NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|300069041|ref|NP_001177785|]
View 

PDZ and LIM domain protein 5 isoform ENH1d [Mus musculus]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
PDZ_PDLIM-like cd06753
PDZ domain of PDZ-LIM family proteins, and related domains; PDZ (PSD-95 (Postsynaptic density ...
5-83 6.69e-48

PDZ domain of PDZ-LIM family proteins, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of PDZ-LIM family proteins including PDLIM1-7, and related domains. PDZ-LIM family proteins (also known as Zasp PDZ domain proteins) are involved in the rearrangement of the actin cytoskeleton; they mediate association with the cytoskeleton through alpha-actinin as well as with other proteins involved in signal transduction pathways. Members of this family include PDLIM1 (also known as C-terminal LIM domain protein 1, elfin, LIM domain protein CLP-36), PDLIM2 (also known as PDZ-LIM protein mystique), PDLIM3 (also known as actinin-associated LIM protein, alpha-actinin-2-associated LIM protein, ALP), PDLIM4 (also known as LIM protein RIL, Reversion-induced LIM protein), PDLIM5 (also known as enigma homolog, ENH, enigma-like PDZ and LIM domains protein), PDLIM6 (also known as LIM domain-binding protein 3, ZASP, Cypher, Oracle), and PDLIM7 (also known as PDZ and LIM domain protein 7, LIM mineralization protein, LMP; protein enigma). PDLIM1 has been shown to negatively regulate NF-kappaB-mediated signaling in the cytoplasm. PDLIM7 negatively regulates p53 through binding murine double minute 2 (MDM2). The PDZ domains of PDZ-LIM family proteins PDLIM1, 2, 3, 5, 6, 7 have been shown to bind actin. Other PDZ-LIM family PDZ domain binding partners include thyroid receptor interacting protein-6 (PDLIM4-PDZ), the LIM domain of PDLIM4 (PDLIM4-PDZ), tropomyosin (PDLIM7-PDZ), myotilin and calsarcin 1 (PDLIM6-PDZ), and proteins from the myotilin and FATZ (calsarcin/myozenin) families (PDLIM1, 3, 4, 6 PDZ domains). PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PDLIM-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


:

Pssm-ID: 467235 [Multi-domain]  Cd Length: 79  Bit Score: 161.16  E-value: 6.69e-48
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 300069041   5 SVSLVGPAPWGFRLQGGKDFNMPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQR 83
Cdd:cd06753    1 SVTLSGPAPWGFRLQGGKDFNQPLTISRVTPGGKAAQANLRPGDVILAINGESTEGMTHLEAQNKIKAATGSLSLTLER 79
LIM super family cl02475
LIM is a small protein-protein interaction domain, containing two zinc fingers; LIM domains ...
516-570 4.05e-35

LIM is a small protein-protein interaction domain, containing two zinc fingers; LIM domains are identified in a diverse group of proteins with wide variety of biological functions, including gene expression regulation, cell fate determination, cytoskeleton organization, tumor formation and development. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. They perform their functions through interactions with other protein partners. LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. The consensus sequence of LIM domain has been defined as C-x(2)-C-x(16,23)-H-x(2)-[CH]-x(2)-C-x(2)-C-x(16,21)-C-x(2,3)-[CHD] (where X denotes any amino acid).


The actual alignment was detected with superfamily member cd09459:

Pssm-ID: 413332 [Multi-domain]  Cd Length: 55  Bit Score: 125.85  E-value: 4.05e-35
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKHAH 570
Cdd:cd09459    1 CHGCEFPIEAGDRFLEALGHTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKHAH 55
LIM1_ENH cd09453
The first LIM domain of the Enigma Homolog (ENH) family; The first LIM domain of the Enigma ...
398-449 4.67e-34

The first LIM domain of the Enigma Homolog (ENH) family; The first LIM domain of the Enigma Homolog (ENH) family: ENH was initially identified in rat brain. Same as enigma, it contains three LIM domains at the C-terminus and a PDZ domain at N-terminus. ENH is implicated in signal transduction processes involving protein kinases. It has also been shown that ENH interacts with protein kinase D1 (PKD1) via its LIM domains and forms a complex with PKD1 and the alpha1C subunit of cardiac L-type voltage-gated calcium channel in rat neonatal cardiomyocytes. The N-terminal PDZ domain interacts with alpha-actinin at the Z-line. ENH is expressed in multiple tissues, such as skeletal muscle, heart, bone, and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


:

Pssm-ID: 188837 [Multi-domain]  Cd Length: 52  Bit Score: 122.82  E-value: 4.67e-34
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09453    1 CATCNQVIRGPFLVALGKSWHPEEFNCAHCKSSMAYIGFVEEKGALYCEICY 52
LIM super family cl02475
LIM is a small protein-protein interaction domain, containing two zinc fingers; LIM domains ...
457-508 7.02e-33

LIM is a small protein-protein interaction domain, containing two zinc fingers; LIM domains are identified in a diverse group of proteins with wide variety of biological functions, including gene expression regulation, cell fate determination, cytoskeleton organization, tumor formation and development. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. They perform their functions through interactions with other protein partners. LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. The consensus sequence of LIM domain has been defined as C-x(2)-C-x(16,23)-H-x(2)-[CH]-x(2)-C-x(2)-C-x(16,21)-C-x(2,3)-[CHD] (where X denotes any amino acid).


The actual alignment was detected with superfamily member cd09457:

Pssm-ID: 413332 [Multi-domain]  Cd Length: 52  Bit Score: 119.75  E-value: 7.02e-33
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09457    1 CGRCQRKILGEVINALKQTWHVSCFVCVACHNPIRNNVFHLEDGEPYCETDY 52
DUF4749 super family cl38478
Domain of unknown function (DUF4749); This presumed domain is functionally uncharacterized. ...
105-196 1.00e-06

Domain of unknown function (DUF4749); This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is typically between 121 and 170 amino acids in length. It is usually found in association with pfam00595 (PDZ) and pfam00412 (LIM), and often contains the conserved Zasp-like motif (IPR006643).


The actual alignment was detected with superfamily member pfam15936:

Pssm-ID: 464948 [Multi-domain]  Cd Length: 98  Bit Score: 47.03  E-value: 1.00e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 300069041  105 SESAQELAEGQ----RRGSQGDIKQQNGPPRKHIVERNTEFYhipthsdaskKRLIEDTE-DWRPRtgttQSRSFRILAQ 179
Cdd:pfam15936  16 SENIQDALSGQlsglAGSSEGGKPPPSRPPKKPVVDADSEVY----------KMLQENQEpKEPPR----QSGSFRVLQE 81
                          90
                  ....*....|....*..
gi 300069041  180 ITGTEHLTESENDNTKK 196
Cdd:pfam15936  82 ILETEYLQPPEEELNRP 98
PHA03307 super family cl33723
transcriptional regulator ICP4; Provisional
276-417 4.34e-03

transcriptional regulator ICP4; Provisional


The actual alignment was detected with superfamily member PHA03307:

Pssm-ID: 223039 [Multi-domain]  Cd Length: 1352  Bit Score: 40.15  E-value: 4.34e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 300069041  276 SSEESSGSVHVKKSSSTQEPSQQP---------ASSGASPLSASEGPESPGSSRPSVAGLRSAAAFKPVGSTSVKSPSWQ 346
Cdd:PHA03307  275 WNGPSSRPGPASSSSSPRERSPSPspsspgsgpAPSSPRASSSSSSSRESSSSSTSSSSESSRGAAVSPGPSPSRSPSPS 354
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 300069041  347 RPNQAA--PSTGRISNNARSSGTGASVGP--------PQPSDQDTLVQRAEHIPAGKRTPMCAHCNQVI-----RGPFLV 411
Cdd:PHA03307  355 RPPPPAdpSSPRKRPRPSRAPSSPAASAGrptrrrarAAVAGRARRRDATGRFPAGRPRPSPLDAGAASgafyaRYPLLT 434

                  ....*.
gi 300069041  412 ALGKSW 417
Cdd:PHA03307  435 PSGEPW 440
 
Name Accession Description Interval E-value
PDZ_PDLIM-like cd06753
PDZ domain of PDZ-LIM family proteins, and related domains; PDZ (PSD-95 (Postsynaptic density ...
5-83 6.69e-48

PDZ domain of PDZ-LIM family proteins, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of PDZ-LIM family proteins including PDLIM1-7, and related domains. PDZ-LIM family proteins (also known as Zasp PDZ domain proteins) are involved in the rearrangement of the actin cytoskeleton; they mediate association with the cytoskeleton through alpha-actinin as well as with other proteins involved in signal transduction pathways. Members of this family include PDLIM1 (also known as C-terminal LIM domain protein 1, elfin, LIM domain protein CLP-36), PDLIM2 (also known as PDZ-LIM protein mystique), PDLIM3 (also known as actinin-associated LIM protein, alpha-actinin-2-associated LIM protein, ALP), PDLIM4 (also known as LIM protein RIL, Reversion-induced LIM protein), PDLIM5 (also known as enigma homolog, ENH, enigma-like PDZ and LIM domains protein), PDLIM6 (also known as LIM domain-binding protein 3, ZASP, Cypher, Oracle), and PDLIM7 (also known as PDZ and LIM domain protein 7, LIM mineralization protein, LMP; protein enigma). PDLIM1 has been shown to negatively regulate NF-kappaB-mediated signaling in the cytoplasm. PDLIM7 negatively regulates p53 through binding murine double minute 2 (MDM2). The PDZ domains of PDZ-LIM family proteins PDLIM1, 2, 3, 5, 6, 7 have been shown to bind actin. Other PDZ-LIM family PDZ domain binding partners include thyroid receptor interacting protein-6 (PDLIM4-PDZ), the LIM domain of PDLIM4 (PDLIM4-PDZ), tropomyosin (PDLIM7-PDZ), myotilin and calsarcin 1 (PDLIM6-PDZ), and proteins from the myotilin and FATZ (calsarcin/myozenin) families (PDLIM1, 3, 4, 6 PDZ domains). PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PDLIM-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467235 [Multi-domain]  Cd Length: 79  Bit Score: 161.16  E-value: 6.69e-48
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 300069041   5 SVSLVGPAPWGFRLQGGKDFNMPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQR 83
Cdd:cd06753    1 SVTLSGPAPWGFRLQGGKDFNQPLTISRVTPGGKAAQANLRPGDVILAINGESTEGMTHLEAQNKIKAATGSLSLTLER 79
LIM3_ENH cd09459
The third LIM domain of the Enigma Homolog (ENH) family; The third LIM domain of the Enigma ...
516-570 4.05e-35

The third LIM domain of the Enigma Homolog (ENH) family; The third LIM domain of the Enigma Homolog (ENH) family: ENH was initially identified in rat brain. Same as enigma, it contains three LIM domains at the C-terminus and a PDZ domain at N-terminus. ENH is implicated in signal transduction processes involving protein kinases. It has also been shown that ENH interacts with protein kinase D1 (PKD1) via its LIM domains and forms a complex with PKD1 and the alpha1C subunit of cardiac L-type voltage-gated calcium channel in rat neonatal cardiomyocytes. The N-terminal PDZ domain interacts with alpha-actinin at the Z-line. ENH is expressed in multiple tissues, such as skeletal muscle, heart, bone, and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188843 [Multi-domain]  Cd Length: 55  Bit Score: 125.85  E-value: 4.05e-35
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKHAH 570
Cdd:cd09459    1 CHGCEFPIEAGDRFLEALGHTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKHAH 55
LIM1_ENH cd09453
The first LIM domain of the Enigma Homolog (ENH) family; The first LIM domain of the Enigma ...
398-449 4.67e-34

The first LIM domain of the Enigma Homolog (ENH) family; The first LIM domain of the Enigma Homolog (ENH) family: ENH was initially identified in rat brain. Same as enigma, it contains three LIM domains at the C-terminus and a PDZ domain at N-terminus. ENH is implicated in signal transduction processes involving protein kinases. It has also been shown that ENH interacts with protein kinase D1 (PKD1) via its LIM domains and forms a complex with PKD1 and the alpha1C subunit of cardiac L-type voltage-gated calcium channel in rat neonatal cardiomyocytes. The N-terminal PDZ domain interacts with alpha-actinin at the Z-line. ENH is expressed in multiple tissues, such as skeletal muscle, heart, bone, and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188837 [Multi-domain]  Cd Length: 52  Bit Score: 122.82  E-value: 4.67e-34
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09453    1 CATCNQVIRGPFLVALGKSWHPEEFNCAHCKSSMAYIGFVEEKGALYCEICY 52
LIM2_ENH cd09457
The second LIM domain of the Enigma Homolog (ENH) family; The second LIM domain of the Enigma ...
457-508 7.02e-33

The second LIM domain of the Enigma Homolog (ENH) family; The second LIM domain of the Enigma Homolog (ENH) family: ENH was initially identified in rat brain. Same as enigma, it contains three LIM domains at the C-terminus and a PDZ domain at N-terminus. ENH is implicated in signal transduction processes involving protein kinases. It has also been shown that ENH interacts with protein kinase D1 (PKD1) via its LIM domains and forms a complex with PKD1 and the alpha1C subunit of cardiac L-type voltage-gated calcium channel in rat neonatal cardiomyocytes. The N-terminal PDZ domain interacts with alpha-actinin at the Z-line. ENH is expressed in multiple tissues, such as skeletal muscle, heart, bone, and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188841 [Multi-domain]  Cd Length: 52  Bit Score: 119.75  E-value: 7.02e-33
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09457    1 CGRCQRKILGEVINALKQTWHVSCFVCVACHNPIRNNVFHLEDGEPYCETDY 52
PDZ smart00228
Domain present in PSD-95, Dlg, and ZO-1/2; Also called DHR (Dlg homologous region) or GLGF ...
10-83 2.24e-19

Domain present in PSD-95, Dlg, and ZO-1/2; Also called DHR (Dlg homologous region) or GLGF (relatively well conserved tetrapeptide in these domains). Some PDZs have been shown to bind C-terminal polypeptides; others appear to bind internal (non-C-terminal) polypeptides. Different PDZs possess different binding specificities.


