partner of drosha, isoform C [Drosophila melanogaster]
List of domain hits
Name | Accession | Description | Interval | E-value | ||
DSRM_DGCR8_rpt1 | cd19867 | first double-stranded RNA binding motif of DiGeorge syndrome critical region 8 (DGCR8) and ... |
363-436 | 4.92e-40 | ||
first double-stranded RNA binding motif of DiGeorge syndrome critical region 8 (DGCR8) and similar proteins; DGCR8 is a component of the microprocessor complex that acts as an RNA- and heme-binding protein that is involved in the initial step of microRNA (miRNA) biogenesis. Within the microprocessor complex, DGCR8 functions as a molecular anchor necessary for the recognition of pri-miRNA at dsRNA-ssRNA junction and directs DROSHA to cleave 11bp away from the junction to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs. DGCR8 contains two double-stranded RNA binding motifs (DSRMs). This model describes the first motif. DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. : Pssm-ID: 380696 Cd Length: 74 Bit Score: 140.54 E-value: 4.92e-40
|
||||||
DSRM_DGCR8_rpt2 | cd19868 | second double-stranded RNA binding motif of DiGeorge syndrome critical region 8 (DGCR8) and ... |
484-551 | 6.90e-29 | ||
second double-stranded RNA binding motif of DiGeorge syndrome critical region 8 (DGCR8) and similar proteins; DGCR8 is a component of the microprocessor complex that acts as an RNA- and heme-binding protein that is involved in the initial step of microRNA (miRNA) biogenesis. Within the microprocessor complex, DGCR8 functions as a molecular anchor necessary for the recognition of pri-miRNA at dsRNA-ssRNA junction and directs DROSHA to cleave 11bp away from the junction to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs. DGCR8 contains two double-stranded RNA binding motifs (DSRMs). This model describes the second motif. DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. : Pssm-ID: 380697 Cd Length: 69 Bit Score: 109.29 E-value: 6.90e-29
|
||||||
WW | smart00456 | Domain with 2 conserved Trp (W) residues; Also known as the WWP or rsp5 domain. Binds ... |
155-184 | 7.17e-03 | ||
Domain with 2 conserved Trp (W) residues; Also known as the WWP or rsp5 domain. Binds proline-rich polypeptides. : Pssm-ID: 197736 [Multi-domain] Cd Length: 33 Bit Score: 34.50 E-value: 7.17e-03
|
||||||
Name | Accession | Description | Interval | E-value | ||
DSRM_DGCR8_rpt1 | cd19867 | first double-stranded RNA binding motif of DiGeorge syndrome critical region 8 (DGCR8) and ... |
363-436 | 4.92e-40 | ||
first double-stranded RNA binding motif of DiGeorge syndrome critical region 8 (DGCR8) and similar proteins; DGCR8 is a component of the microprocessor complex that acts as an RNA- and heme-binding protein that is involved in the initial step of microRNA (miRNA) biogenesis. Within the microprocessor complex, DGCR8 functions as a molecular anchor necessary for the recognition of pri-miRNA at dsRNA-ssRNA junction and directs DROSHA to cleave 11bp away from the junction to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs. DGCR8 contains two double-stranded RNA binding motifs (DSRMs). This model describes the first motif. DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. Pssm-ID: 380696 Cd Length: 74 Bit Score: 140.54 E-value: 4.92e-40
|
||||||
DSRM_DGCR8_rpt2 | cd19868 | second double-stranded RNA binding motif of DiGeorge syndrome critical region 8 (DGCR8) and ... |
484-551 | 6.90e-29 | ||
second double-stranded RNA binding motif of DiGeorge syndrome critical region 8 (DGCR8) and similar proteins; DGCR8 is a component of the microprocessor complex that acts as an RNA- and heme-binding protein that is involved in the initial step of microRNA (miRNA) biogenesis. Within the microprocessor complex, DGCR8 functions as a molecular anchor necessary for the recognition of pri-miRNA at dsRNA-ssRNA junction and directs DROSHA to cleave 11bp away from the junction to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs. DGCR8 contains two double-stranded RNA binding motifs (DSRMs). This model describes the second motif. DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. Pssm-ID: 380697 Cd Length: 69 Bit Score: 109.29 E-value: 6.90e-29
