12. It enzymatically generates trimethylated histone H3 Lysine 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such as HOXA1-3 and NESTIN. KMT2D is also a part of ASCOM. Both KMT2C and KMT2D contain the catalytic domain SET, five plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, a RING finger, an HMG (high-mobilitygroup)-binding motif, and two FY-rich regions. This model corresponds to the second PHD finger. Pssm-ID: 276985 Cd Length: 46 Bit Score: 59.37 E-value: 5.20e-11
|
||||||||
PHD2_KMT2C | cd15594 | PHD finger 2 found in Histone-lysine N-methyltransferase 2C (KMT2C); KMT2C, also termed ... |
1677-1721 | 6.98e-11 | ||||
PHD finger 2 found in Histone-lysine N-methyltransferase 2C (KMT2C); KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3) or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2C contains several plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, an ATPase alpha beta signature, a high mobility group (HMG)-1 box, a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain and two FY (phenylalanine tyrosine)-rich domains. This model corresponds to the second PHD finger. Pssm-ID: 277069 Cd Length: 46 Bit Score: 58.80 E-value: 6.98e-11
|
||||||||
PHD2_KMT2D | cd15595 | PHD finger 2 found in Histone-lysine N-methyltransferase 2D (KMT2D); KMT2D, also termed ... |
1677-1721 | 8.91e-11 | ||||
PHD finger 2 found in Histone-lysine N-methyltransferase 2D (KMT2D); KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named myeloid/lymphoid or mixed-lineage leukemia 4 (MLL4), a fourth human homolog of Drosophila trithorax, located on chromosome 12. KMT2D enzymatically generates trimethylated histone H3 Lys 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such asHOXA1-3 and NESTIN. It is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and KMT2D. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D contains the catalytic domain SET, five plant homeodomain (PHD) fingers, two extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, a RING finger, an HMG (high-mobility group)-binding motif, and two FY-rich regions. This model corresponds to the second PHD finger. Pssm-ID: 277070 Cd Length: 46 Bit Score: 58.47 E-value: 8.91e-11
|
||||||||
Bromo_brd8_like | cd05507 | Bromodomain, brd8_like subgroup. In mammals, brd8 (bromodomain containing 8) interacts with ... |
1808-1886 | 4.70e-10 | ||||
Bromodomain, brd8_like subgroup. In mammals, brd8 (bromodomain containing 8) interacts with the thyroid hormone receptor in a ligand-dependent fashion and enhances thyroid hormone-dependent activation from thyroid response elements. Brd8 is thought to be a nuclear receptor coactivator. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99939 Cd Length: 104 Bit Score: 58.53 E-value: 4.70e-10
|
||||||||
PHD_TIF1_like | cd15541 | PHD finger found in the transcriptional intermediary factor 1 (TIF1) family and similar ... |
1677-1721 | 6.24e-10 | ||||
PHD finger found in the transcriptional intermediary factor 1 (TIF1) family and similar proteins; The TIF1 family of transcriptional cofactors includes TIF1alpha (TRIM24), TIF1beta (TRIM28), TIF1gamma (TRIM33), and TIF1delta (TRIM66), which are characterized by an N-terminal RING-finger B-box coiled-coil (RBCC/TRIM) motif and plant homeodomain (PHD) finger followed by a bromodomain in the C-terminal region. TIF1 proteins couple chromatin modifications to transcriptional regulation, signaling, and tumor suppression. They exert a deacetylase-dependent silencing effect when tethered to a promoter region. TIF1alpha, TIF1beta, and TIF1delta can homodimerize and contain a PXVXL motif necessary and sufficient for heterochromatin protein 1(HP1) binding. TIF1alpha and TIF1beta bind nuclear receptors and Kruppel-associated boxes (KRAB) specifically and respectively. In contrast, TIF1delta appears to lack nuclear receptor- and KRAB-binding activity. Moreover, TIF1delta is specifically involved in heterochromatin-mediated gene silencing during postmeiotic phases of spermatogenesis. TIF1gamma is structurally closely related to TIF1alpha and TIF1beta, but has very little functional features in common with them. It does not interact with the KRAB silencing domain of KOX1 or the heterochromatinic proteins HP1alpha, beta, and gamma. It cannot bind to nuclear receptors (NRs). This family also includes Sp100/Sp140 family proteins, the nuclear body SP100 and SP140. Sp110 is a leukocyte-specific component of the nuclear body. It may function as a nuclear hormone receptor transcriptional coactivator that may play a role in inducing differentiation of myeloid cells. It is also involved in resisting intracellular pathogens and functions as an important drug target for preventing intracellular pathogen diseases, such as tuberculosis, hepatic veno-occlusive disease, and intracellular cancers. SP140 is an interferon inducible nuclear leukocyte-specific protein involved in primary biliary cirrhosis and a risk factor in chronic lymphocytic leukemia. It is also implicated in innate immune response to human immunodeficiency virus type 1 (HIV-1) by binding to the virus viral infectivity factor (Vif) protein. Both Sp110 and Sp140 contain a SAND domain, a plant homeodomain (PHD) finger, and a bromodomain (BRD). Pssm-ID: 277016 [Multi-domain] Cd Length: 43 Bit Score: 56.20 E-value: 6.24e-10
|
||||||||
PHD2_CHD_II | cd15532 | PHD finger 2 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD ... |
1677-1721 | 6.72e-10 | ||||
PHD finger 2 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD proteins includes chromodomain-helicase-DNA-binding protein CHD3, CHD4, and CHD5, which are nuclear and ubiquitously expressed chromatin remodelling ATPases generally associated with histone deacetylases (HDACs). They are involved in DNA Double Strand Break (DSB) signaling, DSB repair and/or p53-dependent pathways such as apoptosis and senescence, as well as in the maintenance of genomic stability, and/or cancer prevention. They function as subunits of the Nucleosome Remodelling and Deacetylase (NuRD) complex, which is generally associated with gene repression, heterochromatin formation, and overall chromatin compaction. In contrast to the class I CHD enzymes (CHD1 and CHD2), class II CHD proteins lack identifiable DNA-binding domains, but possess a C-terminal coiled-coil region. Moreover, in addition to the tandem chromodomains and a helicase domain, they all harbor tandem plant homeodomain (PHD) zinc fingers involved in the recognition of methylated histone tails. This model corresponds to the second PHD finger. Pssm-ID: 277007 [Multi-domain] Cd Length: 43 Bit Score: 56.13 E-value: 6.72e-10
|
||||||||
PHD1_AIRE | cd15539 | PHD finger 1 found in autoimmune regulator (AIRE); AIRE, also termed autoimmune ... |
1677-1721 | 6.78e-10 | ||||
PHD finger 1 found in autoimmune regulator (AIRE); AIRE, also termed autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) protein, functions as a regulator of gene transcription in the thymus. It is essential for prevention of autoimmunity. AIRE plays a critical role in the induction of central tolerance. It promotes self-tolerance through tissue-specific antigen (TSA) expression. It also acts as an active regulator of chondrocyte differentiation. AIRE contains a homogeneously-staining region (HSR) or caspase-recruitment domain (CARD), a nuclear localization signal (NLS), a SAND (for Sp100, AIRE, nuclear phosphoprotein 41/75 or NucP41/75, and deformed epidermal auto regulatory factor 1 or Deaf1) domain, two plant homeodomain (PHD) fingers, and four LXXLL (where L stands for leucine) motifs. This model corresponds to the first PHD finger that recognizes the unmethylated tail of histone H3 and targets AIRE-dependent genes. Pssm-ID: 277014 [Multi-domain] Cd Length: 43 Bit Score: 55.92 E-value: 6.78e-10
|
||||||||
PHD1_MTF2_PHF19_like | cd15499 | PHD finger 1 found in polycomb repressive complex 2 (PRC2)-associated polycomb-like (PCL) ... |
1676-1722 | 8.97e-10 | ||||
PHD finger 1 found in polycomb repressive complex 2 (PRC2)-associated polycomb-like (PCL) family proteins MTF2, PHF19, and similar proteins; The family includes two PCL family proteins, metal-response element-binding transcription factor 2 (MTF2/PCL2) and PHF19/PCL3, which are homologs of PHD finger protein1 (PHF1). PCL family proteins are accessory components of the polycomb repressive complex 2 (PRC2) core complex and all contain an N-terminal Tudor domain followed by two PHD fingers, and a C-terminal MTF2 domain. They specifically recognize tri-methylated H3K36 (H3K36me3) through their N-terminal Tudor domains. The interaction between their Tudor domains and H3K36me3 is critical for both the targeting and spreading of PRC2 into active chromatin regions and for the maintenance of optimal repression of poised developmental genes where PCL proteins, H3K36me3, and H3K27me3 coexist. Moreover, unlike other PHD finger-containing proteins, the first PHD fingers of PCL proteins do not display histone H3K4 binding affinity and they do not affect the Tudor domain binding to histones. This model corresponds to the first PHD finger. Pssm-ID: 276974 Cd Length: 53 Bit Score: 55.97 E-value: 8.97e-10