Pssm-ID: 214570 [Multi-domain]  Cd Length: 85  Bit Score: 82.81  E-value: 2.24e-19
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 300069041    10 GPAPWGFRLQGGKDFNMPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQR 83
Cdd:smart00228  10 GGGGLGFSLVGGKDEGGGVVVSSVVPGSPAAKAGLRVGDVILEVNGTSVEGLTHLEAVDLLKKAGGKVTLTVLR 83
LIM pfam00412
LIM domain; This family represents two copies of the LIM structural domain.
457-512 1.51e-15

LIM domain; This family represents two copies of the LIM structural domain.


Pssm-ID: 395333 [Multi-domain]  Cd Length: 57  Bit Score: 70.82  E-value: 1.51e-15
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 300069041  457 CGRCQRKILG-EVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDYYALF 512
Cdd:pfam00412   1 CAGCNRPIYDrELVRALGKVWHPECFRCAVCGKPLTTGDFYEKDGKLYCKHDYYKLF 57
LIM smart00132
Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM ...
515-568 3.68e-15

Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM domains bind protein partners via tyrosine-containing motifs. LIM domains are found in many key regulators of developmental pathways.


Pssm-ID: 214528 [Multi-domain]  Cd Length: 54  Bit Score: 69.72  E-value: 3.68e-15
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....
gi 300069041   515 ICRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKH 568
Cdd:smart00132   1 KCAGCGKPIYGTERVLRALGKVWHPECFKCATCGKPLSGDTFFEKDGKLYCKDC 54
LIM smart00132
Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM ...
457-507 3.06e-14

Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM domains bind protein partners via tyrosine-containing motifs. LIM domains are found in many key regulators of developmental pathways.


Pssm-ID: 214528 [Multi-domain]  Cd Length: 54  Bit Score: 67.02  E-value: 3.06e-14
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|...
gi 300069041   457 CGRCQRKILG--EVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETD 507
Cdd:smart00132   2 CAGCGKPIYGteRVLRALGKVWHPECFKCATCGKPLSGDTFFEKDGKLYCKDC 54
LIM smart00132
Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM ...
397-448 8.87e-14

Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM domains bind protein partners via tyrosine-containing motifs. LIM domains are found in many key regulators of developmental pathways.


Pssm-ID: 214528 [Multi-domain]  Cd Length: 54  Bit Score: 65.87  E-value: 8.87e-14
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....
gi 300069041   397 MCAHCNQVIRG--PFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELC 448
Cdd:smart00132   1 KCAGCGKPIYGteRVLRALGKVWHPECFKCATCGKPLSGDTFFEKDGKLYCKDC 54
PDZ pfam00595
PDZ domain; PDZ domains are found in diverse signaling proteins.
5-82 2.78e-13

PDZ domain; PDZ domains are found in diverse signaling proteins.


Pssm-ID: 395476 [Multi-domain]  Cd Length: 81  Bit Score: 65.38  E-value: 2.78e-13
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 300069041    5 SVSLVGPAPWGFRLQGGKDF-NMPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQ 82
Cdd:pfam00595   3 TLEKDGRGGLGFSLKGGSDQgDPGIFVSEVLPGGAAEAGGLKVGDRILSINGQDVENMTHEEAVLALKGSGGKVTLTIL 81
LIM pfam00412
LIM domain; This family represents two copies of the LIM structural domain.
398-453 1.88e-11

LIM domain; This family represents two copies of the LIM structural domain.


Pssm-ID: 395333 [Multi-domain]  Cd Length: 57  Bit Score: 59.27  E-value: 1.88e-11
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 300069041  398 CAHCNQVIRGPFLV-ALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCYEKFF 453
Cdd:pfam00412   1 CAGCNRPIYDRELVrALGKVWHPECFRCAVCGKPLTTGDFYEKDGKLYCKHDYYKLF 57
LIM pfam00412
LIM domain; This family represents two copies of the LIM structural domain.
516-568 8.11e-10

LIM domain; This family represents two copies of the LIM structural domain.


Pssm-ID: 395333 [Multi-domain]  Cd Length: 57  Bit Score: 54.65  E-value: 8.11e-10
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 300069041  516 CRGCEFPIEAGDMfLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKH 568
Cdd:pfam00412   1 CAGCNRPIYDREL-VRALGKVWHPECFRCAVCGKPLTTGDFYEKDGKLYCKHD 52
DUF4749 pfam15936
Domain of unknown function (DUF4749); This presumed domain is functionally uncharacterized. ...
105-196 1.00e-06

Domain of unknown function (DUF4749); This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is typically between 121 and 170 amino acids in length. It is usually found in association with pfam00595 (PDZ) and pfam00412 (LIM), and often contains the conserved Zasp-like motif (IPR006643).


Pssm-ID: 464948 [Multi-domain]  Cd Length: 98  Bit Score: 47.03  E-value: 1.00e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 300069041  105 SESAQELAEGQ----RRGSQGDIKQQNGPPRKHIVERNTEFYhipthsdaskKRLIEDTE-DWRPRtgttQSRSFRILAQ 179
Cdd:pfam15936  16 SENIQDALSGQlsglAGSSEGGKPPPSRPPKKPVVDADSEVY----------KMLQENQEpKEPPR----QSGSFRVLQE 81
                          90
                  ....*....|....*..
gi 300069041  180 ITGTEHLTESENDNTKK 196
Cdd:pfam15936  82 ILETEYLQPPEEELNRP 98
CtpA COG0793
C-terminal processing protease CtpA/Prc, contains a PDZ domain [Posttranslational modification, ...
15-95 3.21e-05

C-terminal processing protease CtpA/Prc, contains a PDZ domain [Posttranslational modification, protein turnover, chaperones];


Pssm-ID: 440556 [Multi-domain]  Cd Length: 341  Bit Score: 46.40  E-value: 3.21e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 300069041  15 GFRLQGGKDFnmpLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGS-LNMTLQRasaAAKSEPV 93
Cdd:COG0793   63 GAELGEEDGK---VVVVSVIPGSPAEKAGIKPGDIILAIDGKSVAGLTLDDAVKLLRGKAGTkVTLTIKR---PGEGEPI 136

                 ..
gi 300069041  94 SV 95
Cdd:COG0793  137 TV 138
PLN00049 PLN00049
carboxyl-terminal processing protease; Provisional
36-84 4.37e-04

carboxyl-terminal processing protease; Provisional


Pssm-ID: 177681 [Multi-domain]  Cd Length: 389  Bit Score: 42.80  E-value: 4.37e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 300069041  36 GGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGS-LNMTLQRA 84
Cdd:PLN00049 112 GGPAARAGIRPGDVILAIDGTSTEGLSLYEAADRLQGPEGSsVELTLRRG 161
PHA03307 PHA03307
transcriptional regulator ICP4; Provisional
276-417 4.34e-03

transcriptional regulator ICP4; Provisional


Pssm-ID: 223039 [Multi-domain]  Cd Length: 1352  Bit Score: 40.15  E-value: 4.34e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 300069041  276 SSEESSGSVHVKKSSSTQEPSQQP---------ASSGASPLSASEGPESPGSSRPSVAGLRSAAAFKPVGSTSVKSPSWQ 346
Cdd:PHA03307  275 WNGPSSRPGPASSSSSPRERSPSPspsspgsgpAPSSPRASSSSSSSRESSSSSTSSSSESSRGAAVSPGPSPSRSPSPS 354
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 300069041  347 RPNQAA--PSTGRISNNARSSGTGASVGP--------PQPSDQDTLVQRAEHIPAGKRTPMCAHCNQVI-----RGPFLV 411
Cdd:PHA03307  355 RPPPPAdpSSPRKRPRPSRAPSSPAASAGrptrrrarAAVAGRARRRDATGRFPAGRPRPSPLDAGAASgafyaRYPLLT 434

                  ....*.
gi 300069041  412 ALGKSW 417
Cdd:PHA03307  435 PSGEPW 440
 
Name Accession Description Interval E-value
PDZ_PDLIM-like cd06753
PDZ domain of PDZ-LIM family proteins, and related domains; PDZ (PSD-95 (Postsynaptic density ...
5-83 6.69e-48

PDZ domain of PDZ-LIM family proteins, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of PDZ-LIM family proteins including PDLIM1-7, and related domains. PDZ-LIM family proteins (also known as Zasp PDZ domain proteins) are involved in the rearrangement of the actin cytoskeleton; they mediate association with the cytoskeleton through alpha-actinin as well as with other proteins involved in signal transduction pathways. Members of this family include PDLIM1 (also known as C-terminal LIM domain protein 1, elfin, LIM domain protein CLP-36), PDLIM2 (also known as PDZ-LIM protein mystique), PDLIM3 (also known as actinin-associated LIM protein, alpha-actinin-2-associated LIM protein, ALP), PDLIM4 (also known as LIM protein RIL, Reversion-induced LIM protein), PDLIM5 (also known as enigma homolog, ENH, enigma-like PDZ and LIM domains protein), PDLIM6 (also known as LIM domain-binding protein 3, ZASP, Cypher, Oracle), and PDLIM7 (also known as PDZ and LIM domain protein 7, LIM mineralization protein, LMP; protein enigma). PDLIM1 has been shown to negatively regulate NF-kappaB-mediated signaling in the cytoplasm. PDLIM7 negatively regulates p53 through binding murine double minute 2 (MDM2). The PDZ domains of PDZ-LIM family proteins PDLIM1, 2, 3, 5, 6, 7 have been shown to bind actin. Other PDZ-LIM family PDZ domain binding partners include thyroid receptor interacting protein-6 (PDLIM4-PDZ), the LIM domain of PDLIM4 (PDLIM4-PDZ), tropomyosin (PDLIM7-PDZ), myotilin and calsarcin 1 (PDLIM6-PDZ), and proteins from the myotilin and FATZ (calsarcin/myozenin) families (PDLIM1, 3, 4, 6 PDZ domains). PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PDLIM-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467235 [Multi-domain]  Cd Length: 79  Bit Score: 161.16  E-value: 6.69e-48
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 300069041   5 SVSLVGPAPWGFRLQGGKDFNMPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQR 83
Cdd:cd06753    1 SVTLSGPAPWGFRLQGGKDFNQPLTISRVTPGGKAAQANLRPGDVILAINGESTEGMTHLEAQNKIKAATGSLSLTLER 79
LIM3_ENH cd09459
The third LIM domain of the Enigma Homolog (ENH) family; The third LIM domain of the Enigma ...
516-570 4.05e-35