|
||||||
dsrm | pfam00035 | Double-stranded RNA binding motif; Sequences gathered for seed by HMM_iterative_training ... |
371-434 | 5.91e-10 | ||
Double-stranded RNA binding motif; Sequences gathered for seed by HMM_iterative_training Putative motif shared by proteins that bind to dsRNA. At least some DSRM proteins seem to bind to specific RNA targets. Exemplified by Staufen, which is involved in localization of at least five different mRNAs in the early Drosophila embryo. Also by interferon-induced protein kinase in humans, which is part of the cellular response to dsRNA. Pssm-ID: 425434 [Multi-domain] Cd Length: 66 Bit Score: 55.31 E-value: 5.91e-10
|
||||||
DSRM | smart00358 | Double-stranded RNA binding motif; |
371-434 | 7.07e-10 | ||
Double-stranded RNA binding motif; Pssm-ID: 214634 [Multi-domain] Cd Length: 67 Bit Score: 55.35 E-value: 7.07e-10
|
||||||
Rnc | COG0571 | dsRNA-specific ribonuclease [Transcription]; |
374-434 | 1.08e-06 | ||
dsRNA-specific ribonuclease [Transcription]; Pssm-ID: 440336 [Multi-domain] Cd Length: 229 Bit Score: 50.10 E-value: 1.08e-06
|
||||||
WW | smart00456 | Domain with 2 conserved Trp (W) residues; Also known as the WWP or rsp5 domain. Binds ... |
155-184 | 7.17e-03 | ||
Domain with 2 conserved Trp (W) residues; Also known as the WWP or rsp5 domain. Binds proline-rich polypeptides. Pssm-ID: 197736 [Multi-domain] Cd Length: 33 Bit Score: 34.50 E-value: 7.17e-03
|
||||||
DSRM | smart00358 | Double-stranded RNA binding motif; |
514-549 | 8.08e-03 | ||
Double-stranded RNA binding motif; Pssm-ID: 214634 [Multi-domain] Cd Length: 67 Bit Score: 35.32 E-value: 8.08e-03
|
||||||
Name | Accession | Description | Interval | E-value | ||
DSRM_DGCR8_rpt1 | cd19867 | first double-stranded RNA binding motif of DiGeorge syndrome critical region 8 (DGCR8) and ... |
363-436 | 4.92e-40 | ||
first double-stranded RNA binding motif of DiGeorge syndrome critical region 8 (DGCR8) and similar proteins; DGCR8 is a component of the microprocessor complex that acts as an RNA- and heme-binding protein that is involved in the initial step of microRNA (miRNA) biogenesis. Within the microprocessor complex, DGCR8 functions as a molecular anchor necessary for the recognition of pri-miRNA at dsRNA-ssRNA junction and directs DROSHA to cleave 11bp away from the junction to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs. DGCR8 contains two double-stranded RNA binding motifs (DSRMs). This model describes the first motif. DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. Pssm-ID: 380696 Cd Length: 74 Bit Score: 140.54 E-value: 4.92e-40
|
||||||
DSRM_DGCR8_rpt2 | cd19868 | second double-stranded RNA binding motif of DiGeorge syndrome critical region 8 (DGCR8) and ... |
484-551 | 6.90e-29 | ||
second double-stranded RNA binding motif of DiGeorge syndrome critical region 8 (DGCR8) and similar proteins; DGCR8 is a component of the microprocessor complex that acts as an RNA- and heme-binding protein that is involved in the initial step of microRNA (miRNA) biogenesis. Within the microprocessor complex, DGCR8 functions as a molecular anchor necessary for the recognition of pri-miRNA at dsRNA-ssRNA junction and directs DROSHA to cleave 11bp away from the junction to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs. DGCR8 contains two double-stranded RNA binding motifs (DSRMs). This model describes the second motif. DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. Pssm-ID: 380697 Cd Length: 69 Bit Score: 109.29 E-value: 6.90e-29
|
||||||
DSRM_EIF2AK2-like | cd19875 | double-stranded RNA binding motif of eukaryotic translation initiation factor 2-alpha kinase 2 ... |
368-434 | 2.00e-10 | ||