|
||||||||
Bromo_WDR9_I_like | cd05529 | Bromodomain; WDR9 repeat I_like subfamily. WDR9 is a human gene located in the Down Syndrome ... |
1776-1879 | 9.31e-10 | ||||
Bromodomain; WDR9 repeat I_like subfamily. WDR9 is a human gene located in the Down Syndrome critical region-2 of chromosome 21. It encodes for a nuclear protein containing WD40 repeats and two bromodomains, which may function as a transcriptional regulator involved in chromatin remodeling and play a role in embryonic development. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99958 Cd Length: 128 Bit Score: 58.50 E-value: 9.31e-10
|
||||||||
Bromo_polybromo_V | cd05515 | Bromodomain, polybromo repeat V. Polybromo is a nuclear protein of unknown function, which ... |
1828-1879 | 1.37e-09 | ||||
Bromodomain, polybromo repeat V. Polybromo is a nuclear protein of unknown function, which contains 6 bromodomains. The human ortholog BAF180 is part of a SWI/SNF chromatin-remodeling complex, and it may carry out the functions of Yeast Rsc-1 and Rsc-2. It was shown that polybromo bromodomains bind to histone H3 at specific acetyl-lysine positions. Bromodomains are found in many chromatin-associated proteins and in nuclear histone acetyltransferases. They interact specifically with acetylated lysine, but not all the bromodomains in polybromo may bind to acetyl-lysine. Pssm-ID: 99946 Cd Length: 105 Bit Score: 57.31 E-value: 1.37e-09
|
||||||||
PHD_UHRF1_2 | cd15525 | PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein UHRF1 and ... |
1677-1721 | 2.48e-09 | ||||
PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein UHRF1 and UHRF2; UHRF1 is a unique chromatin effector protein that integrates the recognition of both histone PTMs and DNA methylation. It is essential for cell proliferation and plays a critical role in the development and progression of many human carcinomas, such as laryngeal squamous cell carcinoma (LSCC), gastric cancer (GC), esophageal squamous cell carcinoma (ESCC), colorectal cancer, prostate cancer, and breast cancer. UHRF1 acts as a transcriptional repressor through its binding to histone H3 when it is unmodified at Arg2. Its overexpression in human lung fibroblasts results in downregulation of expression of the tumour suppressor pRB. It also plays a role in transcriptional repression of the cell cycle regulator p21. Moreover, UHRF1-dependent repression of transcription factors can facilitate the G1-S transition. It interacts with Tat-interacting protein of 60 kDa (TIP60) and induces degradation-independent ubiquitination of TIP60. It is also an N-methylpurine DNA glycosylase (MPG)-interacting protein that binds MPG in a p53 status-independent manner in the DNA base excision repair (BER) pathway. In addition, UHRF1 functions as an epigenetic regulator that is important for multiple aspects of epigenetic regulation, including maintenance of DNA methylation patterns and recognition of various histone modifications. UHRF2 was originally identified as a ubiquitin ligase acting as a small ubiquitin-like modifier (SUMO) E3 ligase that enhances zinc finger protein 131 (ZNF131) SUMOylation but does not enhance ZNF131 ubiquitination. It also ubiquitinates PCNP, a PEST-containing nuclear protein. Moreover, UHRF2 functions as a nuclear protein involved in cell-cycle regulation and has been implicated in tumorigenesis. It interacts with cyclins, CDKs, p53, pRB, PCNA, HDAC1, DNMTs, G9a, methylated histone H3 lysine 9, and methylated DNA. It interacts with the cyclin E-CDK2 complex, ubiquitinates cyclins D1 and E1, induces G1 arrest, and is involved in the G1/S transition regulation. Furthermore, UHRF2 is a direct transcriptional target of the transcription factor E2F-1 in the induction of apoptosis. It recruits HDAC1 and binds to methyl-CpG. UHRF2 also participates in the maturation of Hepatitis B virus (HBV) by interacting with the HBV core protein and promoting its degradation. Both UHRF1 and UHRF2 contain an N-terminal ubiquitin-like domain (UBL), a tandem Tudor domain (TTD), a plant homeodomain (PHD) finger, a SET- and RING-associated (SRA) domain, and a C-terminal RING finger. Pssm-ID: 277000 Cd Length: 47 Bit Score: 54.68 E-value: 2.48e-09
|
||||||||
PHD2_PHF10 | cd15529 | PHD finger 2 found in PHD finger protein 10 (PHF10) and similar proteins; PHF10, also termed ... |
1676-1721 | 4.51e-09 | ||||
PHD finger 2 found in PHD finger protein 10 (PHF10) and similar proteins; PHF10, also termed BRG1-associated factor 45a (BAF45a), or XAP135, is a ubiquitously expressed transcriptional regulator that is required for maintaining the undifferentiated status of neuroblasts. It contains a SAY (supporter of activation of yellow) domain and two adjacent plant homeodomain (PHD) fingers. This model corresponds to the second PHD finger. Pssm-ID: 277004 Cd Length: 44 Bit Score: 53.85 E-value: 4.51e-09
|
||||||||
Bromo_ZMYND11 | cd05492 | Bromodomain; ZMYND11_like sub-family. ZMYND11 or BS69 is a ubiquitously expressed nuclear ... |
1828-1886 | 7.33e-09 | ||||
Bromodomain; ZMYND11_like sub-family. ZMYND11 or BS69 is a ubiquitously expressed nuclear protein that has been shown to associate with chromatin. It interacts with chromatin remodeling factors and might play a role in chromatin remodeling and gene expression. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99924 Cd Length: 109 Bit Score: 55.08 E-value: 7.33e-09
|
||||||||
MeCP2_MBD | cd01396 | MeCP2, MBD1, MBD2, MBD3, and MBD4 are members of a protein family that share the ... |
547-618 | 8.25e-09 | ||||
MeCP2, MBD1, MBD2, MBD3, and MBD4 are members of a protein family that share the methyl-CpG-binding domain (MBD). The MBD, consists of about 70 residues and is defined as the minimal region required for binding to methylated DNA by a methyl-CpG-binding protein which binds specifically to methylated DNA. The MBD can recognize a single symmetrically methylated CpG either as naked DNA or within chromatin. MeCP2, MBD1 and MBD2 (and likely MBD3) form complexes with histone deacetylase and are involved in histone deacetylase-dependent repression of transcription. MBD4 is an endonuclease that forms a complex with the DNA mismatch-repair protein MLH1. Pssm-ID: 238690 Cd Length: 77 Bit Score: 53.92 E-value: 8.25e-09
|
||||||||
PHD5_KMT2C_like | cd15513 | PHD finger 5 found in Histone-lysine N-methyltransferase 2C (KMT2C) and PHD finger 4 found in ... |
1677-1721 | 9.24e-09 | ||||
PHD finger 5 found in Histone-lysine N-methyltransferase 2C (KMT2C) and PHD finger 4 found in KMT2D; KMT2C, also termed myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3), or homologous to ALR protein, is a histone H3 lysine 4 (H3K4) lysine methyltransferase that functions as a circadian factor contributing to genome-scale circadian transcription. It is a component of a large complex that acts as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. The MLL3 complex is essential for p53 transactivation of small heterodimer partner (SHP). KMT2C is also a part of activating signal cointegrator-2 (ASC-2)-containing complex (ASCOM) that contains the transcriptional coactivator nuclear receptor coactivator 6 (NCOA6), KMT2C and its paralog MLL4. The ASCOM complex is critical for nuclear receptor (NR) activation of bile acid transporter genes and is down regulated in cholestasis. KMT2D, also termed ALL1-related protein (ALR), is encoded by the gene that was named MLL4, a fourth human homolog of Drosophila trithorax, located on chromosome 12. It enzymatically generates trimethylated histone H3 Lysine 4 (H3K4me3). It plays an essential role in differentiating the human pluripotent embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) stem cells by activating differentiation-specific genes, such as HOXA1-3 and NESTIN. KMT2D is also a part of ASCOM. Both KMT2C and KMT2D contain the catalytic domain SET, several plant homeodomain (PHD) fingers, extended PHD (ePHD) fingers, Cys2HisCys5HisCys2His, a RING finger, an HMG (high-mobility group)-binding motif, and two FY-rich regions. This model corresponds to the fifth PHD finger of KMT2C and the fourth PHD finger of KMT2D. Pssm-ID: 276988 Cd Length: 47 Bit Score: 52.86 E-value: 9.24e-09
|
||||||||
Bromo_SNF2L2 | cd05516 | Bromodomain, SNF2L2-like subfamily, specific to animals. SNF2L2 (SNF2-alpha) or SWI ... |
1813-1877 | 1.71e-08 | ||||
Bromodomain, SNF2L2-like subfamily, specific to animals. SNF2L2 (SNF2-alpha) or SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 2 is a global transcriptional activator, which cooperates with nuclear hormone receptors to boost transcriptional activation. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99947 Cd Length: 107 Bit Score: 53.97 E-value: 1.71e-08
|
||||||||
PHD_BRPF_JADE_like | cd15492 | PHD finger found in BRPF proteins, Jade proteins, protein AF-10, AF-17, and similar proteins; ... |
