Emsy N Terminus (ENT)/ plant Tudor-like domains-containing protein [Arabidopsis thaliana]
List of domain hits
Name | Accession | Description | Interval | E-value | ||
ENT | pfam03735 | ENT domain; This presumed domain is named after Emsy N Terminus (ENT). Emsy is a protein that ... |
2-72 | 2.98e-29 | ||
ENT domain; This presumed domain is named after Emsy N Terminus (ENT). Emsy is a protein that is amplified in breast cancer and interacts with BRCA2. The N terminus of this protein is found to be similar to other vertebrate and plant proteins of unknown function. This domain has a completely conserved histidine residue that may be functionally important. : Pssm-ID: 461032 Cd Length: 71 Bit Score: 106.50 E-value: 2.98e-29
|
||||||
Tudor_Agenet_AtEML-like | cd20404 | Tudor-like Agenet domain found in Arabidopsis thaliana proteins EMSY-LIKE 1-4 (AtEML1-4) and ... |
129-179 | 6.58e-18 | ||
Tudor-like Agenet domain found in Arabidopsis thaliana proteins EMSY-LIKE 1-4 (AtEML1-4) and similar proteins; This family includes Arabidopsis thaliana proteins EMSY-LIKE 1-4 (AtEML1-4), histone-lysine N-methyltransferase trithorax-like proteins ATX1-2 (AtATX1-2), histone-lysine N-methyltransferase ASHH3, DNA mismatch repair protein MSH6, and similar proteins. EMSY-like proteins contain an EMSY N-terminal domain, a central Tudor-like Agenet domain, and a C-terminal coiled-coil motif. AtEML1, AtEML2, and likely AtEML4, contribute to RPP7-mediated immunity. Besides this, AtEML1 and AtEML2 participate in a second EDM2-dependent function and affect floral transition. ATX-like proteins are plant counterparts of the Drosophila melanogaster trithorax (TRX) and mammalian mixed-lineage leukemia (MLL1) proteins. ATX1, also called protein SET domain group 27, or trithorax-homolog protein 1 (TRX-homolog protein 1), is a methyltransferase that trimethylates histone H3 at lysine 4 (H3K4me3). It also acts as a histone modifier and as a positive effector of gene expression. ATX1regulates transcription from diverse classes of genes implicated in biotic and abiotic stress responses. It is involved in dehydration stress signaling in both abscisic acid (ABA)-dependent and ABA-independent pathways. ATX2, also called protein SET domain group 30, or trithorax-homolog protein 2 (TRX-homolog protein 2), is involved in dimethylating histone H3 at lysine 4 (H3K4me2). Both ATX1 and ATX2 are multi-domain proteins that consist of an N-terminal Tudor-like Agenet domain, a PWWP domain, FYRN- and FYRC (DAST, domain associated with SET in trithorax) domains, a canonical plant homeodomain (PHD) domain, a non-canonical extended PHD (ePHD) domain, and a C-terminal SET domain. ASHR3, also called protein SET DOMAIN GROUP 7, functions as a histone-lysine N-methyltransferase (EC 2.1.1.43). It contains a SET domain and a Tudor-like Agenet domain. AtMSH6, also called MutS protein homolog 6, is a component of the post-replicative DNA mismatch repair system (MMR). It forms a heterodimer with MutS alpha (MSH2-MSH6 heterodimer) which binds to DNA mismatches thereby initiating DNA repair. AtMSH6 contains a Tudor-like Agenet domain and a MutS domain. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. : Pssm-ID: 410475 [Multi-domain] Cd Length: 51 Bit Score: 75.78 E-value: 6.58e-18
|
||||||
Name | Accession | Description | Interval | E-value | ||
ENT | pfam03735 | ENT domain; This presumed domain is named after Emsy N Terminus (ENT). Emsy is a protein that ... |
2-72 | 2.98e-29 | ||
ENT domain; This presumed domain is named after Emsy N Terminus (ENT). Emsy is a protein that is amplified in breast cancer and interacts with BRCA2. The N terminus of this protein is found to be similar to other vertebrate and plant proteins of unknown function. This domain has a completely conserved histidine residue that may be functionally important. Pssm-ID: 461032 Cd Length: 71 Bit Score: 106.50 E-value: 2.98e-29