double-stranded RNA binding motif of eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) and similar proteins; The family includes EIF2AK2 and adenosine deaminase domain-containing proteins, ADAD1 and ADAD2. EIF2AK2 (EC 2.7.11.1/EC 2.7.10.2; also known as interferon-induced, double-stranded RNA-activated protein kinase, eIF-2A protein kinase 2, interferon-inducible RNA-dependent protein kinase, P1/eIF-2A protein kinase, protein kinase RNA-activated (PKR), protein kinase R, tyrosine-protein kinase EIF2AK2, or p68 kinase) acts as an IFN-induced dsRNA-dependent serine/threonine-protein kinase which plays a key role in the innate immune response to viral infection and is also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation. ADAD1 (also called testis nuclear RNA-binding protein (TENR)) and ADAD2 (also called testis nuclear RNA-binding protein-like (TENRL)) are phylogenetically related to a family of adenosine deaminases involved in RNA editing. ADAD1 plays an essential function in spermatid morphogenesis. It may be involved in testis-specific nuclear post-transcriptional processes such as heterogeneous nuclear RNA (hnRNA) packaging, alternative splicing, or nuclear/cytoplasmic transport of mRNAs. ADAD2 is a double-stranded RNA binding protein with unclear biological function. Members of this group contains varying numbers of double-stranded RNA binding motifs (DSRMs). DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. Pssm-ID: 380704 Cd Length: 67 Bit Score: 56.89 E-value: 2.00e-10
|
||||||
dsrm | pfam00035 | Double-stranded RNA binding motif; Sequences gathered for seed by HMM_iterative_training ... |
371-434 | 5.91e-10 | ||
Double-stranded RNA binding motif; Sequences gathered for seed by HMM_iterative_training Putative motif shared by proteins that bind to dsRNA. At least some DSRM proteins seem to bind to specific RNA targets. Exemplified by Staufen, which is involved in localization of at least five different mRNAs in the early Drosophila embryo. Also by interferon-induced protein kinase in humans, which is part of the cellular response to dsRNA. Pssm-ID: 425434 [Multi-domain] Cd Length: 66 Bit Score: 55.31 E-value: 5.91e-10
|
||||||
DSRM | smart00358 | Double-stranded RNA binding motif; |
371-434 | 7.07e-10 | ||
Double-stranded RNA binding motif; Pssm-ID: 214634 [Multi-domain] Cd Length: 67 Bit Score: 55.35 E-value: 7.07e-10
|
||||||
DSRM_SF | cd00048 | double-stranded RNA binding motif (DSRM) superfamily; DSRM (also known as dsRBM) is a 65-70 ... |
375-431 | 5.58e-09 | ||
double-stranded RNA binding motif (DSRM) superfamily; DSRM (also known as dsRBM) is a 65-70 amino acid domain that adopts an alpha-beta-beta-beta-alpha fold. It is not sequence specific, but highly specific for double-stranded RNAs (dsRNAs) of various origin and structure. The DSRM domains are found in a variety of proteins including dsRNA dependent protein kinase PKR, RNA helicases, Drosophila Staufen protein, E. coli RNase III, RNase H1, and dsRNA dependent adenosine deaminases. They are involved in numerous cellular mechanisms ranging from localization and transport of messenger RNAs, through maturation and degradation of RNAs, to viral response and signal transduction. Some members harbor tandem DSRMs that act in small RNA biogenesis. Pssm-ID: 380679 [Multi-domain] Cd Length: 57 Bit Score: 52.29 E-value: 5.58e-09
|
||||||
DSRM_RNAse_III_family | cd10845 | double-stranded RNA binding motif of ribonuclease III (RNase III) and similar proteins; RNase ... |
373-434 | 1.81e-07 | ||
double-stranded RNA binding motif of ribonuclease III (RNase III) and similar proteins; RNase III (EC 3.1.26.3; also known as ribonuclease 3) digests double-stranded RNA formed within single-strand substrates, but not RNA-DNA hybrids. It is involved in the processing of rRNA precursors, viral transcripts, some mRNAs, and at least 1 tRNA (metY, a minor form of tRNA-init-Met). It cleaves the 30S primary rRNA transcript to yield the immediate precursors to the 16S and 23S rRNAs. The cleavage can occur in assembled 30S, 50S, and even 70S subunits and is influenced by the presence of ribosomal proteins. The RNase III family also includes the mitochondrion-specific ribosomal protein mL44 subfamily, which is composed of mitochondrial 54S ribosomal protein L3 (MRPL3) and mitochondrial 39S ribosomal protein L44 (MRPL44). Members of this family contain an RNase III domain and a C-terminal double-stranded RNA binding motif (DSRM). DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. Pssm-ID: 380682 [Multi-domain] Cd Length: 69 Bit Score: 48.64 E-value: 1.81e-07