1676-1721 | 3.81e-08 | ||||
PHD finger found in BRPF proteins, Jade proteins, protein AF-10, AF-17, and similar proteins; The family includes BRPF proteins, Jade proteins, protein AF-10 and AF-17. BRPF proteins are scaffold proteins that form monocytic leukemic zinc-finger protein (MOZ)/MOZ-related factor (MORF) H3 histone acetyltransferase (HAT) complexes with other regulatory subunits, such as inhibitor of growth 5 (ING5) and Esa1-associated factor 6 ortholog (EAF6). BRPF proteins have multiple domains, including a canonical Cys4HisCys3 plant homeodomain (PHD) zinc finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, a bromodomain and a proline-tryptophan-tryptophan-proline (PWWP) domain. PHD and ePHD fingers both bind to lysine 4 of histone H3 (K4H3), bromodomains interact with acetylated lysines on N-terminal tails of histones and other proteins, and PWWP domains show histone-binding and chromatin association properties. Jade proteins are required for ING4 and ING5 to associate with histone acetyltransferase (HAT) HBO1 and EAF6, to form a HBO1 complex that has a histone H4-specific acetyltransferase activity, a reduced activity toward histone H3, and is responsible for the bulk of histone H4 acetylation in vivo. AF-10, also termed ALL1 (acute lymphoblastic leukemia)-fused gene from chromosome 10 protein, is a transcription factor that has been implicated in the development of leukemia following chromosomal rearrangements between the AF10 gene and one of at least two other genes, MLL and CALM. AF-17, also termed ALL1-fused gene from chromosome 17 protein, is a putative transcription factor that may play a role in multiple signaling pathways. All Jade proteins, AF-10, and AF-17 contain a canonical PHD finger followed by a non-canonical ePHD finger. This model corresponds to the canonical PHD finger. Pssm-ID: 276967 [Multi-domain] Cd Length: 46 Bit Score: 51.08 E-value: 3.81e-08
|
||||||||
WSD | pfam15613 | Williams-Beuren syndrome DDT (WSD), D-TOX E motif; This family represents the combined ... |
1437-1471 | 4.13e-08 | ||||
Williams-Beuren syndrome DDT (WSD), D-TOX E motif; This family represents the combined alpha-helical module found in diverse eukaryotic chromatin proteins. Based on the Ioc3 structure, the N-terminus of this module is inferred to interact with nucleosomal linker DNA and the SLIDE domain of ISWI proteins. The resulting complex forms a protein ruler that measures out the spacing between two adjacent nucleosomes. The acidic residue from the GxD signature at the N-terminus is a major determinant of the interaction between the ISWI and WHIM motifs. The N-terminal portion also contacts the inter-nucleosomal linker DNA. The module shows a great domain architectural diversity and is often combined with other modified histone peptide recognizing and DNA binding domains, some of which discriminate methylated DNA. The WSD module constitutes the inter-nucleosomal linker DNA binding site in the major groove of DNA, and was first identified as WSD, the D-TOX E motif of plant homeodomains homologous with the mutant transcription factor causing Williams-Beuren syndrome in association with the DDT-domain. Pssm-ID: 464775 [Multi-domain] Cd Length: 69 Bit Score: 51.76 E-value: 4.13e-08
|
||||||||
PHD_UHRF2 | cd15617 | PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein 2 (UHRF2); ... |
1676-1721 | 4.47e-08 | ||||
PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein 2 (UHRF2); UHRF2 (also termed Np95/ICBP90-like RING finger protein (NIRF), Np95-like RING finger protein, nuclear protein 97, nuclear zinc finger protein Np97, RING finger protein 107, or E3 ubiquitin-protein ligase UHRF2) was originally identified as a ubiquitin ligase acting as a small ubiquitin-like modifier (SUMO) E3 ligase that enhances zinc finger protein 131 (ZNF131) SUMOylation but does not enhance ZNF131 ubiquitination. It also ubiquitinates PCNP, a PEST-containing nuclear protein. Moreover, UHRF2 functions as a nuclear protein involved in cell-cycle regulation and has been implicated in tumorigenesis. It interacts with cyclins, CDKs,p53, pRB, PCNA, HDAC1, DNMTs, G9a, methylated histone H3 lysine 9, and methylated DNA. It interacts with the cyclin E-CDK2 complex, ubiquitinates cyclins D1 and E1, induces G1 arrest, and is involved in the G1/S transition regulation. Furthermore, UHRF2 is a direct transcriptional target of the transcription factor E2F-1 in the induction of apoptosis. It recruits HDAC1 and binds to methyl-CpG. UHRF2 also participates in the maturation of Hepatitis B virus (HBV) by interacting with the HBV core protein and promoting its degradation. UHRF2 contains an N-terminal ubiquitin-like domain (UBL), a tandem Tudor domain (TTD), a plant homeodomain (PHD) finger, a SET- and RING-associated (SRA) domain, and a C-terminal RING finger. Pssm-ID: 277089 Cd Length: 47 Bit Score: 51.11 E-value: 4.47e-08
|
||||||||
PHD_PRHA_like | cd15504 | PHD finger found in Arabidopsis thaliana pathogenesis-related homeodomain protein (PRHA) and ... |
1677-1721 | 4.76e-08 | ||||
PHD finger found in Arabidopsis thaliana pathogenesis-related homeodomain protein (PRHA) and similar proteins; PRHA is a homeodomain protein encoded by a single-copy Arabidopsis thaliana homeobox gene, prha. It shows the capacity to bind to TAATTG core sequence elements but requires additional adjacent bases for high-affinity binding. PRHA contains a plant homeodomain (PHD) finger, a homeodomain, peptide repeats and a putative leucine zipper dimerization domain. Pssm-ID: 276979 Cd Length: 53 Bit Score: 50.90 E-value: 4.76e-08
|
||||||||
Bromo_polybromo_III | cd05520 | Bromodomain, polybromo repeat III. Polybromo is a nuclear protein of unknown function, which ... |
1815-1880 | 8.76e-08 | ||||
Bromodomain, polybromo repeat III. Polybromo is a nuclear protein of unknown function, which contains 6 bromodomains. The human ortholog BAF180 is part of a SWI/SNF chromatin-remodeling complex, and it may carry out the functions of Yeast Rsc-1 and Rsc-2. It was shown that polybromo bromodomains bind to histone H3 at specific acetyl-lysine positions. Bromodomains are found in many chromatin-associated proteins and in nuclear histone acetyltransferases. They interact specifically with acetylated lysine, but not all the bromodomains in polybromo may bind to acetyl-lysine. Pssm-ID: 99951 Cd Length: 103 Bit Score: 51.96 E-value: 8.76e-08
|
||||||||
WSD | pfam15613 | Williams-Beuren syndrome DDT (WSD), D-TOX E motif; This family represents the combined ... |
1109-1164 | 2.58e-07 | ||||
Williams-Beuren syndrome DDT (WSD), D-TOX E motif; This family represents the combined alpha-helical module found in diverse eukaryotic chromatin proteins. Based on the Ioc3 structure, the N-terminus of this module is inferred to interact with nucleosomal linker DNA and the SLIDE domain of ISWI proteins. The resulting complex forms a protein ruler that measures out the spacing between two adjacent nucleosomes. The acidic residue from the GxD signature at the N-terminus is a major determinant of the interaction between the ISWI and WHIM motifs. The N-terminal portion also contacts the inter-nucleosomal linker DNA. The module shows a great domain architectural diversity and is often combined with other modified histone peptide recognizing and DNA binding domains, some of which discriminate methylated DNA. The WSD module constitutes the inter-nucleosomal linker DNA binding site in the major groove of DNA, and was first identified as WSD, the D-TOX E motif of plant homeodomains homologous with the mutant transcription factor causing Williams-Beuren syndrome in association with the DDT-domain. Pssm-ID: 464775 [Multi-domain] Cd Length: 69 Bit Score: 49.45 E-value: 2.58e-07
|
||||||||
PHD1_BPTF | cd15559 | PHD finger 1 found in bromodomain and PHD finger-containing transcription factor (BPTF); BPTF, ... |
1677-1721 | 3.59e-07 | ||||
PHD finger 1 found in bromodomain and PHD finger-containing transcription factor (BPTF); BPTF, also termed nucleosome-remodeling factor subunit BPTF, or fetal Alz-50 clone 1 protein (FAC1), or fetal Alzheimer antigen, functions as a transcriptional regulator that exhibits altered expression and subcellular localization during neuronal development and neurodegenerative diseases such as Alzheimer's disease. It interacts with the human orthologue of the Kelch-like Ech-associated protein (Keap1). Its function and subcellular localization can be regulated by Keap1. Moreover, BPTF is a novel DNA-binding protein that recognizes the DNA sequence CACAACAC and represses transcription through this site in a phosphorylation-dependent manner. Furthermore, BPTF interacts with the Myc-associated zinc finger protein (ZF87/MAZ) and alters its transcriptional activity, which has been implicated in gene regulation in neurodegeneration. Some family members contain two or three plant homeodomain (PHD) fingers, which may be involved in complex formation with histone H3 trimethylated at K4 (H3K4me3). This family corresponds to the first PHD finger. Pssm-ID: 277034 [Multi-domain] Cd Length: 43 Bit Score: 48.18 E-value: 3.59e-07