The third LIM domain of the Enigma Homolog (ENH) family; The third LIM domain of the Enigma Homolog (ENH) family: ENH was initially identified in rat brain. Same as enigma, it contains three LIM domains at the C-terminus and a PDZ domain at N-terminus. ENH is implicated in signal transduction processes involving protein kinases. It has also been shown that ENH interacts with protein kinase D1 (PKD1) via its LIM domains and forms a complex with PKD1 and the alpha1C subunit of cardiac L-type voltage-gated calcium channel in rat neonatal cardiomyocytes. The N-terminal PDZ domain interacts with alpha-actinin at the Z-line. ENH is expressed in multiple tissues, such as skeletal muscle, heart, bone, and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188843 [Multi-domain]  Cd Length: 55  Bit Score: 125.85  E-value: 4.05e-35
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKHAH 570
Cdd:cd09459    1 CHGCEFPIEAGDRFLEALGHTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKHAH 55
LIM1_ENH cd09453
The first LIM domain of the Enigma Homolog (ENH) family; The first LIM domain of the Enigma ...
398-449 4.67e-34

The first LIM domain of the Enigma Homolog (ENH) family; The first LIM domain of the Enigma Homolog (ENH) family: ENH was initially identified in rat brain. Same as enigma, it contains three LIM domains at the C-terminus and a PDZ domain at N-terminus. ENH is implicated in signal transduction processes involving protein kinases. It has also been shown that ENH interacts with protein kinase D1 (PKD1) via its LIM domains and forms a complex with PKD1 and the alpha1C subunit of cardiac L-type voltage-gated calcium channel in rat neonatal cardiomyocytes. The N-terminal PDZ domain interacts with alpha-actinin at the Z-line. ENH is expressed in multiple tissues, such as skeletal muscle, heart, bone, and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188837 [Multi-domain]  Cd Length: 52  Bit Score: 122.82  E-value: 4.67e-34
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09453    1 CATCNQVIRGPFLVALGKSWHPEEFNCAHCKSSMAYIGFVEEKGALYCEICY 52
LIM2_ENH cd09457
The second LIM domain of the Enigma Homolog (ENH) family; The second LIM domain of the Enigma ...
457-508 7.02e-33

The second LIM domain of the Enigma Homolog (ENH) family; The second LIM domain of the Enigma Homolog (ENH) family: ENH was initially identified in rat brain. Same as enigma, it contains three LIM domains at the C-terminus and a PDZ domain at N-terminus. ENH is implicated in signal transduction processes involving protein kinases. It has also been shown that ENH interacts with protein kinase D1 (PKD1) via its LIM domains and forms a complex with PKD1 and the alpha1C subunit of cardiac L-type voltage-gated calcium channel in rat neonatal cardiomyocytes. The N-terminal PDZ domain interacts with alpha-actinin at the Z-line. ENH is expressed in multiple tissues, such as skeletal muscle, heart, bone, and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188841 [Multi-domain]  Cd Length: 52  Bit Score: 119.75  E-value: 7.02e-33
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09457    1 CGRCQRKILGEVINALKQTWHVSCFVCVACHNPIRNNVFHLEDGEPYCETDY 52
LIM2_Enigma_like cd09362
The second LIM domain of Enigma-like family; The second LIM domain of Enigma-like family: The ...
457-508 2.37e-30

The second LIM domain of Enigma-like family; The second LIM domain of Enigma-like family: The Enigma LIM domain family is comprised of three members: Enigma, ENH, and Cypher (mouse)/ZASP (human). These subfamily members contain a single PDZ domain at the N-terminus and three LIM domains at the C-terminus. Enigma was initially characterized in humans and is expressed in multiple tissues, such as skeletal muscle, heart, bone and brain. The third LIM domain specifically interacts with the insulin receptor and the second LIM domain interacts with the receptor tyrosine kinase Ret and the adaptor protein APS. Thus Enigma is implicated in signal transduction processes, such as mitogenic activity, insulin related actin organization, and glucose metabolism. The second member, ENH protein, was first identified in rat brain. It has been shown that ENH interacts with protein kinase D1 (PKD1) via its LIM domains and forms a complex with PKD1 and the alpha1C subunit of cardiac L-type voltage-gated calcium channel in rat neonatal cardiomyocytes. The N-terminal PDZ domain interacts with alpha-actinin at the Z-line. ZASP/Cypher is required for maintenance of Z-line structure during muscle contraction, but not required for Z-line assembly. In heart, Cypher/ZASP plays a structural role through its interaction with cytoskeletal Z-line proteins. In addition, there is increasing evidence that Cypher/ZASP also performs signaling functions. Studies reveal that Cypher/ZASP interacts with and directs PKC to the Z-line, where PKC phosphorylates downstream signaling targets. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188748 [Multi-domain]  Cd Length: 52  Bit Score: 112.57  E-value: 2.37e-30
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09362    1 CARCHKKILGEVMHALKQTWHVSCFVCAACKQPIGNSLFHMEDGEPYCEKDY 52
LIM3_Enigma_like cd09363
The third LIM domain of Enigma-like family; The third LIM domain of Enigma-like family: The ...
516-569 9.24e-30

The third LIM domain of Enigma-like family; The third LIM domain of Enigma-like family: The Enigma LIM domain family is comprised of three members: Enigma, ENH, and Cypher (mouse)/ZASP (human). These subfamily members contain a single PDZ domain at the N-terminus and three LIM domains at the C-terminus. Enigma was initially characterized in humans and is expressed in multiple tissues, such as skeletal muscle, heart, bone, and brain. The third LIM domain specifically interacts with the insulin receptor and the second LIM domain interacts with the receptor tyrosine kinase Ret and the adaptor protein APS. Thus Enigma is implicated in signal transduction processes, such as mitogenic activity, insulin related actin organization, and glucose metabolism. The second member, ENH protein, was first identified in rat brain. It has been shown that ENH interacts with protein kinase D1 (PKD1) via its LIM domains and forms a complex with PKD1 and the alpha1C subunit of cardiac L-type voltage-gated calcium channel in rat neonatal cardiomyocytes. The N-terminal PDZ domain interacts with alpha-actinin at the Z-line. ZASP/Cypher is required for maintenance of Z-line structure during muscle contraction, but not required for Z-line assembly. In heart, Cypher/ZASP plays a structural role through its interaction with cytoskeletal Z-line proteins. In addition, there is increasing evidence that Cypher/ZASP also performs signaling functions. Studies reveal that Cypher/ZASP interacts with and directs PKC to the Z-line, where PKC phosphorylates downstream signaling targets. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188749 [Multi-domain]  Cd Length: 54  Bit Score: 110.99  E-value: 9.24e-30
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKHA 569
Cdd:cd09363    1 CHGCDFPIEAGDRFLEALGHTWHDTCFVCAVCHVNLEGQTFYSKKDKPLCKNHA 54
LIM1_Enigma_like cd09361
The first LIM domain of Enigma-like family; The first LIM domain of Enigma-like family: The ...
398-449 1.09e-29

The first LIM domain of Enigma-like family; The first LIM domain of Enigma-like family: The Enigma LIM domain family is comprised of three members: Enigma, ENH, and Cypher (mouse)/ZASP (human). These subfamily members contain a single PDZ domain at the N-terminus and three LIM domains at the C-terminus. Enigma was initially characterized in humans and is expressed in multiple tissues, such as skeletal muscle, heart, bone, and brain. The third LIM domain specifically interacts with the insulin receptor and the second LIM domain interacts with the receptor tyrosine kinase Ret and the adaptor protein APS. Thus Enigma is implicated in signal transduction processes, such as mitogenic activity, insulin related actin organization, and glucose metabolism. The second member, ENH protein, was first identified in rat brain. It has been shown that ENH interacts with protein kinase D1 (PKD1) via its LIM domains and forms a complex with PKD1 and the alpha1C subunit of cardiac L-type voltage-gated calcium channel in rat neonatal cardiomyocytes. The N-terminal PDZ domain interacts with alpha-actinin at the Z-line. ZASP/Cypher is required for maintenance of Z-line structure during muscle contraction, but not required for Z-line assembly. In heart, Cypher/ZASP plays a structural role through its interaction with cytoskeletal Z-line proteins. In addition, there is increasing evidence that Cypher/ZASP also performs signaling functions. Studies reveal that Cypher/ZASP interacts with and directs PKC to the Z-line, where PKC phosphorylates downstream signaling targets. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188747 [Multi-domain]  Cd Length: 52  Bit Score: 110.91  E-value: 1.09e-29
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09361    1 CAHCNQVIRGPFLVALGRSWHPEEFTCSHCHCSLAEIGFVEEKGSLYCELCY 52
PDZ_ZASP52-like cd23068
PDZ domain of Drosophila melanogaster PDZ and LIM domain protein Zasp52 (also known as Zasp), ...
13-83 2.08e-25

PDZ domain of Drosophila melanogaster PDZ and LIM domain protein Zasp52 (also known as Zasp), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of Drosophila melanogaster Zasp52 and related domains. Drosophila melanogaster Zasp52 (also known as Z band alternatively spliced PDZ-motif protein or Zasp) colocalizes with integrins at myotendinous junctions and with alpha-actinin at Z-disks and is required for muscle attachment as well as Z-disk assembly and maintenance. The Zasp52 actin-binding site includes the extended PDZ domain and the ZM region. The Zasp52-PDZ domain is required for myofibril assembly. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Zasp52-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467281 [Multi-domain]  Cd Length: 82  Bit Score: 99.91  E-value: 2.08e-25
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 300069041  13 PWGFRLQGGKDFNMPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQR 83
Cdd:cd23068   12 PWGFRLQGGADFGQPLSIQKVNPGSPADKAGLRRGDVILRINGTDTSNLTHKQAQDLIKRAGNDLQLTVQR 82
LIM3_ZASP_Cypher cd09460
The third LIM domain of ZASP/Cypher family; The third LIM domain of ZASP/Cypher family: ZASP ...
516-570 5.39e-25

The third LIM domain of ZASP/Cypher family; The third LIM domain of ZASP/Cypher family: ZASP was identified in human heart and skeletal muscle and Cypher is a mice ortholog of ZASP. ZASP/Cyppher contains three LIM domains at the C-terminus and a PDZ domain at N-terminus. ZASP/Cypher is required for maintenance of Z-line structure during muscle contraction, but not required for Z-line assembly. In heart, Cypher/ZASP plays a structural role through its interaction with cytoskeletal Z-line proteins. In addition, there is increasing evidence that Cypher/ZASP also performs signaling functions. Studies reveal that Cypher/ZASP interacts with and directs PKC to the Z-line, where PKC phosphorylates downstream signaling targets. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188844  Cd Length: 55  Bit Score: 97.80  E-value: 5.39e-25
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKHAH 570
Cdd:cd09460    1 CHGCDFPVEAGDKFIEALGHTWHDTCFICAVCHVNLEGQPFYSKKDKPLCKKHAH 55
LIM1_ZASP_Cypher cd09454
The first LIM domain of ZASP/Cypher family; The first LIM domain of ZASP/Cypher family: ZASP ...
398-449 4.51e-24

The first LIM domain of ZASP/Cypher family; The first LIM domain of ZASP/Cypher family: ZASP was identified in human heart and skeletal muscle and Cypher is a mice ortholog of ZASP. ZASP/Cyppher contains three LIM domains at the C-terminus and a PDZ domain at N-terminus. ZASP/Cypher is required for maintenance of Z-line structure during muscle contraction, but not required for Z-line assembly. In heart, Cypher/ZASP plays a structural role through its interaction with cytoskeletal Z-line proteins. In addition, there is increasing evidence that Cypher/ZASP also performs signaling functions. Studies reveal that Cypher/ZASP interacts with and directs PKC to the Z-line, where PKC phosphorylates downstream signaling targets. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188838 [Multi-domain]  Cd Length: 52  Bit Score: 95.05  E-value: 4.51e-24
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09454    1 CGHCNNIIRGPFLVALGRSWHPEEFTCHYCHTSLADVSFVEEQNNVYCENCY 52
LIM2_Enigma cd09456
The second LIM domain of Enigma; The second LIM domain of Enigma: Enigma was initially ...
457-508 1.15e-22