|
||||||
DSRM_EIF2AK2 | cd20314 | double-stranded RNA binding motif of eukaryotic translation initiation factor 2-alpha kinase 2 ... |
370-434 | 4.58e-07 | ||
double-stranded RNA binding motif of eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) and similar proteins; EIF2AK2 (EC 2.7.11.1/EC 2.7.10.2; also known as interferon-induced, double-stranded RNA-activated protein kinase, eIF-2A protein kinase 2, interferon-inducible RNA-dependent protein kinase, P1/eIF-2A protein kinase, protein kinase RNA-activated (PKR), protein kinase R, tyrosine-protein kinase EIF2AK2, or p68 kinase) acts as an IFN-induced dsRNA-dependent serine/threonine-protein kinase which plays a key role in the innate immune response to viral infection and is also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation. EIF2AK2 proteins contain two to three double-stranded RNA binding motifs (DSRMs). DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. Pssm-ID: 380746 Cd Length: 68 Bit Score: 47.39 E-value: 4.58e-07
|
||||||
Rnc | COG0571 | dsRNA-specific ribonuclease [Transcription]; |
374-434 | 1.08e-06 | ||
dsRNA-specific ribonuclease [Transcription]; Pssm-ID: 440336 [Multi-domain] Cd Length: 229 Bit Score: 50.10 E-value: 1.08e-06
|
||||||
DSRM_DHX9_rpt1 | cd19854 | first double-stranded RNA binding motif of DEAH box protein 9 (DHX9) and similar proteins; ... |
383-435 | 2.20e-06 | ||
first double-stranded RNA binding motif of DEAH box protein 9 (DHX9) and similar proteins; DHX9 (EC 3.6.4.13; also known as ATP-dependent RNA helicase A, DExH-box helicase 9 (DDX9), Leukophysin (LKP), nuclear DNA helicase II (NDH II), NDH2, or RNA helicase A) is a multifunctional ATP-dependent nucleic acid helicase that unwinds DNA and RNA in a 3' to 5' direction and plays important roles in many processes, such as DNA replication, transcriptional activation, post-transcriptional RNA regulation, mRNA translation, and RNA-mediated gene silencing. It contains two double-stranded RNA binding motifs (DSRMs) at the N-terminal region. This model corresponds to the first motif. DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. Pssm-ID: 380683 Cd Length: 69 Bit Score: 45.34 E-value: 2.20e-06
|
||||||
DSRM_EIF2AK2_rpt1 | cd19903 | first double-stranded RNA binding motif of eukaryotic translation initiation factor 2-alpha ... |
370-434 | 4.13e-06 | ||
first double-stranded RNA binding motif of eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) and similar proteins; EIF2AK2 (EC 2.7.11.1/EC 2.7.10.2; also known as interferon-induced, double-stranded RNA-activated protein kinase, eIF-2A protein kinase 2, interferon-inducible RNA-dependent protein kinase, P1/eIF-2A protein kinase, protein kinase RNA-activated (PKR), protein kinase R, tyrosine-protein kinase EIF2AK2, or p68 kinase) acts as an IFN-induced dsRNA-dependent serine/threonine-protein kinase which plays a key role in the innate immune response to viral infection and is also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation. EIF2AK2 proteins contain two to three double-stranded RNA binding motifs (DSRMs). This model describes the first motif. DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. Pssm-ID: 380732 Cd Length: 68 Bit Score: 44.69 E-value: 4.13e-06
|
||||||
DSRM_ADAD1 | cd19905 | double-stranded RNA binding motif of adenosine deaminase domain-containing protein 1 (ADAD1) ... |
363-435 | 6.31e-06 | ||
double-stranded RNA binding motif of adenosine deaminase domain-containing protein 1 (ADAD1) and similar proteins; ADAD1 (also known as testis nuclear RNA-binding protein (TENR)) is phylogenetically related to a family of adenosine deaminases involved in RNA editing. It plays an essential function in spermatid morphogenesis. It may be involved in testis-specific nuclear post-transcriptional processes such as heterogeneous nuclear RNA (hnRNA) packaging, alternative splicing, or nuclear/cytoplasmic transport of mRNAs. ADAD1 contains a double-stranded RNA binding motif (DSRM) and a C-terminal adenosine-deaminase (editase) domain. DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. Pssm-ID: 380734 Cd Length: 69 Bit Score: 44.18 E-value: 6.31e-06