|
||||||||
PHD1_CHD_II | cd15531 | PHD finger 1 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD ... |
1677-1721 | 6.58e-07 | ||||
PHD finger 1 found in class II Chromodomain-Helicase-DNA binding (CHD) proteins; Class II CHD proteins includes chromodomain-helicase-DNA-binding protein CHD3, CHD4, and CHD5, which are nuclear and ubiquitously expressed chromatin remodelling ATPases generally associated with histone deacetylases (HDACs). They are involved in DNA Double Strand Break (DSB) signaling, DSB repair and/or p53-dependent pathways such as apoptosis and senescence, as well as in the maintenance of genomic stability, and/or cancer prevention. They function as subunits of the Nucleosome Remodelling and Deacetylase (NuRD) complex, which is generally associated with gene repression, heterochromatin formation, and overall chromatin compaction. In contrast to the class I CHD enzymes (CHD1 and CHD2), class II CHD proteins lack identifiable DNA-binding domains, but possess a C-terminal coiled-coil region. Moreover, in addition to the tandem chromodomains and a helicase domain, they all harbor tandem plant homeodomain (PHD) zinc fingers involved in the recognition of methylated histone tails. This model corresponds to the first PHD finger. Pssm-ID: 277006 [Multi-domain] Cd Length: 43 Bit Score: 47.60 E-value: 6.58e-07
|
||||||||
PHD_Phf1p_Phf2p_like | cd15502 | PHD finger found in Schizosaccharomyces pombe SWM histone demethylase complex subunits Phf1 ... |
1677-1721 | 7.14e-07 | ||||
PHD finger found in Schizosaccharomyces pombe SWM histone demethylase complex subunits Phf1 (Phf1p) and Phf2 (Phf2p); Phf1p and Phf2p are components of the SWM histone demethylase complex that specifically demethylates histone H3 at lysine 9 (H3K9me2), a specific tag for epigenetic transcriptional activation. They function as corepressors and play roles in regulating heterochromatin propagation and euchromatic transcription. Both Phf1p and Phf2p contain a plant homeodomain (PHD) finger. Pssm-ID: 276977 Cd Length: 52 Bit Score: 47.82 E-value: 7.14e-07
|
||||||||
Bromo_ASH1 | cd05525 | Bromodomain; ASH1_like sub-family. ASH1 (absent, small, or homeotic 1) is a member of the ... |
1828-1890 | 7.91e-07 | ||||
Bromodomain; ASH1_like sub-family. ASH1 (absent, small, or homeotic 1) is a member of the trithorax-group in Drosophila melanogaster, an epigenetic transcriptional regulator of HOX genes. Drosophila ASH1 has been shown to methylate specific lysines in histones H3 and H4. Mammalian ASH1 has been shown to methylate histone H3. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99955 [Multi-domain] Cd Length: 106 Bit Score: 49.31 E-value: 7.91e-07
|
||||||||
PRK10856 | PRK10856 | cytoskeleton protein RodZ; |
390-522 | 9.41e-07 | ||||
cytoskeleton protein RodZ; Pssm-ID: 236776 [Multi-domain] Cd Length: 331 Bit Score: 53.11 E-value: 9.41e-07
|
||||||||
Bromo_Rsc1_2_II | cd05522 | Bromodomain, repeat II in Rsc1/2_like subfamily, specific to fungi. Rsc1 and Rsc2 are ... |
1822-1877 | 1.77e-06 | ||||
Bromodomain, repeat II in Rsc1/2_like subfamily, specific to fungi. Rsc1 and Rsc2 are components of the RSC complex (remodeling the structure of chromatin), are essential for transcriptional control, and have a specific domain architecture including two bromodomains. The RSC complex has also been linked to homologous recombination and nonhomologous end-joining repair of DNA double strand breaks. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99953 [Multi-domain] Cd Length: 104 Bit Score: 48.39 E-value: 1.77e-06
|
||||||||
Bromo_SP100C_like | cd05501 | Bromodomain, SP100C_like subfamily. The SP100C protein is a splice variant of SP100, a major ... |
1800-1894 | 1.98e-06 | ||||
Bromodomain, SP100C_like subfamily. The SP100C protein is a splice variant of SP100, a major component of PML-SP100 nuclear bodies (NBs), which are poorly understood. It is covalently modified by SUMO-1 and may play a role in processes at the chromatin level. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99933 Cd Length: 102 Bit Score: 48.19 E-value: 1.98e-06
|
||||||||
PHD_UHRF1 | cd15616 | PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1); ... |
1677-1721 | 2.30e-06 | ||||
PHD finger found in ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1); UHRF1 (also termed inverted CCAAT box-binding protein of 90 kDa, nuclear protein 95, nuclear zinc finger protein Np95 (Np95), RING finger protein 106, transcription factor ICBP90, or E3 ubiquitin-protein ligase UHRF1) is a unique chromatin effector protein that integrates the recognition of both histone PTMs and DNA methylation. It is essential for cell proliferation and plays a critical role in the development and progression of many human carcinomas, such as laryngeal squamous cell carcinoma (LSCC), gastric cancer (GC), esophageal squamous cell carcinoma (ESCC), colorectal cancer, prostate cancer, and breast cancer. UHRF1 acts as a transcriptional repressor through its binding to histone H3 when it is unmodified at Arg2. Its overexpression in human lung fibroblasts results in downregulation of expression of the tumour suppressor pRB. It also plays a role in transcriptional repression of the cell cycle regulator p21. Moreover, UHRF1-dependent repression of transcription factors can facilitate the G1-S transition. It interacts with Tat-interacting protein of 60 kDa (TIP60) and induces degradation-independent ubiquitination of TIP60. It is also an N-methylpurine DNA glycosylase (MPG)-interacting protein that binds MPG in a p53 status-independent manner in the DNA base excision repair (BER) pathway. In addition, UHRF1 functions as an epigenetic regulator that is important for multiple aspects of epigenetic regulation, including maintenance of DNA methylation patterns and recognition of various histone modifications. UHRF1 contains an N-terminal ubiquitin-like domain (UBL), a tandem Tudor domain (TTD), a plant homeodomain (PHD) finger, a SET and RING finger associated (SRA) domain, and a C-terminal RING-finger domain. It specifically binds to hemimethylated DNA, double-stranded CpG dinucleotides, and recruits the maintenance methyltransferase DNMT1 to its hemimethylated DNA substrate through its SRA domain. UHRF1-dependent H3K23 ubiquitylation has an essential role in maintaining DNA methylation and replication. The tandem Tudor domain directs UHRF1 binding to the heterochromatin mark histone H3K9me3 and the PHD finger targets UHRF1 to unmodified histone H3 in euchromatic regions. The RING-finger domain exhibit both autocatalytic E3 ubiquitin (Ub) ligase activity and activity against histone H3 and DNMT1. Pssm-ID: 277088 Cd Length: 47 Bit Score: 46.11 E-value: 2.30e-06
|
||||||||
PHD1_MTF2 | cd15578 | PHD finger 1 found in metal-response element-binding transcription factor 2 (MTF2); MTF2, also ... |
1676-1722 | 2.45e-06 | ||||
PHD finger 1 found in metal-response element-binding transcription factor 2 (MTF2); MTF2, also termed metal regulatory transcription factor 2, or metal-response element DNA-binding protein M96, or polycomb-like protein 2 (PCL2), complexes with the polycomb repressive complex-2 (PRC2) in embryonic stem cells and regulates the transcriptional networks during embryonic stem cell self-renewal and differentiation. It recruits the PRC2 complex to the inactive X chromosome and target loci in embryonic stem cells. Moreover, MTF2 is required for PRC2-mediated Hox cluster repression. It activates the Cdkn2a gene and promotes cellular senescence, thus suppressing the catalytic activity of PRC2 locally. MTF2 consists of an N-terminal Tudor domain followed by two PHD fingers, and a C-terminal MTF2 domain. This model corresponds to the first PHD finger. Pssm-ID: 277053 Cd Length: 53 Bit Score: 46.23 E-value: 2.45e-06
|
||||||||
Bromo_RACK7 | cd05508 | Bromodomain, RACK7_like subfamily. RACK7 (also called human protein kinase C-binding protein) ... |
1815-1880 | 3.17e-06 | ||||
Bromodomain, RACK7_like subfamily. RACK7 (also called human protein kinase C-binding protein) was identified as a potential tumor suppressor genes, it shares domain architecture with BS69/ZMYND11; both have been implicated in the regulation of cellular proliferation. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99940 Cd Length: 99 Bit Score: 47.38 E-value: 3.17e-06
|
||||||||
PHD1_PHF12 | cd15533 | PHD finger 1 found in PHD finger protein 12 (PHF12); PHF12, also termed PHD factor 1 (Pf1), is ... |
1676-1721 | 3.56e-06 | ||||