The second LIM domain of Enigma; The second LIM domain of Enigma: Enigma was initially characterized in humans as a protein containing three LIM domains at the C-terminus and a PDZ domain at N-terminus. The third LIM domain specifically interacts with the insulin receptor and the second LIM domain interacts with the receptor tyrosine kinase Ret and the adaptor protein APS. Thus Enigma is implicated in signal transduction processes, such as mitogenic activity, insulin related actin organization, and glucose metabolism. Enigma is expressed in multiple tissues, such as skeletal muscle, heart, bone and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188840 [Multi-domain]  Cd Length: 52  Bit Score: 91.21  E-value: 1.15e-22
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09456    1 CAKCKKKITGEIMHALKMTWHVHCFTCAACKTPIRNRAFYMEEGAPYCERDY 52
LIM3_Enigma cd09458
The third LIM domain of Enigma; The third LIM domain of Enigma: Enigma was initially ...
516-569 2.31e-22

The third LIM domain of Enigma; The third LIM domain of Enigma: Enigma was initially characterized in humans as a protein containing three LIM domains at the C-terminus and a PDZ domain at N-terminus. The third LIM domain specifically interacts with the insulin receptor and the second LIM domain interacts with the receptor tyrosine kinase Ret and the adaptor protein APS. Thus Enigma is implicated in signal transduction processes such as mitogenic activity, insulin related actin organization, and glucose metabolism. Enigma is expressed in multiple tissues, such as skeletal muscle, heart, bone, and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188842  Cd Length: 55  Bit Score: 90.48  E-value: 2.31e-22
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKHA 569
Cdd:cd09458    1 CHGCDFKIDAGDRFLEALGFSWHDTCFVCAICQINLEGKTFYSKKDKPLCKSHA 54
PDZ_SYNPO2-like cd10820
PDZ domain of synaptopodin 2 (SYNPO2), synaptopodin 2-like protein (SYNPO2L), and related ...
6-82 2.55e-20

PDZ domain of synaptopodin 2 (SYNPO2), synaptopodin 2-like protein (SYNPO2L), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of SYNPO2, SYNPO2L, and related domains. SYNPO2 (also known as genethonin-2, myopodin) is a cytoskeleton adaptor protein. It participates in chaperone-assisted selective autophagy (CASA), a mechanism for the disposal of misfolded and damaged proteins and provides a link between the CASA chaperone complex and a membrane-tethering and fusion machinery that generates autophagosome membranes. The SYNPO2 PPxY motif binds CASA cochaperone BCL2-associated athanogene 3 (BAG3) and the SYNPO2 PDZ domain binds vacuolar protein sorting 18 homolog (VPS18). There are three isoforms of SYNPO2, which possess an amino-terminal PDZ domain (SYNPO2a, b, c); the short isoform SYNPO2d, lacks the PDZ domain. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This SYNPO2-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467264 [Multi-domain]  Cd Length: 78  Bit Score: 85.05  E-value: 2.55e-20
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 300069041   6 VSLVGPAPWGFRLQGGKDFNMPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQ 82
Cdd:cd10820    2 VTLTGGAPWGFRLQGGSEQKKPLQVAKIRKKSKAALAGLCEGDELLSINGKPCADLSHSEAMDLIDSSGDTLQLLIK 78
PDZ smart00228
Domain present in PSD-95, Dlg, and ZO-1/2; Also called DHR (Dlg homologous region) or GLGF ...
10-83 2.24e-19

Domain present in PSD-95, Dlg, and ZO-1/2; Also called DHR (Dlg homologous region) or GLGF (relatively well conserved tetrapeptide in these domains). Some PDZs have been shown to bind C-terminal polypeptides; others appear to bind internal (non-C-terminal) polypeptides. Different PDZs possess different binding specificities.


Pssm-ID: 214570 [Multi-domain]  Cd Length: 85  Bit Score: 82.81  E-value: 2.24e-19
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 300069041    10 GPAPWGFRLQGGKDFNMPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQR 83
Cdd:smart00228  10 GGGGLGFSLVGGKDEGGGVVVSSVVPGSPAAKAGLRVGDVILEVNGTSVEGLTHLEAVDLLKKAGGKVTLTVLR 83
LIM1_Enigma_like_1 cd09455
The first LIM domain of an Enigma subfamily with unknown function; The first LIM domain of an ...
398-449 3.99e-19

The first LIM domain of an Enigma subfamily with unknown function; The first LIM domain of an Enigma subfamily with unknown function: The Enigma LIM domain family is comprised of three characterized members: Enigma, ENH and Cypher (mouse)/ZASP (human). These subfamily members contain a single PDZ domain at the N-terminus and three LIM domains at the C-terminus. They serve as adaptor proteins, where the PDZ domain tethers the protein to the cytoskeleton and the LIM domains, recruit signaling proteins to implement corresponding functions. The members of the Enigma family have been implicated in regulating or organizing cytoskeletal structure, as well as involving multiple signaling pathways. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188839  Cd Length: 54  Bit Score: 80.96  E-value: 3.99e-19
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAH--CKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09455    1 CESCNQQIRGPFITALGKIWCPDHFICANasCRRPLQDIGFVEEKGQLYCEYCF 54
PDZ_canonical cd00136
canonical PDZ domain; Canonical PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs ...
12-82 1.19e-17

canonical PDZ domain; Canonical PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain. PDZ domains usually bind to short specific peptide sequences located at the C-terminal end of their partner proteins known as PDZ binding motifs. These domains can also interact with internal peptide motifs and certain lipids, and can take part in a head-to-tail oligomerization with other PDZ domains. The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. The canonical PDZ domain contains six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467153 [Multi-domain]  Cd Length: 81  Bit Score: 77.58  E-value: 1.19e-17
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 300069041  12 APWGFRLQGGKDFNMPLTISSLKDGGKASQA-HVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQ 82
Cdd:cd00136   10 GGLGFSIRGGKDGGGGIFVSRVEPGGPAARDgRLRVGDRILEVNGVSLEGLTHEEAVELLKSAGGEVTLTVR 81
LIM1_Enigma cd09452
The first LIM domain of Enigma; The first LIM domain of Enigma: Enigma was initially ...
398-449 2.71e-17

The first LIM domain of Enigma; The first LIM domain of Enigma: Enigma was initially characterized in humans as a protein containing three LIM domains at the C-terminus and a PDZ domain at N-terminus. The third LIM domain specifically interacts with the insulin receptor and the second LIM domain interacts with the receptor tyrosine kinase Ret and the adaptor protein APS. Thus Enigma is implicated in signal transduction processes such as mitogenic activity, insulin related actin organization, and glucose metabolism. Enigma is expressed in multiple tissues, such as skeletal muscle, heart, bone and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188836 [Multi-domain]  Cd Length: 52  Bit Score: 75.61  E-value: 2.71e-17
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09452    1 CAQCNKIIRGRYLVALGRSYHPEEFTCSQCKKVLDEGGFFEEKGSIFCPKCY 52
LIM3_Enigma_like_1 cd09461
The third LIM domain of an Enigma subfamily with unknown function; The third LIM domain of an ...
516-569 1.98e-16

The third LIM domain of an Enigma subfamily with unknown function; The third LIM domain of an Enigma subfamily with unknown function: The Enigma LIM domain family is comprised of three characterized members: Enigma, ENH, and Cypher (mouse)/ZASP (human). These subfamily members contain a single PDZ domain at the N-terminus and three LIM domains at the C-terminus. They serve as adaptor proteins, where the PDZ domain tethers the protein to the cytoskeleton and the LIM domains, recruit signaling proteins to implement corresponding functions. The members of the enigma family have been implicated in regulating or organizing cytoskeletal structure, as well as involving multiple signaling pathways. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188845  Cd Length: 54  Bit Score: 73.35  E-value: 1.98e-16
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKHA 569
Cdd:cd09461    1 CVSCGFPIEAGDRWVEALNNNYHSQCFNCTRCNVNLEGQSFYAKGGRPFCKLHA 54
PDZ5_MAGI-1_3-like cd06735
PDZ domain 5 of membrane-associated guanylate kinase inverted 1 (MAGI-1), MAGI-2, and MAGI-3, ...
4-83 2.95e-16

PDZ domain 5 of membrane-associated guanylate kinase inverted 1 (MAGI-1), MAGI-2, and MAGI-3, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 5 of MAGI1, 2, 3 (MAGI is also known as Membrane-associated guanylate kinase, WW and PDZ domain-containing protein) and related domains. MAGI proteins have been implicated in the control of cell migration and invasion through altering the activity of phosphatase and tensin homolog (PTEN) and modulating Akt signaling. Four MAGI proteins have been identified (MAGI1-3 and MAGIX). MAGI1-3 have 6 PDZ domains and bind to the C-terminus of PTEN via their PDZ2 domain. MAGIX has a single PDZ domain that is related to MAGI1-3 PDZ domain 5, and belongs to this MAGI1,2,3-like family. Other binding partners for MAGI1 include JAM4, C-terminal tail of high risk HPV-18 E6, megalin, TRAF6, Kir4.1 (basolateral K+ channel subunit), and cadherin 23; for MAGI2, include DASM1, dendrin, axin, beta- and delta-catenin, neuroligin, hyperpolarization-activated cation channels, beta1-adrenergic receptors, NMDA receptor, and TARPs; and for MAGI3 includes LPA2. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MAGI family PDZ5 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged as beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467217 [Multi-domain]  Cd Length: 84  Bit Score: 73.77  E-value: 2.95e-16
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 300069041   4 YSVSLV-GPAPWGFRLQGGKDF-NMPLTISSLKDGGKASQ-AHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMT 80
Cdd:cd06735    2 YSVELErGPKGFGFSIRGGREYnNMPLYVLRLAEDGPAQRdGRLRVGDQILEINGESTQGMTHAQAIELIRSGGSVVRLL 81

                 ...
gi 300069041  81 LQR 83
Cdd:cd06735   82 LRR 84
LIM cd08368
LIM is a small protein-protein interaction domain, containing two zinc fingers; LIM domains ...
457-508 1.05e-15

LIM is a small protein-protein interaction domain, containing two zinc fingers; LIM domains are identified in a diverse group of proteins with wide variety of biological functions, including gene expression regulation, cell fate determination, cytoskeleton organization, tumor formation and development. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. They perform their functions through interactions with other protein partners. LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. The consensus sequence of LIM domain has been defined as C-x(2)-C-x(16,23)-H-x(2)-[CH]-x(2)-C-x(2)-C-x(16,21)-C-x(2,3)-[CHD] (where X denotes any amino acid).


Pssm-ID: 259829 [Multi-domain]  Cd Length: 53  Bit Score: 71.19  E-value: 1.05e-15
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKILG-EVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd08368    1 CAGCGKPIEGrELLRALGKKWHPECFKCAECGKPLGGDSFYEKDGKPYCEKCY 53
PDZ_shroom2_3_4-like cd06750
PDZ domain of shroom2, shroom3, shroom4, and related domains; PDZ (PSD-95 (Postsynaptic ...
5-83 1.13e-15

PDZ domain of shroom2, shroom3, shroom4, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of shroom2, shroom3, shroom4, and related domains. Shroom family proteins shroom2 (also known as apical-like protein; protein APXL), shroom3 (also known as shroom-related protein), and shroom4 (also known as second homolog of apical protein) are essential regulators of cell morphology during animal development; they regulate cell architecture by directing the subcellular distribution and activation of Rho kinase (ROCK), which results in the localized activation of non-muscle myosin. The interaction between shroom and ROCK is mediated by the shroom domain 2 (SD2). PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This shroom2,3,4-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged as beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467232 [Multi-domain]  Cd Length: 82  Bit Score: 71.98  E-value: 1.13e-15
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 300069041   5 SVSLVGPAPWGFRLQGGKDFNMPLTISSLKDGGKA-SQAHVRIGDVVLSIDGISAQGMtHLEAQNKIKACTGSLNMTLQR 83
Cdd:cd06750    4 EVQLQGGAPWGFTLKGGLEHGEPLVISKIEEGGKAaSVGKLQVGDEVVNINGVPLSGS-RQEAIQLVKGSHKTLKLVVRR 82
LIM pfam00412
LIM domain; This family represents two copies of the LIM structural domain.
457-512 1.51e-15

LIM domain; This family represents two copies of the LIM structural domain.


Pssm-ID: 395333 [Multi-domain]  Cd Length: 57  Bit Score: 70.82  E-value: 1.51e-15
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 300069041  457 CGRCQRKILG-EVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDYYALF 512
Cdd:pfam00412   1 CAGCNRPIYDrELVRALGKVWHPECFRCAVCGKPLTTGDFYEKDGKLYCKHDYYKLF 57
LIM smart00132
Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM ...
515-568 3.68e-15

Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM domains bind protein partners via tyrosine-containing motifs. LIM domains are found in many key regulators of developmental pathways.