|
||||||
DSRM_ADAD2 | cd19906 | double-stranded RNA binding motif of adenosine deaminase domain-containing protein 2 (ADAD2) ... |
367-434 | 9.72e-05 | ||
double-stranded RNA binding motif of adenosine deaminase domain-containing protein 2 (ADAD2) and similar proteins; ADAD2 (also known as testis nuclear RNA-binding protein-like (TENRL)) is phylogenetically related to a family of adenosine deaminases involved in RNA editing. It is a double-stranded RNA binding protein with unclear biological function. ADAD2 contains a double-stranded RNA binding motif (DSRM) and a C-terminal adenosine-deaminase (editase) domain. DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. Pssm-ID: 380735 Cd Length: 74 Bit Score: 40.98 E-value: 9.72e-05
|
||||||
DSRM_PRKRA-like_rpt1 | cd19862 | first double-stranded RNA binding motif of protein activator of the interferon-induced protein ... |
368-434 | 6.17e-03 | ||
first double-stranded RNA binding motif of protein activator of the interferon-induced protein kinase (PRKRA) and similar proteins; This family includes protein activator of the interferon-induced protein kinase (PRKRA) and the RISC-loading complex subunit TARBP2. PRKRA (also known as interferon-inducible double-stranded RNA-dependent protein kinase activator A, PKR-associated protein X (RAX), PKR-associating protein X, protein kinase, interferon-inducible double-stranded RNA-dependent activator, PACT, or HSD14) is a cellular activator for double-stranded RNA-dependent protein kinase during stress signaling. TARBP2 (also called TAR RNA-binding protein 2, or trans-activation-responsive RNA-binding protein (TRBP)), participates in the formation of the RNA-induced silencing complex (RISC). It is part of the RISC-loading complex (RLC), together with dicer1 and eif2c2/ago2, and is required to process precursor miRNAs. This family also includes Drosophila melanogaster Loquacious and similar proteins. Loquacious (Loqs) is a double-stranded RNA-binding domain (dsRBD) protein, a homolog of human TAR RNA binding protein (TRBP) that is a protein first identified as binding the HIV trans-activator RNA (TAR). Loqs interacts with Dicer1 (dmDcr1) to facilitate miRNA processing. PRKRA family proteins contain three double-stranded RNA binding motifs (DSRMs). This model describes the first motif. DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. Pssm-ID: 380691 [Multi-domain] Cd Length: 70 Bit Score: 35.70 E-value: 6.17e-03
|
||||||
WW | smart00456 | Domain with 2 conserved Trp (W) residues; Also known as the WWP or rsp5 domain. Binds ... |
155-184 | 7.17e-03 | ||
Domain with 2 conserved Trp (W) residues; Also known as the WWP or rsp5 domain. Binds proline-rich polypeptides. Pssm-ID: 197736 [Multi-domain] Cd Length: 33 Bit Score: 34.50 E-value: 7.17e-03
|
||||||
DSRM | smart00358 | Double-stranded RNA binding motif; |
514-549 | 8.08e-03 | ||
Double-stranded RNA binding motif; Pssm-ID: 214634 [Multi-domain] Cd Length: 67 Bit Score: 35.32 E-value: 8.08e-03
|
||||||
DSRM_PRKRA_rpt1 | cd19889 | first double-stranded RNA binding motif of protein activator of the interferon-induced protein ... |
367-434 | 8.99e-03 | ||
first double-stranded RNA binding motif of protein activator of the interferon-induced protein kinase (PRKRA) and similar proteins; PRKRA (also known as interferon-inducible double-stranded RNA-dependent protein kinase activator A, PKR-associated protein X (RAX), PKR-associating protein X, protein kinase, interferon-inducible double-stranded RNA-dependent activator, PACT, or HSD14) is a cellular activator for double-stranded RNA-dependent protein kinase during stress signaling. PRKRA contains three double-stranded RNA binding motifs (DSRMs). This model describes the first motif. DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. Pssm-ID: 380718 [Multi-domain] Cd Length: 71 Bit Score: 35.27 E-value: 8.99e-03
|
||||||
Blast search parameters | ||||
|