PHD finger 1 found in PHD finger protein 12 (PHF12); PHF12, also termed PHD factor 1 (Pf1), is a plant homeodomain (PHD) zinc finger-containing protein that bridges the transducin-like enhancer of split (TLE) corepressor to the mSin3A-histone deacetylase (HDAC)-complex, and further represses transcription at targeted genes. PHF12 also interacts with MRG15 (mortality factor-related genes on chromosome 15), a member of the mortality factor (MORF) family of proteins implicated in regulating cellular senescence. PHF12 contains two plant-homeodomain (PHD) zinc fingers followed by a polybasic region. The PHD fingers function downstream of phosphoinositide signaling triggered by the interaction between polybasic regions and phosphoinositides. This model corresponds to the first PHD finger. Pssm-ID: 277008 [Multi-domain] Cd Length: 45 Bit Score: 45.43 E-value: 3.56e-06
|
||||||||
COG5076 | COG5076 | Transcription factor involved in chromatin remodeling, contains bromodomain [Chromatin ... |
1801-1872 | 3.66e-06 | ||||
Transcription factor involved in chromatin remodeling, contains bromodomain [Chromatin structure and dynamics / Transcription]; Pssm-ID: 227408 [Multi-domain] Cd Length: 371 Bit Score: 51.34 E-value: 3.66e-06
|
||||||||
Bromo_polybromo_IV | cd05518 | Bromodomain, polybromo repeat IV. Polybromo is a nuclear protein of unknown function, which ... |
1816-1887 | 3.81e-06 | ||||
Bromodomain, polybromo repeat IV. Polybromo is a nuclear protein of unknown function, which contains 6 bromodomains. The human ortholog BAF180 is part of a SWI/SNF chromatin-remodeling complex, and it may carry out the functions of Yeast Rsc-1 and Rsc-2. It was shown that polybromo bromodomains bind to histone H3 at specific acetyl-lysine positions. Bromodomains are found in many chromatin-associated proteins and in nuclear histone acetyltransferases. They interact specifically with acetylated lysine, but not all the bromodomains in polybromo may bind to acetyl-lysine. Pssm-ID: 99949 [Multi-domain] Cd Length: 103 Bit Score: 47.44 E-value: 3.81e-06
|
||||||||
PHD_TIF1delta | cd15625 | PHD finger found in transcriptional intermediary factor 1 delta (TIF1delta); TIF1delta, also ... |
1673-1721 | 4.43e-06 | ||||
PHD finger found in transcriptional intermediary factor 1 delta (TIF1delta); TIF1delta, also termed tripartite motif-containing protein 66 (TRIM66), is a novel heterochromatin protein 1 (HP1)-interacting member of the transcriptional intermediary factor1 (TIF1) family expressed by elongating spermatids. Like other TIF1 proteins, TIF1delta displays a potent trichostatin A (TSA)-sensitive repression function; TSA is a specific inhibitor of histone deacetylases. Moreover, TIF1delta plays an important role in heterochromatin-mediated gene silencing during postmeiotic phases of spermatogenesis. It functions as a negative regulator of postmeiotic genes acting through HP1 isotype gamma (HP1gamma) complex formation and centromere association. TIF1delta contains an N-terminal RBCC (RING finger, B-box zinc-fingers, coiled-coil), a plant homeodomain (PHD) finger, followed by a bromodomain in the C-terminal region. Pssm-ID: 277095 [Multi-domain] Cd Length: 49 Bit Score: 45.34 E-value: 4.43e-06
|
||||||||
PHD_TIF1alpha | cd15622 | PHD finger found in transcription intermediary factor 1-alpha (TIF1-alpha); TIF1-alpha, also ... |
1677-1721 | 5.98e-06 | ||||
PHD finger found in transcription intermediary factor 1-alpha (TIF1-alpha); TIF1-alpha, also termed tripartite motif-containing protein 24 (TRIM24), or E3 ubiquitin-protein ligase TRIM24, or RING finger protein 82, belongs to the TRIM/RBCC protein family. It interacts specifically and in a ligand-dependent manner with the ligand binding domain (LBD) of several nuclear receptors (NRs), including retinoid X (RXR), retinoic acid (RAR), vitamin D3 (VDR), estrogen (ER), and progesterone (PR) receptors. It also associates with heterochromatin-associated factors HP1alpha, MOD1 (HP1beta) and MOD2 (HP1gamma), as well as vertebrate Kruppel-type (C2H2) zinc finger proteins that contain transcriptional silencing domain KRAB. TIF1-alpha is a ligand-dependent co-repressor of retinoic acid receptor (RAR) that interacts with multiple nuclear receptors in vitro via an LXXLL motif, and further acts as a gatekeeper of liver carcinogenesis. It also functions as an E3-ubiquitin ligase targeting p53 and is broadly associated with chromatin silencing. Moreover, it is a chromatin regulator that recognizes specific, combinatorial histone modifications through its C-terminal plant homeodomain (PHD)-Bromodomain (Bromo) region. In addition, it interacts with chromatin and estrogen receptor to activate estrogen-dependent genes associated with cellular proliferation and tumor development. TIF1-alpha contains an N-terminal RBCC (RING finger, B-box zinc-fingers, coiled-coil), a plant homeodomain (PHD) finger, followed by a bromodomain in the C-terminal region. Pssm-ID: 277092 Cd Length: 43 Bit Score: 45.06 E-value: 5.98e-06
|
||||||||
Bromo_SNF2 | cd05519 | Bromodomain, SNF2-like subfamily, specific to fungi. SNF2 is a yeast protein involved in ... |
1816-1877 | 7.41e-06 | ||||
Bromodomain, SNF2-like subfamily, specific to fungi. SNF2 is a yeast protein involved in transcriptional activation, it is the catalytic component of the SWI/SNF ATP-dependent chromatin remodeling complex. The protein is essential for the regulation of gene expression (both positive and negative) of a large number of genes. The SWI/SNF complex changes chromatin structure by altering DNA-histone contacts within the nucleosome, which results in a re-positioning of the nucleosome and facilitates or represses the binding of gene-specific transcription factors. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99950 Cd Length: 103 Bit Score: 46.56 E-value: 7.41e-06
|
||||||||
PHD_TIF1gamma | cd15624 | PHD finger found in transcriptional intermediary factor 1 gamma (TIF1gamma); TIF1gamma, also ... |
1677-1721 | 7.62e-06 | ||||
PHD finger found in transcriptional intermediary factor 1 gamma (TIF1gamma); TIF1gamma, also termed tripartite motif-containing 33 (trim33), or ectodermin, or RFG7, or PTC7, is an E3-ubiquitin ligase that functions as a regulator of transforming growth factor beta (TGFbeta) signaling; it inhibits the Smad4-mediated TGFbeta response by interaction with Smad2/3 or ubiquitylation of Smad4. Moreover, TIF1gamma is an important regulator of transcription during hematopoiesis, as well as a key factor of tumorigenesis. Like other TIF1 family members, TIF1gamma also contains an intrinsic transcriptional silencing function. It can control erythroid cell fate by regulating transcription elongation. It can bind to the anaphase-promoting complex/cyclosome (APC/C) and promotes mitosis. TIF1gamma contains an N-terminal RBCC (RING finger, B-box zinc-fingers, coiled-coil), a plant homeodomain (PHD) finger, followed by a bromodomain in the C-terminal region. Pssm-ID: 277094 Cd Length: 46 Bit Score: 44.65 E-value: 7.62e-06
|
||||||||
PHD_TIF1beta | cd15623 | PHD finger found in transcription intermediary factor 1-beta (TIF1-beta); TIF1-beta, also ... |
1677-1721 | 1.60e-05 | ||||
PHD finger found in transcription intermediary factor 1-beta (TIF1-beta); TIF1-beta, also termed Kruppel-associated Box (KRAB)-associated protein 1 (KAP-1), or KRAB-interacting protein 1 (KRIP-1), or nuclear co-repressor KAP-1, or RING finger protein 96, or tripartite motif-containing protein 28 (TRIM28), or E3 SUMO-protein ligase TRIM28, acts as a nuclear co-repressor that plays a role in transcription and in DNA damage response. Upon DNA damage, the phosphorylation of KAP-1 on serine 824 by the ataxia telangiectasia-mutated (ATM) kinase enhances cell survival and facilitates chromatin relaxation and heterochromatic DNA repair. It also regulates CHD3 nucleosome remodeling during DNA double-strand break (DSB) response. Meanwhile, KAP-1 can be dephosphorylated by protein phosphatase PP4C in the DNA damage response. In addition, KAP-1 is a co-activator of the orphan nuclear receptor NGFI-B (or Nur77) and is involved in NGFI-B-dependent transcription. It is also a coiled-coil binding partner, substrate and activator of the c-Fes protein tyrosine kinase. TIF1-beta contains an N-terminal RBCC (RING finger, B-box zinc-fingers, coiled-coil), which can interact with KRAB zinc finger proteins (KRAB-ZFPs), MDM2, MM1, C/EBPbeta, and mediates homo- and heterodimerization, a plant homeodomain (PHD) finger followed by a bromodomain in the C-terminal region, which interact with SETDB1, Mi-2alpha and other proteins to form complexes with histone deacetylase or methyltransferase activity. Pssm-ID: 277093 Cd Length: 43 Bit Score: 43.64 E-value: 1.60e-05
|
||||||||
PRK07994 | PRK07994 | DNA polymerase III subunits gamma and tau; Validated |
402-556 | 1.91e-05 | ||||
DNA polymerase III subunits gamma and tau; Validated Pssm-ID: 236138 [Multi-domain] Cd Length: 647 Bit Score: 49.48 E-value: 1.91e-05
|
||||||||
PHD1_Rco1 | cd15535 | PHD finger 1 found in Saccharomyces cerevisiae transcriptional regulatory protein Rco1 and ... |
1677-1721 | 2.06e-05 | ||||
PHD finger 1 found in Saccharomyces cerevisiae transcriptional regulatory protein Rco1 and similar proteins; Rco1 is a component of the Rpd3S histone deacetylase complex that plays an important role at actively transcribed genes. Rco1 contains two plant homeodomain (PHD) fingers, which are required for the methylation of histone H3 lysine 36 (H3K36) nucleosome recognition by Rpd3S. This model corresponds to the first PHD finger. Pssm-ID: 277010 [Multi-domain] Cd Length: 45 Bit Score: 43.18 E-value: 2.06e-05