Pssm-ID: 214528 [Multi-domain]  Cd Length: 54  Bit Score: 69.72  E-value: 3.68e-15
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....
gi 300069041   515 ICRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKH 568
Cdd:smart00132   1 KCAGCGKPIYGTERVLRALGKVWHPECFKCATCGKPLSGDTFFEKDGKLYCKDC 54
LIM1_Paxillin_like cd09336
The first LIM domain of the paxillin like protein family; The first LIM domain of the paxillin ...
457-509 8.54e-15

The first LIM domain of the paxillin like protein family; The first LIM domain of the paxillin like protein family: This family consists of paxillin, leupaxin, Hic-5 (ARA55), and other related proteins. There are four LIM domains in the C-terminal of the proteins and leucine-rich LD-motifs in the N-terminal region. Members of this family are adaptor proteins to recruit key components of signal-transduction machinery to specific sub-cellular locations. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. Paxillin serves as a platform for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression that are necessary for cell migration and survival. Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. It associates with focal adhesion kinases PYK2 and pp125FAK and identified to be a component of the osteoclast pososomal signaling complex. Hic-5 controls cell proliferation, migration and senescence by functioning as coactivator for steroid receptors such as androgen receptor, glucocorticoid receptor and progesterone receptor. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 259830 [Multi-domain]  Cd Length: 53  Bit Score: 68.57  E-value: 8.54e-15
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDYY 509
Cdd:cd09336    1 CAACNKPIVGQVVTALGKTWHPEHFVCVHCQTELGTSNFFERDGKPYCEKDYH 53
LIM3_Paxillin_like cd09338
The third LIM domain of the paxillin like protein family; The third LIM domain of the paxillin ...
457-509 2.42e-14

The third LIM domain of the paxillin like protein family; The third LIM domain of the paxillin like protein family: This family consists of paxillin, leupaxin, Hic-5 (ARA55), and other related proteins. There are four LIM domains in the C-terminal of the proteins and leucine-rich LD-motifs in the N-terminal region. Members of this family are adaptor proteins to recruit key components of signal-transduction machinery to specific sub-cellular locations. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. Paxillin serves as a platform for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression that are necessary for cell migration and survival. Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. It associates with focal adhesion kinases PYK2 and pp125FAK and identified to be a component of the osteoclast pososomal signaling complex. Hic-5 controls cell proliferation, migration and senescence by functioning as coactivator for steroid receptors such as androgen receptor, glucocorticoid receptor and progesterone receptor. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188724 [Multi-domain]  Cd Length: 53  Bit Score: 67.36  E-value: 2.42e-14
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDYY 509
Cdd:cd09338    1 CGGCNKPILENYISALNTQWHPECFVCRECHKPFINGSFFEHEGLPYCETHYH 53
LIM smart00132
Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM ...
457-507 3.06e-14

Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM domains bind protein partners via tyrosine-containing motifs. LIM domains are found in many key regulators of developmental pathways.


Pssm-ID: 214528 [Multi-domain]  Cd Length: 54  Bit Score: 67.02  E-value: 3.06e-14
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|...
gi 300069041   457 CGRCQRKILG--EVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETD 507
Cdd:smart00132   2 CAGCGKPIYGteRVLRALGKVWHPECFKCATCGKPLSGDTFFEKDGKLYCKDC 54
LIM1_Paxillin_like cd09336
The first LIM domain of the paxillin like protein family; The first LIM domain of the paxillin ...
398-449 3.51e-14

The first LIM domain of the paxillin like protein family; The first LIM domain of the paxillin like protein family: This family consists of paxillin, leupaxin, Hic-5 (ARA55), and other related proteins. There are four LIM domains in the C-terminal of the proteins and leucine-rich LD-motifs in the N-terminal region. Members of this family are adaptor proteins to recruit key components of signal-transduction machinery to specific sub-cellular locations. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. Paxillin serves as a platform for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression that are necessary for cell migration and survival. Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. It associates with focal adhesion kinases PYK2 and pp125FAK and identified to be a component of the osteoclast pososomal signaling complex. Hic-5 controls cell proliferation, migration and senescence by functioning as coactivator for steroid receptors such as androgen receptor, glucocorticoid receptor and progesterone receptor. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 259830 [Multi-domain]  Cd Length: 53  Bit Score: 67.03  E-value: 3.51e-14
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09336    1 CAACNKPIVGQVVTALGKTWHPEHFVCVHCQTELGTSNFFERDGKPYCEKDY 52
LIM2_Paxillin_like cd09337
The second LIM domain of the paxillin like protein family; The second LIM domain of the ...
457-508 7.13e-14

The second LIM domain of the paxillin like protein family; The second LIM domain of the paxillin like protein family: This family consists of paxillin, leupaxin, Hic-5 (ARA55), and other related proteins. There are four LIM domains in the C-terminal of the proteins and leucine-rich LD-motifs in the N-terminal region. Members of this family are adaptor proteins to recruit key components of signal-transduction machinery to specific sub-cellular locations. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. Paxillin serves as a platform for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression that are necessary for cell migration and survival. Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. It associates with focal adhesion kinases PYK2 and pp125FAK and identified to be a component of the osteoclast pososomal signaling complex. Hic-5 controls cell proliferation, migration and senescence by functioning as coactivator for steroid receptors such as androgen receptor, glucocorticoid receptor and progesterone receptor. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188723 [Multi-domain]  Cd Length: 52  Bit Score: 65.87  E-value: 7.13e-14
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09337    1 CAYCNGPILDKCVTALDKTWHPEHFFCAQCGKPFGDEGFHEKDGKPYCREDY 52
LIM smart00132
Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM ...
397-448 8.87e-14

Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM domains bind protein partners via tyrosine-containing motifs. LIM domains are found in many key regulators of developmental pathways.


Pssm-ID: 214528 [Multi-domain]  Cd Length: 54  Bit Score: 65.87  E-value: 8.87e-14
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....
gi 300069041   397 MCAHCNQVIRG--PFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELC 448
Cdd:smart00132   1 KCAGCGKPIYGteRVLRALGKVWHPECFKCATCGKPLSGDTFFEKDGKLYCKDC 54
LIM cd08368
LIM is a small protein-protein interaction domain, containing two zinc fingers; LIM domains ...
516-569 1.34e-13

LIM is a small protein-protein interaction domain, containing two zinc fingers; LIM domains are identified in a diverse group of proteins with wide variety of biological functions, including gene expression regulation, cell fate determination, cytoskeleton organization, tumor formation and development. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. They perform their functions through interactions with other protein partners. LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. The consensus sequence of LIM domain has been defined as C-x(2)-C-x(16,23)-H-x(2)-[CH]-x(2)-C-x(2)-C-x(16,21)-C-x(2,3)-[CHD] (where X denotes any amino acid).


Pssm-ID: 259829 [Multi-domain]  Cd Length: 53  Bit Score: 65.42  E-value: 1.34e-13
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 516 CRGCEFPIEaGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKHA 569
Cdd:cd08368    1 CAGCGKPIE-GRELLRALGKKWHPECFKCAECGKPLGGDSFYEKDGKPYCEKCY 53
PDZ pfam00595
PDZ domain; PDZ domains are found in diverse signaling proteins.
5-82 2.78e-13

PDZ domain; PDZ domains are found in diverse signaling proteins.


Pssm-ID: 395476 [Multi-domain]  Cd Length: 81  Bit Score: 65.38  E-value: 2.78e-13
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 300069041    5 SVSLVGPAPWGFRLQGGKDF-NMPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQ 82
Cdd:pfam00595   3 TLEKDGRGGLGFSLKGGSDQgDPGIFVSEVLPGGAAEAGGLKVGDRILSINGQDVENMTHEEAVLALKGSGGKVTLTIL 81
LIM cd08368
LIM is a small protein-protein interaction domain, containing two zinc fingers; LIM domains ...
398-449 4.24e-13

LIM is a small protein-protein interaction domain, containing two zinc fingers; LIM domains are identified in a diverse group of proteins with wide variety of biological functions, including gene expression regulation, cell fate determination, cytoskeleton organization, tumor formation and development. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. They perform their functions through interactions with other protein partners. LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. The consensus sequence of LIM domain has been defined as C-x(2)-C-x(16,23)-H-x(2)-[CH]-x(2)-C-x(2)-C-x(16,21)-C-x(2,3)-[CHD] (where X denotes any amino acid).


Pssm-ID: 259829 [Multi-domain]  Cd Length: 53  Bit Score: 63.88  E-value: 4.24e-13
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 398 CAHCNQVIRGPFLV-ALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd08368    1 CAGCGKPIEGRELLrALGKKWHPECFKCAECGKPLGGDSFYEKDGKPYCEKCY 53
LIM1_Leupaxin cd09406
The first LIM domain of Leupaxin; The first LIM domain of Leupaxin: Leupaxin is a cytoskeleton ...
397-449 3.32e-12

The first LIM domain of Leupaxin; The first LIM domain of Leupaxin: Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. Leupaxin belongs to the paxillin focal adhesion protein family. Same as other members of the family, it has four leucine-rich LD-motifs in the N-terminus and four LIM domains in the C-terminus. It may function in cell type-specific signaling by associating with interaction partners PYK2, FAK, PEP and p95PKL. When expressed in human leukocytic cells, leupaxin significantly suppressed integrin-mediated cell adhesion to fibronectin and the tyrosine phosphorylation of paxillin. These findings indicate that leupaxin may negatively regulate the functions of paxillin during integrin signaling. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188790 [Multi-domain]  Cd Length: 55  Bit Score: 61.42  E-value: 3.32e-12
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 397 MCAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09406    2 DCASCQKPIAGQVVTALGQTWHPEHFVCCQCGKELGSRPFFERNGQAYCEEDY 54
LIM2_Paxillin_like cd09337
The second LIM domain of the paxillin like protein family; The second LIM domain of the ...
398-445 4.35e-12

The second LIM domain of the paxillin like protein family; The second LIM domain of the paxillin like protein family: This family consists of paxillin, leupaxin, Hic-5 (ARA55), and other related proteins. There are four LIM domains in the C-terminal of the proteins and leucine-rich LD-motifs in the N-terminal region. Members of this family are adaptor proteins to recruit key components of signal-transduction machinery to specific sub-cellular locations. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. Paxillin serves as a platform for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression that are necessary for cell migration and survival. Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. It associates with focal adhesion kinases PYK2 and pp125FAK and identified to be a component of the osteoclast pososomal signaling complex. Hic-5 controls cell proliferation, migration and senescence by functioning as coactivator for steroid receptors such as androgen receptor, glucocorticoid receptor and progesterone receptor. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188723 [Multi-domain]  Cd Length: 52  Bit Score: 60.87  E-value: 4.35e-12
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*...
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYC 445
Cdd:cd09337    1 CAYCNGPILDKCVTALDKTWHPEHFFCAQCGKPFGDEGFHEKDGKPYC 48
LIM1_Leupaxin cd09406
The first LIM domain of Leupaxin; The first LIM domain of Leupaxin: Leupaxin is a cytoskeleton ...
457-509 7.32e-12

The first LIM domain of Leupaxin; The first LIM domain of Leupaxin: Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. Leupaxin belongs to the paxillin focal adhesion protein family. Same as other members of the family, it has four leucine-rich LD-motifs in the N-terminus and four LIM domains in the C-terminus. It may function in cell type-specific signaling by associating with interaction partners PYK2, FAK, PEP and p95PKL. When expressed in human leukocytic cells, leupaxin significantly suppressed integrin-mediated cell adhesion to fibronectin and the tyrosine phosphorylation of paxillin. These findings indicate that leupaxin may negatively regulate the functions of paxillin during integrin signaling. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188790 [Multi-domain]  Cd Length: 55  Bit Score: 60.27  E-value: 7.32e-12
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDYY 509
Cdd:cd09406    3 CASCQKPIAGQVVTALGQTWHPEHFVCCQCGKELGSRPFFERNGQAYCEEDYH 55
LIM1_Paxillin cd09405
The first LIM domain of paxillin; The first LIM domain of paxillin: Paxillin is an adaptor ...
457-509 1.04e-11

The first LIM domain of paxillin; The first LIM domain of paxillin: Paxillin is an adaptor protein, which recruits key components of the signal-transduction machinery to specific sub-cellular locations to respond to environmental changes rapidly. The C-terminal region of paxillin contains four LIM domains which target paxillin to focal adhesions, presumably through a direct association with the cytoplasmic tail of beta-integrin. The N-terminal of paxillin is leucine-rich LD-motifs. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. The binding partners of paxillin are diverse and include protein tyrosine kinases, such as Src and FAK, structural proteins, such as vinculin and actopaxin, and regulators of actin organization. Paxillin recruits these proteins to their function sites to control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight cons erved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188789 [Multi-domain]  Cd Length: 54  Bit Score: 60.02  E-value: 1.04e-11
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDYY 509
Cdd:cd09405    2 CGACKKPIAGQVVTAMGKTWHPEHFVCTHCQEEIGSRNFFERDGQPYCEKDYH 54
LIM pfam00412
LIM domain; This family represents two copies of the LIM structural domain.
398-453 1.88e-11

LIM domain; This family represents two copies of the LIM structural domain.