|
||||||
Tudor_Agenet_AtEML-like | cd20404 | Tudor-like Agenet domain found in Arabidopsis thaliana proteins EMSY-LIKE 1-4 (AtEML1-4) and ... |
129-179 | 6.58e-18 | ||
Tudor-like Agenet domain found in Arabidopsis thaliana proteins EMSY-LIKE 1-4 (AtEML1-4) and similar proteins; This family includes Arabidopsis thaliana proteins EMSY-LIKE 1-4 (AtEML1-4), histone-lysine N-methyltransferase trithorax-like proteins ATX1-2 (AtATX1-2), histone-lysine N-methyltransferase ASHH3, DNA mismatch repair protein MSH6, and similar proteins. EMSY-like proteins contain an EMSY N-terminal domain, a central Tudor-like Agenet domain, and a C-terminal coiled-coil motif. AtEML1, AtEML2, and likely AtEML4, contribute to RPP7-mediated immunity. Besides this, AtEML1 and AtEML2 participate in a second EDM2-dependent function and affect floral transition. ATX-like proteins are plant counterparts of the Drosophila melanogaster trithorax (TRX) and mammalian mixed-lineage leukemia (MLL1) proteins. ATX1, also called protein SET domain group 27, or trithorax-homolog protein 1 (TRX-homolog protein 1), is a methyltransferase that trimethylates histone H3 at lysine 4 (H3K4me3). It also acts as a histone modifier and as a positive effector of gene expression. ATX1regulates transcription from diverse classes of genes implicated in biotic and abiotic stress responses. It is involved in dehydration stress signaling in both abscisic acid (ABA)-dependent and ABA-independent pathways. ATX2, also called protein SET domain group 30, or trithorax-homolog protein 2 (TRX-homolog protein 2), is involved in dimethylating histone H3 at lysine 4 (H3K4me2). Both ATX1 and ATX2 are multi-domain proteins that consist of an N-terminal Tudor-like Agenet domain, a PWWP domain, FYRN- and FYRC (DAST, domain associated with SET in trithorax) domains, a canonical plant homeodomain (PHD) domain, a non-canonical extended PHD (ePHD) domain, and a C-terminal SET domain. ASHR3, also called protein SET DOMAIN GROUP 7, functions as a histone-lysine N-methyltransferase (EC 2.1.1.43). It contains a SET domain and a Tudor-like Agenet domain. AtMSH6, also called MutS protein homolog 6, is a component of the post-replicative DNA mismatch repair system (MMR). It forms a heterodimer with MutS alpha (MSH2-MSH6 heterodimer) which binds to DNA mismatches thereby initiating DNA repair. AtMSH6 contains a Tudor-like Agenet domain and a MutS domain. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410475 [Multi-domain] Cd Length: 51 Bit Score: 75.78 E-value: 6.58e-18
|
||||||
Agenet | smart00743 | Tudor-like domain present in plant sequences; Domain in plant sequences with possible ... |
128-180 | 3.53e-05 | ||
Tudor-like domain present in plant sequences; Domain in plant sequences with possible chromatin-associated functions. Pssm-ID: 214798 Cd Length: 59 Bit Score: 40.77 E-value: 3.53e-05
|
||||||
Name | Accession | Description | Interval | E-value | ||
ENT | pfam03735 | ENT domain; This presumed domain is named after Emsy N Terminus (ENT). Emsy is a protein that ... |
2-72 | 2.98e-29 | ||
ENT domain; This presumed domain is named after Emsy N Terminus (ENT). Emsy is a protein that is amplified in breast cancer and interacts with BRCA2. The N terminus of this protein is found to be similar to other vertebrate and plant proteins of unknown function. This domain has a completely conserved histidine residue that may be functionally important. Pssm-ID: 461032 Cd Length: 71 Bit Score: 106.50 E-value: 2.98e-29
|
||||||