|
||||||||
PHD_PHF21A | cd15523 | PHD finger found in PHD finger protein 21A (PHF21A); PHF21A (also termed BHC80a or BRAF35-HDAC ... |
1677-1721 | 6.54e-05 | ||||
PHD finger found in PHD finger protein 21A (PHF21A); PHF21A (also termed BHC80a or BRAF35-HDAC complex protein BHC80) along with HDAC1/2, CtBP1, CoREST, and BRAF35, is associated with LSD1, a lysine (K)-specific histone demethylase. It inhibits LSD1-mediated histone demethylation in vitro. PHF21A is predominantly present in the central nervous system and spermatogenic cells and is one of the six components of BRAF-HDAC complex (BHC) involved in REST-dependent transcriptional repression of neuron-specific genes in non-neuronal cells. It acts as a scaffold protein in BHC in neuronal as well as non-neuronal cells and also plays a role in spermatogenesis. PHF21A contains a C-terminal plant homeodomain (PHD) finger that is responsible for the binding directly to each of five other components of BHC, and of organizing BHC mediating transcriptional repression. Pssm-ID: 276998 [Multi-domain] Cd Length: 43 Bit Score: 42.00 E-value: 6.54e-05
|
||||||||
PLN02217 | PLN02217 | probable pectinesterase/pectinesterase inhibitor |
407-497 | 8.45e-05 | ||||
probable pectinesterase/pectinesterase inhibitor Pssm-ID: 215130 [Multi-domain] Cd Length: 670 Bit Score: 47.39 E-value: 8.45e-05
|
||||||||
PHD_TAF3 | cd15522 | PHD finger found in transcription initiation factor TFIID subunit 3 (TAF3); TAF3 (also termed ... |
1677-1721 | 9.79e-05 | ||||
PHD finger found in transcription initiation factor TFIID subunit 3 (TAF3); TAF3 (also termed 140 kDa TATA box-binding protein-associated factor, TBP-associated factor 3, transcription initiation factor TFIID 140 kDa subunit (TAF140), or TAFII-140, is an integral component of TFIID) is a general initiation factor (GTF) that plays a key role in preinitiation complex (PIC) assembly through core promoter recognition. The interaction of H3K4me3 with TAF3 directs global TFIID recruitment to active genes, which regulates gene-selective functions of p53 in response to genotoxic stress. TAF3 is highly enriched in embryonic stem cells and is required for endoderm lineage differentiation and prevents premature specification of neuroectoderm and mesoderm. Moreover, TAF3, along with TRF3, forms a complex that is essential for myogenic differentiation. TAF3 contains a plant homeodomain (PHD) finger. This family also includes Drosophila melanogaster BIP2 (Bric-a-brac interacting protein 2) protein, which functions as an interacting partner of D. melanogaster p53 (Dmp53). Pssm-ID: 276997 [Multi-domain] Cd Length: 46 Bit Score: 41.50 E-value: 9.79e-05
|
||||||||
Herpes_BLLF1 | pfam05109 | Herpes virus major outer envelope glycoprotein (BLLF1); This family consists of the BLLF1 ... |
399-509 | 1.04e-04 | ||||
Herpes virus major outer envelope glycoprotein (BLLF1); This family consists of the BLLF1 viral late glycoprotein, also termed gp350/220. It is the most abundantly expressed glycoprotein in the viral envelope of the Herpesviruses and is the major antigen responsible for stimulating the production of neutralising antibodies in vivo. Pssm-ID: 282904 [Multi-domain] Cd Length: 886 Bit Score: 47.22 E-value: 1.04e-04
|
||||||||
DUF5585 | pfam17823 | Family of unknown function (DUF5585); This is a family of unknown function found in chordata. |
330-542 | 1.04e-04 | ||||
Family of unknown function (DUF5585); This is a family of unknown function found in chordata. Pssm-ID: 465521 [Multi-domain] Cd Length: 506 Bit Score: 47.26 E-value: 1.04e-04
|
||||||||
PHA03247 | PHA03247 | large tegument protein UL36; Provisional |
402-542 | 1.04e-04 | ||||
large tegument protein UL36; Provisional Pssm-ID: 223021 [Multi-domain] Cd Length: 3151 Bit Score: 47.63 E-value: 1.04e-04
|
||||||||
Bromo_polybromo_I | cd05524 | Bromodomain, polybromo repeat I. Polybromo is a nuclear protein of unknown function, which ... |
1823-1898 | 1.06e-04 | ||||
Bromodomain, polybromo repeat I. Polybromo is a nuclear protein of unknown function, which contains 6 bromodomains. The human ortholog BAF180 is part of a SWI/SNF chromatin-remodeling complex, and it may carry out the functions of Yeast Rsc-1 and Rsc-2. It was shown that polybromo bromodomains bind to histone H3 at specific acetyl-lysine positions. Bromodomains are found in many chromatin-associated proteins and in nuclear histone acetyltransferases. They interact specifically with acetylated lysine, but not all the bromodomains in polybromo may bind to acetyl-lysine. Pssm-ID: 99954 [Multi-domain] Cd Length: 113 Bit Score: 43.48 E-value: 1.06e-04
|
||||||||
PHA03378 | PHA03378 | EBNA-3B; Provisional |
1325-1428 | 1.24e-04 | ||||
EBNA-3B; Provisional Pssm-ID: 223065 [Multi-domain] Cd Length: 991 Bit Score: 47.37 E-value: 1.24e-04
|
||||||||
Bromo_Rsc1_2_I | cd05521 | Bromodomain, repeat I in Rsc1/2_like subfamily, specific to fungi. Rsc1 and Rsc2 are ... |
1828-1887 | 1.54e-04 | ||||
Bromodomain, repeat I in Rsc1/2_like subfamily, specific to fungi. Rsc1 and Rsc2 are components of the RSC complex (remodeling the structure of chromatin), are essential for transcriptional control, and have a specific domain architecture including two bromodomains. The RSC complex has also been linked to homologous recombination and nonhomologous end-joining repair of DNA double strand breaks. Bromodomains are 110 amino acid long domains, that are found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. Pssm-ID: 99952 Cd Length: 106 Bit Score: 42.69 E-value: 1.54e-04
|
||||||||
PHA03269 | PHA03269 | envelope glycoprotein C; Provisional |
409-509 | 2.22e-04 | ||||
envelope glycoprotein C; Provisional Pssm-ID: 165527 [Multi-domain] Cd Length: 566 Bit Score: 46.26 E-value: 2.22e-04
|
||||||||
PHD_BRPF | cd15572 | PHD finger found in bromodomain and PHD finger-containing (BRPF) proteins; The family of BRPF ... |
1677-1722 | 3.29e-04 | ||||
PHD finger found in bromodomain and PHD finger-containing (BRPF) proteins; The family of BRPF proteins includes BRPF1, BRD1/BRPF2, and BRPF3. They are scaffold proteins that form monocytic leukemic zinc-finger protein (MOZ)/MOZ-related factor (MORF) H3 histone acetyltransferase (HAT) complexes with other regulatory subunits, such as inhibitor of growth 5 (ING5) and Esa1-associated factor 6 ortholog (EAF6). BRPF proteins have multiple domains, including a canonical Cys4HisCys3 plant homeodomain (PHD) zinc finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, a bromodomain and a proline-tryptophan-tryptophan-proline (PWWP) domain. PHD and ePHD fingers both bind to lysine 4 of histone H3 (K4H3), bromodomains interact with acetylated lysines on N-terminal tails of histones and other proteins, and PWWP domains show histone-binding and chromatin association properties. This model corresponds to the canonical Cys4HisCys3 PHD finger. Pssm-ID: 277047 [Multi-domain] Cd Length: 54 Bit Score: 40.29 E-value: 3.29e-04
|
||||||||
PRK14951 | PRK14951 | DNA polymerase III subunits gamma and tau; Provisional |
403-508 | 3.35e-04 | ||||
DNA polymerase III subunits gamma and tau; Provisional Pssm-ID: 237865 [Multi-domain] Cd Length: 618 Bit Score: 45.48 E-value: 3.35e-04
|
||||||||
PHD_BRPF2 | cd15677 | PHD finger found in bromodomain and PHD finger-containing protein 2 (BRPF2) and similar ... |
1677-1722 | 4.45e-04 | ||||
PHD finger found in bromodomain and PHD finger-containing protein 2 (BRPF2) and similar proteins; BRPF2, also termed bromodomain-containing protein 1 (BRD1), or BR140-like protein, is encoded by BRL (BR140 Like gene). It is responsible for the bulk of the acetylation of H3K14 and forms a novel monocytic leukemic zinc-finger protein (MOZ)/MOZ-related factor (MORF) H3 histone acetyltransferase (HAT) complex with HBO1 and ING4. The complex is required for full transcriptional activation of the erythroid-specific regulator genes essential for terminal differentiation and survival of erythroblasts in fetal liver. BRPF2 shows widespread expression and localizes to the nucleus within spermatocytes. It contains a cysteine rich region harboring a canonical Cys4HisCys3 plant homeodomain (PHD) finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. This model corresponds to the canonical Cys4HisCys3 PHD finger. Pssm-ID: 277147 [Multi-domain] Cd Length: 54 Bit Score: 40.00 E-value: 4.45e-04
|
||||||||
PLN02217 | PLN02217 | probable pectinesterase/pectinesterase inhibitor |
414-507 | 5.76e-04 | ||||
probable pectinesterase/pectinesterase inhibitor Pssm-ID: 215130 [Multi-domain] Cd Length: 670 Bit Score: 44.69 E-value: 5.76e-04
|
||||||||
PHD_ATX3_4_5_like | cd15495 | PHD finger found in Arabidopsis thaliana histone-lysine N-methyltransferase arabidopsis ... |
1677-1721 | 5.83e-04 | ||||