Pssm-ID: 395333 [Multi-domain]  Cd Length: 57  Bit Score: 59.27  E-value: 1.88e-11
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 300069041  398 CAHCNQVIRGPFLV-ALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCYEKFF 453
Cdd:pfam00412   1 CAGCNRPIYDRELVrALGKVWHPECFRCAVCGKPLTTGDFYEKDGKLYCKHDYYKLF 57
PDZ7_PDZD2-PDZ4_hPro-IL-16-like cd06763
PDZ domain 7 of PDZ domain containing 2 (PDZD2), PDZ domain 4 of human pro-interleukin-16 ...
5-72 1.98e-11

PDZ domain 7 of PDZ domain containing 2 (PDZD2), PDZ domain 4 of human pro-interleukin-16 (isoform 1, 1332 AA), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 7 of PDZD2, also known as KIAA0300, PIN-1, PAPIN, activated in prostate cancer (AIPC) and PDZ domain-containing protein 3 (PDZK3). PDZD2 has seven PDZ domains. PDZD2 is expressed at exceptionally high levels in the pancreas and certain cancer tissues, such as prostate cancer. It promotes the proliferation of insulinoma cells and is upregulated during prostate tumorigenesis. In osteosarcoma (OS), the microRNA miR-363 acts as a tumor suppressor by inhibiting PDZD2. This family include the PDZ domain of the secreted mature form of human interleukin-16 (IL-16); this is the fourth PDZ domain (PDZ4) of human pro-interleukin-16 (isoform 1, also known as nPro-Il-16). Precursor IL-16 is cleaved to produce pro-IL-16 and C-terminal mature IL-16. Pro-IL-16 functions as a regulator of T cell growth; mature IL-16 is a CD4 ligand that induces chemotaxis and CD25 expression in CD4+ T cells. IL-16 bioactivity has been closely associated with the progression of several different cancers PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PDZD2-like family PDZ7 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467244 [Multi-domain]  Cd Length: 86  Bit Score: 60.32  E-value: 1.98e-11
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 300069041   5 SVSLV-GPAPWGFRLQGGKDF---NMPLTISSLKDGGKASQA-HVRIGDVVLSIDGISAQGMTHLEAQNKIKA 72
Cdd:cd06763    3 TVELEkGSAGLGFSLEGGKGSplgDRPLTIKRIFKGGAAEQSgVLQVGDEILQINGTSLQGLTRFEAWNIIKS 75
LIM4_PINCH cd09334
The fourth LIM domain of protein PINCH; The fourth LIM domain of protein PINCH: PINCH plays a ...
396-449 6.49e-11

The fourth LIM domain of protein PINCH; The fourth LIM domain of protein PINCH: PINCH plays a pivotal role in the assembly of focal adhesions (FAs), regulating diverse functions in cell adhesion, growth, and differentiation through LIM-mediated protein-protein interactions. PINCH comprises an array of five LIM domains that interact with integrin-linked kinase (ILK), Nck2 (also called Nckbeta or Grb4) and other interaction partners. These interactions are essential for triggering the FA assembly and for relaying diverse mechanical and biochemical signals between Cell-extracellular matrix and the actin cytoskeleton. The PINCH LIM4 domain recognizes the third SH3 domain of another adaptor protein, Nck2. This step is an important component of integrin signaling event. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assem bly of multimeric protein complexes.


Pssm-ID: 188720 [Multi-domain]  Cd Length: 54  Bit Score: 57.75  E-value: 6.49e-11
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 396 PMCAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09334    1 PICGACRRPIEGRVVTALGKHWHVEHFVCAKCEKPFLGHRHYEKKGLAYCETHY 54
LIM1_Lrg1p_like cd09391
The first LIM domain of Lrg1p, a LIM and RhoGap domain containing protein; The first LIM ...
457-508 7.62e-11

The first LIM domain of Lrg1p, a LIM and RhoGap domain containing protein; The first LIM domain of Lrg1p, a LIM and RhoGap domain containing protein: The members of this family contain three tandem repeats of LIM domains and a Rho-type GTPase activating protein (RhoGap) domain. Lrg1p is a Rho1 GTPase-activating protein required for efficient cell fusion in yeast. Lrg1p-GAP domain strongly and specifically stimulates the GTPase activity of Rho1p, a regulator of beta (1-3)-glucan synthase in vitro. The LIM domain is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188777  Cd Length: 57  Bit Score: 57.70  E-value: 7.62e-11
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGE-----PYCETDY 508
Cdd:cd09391    1 CAKCGKPITGQFVRALGDVYHLDCFTCHDCGKPVASKFFPVDDPDtseqvPLCETDY 57
LIM4_PINCH cd09334
The fourth LIM domain of protein PINCH; The fourth LIM domain of protein PINCH: PINCH plays a ...
455-508 7.89e-11

The fourth LIM domain of protein PINCH; The fourth LIM domain of protein PINCH: PINCH plays a pivotal role in the assembly of focal adhesions (FAs), regulating diverse functions in cell adhesion, growth, and differentiation through LIM-mediated protein-protein interactions. PINCH comprises an array of five LIM domains that interact with integrin-linked kinase (ILK), Nck2 (also called Nckbeta or Grb4) and other interaction partners. These interactions are essential for triggering the FA assembly and for relaying diverse mechanical and biochemical signals between Cell-extracellular matrix and the actin cytoskeleton. The PINCH LIM4 domain recognizes the third SH3 domain of another adaptor protein, Nck2. This step is an important component of integrin signaling event. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assem bly of multimeric protein complexes.


Pssm-ID: 188720 [Multi-domain]  Cd Length: 54  Bit Score: 57.36  E-value: 7.89e-11
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 455 PECGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09334    1 PICGACRRPIEGRVVTALGKHWHVEHFVCAKCEKPFLGHRHYEKKGLAYCETHY 54
LIM3_Paxillin cd09409
The third LIM domain of paxillin; The third LIM domain of paxillin: Paxillin is an adaptor ...
457-509 8.35e-11

The third LIM domain of paxillin; The third LIM domain of paxillin: Paxillin is an adaptor protein, which recruits key components of the signal-transduction machinery to specific sub-cellular locations to respond to environmental changes rapidly. The C-terminal region of paxillin contains four LIM domains which target paxillin to focal adhesions, presumably through a direct association with the cytoplasmic tail of beta-integrin. The N-terminal of paxillin is leucine-rich LD-motifs. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. The binding partners of paxillin are diverse and include protein tyrosine kinases, such as Src and FAK, structural proteins, such as vinculin and actopaxin, and regulators of actin organization. Paxillin recruits these proteins to their function sites to control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188793 [Multi-domain]  Cd Length: 53  Bit Score: 57.54  E-value: 8.35e-11
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDYY 509
Cdd:cd09409    1 CGGCARAILENYISALNTLWHPECFVCRECFTPFVNGSFFEHDGQPYCEAHYH 53
LIM3_abLIM cd09329
The third LIM domain of actin binding LIM (abLIM) proteins; The third LIM domain of actin ...
457-508 3.06e-10

The third LIM domain of actin binding LIM (abLIM) proteins; The third LIM domain of actin binding LIM (abLIM) proteins: Three homologous members of the abLIM protein family have been identified; abLIM-1, abLIM-2 and abLIM-3. The N-terminal of abLIM consists of four tandem repeats of LIM domains and the C-terminal of acting binding LIM protein is a villin headpiece domain, which has strong actin binding activity. The abLIM-1, which is expressed in retina, brain, and muscle tissue, has been indicated to function as a tumor suppressor. AbLIM-2 and -3, mainly expressed in muscle and neuronal tissue, bind to F-actin strongly. They may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription. It has shown that LIM domains of abLIMs interact with STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. All LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188715 [Multi-domain]  Cd Length: 52  Bit Score: 55.79  E-value: 3.06e-10
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 300069041 457 CGRCQRKIL-GEVINALKQTWHVSCFVCVACGKpirnnVFHLE----DGEPYCETDY 508
Cdd:cd09329    1 CAGCGQEIKnGQALLALDKQWHVWCFKCKECGK-----VLTGEymgkDGKPYCERDY 52
LIM3_Paxillin_like cd09338
The third LIM domain of the paxillin like protein family; The third LIM domain of the paxillin ...
516-570 3.45e-10

The third LIM domain of the paxillin like protein family; The third LIM domain of the paxillin like protein family: This family consists of paxillin, leupaxin, Hic-5 (ARA55), and other related proteins. There are four LIM domains in the C-terminal of the proteins and leucine-rich LD-motifs in the N-terminal region. Members of this family are adaptor proteins to recruit key components of signal-transduction machinery to specific sub-cellular locations. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. Paxillin serves as a platform for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression that are necessary for cell migration and survival. Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. It associates with focal adhesion kinases PYK2 and pp125FAK and identified to be a component of the osteoclast pososomal signaling complex. Hic-5 controls cell proliferation, migration and senescence by functioning as coactivator for steroid receptors such as androgen receptor, glucocorticoid receptor and progesterone receptor. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188724 [Multi-domain]  Cd Length: 53  Bit Score: 55.80  E-value: 3.45e-10
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 300069041 516 CRGCEFPIEagDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKHAH 570
Cdd:cd09338    1 CGGCNKPIL--ENYISALNTQWHPECFVCRECHKPFINGSFFEHEGLPYCETHYH 53
LIM2_FBLP-1 cd09372
The second LIM domain of the filamin-binding LIM protein-1 (FBLP-1); The second LIM domain of ...
457-508 6.01e-10

The second LIM domain of the filamin-binding LIM protein-1 (FBLP-1); The second LIM domain of the filamin-binding LIM protein-1 (FBLP-1): Fblp-1 contains a proline-rich domain near its N terminus and two LIM domains at its C terminus. FBLP-1 mRNA was detected in a variety of tissues and cells including platelets and endothelial cells. FBLP-1 binds to Filamins. The association between filamin B and FBLP-1 may play an unknown role in cytoskeletal function, cell adhesion, and cell motility. As in other LIM domains, this domain family is 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188758 [Multi-domain]  Cd Length: 53  Bit Score: 55.12  E-value: 6.01e-10
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHL-EDGEPYCETDY 508
Cdd:cd09372    1 CAKCQGVITEHIIRALGKGYHPPCFTCVTCGRRIGDESFAVdEQNEVYCLDDY 53
LIM pfam00412
LIM domain; This family represents two copies of the LIM structural domain.
516-568 8.11e-10

LIM domain; This family represents two copies of the LIM structural domain.