Tudor_Agenet_AtEML-like | cd20404 | Tudor-like Agenet domain found in Arabidopsis thaliana proteins EMSY-LIKE 1-4 (AtEML1-4) and ... |
129-179 | 6.58e-18 | ||
Tudor-like Agenet domain found in Arabidopsis thaliana proteins EMSY-LIKE 1-4 (AtEML1-4) and similar proteins; This family includes Arabidopsis thaliana proteins EMSY-LIKE 1-4 (AtEML1-4), histone-lysine N-methyltransferase trithorax-like proteins ATX1-2 (AtATX1-2), histone-lysine N-methyltransferase ASHH3, DNA mismatch repair protein MSH6, and similar proteins. EMSY-like proteins contain an EMSY N-terminal domain, a central Tudor-like Agenet domain, and a C-terminal coiled-coil motif. AtEML1, AtEML2, and likely AtEML4, contribute to RPP7-mediated immunity. Besides this, AtEML1 and AtEML2 participate in a second EDM2-dependent function and affect floral transition. ATX-like proteins are plant counterparts of the Drosophila melanogaster trithorax (TRX) and mammalian mixed-lineage leukemia (MLL1) proteins. ATX1, also called protein SET domain group 27, or trithorax-homolog protein 1 (TRX-homolog protein 1), is a methyltransferase that trimethylates histone H3 at lysine 4 (H3K4me3). It also acts as a histone modifier and as a positive effector of gene expression. ATX1regulates transcription from diverse classes of genes implicated in biotic and abiotic stress responses. It is involved in dehydration stress signaling in both abscisic acid (ABA)-dependent and ABA-independent pathways. ATX2, also called protein SET domain group 30, or trithorax-homolog protein 2 (TRX-homolog protein 2), is involved in dimethylating histone H3 at lysine 4 (H3K4me2). Both ATX1 and ATX2 are multi-domain proteins that consist of an N-terminal Tudor-like Agenet domain, a PWWP domain, FYRN- and FYRC (DAST, domain associated with SET in trithorax) domains, a canonical plant homeodomain (PHD) domain, a non-canonical extended PHD (ePHD) domain, and a C-terminal SET domain. ASHR3, also called protein SET DOMAIN GROUP 7, functions as a histone-lysine N-methyltransferase (EC 2.1.1.43). It contains a SET domain and a Tudor-like Agenet domain. AtMSH6, also called MutS protein homolog 6, is a component of the post-replicative DNA mismatch repair system (MMR). It forms a heterodimer with MutS alpha (MSH2-MSH6 heterodimer) which binds to DNA mismatches thereby initiating DNA repair. AtMSH6 contains a Tudor-like Agenet domain and a MutS domain. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410475 [Multi-domain] Cd Length: 51 Bit Score: 75.78 E-value: 6.58e-18
|
||||||
Tudor_SF | cd04508 | Tudor domain superfamily; The Tudor domain is a conserved structural domain, originally ... |
130-179 | 5.06e-06 | ||
Tudor domain superfamily; The Tudor domain is a conserved structural domain, originally identified in the Tudor protein of Drosophila, that adopts a beta-barrel-like core structure containing four short beta-strands followed by an alpha-helical region. It binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Tudor domain-containing proteins may mediate protein-protein interactions required for various DNA-templated biological processes, such as RNA metabolism, as well as histone modification and the DNA damage response. Members of this superfamily contain one or more copies of the Tudor domain. Pssm-ID: 410449 [Multi-domain] Cd Length: 47 Bit Score: 42.96 E-value: 5.06e-06
|
||||||
Agenet | smart00743 | Tudor-like domain present in plant sequences; Domain in plant sequences with possible ... |
128-180 | 3.53e-05 | ||
Tudor-like domain present in plant sequences; Domain in plant sequences with possible chromatin-associated functions. Pssm-ID: 214798 Cd Length: 59 Bit Score: 40.77 E-value: 3.53e-05
|
||||||
Blast search parameters | ||||
|