PHD finger found in Arabidopsis thaliana histone-lysine N-methyltransferase arabidopsis trithorax-like protein ATX3, ATX4, ATX5, and similar proteins; The family includes A. thaliana ATX3 (also termed protein SET domain group 14, or trithorax-homolog protein 3), ATX4 (also termed protein SET domain group 16, or trithorax-homolog protein 4) and ATX5 (also termed protein SET domain group 29, or trithorax-homolog protein 5), which belong to the histone-lysine methyltransferase family. They show distinct phylogenetic origins from the ATX1 and ATX2 family. They are multi-domain containing proteins that consist of an N-terminal PWWP domain, a canonical Cys4HisCys3 plant homeodomain (PHD) finger, a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, and a C-terminal SET domain; this model corresponds to the Cys4HisCys3 canonical PHD finger. Pssm-ID: 276970 [Multi-domain] Cd Length: 47 Bit Score: 39.28 E-value: 5.83e-04
|
||||||||
PHD3_PHF14 | cd15563 | PHD finger 3 found in PHD finger protein 14 (PHF14) and similar proteins; PHF14 is a novel ... |
1676-1721 | 6.48e-04 | ||||
PHD finger 3 found in PHD finger protein 14 (PHF14) and similar proteins; PHF14 is a novel nuclear transcription factor that controls the proliferation of mesenchymal cells by directly repressing platelet-derived growth factor receptor-alpha (PDGFRalpha) expression. It also acts as an epigenetic regulator and plays an important role in the development of multiple organs in mammals. PHF14 contains three canonical plant homeodomain (PHD) fingers and a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His. It can interact with histones through its PHD fingers. The model corresponds to the third PHD finger. Pssm-ID: 277038 Cd Length: 49 Bit Score: 39.30 E-value: 6.48e-04
|
||||||||
Bromo_polybromo_II | cd05517 | Bromodomain, polybromo repeat II. Polybromo is a nuclear protein of unknown function, which ... |
1828-1891 | 6.84e-04 | ||||
Bromodomain, polybromo repeat II. Polybromo is a nuclear protein of unknown function, which contains 6 bromodomains. The human ortholog BAF180 is part of a SWI/SNF chromatin-remodeling complex, and it may carry out the functions of Yeast Rsc-1 and Rsc-2. It was shown that polybromo bromodomains bind to histone H3 at specific acetyl-lysine positions. Bromodomains are found in many chromatin-associated proteins and in nuclear histone acetyltransferases. They interact specifically with acetylated lysine, but not all the bromodomains in polybromo may bind to acetyl-lysine. Pssm-ID: 99948 Cd Length: 103 Bit Score: 40.89 E-value: 6.84e-04
|
||||||||
PHD4_NSD | cd15567 | PHD finger 4 found in nuclear receptor-binding SET domain-containing (NSD) proteins; The ... |
1677-1721 | 6.91e-04 | ||||
PHD finger 4 found in nuclear receptor-binding SET domain-containing (NSD) proteins; The nuclear receptor binding SET domain (NSD) protein is a family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1, that are critical in maintaining chromatin integrity. Reducing NSD activity through specific lysine-HMTase inhibitors appears promising to help suppress cancer growth. NSD proteins have specific mono- and dimethylase activities for H3K36, and they play non-redundant roles during development. NSD1 plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. NSD2 is involved in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. NSD3 is amplified in human breast cancer cell lines. Moreover, translocation resulting in NUP98 fusion to NSD3 leads to development of acute myeloid leukemia. NSD proteins contain a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). This model corresponds to the fourth PHD finger. Pssm-ID: 277042 [Multi-domain] Cd Length: 41 Bit Score: 38.77 E-value: 6.91e-04
|
||||||||
PRK12323 | PRK12323 | DNA polymerase III subunit gamma/tau; |
421-509 | 7.70e-04 | ||||
DNA polymerase III subunit gamma/tau; Pssm-ID: 237057 [Multi-domain] Cd Length: 700 Bit Score: 44.48 E-value: 7.70e-04
|
||||||||
PHD_MLL5 | cd15550 | PHD finger found in mixed lineage leukemia 5 (MLL5); MLL5 is a histone methyltransferase that ... |
1679-1721 | 8.77e-04 | ||||
PHD finger found in mixed lineage leukemia 5 (MLL5); MLL5 is a histone methyltransferase that plays a key role in hematopoiesis, spermatogenesis and cell cycle progression. It contains a single plant homeodomain (PHD) finger followed by a catalytic SET domain. MLL5 can be recruited to E2F1-responsive promoters to stimulate H3K4 trimethylation and transcriptional activation by binding to the cell cycle regulator host cell factor (HCF-1), thereby facilitating the cell cycle G1 to S phase transition. It is also involved in mitotic fidelity and genomic integrity by modulating the stability of the chromosomal passenger complex (CPC) via the interaction with Borealin. Moreover, MLL5 is a component of a complex associated with retinoic acid receptor that requires GlcN Acylation of its SET domain in order to activate its histone lysine methyltransferase activity. It also participates in the camptothecin (CPT)-induced p53 activation. Furthermore, MLL5 indirectly regulates H3K4 methylation, represses cyclin A2 (CycA) expression, and promotes myogenic differentiation. Pssm-ID: 277025 [Multi-domain] Cd Length: 44 Bit Score: 38.84 E-value: 8.77e-04
|
||||||||
PHD_JADE3 | cd15681 | PHD finger found in protein Jade-3 and similar proteins; Jade-3, also termed PHD finger ... |
1677-1722 | 9.01e-04 | ||||
PHD finger found in protein Jade-3 and similar proteins; Jade-3, also termed PHD finger protein 16 (PHF16), is a plant homeodomain (PHD) zinc finger protein that is closely related to Jade-1, which functions as an essential regulator of multiple cell signaling pathways. Like Jade-1, Jade-3 is required for ING4 and ING5 to associate with histone acetyl transferase (HAT) HBO1 and Eaf6 to form a HBO1 complex that has a histone H4-specific acetyltransferase activity, a reduced activity toward histone H3, and is responsible for the bulk of histone H4 acetylation in vivo. Jade-3 contains a canonical Cys4HisCys3 PHD domain followed by a non-canonical extended PHD (ePHD) domain, Cys2HisCys5HisCys2His, both of which are zinc-binding motifs. This model corresponds to the canonical Cys4HisCys3 PHD finger. Pssm-ID: 277151 [Multi-domain] Cd Length: 50 Bit Score: 38.80 E-value: 9.01e-04
|
||||||||
PRK07003 | PRK07003 | DNA polymerase III subunit gamma/tau; |
403-509 | 9.60e-04 | ||||
DNA polymerase III subunit gamma/tau; Pssm-ID: 235906 [Multi-domain] Cd Length: 830 Bit Score: 44.07 E-value: 9.60e-04
|
||||||||
PHD_JADE | cd15573 | PHD finger found in proteins Jade-1, Jade-2, Jade-3, and similar proteins; This family ... |
1677-1721 | 9.83e-04 | ||||
PHD finger found in proteins Jade-1, Jade-2, Jade-3, and similar proteins; This family includes proteins Jade-1 (PHF17), Jade-2 (PHF15), and Jade-3 (PHF16), each of which is required for ING4 and ING5 to associate with histone acetyltransferase (HAT) HBO1 and EAF6 to form a HBO1 complex that has a histone H4-specific acetyltransferase activity, a reduced activity toward histone H3, and is responsible for the bulk of histone H4 acetylation in vivo. This family also contains Drosophila melanogaster PHD finger protein rhinoceros (RNO). It is a novel plant homeodomain (PHD)-containing nuclear protein that may function as a transcription factor that antagonizes Ras signaling by regulating transcription of key EGFR/Ras pathway regulators in the Drosophila eye. All Jade proteins contain a canonical Cys4HisCys3 PHD finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, both of which are zinc-binding motifs. This model corresponds to the canonical Cys4HisCys3 PHD finger. Pssm-ID: 277048 [Multi-domain] Cd Length: 46 Bit Score: 38.54 E-value: 9.83e-04
|
||||||||
PRK14951 | PRK14951 | DNA polymerase III subunits gamma and tau; Provisional |
402-514 | 1.12e-03 | ||||
DNA polymerase III subunits gamma and tau; Provisional Pssm-ID: 237865 [Multi-domain] Cd Length: 618 Bit Score: 43.93 E-value: 1.12e-03
|
||||||||
COG5141 | COG5141 | PHD zinc finger-containing protein [General function prediction only]; |
1677-1722 | 1.79e-03 | ||||
PHD zinc finger-containing protein [General function prediction only]; Pssm-ID: 227470 [Multi-domain] Cd Length: 669 Bit Score: 43.05 E-value: 1.79e-03
|
||||||||
PRK14951 | PRK14951 | DNA polymerase III subunits gamma and tau; Provisional |
434-547 | 1.98e-03 | ||||
DNA polymerase III subunits gamma and tau; Provisional Pssm-ID: 237865 [Multi-domain] Cd Length: 618 Bit Score: 43.16 E-value: 1.98e-03
|
||||||||
PHD_BRPF1 | cd15676 | PHD finger found in bromodomain and PHD finger-containing protein 1 (BRPF1) and similar ... |
1677-1722 | 1.99e-03 | ||||