Pssm-ID: 395333 [Multi-domain]  Cd Length: 57  Bit Score: 54.65  E-value: 8.11e-10
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 300069041  516 CRGCEFPIEAGDMfLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKH 568
Cdd:pfam00412   1 CAGCNRPIYDREL-VRALGKVWHPECFRCAVCGKPLTTGDFYEKDGKLYCKHD 52
LIM1_Paxillin_like cd09336
The first LIM domain of the paxillin like protein family; The first LIM domain of the paxillin ...
516-570 1.83e-09

The first LIM domain of the paxillin like protein family; The first LIM domain of the paxillin like protein family: This family consists of paxillin, leupaxin, Hic-5 (ARA55), and other related proteins. There are four LIM domains in the C-terminal of the proteins and leucine-rich LD-motifs in the N-terminal region. Members of this family are adaptor proteins to recruit key components of signal-transduction machinery to specific sub-cellular locations. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. Paxillin serves as a platform for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression that are necessary for cell migration and survival. Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. It associates with focal adhesion kinases PYK2 and pp125FAK and identified to be a component of the osteoclast pososomal signaling complex. Hic-5 controls cell proliferation, migration and senescence by functioning as coactivator for steroid receptors such as androgen receptor, glucocorticoid receptor and progesterone receptor. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 259830 [Multi-domain]  Cd Length: 53  Bit Score: 53.55  E-value: 1.83e-09
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 300069041 516 CRGCEFPIeAGDMfLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKHAH 570
Cdd:cd09336    1 CAACNKPI-VGQV-VTALGKTWHPEHFVCVHCQTELGTSNFFERDGKPYCEKDYH 53
LIM1_Paxillin cd09405
The first LIM domain of paxillin; The first LIM domain of paxillin: Paxillin is an adaptor ...
397-449 2.56e-09

The first LIM domain of paxillin; The first LIM domain of paxillin: Paxillin is an adaptor protein, which recruits key components of the signal-transduction machinery to specific sub-cellular locations to respond to environmental changes rapidly. The C-terminal region of paxillin contains four LIM domains which target paxillin to focal adhesions, presumably through a direct association with the cytoplasmic tail of beta-integrin. The N-terminal of paxillin is leucine-rich LD-motifs. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. The binding partners of paxillin are diverse and include protein tyrosine kinases, such as Src and FAK, structural proteins, such as vinculin and actopaxin, and regulators of actin organization. Paxillin recruits these proteins to their function sites to control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight cons erved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188789 [Multi-domain]  Cd Length: 54  Bit Score: 53.09  E-value: 2.56e-09
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 397 MCAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09405    1 VCGACKKPIAGQVVTAMGKTWHPEHFVCTHCQEEIGSRNFFERDGQPYCEKDY 53
PDZ2_GRIP1-2-like cd06681
PDZ domain 2 of glutamate receptor-interacting protein 1 (GRIP1) and GRIP2, and related ...
15-80 3.15e-09

PDZ domain 2 of glutamate receptor-interacting protein 1 (GRIP1) and GRIP2, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) binding proteins GRIP1 (ABP/GRIP2) and GRIP2, and related domains. GRIP1 and GRIP2 each have 7 PDZ domains. The interaction of GRIP1 and GRIP2 with GluA2/3 (AMPAR subunit) regulates AMPAR trafficking and synaptic targeting. GRIP1 has an essential role in regulating AMPAR trafficking during synaptic plasticity and learning and memory. GRIP1 and GRIP2 interact with a variety of other proteins associated with protein trafficking and internalization, for example GRIP1 also interacts with KIF5 (also known as kinesin 1), EphB receptors, scaffold protein liprin-alpha, and the rasGEF GRASP-1. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This GRIP family PDZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467169 [Multi-domain]  Cd Length: 89  Bit Score: 54.16  E-value: 3.15e-09
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 300069041  15 GFRLQGG----KDFNMPLTISSLKDGGKAS-QAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMT 80
Cdd:cd06681   15 GFVIRGGahedRNKSRPLTVTHVRPGGPADrEGTIKPGDRLLSVDGISLHGATHAEAMSILKQCGQEATLL 85
LIM1_LIMK cd09364
The first LIM domain of LIMK (LIM domain Kinase ); The first LIM domain of LIMK (LIM domain ...
457-509 4.19e-09

The first LIM domain of LIMK (LIM domain Kinase ); The first LIM domain of LIMK (LIM domain Kinase ): LIMK protein family is comprised of two members LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, and altering the rate of actin depolymerisation. LIMKs can function in both cytoplasm and nucleus and are expressed in all tissues. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. However, LIMK1 and LIMk2 have different cellular locations. While LIMK1 localizes mainly at focal adhesions, LIMK2 is found in cytoplasmic punctae, suggesting that they may have different cellular functions. The LIM domains of LIMK have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188750 [Multi-domain]  Cd Length: 53  Bit Score: 52.49  E-value: 4.19e-09
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 457 CGRCQRKIL-GEVINALKQTWHVSCFVCVACGKPIRNNVFHlEDGEPYCETDYY 509
Cdd:cd09364    1 CAGCRGKILdSQYVQALNQDWHCDCFRCSVCSDSLSNWYFE-KDGKLYCRKDYW 53
LIM1_PINCH cd09331
The first LIM domain of protein PINCH; The first LIM domain of paxillin: Paxillin is an ...
445-512 6.28e-09

The first LIM domain of protein PINCH; The first LIM domain of paxillin: Paxillin is an adaptor protein, which recruits key components of the signal-transduction machinery to specific sub-cellular locations to respond to environmental changes rapidly. The C-terminal region of paxillin contains four LIM domains which target paxillin to focal adhesions, presumably through a direct association with the cytoplasmic tail of beta-integrin. The N-terminal of paxillin is leucine-rich LD-motifs. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. The binding partners of paxillin are diverse and include protein tyrosine kinases, such as Src and FAK, structural proteins, such as vinculin and actopaxin, and regulators of actin organization. Paxillin recruits these proteins to their function sites to control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188717  Cd Length: 59  Bit Score: 52.33  E-value: 6.28e-09
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 300069041 445 CELCYEKFFAPEcgrcqrkilgEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDYYALF 512
Cdd:cd09331    1 CERCREGFEPDE----------KIVNSNGELYHEQCFVCAQCFQPFPDGLFYEFEGRKYCEHDFQVLF 58
LIM2_FHL cd09345
The second LIM domain of Four and a half LIM domains protein (FHL); The second LIM domain of ...
516-567 6.29e-09

The second LIM domain of Four and a half LIM domains protein (FHL); The second LIM domain of Four and a half LIM domains protein (FHL): LIM-only protein family consists of five members, designated FHL1, FHL2, FHL3, FHL5 and LIMPETin. The first four members are composed of four complete LIM domains arranged in tandem and an N-terminal single zinc finger domain with a consensus sequence equivalent to the C-terminal half of a LIM domain. LIMPETin is an exception, containing six LIM domains. FHL1, 2 and 3 are predominantly expressed in muscle tissues, and FHL5 is highly expressed in male germ cells. FHL proteins exert their roles as transcription co-activators or co-repressors through a wide array of interaction partners. For example, FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. FHL3 int eracts with many transcription factors, such as CREB, BKLF/KLF3, CtBP2, MyoD, and MZF_1. FHL5 is a tissue-specific coactivator of CREB/CREM family transcription factors. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188731 [Multi-domain]  Cd Length: 54  Bit Score: 51.91  E-value: 6.29e-09
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKK 567
Cdd:cd09345    1 CKACGKAIMPGSKKMEYKGKFWHEKCFTCSECKKPIGTKSFIPKDDKIYCVP 52
LIM2_Leupaxin cd09408
The second LIM domain of Leupaxin; The second LIM domain of Leupaxin: Leupaxin is a ...
457-508 1.31e-08

The second LIM domain of Leupaxin; The second LIM domain of Leupaxin: Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. Leupaxin belongs to the paxillin focal adhesion protein family. Same as other members of the family, it has four leucine-rich LD-motifs in the N-terminus and four LIM domains in the C-terminus. It may function in cell type-specific signaling by associating with interaction partners PYK2, FAK, PEP and p95PKL. When expressed in human leukocytic cells, leupaxin significantly suppressed integrin-mediated cell adhesion to fibronectin and the tyrosine phosphorylation of paxillin. These findings indicate that leupaxin may negatively regulate the functions of paxillin during integrin signaling. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188792 [Multi-domain]  Cd Length: 52  Bit Score: 50.97  E-value: 1.31e-08
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09408    1 CAYCAGPILQNVLTAMDQTWHPEHFFCSHCGELFGDEGFLERDGKPYCRRDF 52
LIM3_Leupaxin cd09410
The third LIM domain of Leupaxin; The third LIM domain of Leupaxin: Leupaxin is a cytoskeleton ...
516-570 1.75e-08

The third LIM domain of Leupaxin; The third LIM domain of Leupaxin: Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. Leupaxin belongs to the paxillin focal adhesion protein family. Same as other members of the family, it has four leucine-rich LD-motifs in the N-terminus and four LIM domains in the C-terminus. It may function in cell type-specific signaling by associating with interaction partners PYK2, FAK, PEP and p95PKL. When expressed in human leukocytic cells, leupaxin significantly suppressed integrin-mediated cell adhesion to fibronectin and the tyrosine phosphorylation of paxillin. These findings indicate that leupaxin may negatively regulate the functions of paxillin during integrin signaling. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188794 [Multi-domain]  Cd Length: 53  Bit Score: 50.98  E-value: 1.75e-08
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 300069041 516 CRGCEFPIEagDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKHAH 570
Cdd:cd09410    1 CSGCGRPVK--ENYLSAANGVWHPECFVCSDCLKPFTDGSFFELDGRPLCELHYH 53
LIM_DA1 cd09396
The Lim domain of DA1; The Lim domain of DA1: DA1 contains one copy of LIM domain and a domain ...
457-503 1.85e-08

The Lim domain of DA1; The Lim domain of DA1: DA1 contains one copy of LIM domain and a domain of unknown function. DA1 is predicted as an ubiquitin receptor, which sets final seed and organ size by restricting the period of cell proliferation. The LIM domain is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188782 [Multi-domain]  Cd Length: 53  Bit Score: 50.71  E-value: 1.85e-08
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*...
gi 300069041 457 CGRCQRKIL-GEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPY 503
Cdd:cd09396    1 CAGCKSEIGhGRFLSALGAVWHPECFRCHACRKPIAEHEFSVSGNDPY 48
LIM1_LPP cd09351
The first LIM domain of lipoma preferred partner (LPP); The first LIM domain of lipoma ...
457-508 2.77e-08

The first LIM domain of lipoma preferred partner (LPP); The first LIM domain of lipoma preferred partner (LPP): LPP is a member of the zyxin LIM protein family and contains three LIM zinc-binding domains at the C-terminal and proline-rich region at the N-terminal. LPP initially identified as the most frequent translocation partner of HMGA2 (High Mobility Group A2) in a subgroup of benign tumors of adipose tissue (lipomas). It was also shown to be rearranged in a number of other soft tissues, as well as in a case of acute monoblastic leukemia. In addition to its involvement in tumors, LPP was inedited as a smooth muscle restricted LIM protein that plays an important role in SMC migration. LPP is localized at sites of cell adhesion, cell-cell contacts and transiently in the nucleus. In nucleus, it acts as a coactivator for the ETS domain transcription factor PEA3. In addition to PEA3, it interacts with alpha-actinin,vasodilator stimulated phosphoprotein (VASP),Palladin, and Scrib. The LIM domains are the main focal adhesion targeting elements and that the proline- rich region, which harbors binding sites for alpha-actinin and vasodilator- stimulated phosphoprotein (VASP), has a weak targeting capacity. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188737 [Multi-domain]  Cd Length: 54  Bit Score: 50.12  E-value: 2.77e-08
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 457 CGRCQRKILGEV--INALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09351    1 CVKCGEKVLGEGsgCTAMDQVYHISCFTCHQCQINLQGKPFYALDGKPYCEEDY 54
LIM1_Testin_like cd09340
The first LIM domain of Testin-like family; The first LIM domain of Testin_like family: This ...
516-568 2.97e-08

The first LIM domain of Testin-like family; The first LIM domain of Testin_like family: This family includes testin, prickle, dyxin and LIMPETin. Structurally, testin and prickle proteins contain three LIM domains at C-terminal; LIMPETin has six LIM domains; and dyxin presents only two LIM domains. However, all members of the family contain a PET protein-protein interaction domain. Testin is a cytoskeleton associated focal adhesion protein that localizes along actin stress fibers, at cell-cell-contact areas, and at focal adhesion plaques. Testin interacts with a variety of cytoskeletal proteins, including zyxin, mena, VASP, talin, and actin and it is involved in cell motility and adhesion events. Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). Dyxin involves in lung and heart development by interaction with GATA6 and blocking GATA6 activated target genes. LIMPETin might be the recombinant product of genes coding testin and four and half LIM proteins and its function is not well understood. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188726  Cd Length: 58  Bit Score: 50.29  E-value: 2.97e-08
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 300069041 516 CRGCEFPIEAGDM--FLEALGY--TWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKH 568
Cdd:cd09340    1 CEKCKEPINPGEVavFAERAGEdaCWHPGCFVCETCNELLVDLIYFYHDGKIYCGRH 57
LIM4_Paxillin_like cd09339
The fourth LIM domain of the Paxillin-like protein family; The fourth LIM domain of the ...
398-449 2.97e-08