PHD finger found in bromodomain and PHD finger-containing protein 1 (BRPF1) and similar proteins; BRPF1, also termed peregrin or protein Br140, is a multi-domain protein that binds histones, mediates monocytic leukemic zinc-finger protein (MOZ)-dependent histone acetylation, and is required for Hox gene expression and segmental identity. It is a close partner of the MOZ histone acetyltransferase (HAT) complex and a novel Trithorax group (TrxG) member with a central role during development. BRPF1 is primarily a nuclear protein that has a broad tissue distribution and is abundant in testes and spermatogonia. It contains a canonical Cys4HisCys3 plant homeodomain (PHD) zinc finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, a bromodomain and a proline-tryptophan-tryptophan-proline (PWWP) domain. PHD and ePHD fingers both bind to lysine 4 of histone H3 (K4H3), bromodomains interact with acetylated lysines on N-terminal tails of histones and other proteins, and PWWP domains show histone-binding and chromatin association properties. BRPF1 may be involved in chromatin remodeling. This model corresponds to the canonical Cys4HisCys3 PHD finger. Pssm-ID: 277146 [Multi-domain] Cd Length: 62 Bit Score: 38.50 E-value: 1.99e-03
|
||||||||
PRK12323 | PRK12323 | DNA polymerase III subunit gamma/tau; |
1326-1409 | 2.64e-03 | ||||
DNA polymerase III subunit gamma/tau; Pssm-ID: 237057 [Multi-domain] Cd Length: 700 Bit Score: 42.56 E-value: 2.64e-03
|
||||||||
PHA03247 | PHA03247 | large tegument protein UL36; Provisional |
1329-1410 | 3.22e-03 | ||||
large tegument protein UL36; Provisional Pssm-ID: 223021 [Multi-domain] Cd Length: 3151 Bit Score: 42.62 E-value: 3.22e-03
|
||||||||
half-pint | TIGR01645 | poly-U binding splicing factor, half-pint family; The proteins represented by this model ... |
409-499 | 3.61e-03 | ||||
poly-U binding splicing factor, half-pint family; The proteins represented by this model contain three RNA recognition motifs (rrm: pfam00076) and have been characterized as poly-pyrimidine tract binding proteins associated with RNA splicing factors. In the case of PUF60 (GP|6176532), in complex with p54, and in the presence of U2AF, facilitates association of U2 snRNP with pre-mRNA. Pssm-ID: 130706 [Multi-domain] Cd Length: 612 Bit Score: 42.36 E-value: 3.61e-03
|
||||||||
PRK07764 | PRK07764 | DNA polymerase III subunits gamma and tau; Validated |
1325-1431 | 3.72e-03 | ||||
DNA polymerase III subunits gamma and tau; Validated Pssm-ID: 236090 [Multi-domain] Cd Length: 824 Bit Score: 42.28 E-value: 3.72e-03
|
||||||||
Atrophin-1 | pfam03154 | Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian ... |
403-491 | 4.07e-03 | ||||
Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian atrophy (DRPLA) gene. DRPLA OMIM:125370 is a progressive neurodegenerative disorder. It is caused by the expansion of a CAG repeat in the DRPLA gene on chromosome 12p. This results in an extended polyglutamine region in atrophin-1, that is thought to confer toxicity to the protein, possibly through altering its interactions with other proteins. The expansion of a CAG repeat is also the underlying defect in six other neurodegenerative disorders, including Huntington's disease. One interaction of expanded polyglutamine repeats that is thought to be pathogenic is that with the short glutamine repeat in the transcriptional coactivator CREB binding protein, CBP. This interaction draws CBP away from its usual nuclear location to the expanded polyglutamine repeat protein aggregates that are characteriztic of the polyglutamine neurodegenerative disorders. This interferes with CBP-mediated transcription and causes cytotoxicity. Pssm-ID: 460830 [Multi-domain] Cd Length: 991 Bit Score: 42.06 E-value: 4.07e-03
|
||||||||
PRK10263 | PRK10263 | DNA translocase FtsK; Provisional |
1317-1458 | 4.30e-03 | ||||
DNA translocase FtsK; Provisional Pssm-ID: 236669 [Multi-domain] Cd Length: 1355 Bit Score: 42.38 E-value: 4.30e-03
|
||||||||
PHD_PRKCBP1 | cd15538 | PHD finger found in protein kinase C-binding protein 1 (PRKCBP1); PRKCBP1, also termed ... |
1677-1721 | 4.64e-03 | ||||
PHD finger found in protein kinase C-binding protein 1 (PRKCBP1); PRKCBP1, also termed cutaneous T-cell lymphoma-associated antigen se14-3 (CTCL-associated antigen se14-3), or Rack7, or zinc finger MYND domain-containing protein 8 (ZMYND8), is a novel receptor for activated C-kinase (RACK)-like protein that may play an important role in the activation and regulation of PKC-beta I, and the PKC signaling cascade. It also has been identified as a formin homology-2-domain containing protein 1 (FHOD1)-binding protein that may be involved in FHOD1-regulated actin polymerization and transcription. Moreover, PRKCBP1 may function as a REST co-repressor 2 (RCOR2) interacting factor; the RCOR2/ZMYND8 complex which might be involved in the regulation of neural differentiation. PRKCBP1 contains a plant homeodomain (PHD) finger, a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. Pssm-ID: 277013 Cd Length: 41 Bit Score: 36.54 E-value: 4.64e-03
|
||||||||
PHD_PHF21B | cd15524 | PHD finger found in PHD finger protein 21B (PHF21B); PHF21B is a plant homeodomain (PHD) ... |
1677-1721 | 5.20e-03 | ||||
PHD finger found in PHD finger protein 21B (PHF21B); PHF21B is a plant homeodomain (PHD) finger-containing protein whose biological function remains unclear. It shows high sequence similarity with PHF21A, which is associated with LSD1, a lysine (K)-specific histone demethylase and inhibits LSD1-mediated histone demethylation in vitro. PHD fingers can recognize the unmodified and modified histone H3 tail, and some have been found to interact with non-histone proteins. Pssm-ID: 276999 [Multi-domain] Cd Length: 43 Bit Score: 36.41 E-value: 5.20e-03
|
||||||||
PHD2_KMT2A_like | cd15507 | PHD finger 2 found in histone-lysine N-methyltransferase 2A (KMT2A) and 2B (KMT2B); This ... |
1676-1721 | 6.58e-03 | ||||
PHD finger 2 found in histone-lysine N-methyltransferase 2A (KMT2A) and 2B (KMT2B); This family includes histone-lysine N-methyltransferase trithorax (Trx) like proteins, KMT2A (MLL1) and KMT2B (MLL2), which comprise the mammalian Trx branch of the COMPASS family, and are both essential for mammalian embryonic development. KMT2A regulates chromatin-mediated transcription through the catalysis of methylation of histone 3 lysine 4 (H3K4), and is frequently rearranged in acute leukemia. KMT2A functions as the catalytic subunit in the MLL1 complex. KMT2B is a second human homolog of Drosophila trithorax, located on chromosome 19 and functions as the catalytic subunit in the MLL2 complex. It plays a critical role in memory formation through mediating hippocampal H3K4 di- and trimethylation. It is also required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. Both KMT2A and KMT2B contain a CxxC (x for any residue) zinc finger domain, three plant homeodomain (PHD) fingers, an extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, two FY (phenylalanine tyrosine)-rich domains, and a SET (Suppressor of variegation, Enhancer of zeste, Trithorax) domain. This model corresponds to the second PHD finger. Pssm-ID: 276982 Cd Length: 50 Bit Score: 36.29 E-value: 6.58e-03
|
||||||||
PRK12323 | PRK12323 | DNA polymerase III subunit gamma/tau; |
403-512 | 7.62e-03 | ||||
DNA polymerase III subunit gamma/tau; Pssm-ID: 237057 [Multi-domain] Cd Length: 700 Bit Score: 41.01 E-value: 7.62e-03
|
||||||||
PRK07003 | PRK07003 | DNA polymerase III subunit gamma/tau; |
409-524 | 7.97e-03 | ||||
DNA polymerase III subunit gamma/tau; Pssm-ID: 235906 [Multi-domain] Cd Length: 830 Bit Score: 41.37 E-value: 7.97e-03
|
||||||||
PHD_JADE2 | cd15680 | PHD finger found in protein Jade-2 and similar proteins; Jade-2, also termed PHD finger ... |
1677-1721 | 9.62e-03 | ||||
PHD finger found in protein Jade-2 and similar proteins; Jade-2, also termed PHD finger protein 15 (PHF15), is a plant homeodomain (PHD) zinc finger protein that is closely related to Jade-1, which functions as an essential regulator of multiple cell signaling pathways. Like Jade-1, Jade-2 is required for ING4 and ING5 to associate with histone acetyltransferase (HAT) HBO1 and Eaf6 to form a HBO1 complex that has a histone H4-specific acetyltransferase activity, a reduced activity toward histone H3, and is responsible for the bulk of histone H4 acetylation in vivo. Jade-2 contains a canonical Cys4HisCys3 PHD finger followed by a non-canonical extended PHD (ePHD) finger, Cys2HisCys5HisCys2His, both of which are zinc-binding motifs. This model corresponds to the canonical Cys4HisCys3 PHD finger. Pssm-ID: 277150 [Multi-domain] Cd Length: 46 Bit Score: 35.75 E-value: 9.62e-03
|
||||||||
HMT_MBD | cd01395 | Methyl-CpG binding domains (MBD) present in putative histone methyltransferases (HMT) such as ... |
551-610 | 9.77e-03 | ||||
Methyl-CpG binding domains (MBD) present in putative histone methyltransferases (HMT) such as CLLD8 and SETDB1 proteins; CLLD8 contains a MBD, a PreSET and a bifurcated SET domain, suggesting that CLLD8 might be associated with methylation-mediated transcriptional repression. SETDB1 and other proteins in this group have a similar domain architecture. SETDB1 is a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Pssm-ID: 238689 Cd Length: 60 Bit Score: 36.20 E-value: 9.77e-03
|
||||||||
Blast search parameters | ||||
|