The fourth LIM domain of the Paxillin-like protein family; The fourth LIM domain of the Paxillin like protein family: This family consists of paxillin, leupaxin, Hic-5 (ARA55), and other related proteins. There are four LIM domains in the C-terminal of the proteins and leucine-rich LD-motifs in the N-terminal region. Members of this family are adaptor proteins to recruit key components of signal-transduction machinery to specific sub-cellular locations. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. Paxillin serves as a platform for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression that are necessary for cell migration and survival. Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. It associates with focal adhesion kinases PYK2 and pp125FAK and identified to be a component of the osteoclast pososomal signaling complex. Hic-5 controls cell proliferation, migration and senescence by functioning as coactivator for steroid receptors such as androgen receptor, glucocorticoid receptor and progesterone receptor. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188725 [Multi-domain]  Cd Length: 52  Bit Score: 50.03  E-value: 2.97e-08
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09339    1 CAGCGKPITGRCITAMGRKFHPEHFVCAFCLKQLSKGTFKEQDDKPYCHPCF 52
LIM3_Leupaxin cd09410
The third LIM domain of Leupaxin; The third LIM domain of Leupaxin: Leupaxin is a cytoskeleton ...
457-509 3.25e-08

The third LIM domain of Leupaxin; The third LIM domain of Leupaxin: Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. Leupaxin belongs to the paxillin focal adhesion protein family. Same as other members of the family, it has four leucine-rich LD-motifs in the N-terminus and four LIM domains in the C-terminus. It may function in cell type-specific signaling by associating with interaction partners PYK2, FAK, PEP and p95PKL. When expressed in human leukocytic cells, leupaxin significantly suppressed integrin-mediated cell adhesion to fibronectin and the tyrosine phosphorylation of paxillin. These findings indicate that leupaxin may negatively regulate the functions of paxillin during integrin signaling. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188794 [Multi-domain]  Cd Length: 53  Bit Score: 50.21  E-value: 3.25e-08
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDYY 509
Cdd:cd09410    1 CSGCGRPVKENYLSAANGVWHPECFVCSDCLKPFTDGSFFELDGRPLCELHYH 53
LIM2_FHL1 cd09424
The second LIM domain of Four and a half LIM domains protein 1 (FHL1); The second LIM domain ...
516-565 3.62e-08

The second LIM domain of Four and a half LIM domains protein 1 (FHL1); The second LIM domain of Four and a half LIM domains protein 1 (FHL1): FHL1 is heavily expressed in skeletal and cardiac muscles. It plays important roles in muscle growth, differentiation, and sarcomere assembly by acting as a modulator of transcription factors. Defects in FHL1 gene are responsible for a number of Muscular dystrophy-like muscle disorders. It has been detected that FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188808  Cd Length: 58  Bit Score: 50.15  E-value: 3.62e-08
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09424    1 CKGCYKDILAGDQNVEYKGNVWHKDCFTCSNCKQPIGTKSFFPKGEDFYC 50
PDZ1_harmonin cd06737
PDZ domain 1 of harmonin isoforms a, b, and c, and related domains; PDZ (PSD-95 (Postsynaptic ...
10-72 5.61e-08

PDZ domain 1 of harmonin isoforms a, b, and c, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 1 of harmonin isoforms a, b, and c, and related domains. Harmonin (also known as Usher Type 1C, PDZ-73 and AIE-75) is a key organizer of the Usher (USH) protein interactome. USH syndrome is the leading cause of hereditary sensory deaf-blindness in humans; three clinically distinct types of USH have been identified, type 1 to 3. The gene encoding harmonin (USH1C) is the causative gene for the USH type 1C phenotype. There are at least 10 alternatively spliced isoforms of harmonin, which are divided into three subclasses (a, b, and c). All isoforms contain the first two PDZ domains and the first coiled-coil domain. The a and b isoforms all have a third PDZ domain. The different PDZ domains are responsible for interactions with all known Usher syndrome type 1 proteins, and most Usher syndrome type 2 proteins. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This harmonin family PDZ1 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467219 [Multi-domain]  Cd Length: 85  Bit Score: 50.33  E-value: 5.61e-08
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 300069041  10 GPAPWGFRLQGGKDFNMPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKA 72
Cdd:cd06737   11 GPESLGFSVRGGLEHGCGLFVSHVSPGSQADNKGLRVGDEIVRINGYSISQCTHEEVINLIKT 73
LIM2_Leupaxin cd09408
The second LIM domain of Leupaxin; The second LIM domain of Leupaxin: Leupaxin is a ...
398-445 5.77e-08

The second LIM domain of Leupaxin; The second LIM domain of Leupaxin: Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. Leupaxin belongs to the paxillin focal adhesion protein family. Same as other members of the family, it has four leucine-rich LD-motifs in the N-terminus and four LIM domains in the C-terminus. It may function in cell type-specific signaling by associating with interaction partners PYK2, FAK, PEP and p95PKL. When expressed in human leukocytic cells, leupaxin significantly suppressed integrin-mediated cell adhesion to fibronectin and the tyrosine phosphorylation of paxillin. These findings indicate that leupaxin may negatively regulate the functions of paxillin during integrin signaling. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188792 [Multi-domain]  Cd Length: 52  Bit Score: 49.43  E-value: 5.77e-08
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*...
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYC 445
Cdd:cd09408    1 CAYCAGPILQNVLTAMDQTWHPEHFFCSHCGELFGDEGFLERDGKPYC 48
LIM1_abLIM cd09327
The first LIM domain of actin binding LIM (abLIM) proteins; The first LIM domain of actin ...
457-508 5.95e-08

The first LIM domain of actin binding LIM (abLIM) proteins; The first LIM domain of actin binding LIM (abLIM) proteins: Three homologous members of the abLIM protein family have been identified; abLIM-1, abLIM-2 and abLIM-3. The N-terminal of abLIM consists of four tandem repeats of LIM domains and the C-terminal of acting binding LIM protein is a villin headpiece domain, which has strong actin binding activity. The abLIM-1, which is expressed in retina, brain, and muscle tissue, has been indicated to function as a tumor suppressor. AbLIM-2 and -3, mainly expressed in muscle and neuronal tissue, bind to F-actin strongly. They may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription. It has shown that LIM domains of abLIMs interact with STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. All LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188713 [Multi-domain]  Cd Length: 52  Bit Score: 49.18  E-value: 5.95e-08
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09327    1 CYKCGKKCKGEVLRVQDKYFHIKCFTCKVCGCDLAQGGFFVKEGEYYCTDDY 52
LIM2_Paxillin cd09407
The second LIM domain of paxillin; The second LIM domain of paxillin: Paxillin is an adaptor ...
457-508 8.32e-08

The second LIM domain of paxillin; The second LIM domain of paxillin: Paxillin is an adaptor protein, which recruits key components of the signal-transduction machinery to specific sub-cellular locations to respond to environmental changes rapidly. The C-terminal region of paxillin contains four LIM domains which target paxillin to focal adhesions, presumably through a direct association with the cytoplasmic tail of beta-integrin. The N-terminal of paxillin is leucine-rich LD-motifs. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. The binding partners of paxillin are diverse and include protein tyrosine kinases, such as Src and FAK, structural proteins, such as vinculin and actopaxin, and regulators of actin organization. Paxillin recruits these proteins to their function sites to control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188791 [Multi-domain]  Cd Length: 52  Bit Score: 48.80  E-value: 8.32e-08
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09407    1 CYYCNGPILDKVVTALDRTWHPEHFFCAQCGAFFGPEGFHEKDGKAYCRKDY 52
LIM3_Paxillin_like cd09338
The third LIM domain of the paxillin like protein family; The third LIM domain of the paxillin ...
398-449 9.24e-08

The third LIM domain of the paxillin like protein family; The third LIM domain of the paxillin like protein family: This family consists of paxillin, leupaxin, Hic-5 (ARA55), and other related proteins. There are four LIM domains in the C-terminal of the proteins and leucine-rich LD-motifs in the N-terminal region. Members of this family are adaptor proteins to recruit key components of signal-transduction machinery to specific sub-cellular locations. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. Paxillin serves as a platform for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression that are necessary for cell migration and survival. Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. It associates with focal adhesion kinases PYK2 and pp125FAK and identified to be a component of the osteoclast pososomal signaling complex. Hic-5 controls cell proliferation, migration and senescence by functioning as coactivator for steroid receptors such as androgen receptor, glucocorticoid receptor and progesterone receptor. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188724 [Multi-domain]  Cd Length: 53  Bit Score: 48.87  E-value: 9.24e-08
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09338    1 CGGCNKPILENYISALNTQWHPECFVCRECHKPFINGSFFEHEGLPYCETHY 52
PDZ2_PDZD7-like cd10834
PDZ domain 2 of the canonical isoform 1 of PDZ domain containing 7 (PDZD7), and related ...
14-74 1.03e-07

PDZ domain 2 of the canonical isoform 1 of PDZ domain containing 7 (PDZD7), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of the long isoform 1 of PDZD7, and related domains. PDZD7 is critical for the organization of Usher syndrome type 2 (USH2) complex. Usher syndrome is the leading cause of hereditary sensory deaf-blindness in humans; USH2 is the most common sub-type. Formation of the USH2 complex is based upon heterodimerization between PDZD7 and whirlin (another PDZ domain-containing protein) and a subsequent dynamic interplay between USH2 proteins via their multiple PDZ domains. The PDZD7 PDZ2 domain binds GPR98 (also known as VLGR1) and usherin (USH2A). PDZD7 and whirlin form heterodimers through their multiple PDZ domains; whirlin and PDZD7 interact with usherin and GPR98 to form an interdependent ankle link complex. PDZD7 also interacts with myosin VIIa. PDZD7 also forms homodimers through its PDZ2 domain. Various isoforms of PDZD7 produced by alternative splicing have been identified; this subgroup includes the second PDZ domain of the canonical isoform of PDZD7- isoform 1. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PDZD7-like family PDZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467270 [Multi-domain]  Cd Length: 85  Bit Score: 49.69  E-value: 1.03e-07
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 300069041  14 WGFRLQGGKDFNMPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACT 74
Cdd:cd10834   15 LGFNIRGGSEYGLGIYVSKVDPGGLAEQNGIKVGDQILAVNGVSFEDITHSKAVEVLKSQT 75
LIM1_TRIP6 cd09350
The first LIM domain of Thyroid receptor-interacting protein 6 (TRIP6); The first LIM domain ...
457-508 1.08e-07

The first LIM domain of Thyroid receptor-interacting protein 6 (TRIP6); The first LIM domain of Thyroid receptor-interacting protein 6 (TRIP6): TRIP6 is a member of the zyxin LIM protein family and contains three LIM zinc-binding domains at the C-terminal. TRIP6 protein localizes to focal adhesion sites and along actin stress fibers. Recruitment of this protein to the plasma membrane occurs in a lysophosphatidic acid (LPA)-dependent manner. TRIP6 recruits a number of molecules involved in actin assembly, cell motility, survival and transcriptional control. The function of TRIP6 in cell motility is regulated by Src-dependent phosphorylation at a Tyr residue. The phosphorylation activates the coupling to the Crk SH2 domain, which is required for the function of TRIP6 in promoting lysophosphatidic acid (LPA)-induced cell migration. TRIP6 can shuttle to the nucleus to serve as a coactivator of AP-1 and NF-kappaB transcriptional factors. Moreover, TRIP6 can form a ternary complex with the NHERF2 PDZ protein and LPA2 receptor to regulate LPA-induced activation of ERK and AKT, rendering cells resistant to chemotherapy. Recent evidence shows that TRIP6 antagonizes Fas-Induced apoptosis by enhancing the antiapoptotic effect of LPA in cells. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188736  Cd Length: 54  Bit Score: 48.55  E-value: 1.08e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 457 CGRCQRKILGEV--INALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09350    1 CGRCGENVVGEGtgCTAMDQVFHVDCFTCMTCNGKLRGQPFYAVEKKAYCEPCY 54
LIM4_Leupaxin cd09412
The fourth LIM domain of Leupaxin; The fourth LIM domain of Leupaxin: Leupaxin is a ...
398-449 1.21e-07

The fourth LIM domain of Leupaxin; The fourth LIM domain of Leupaxin: Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. Leupaxin belongs to the paxillin focal adhesion protein family. Same as other members of the family, it has four leucine-rich LD-motifs in the N-terminus and four LIM domains in the C-terminus. It may function in cell type-specific signaling by associating with interaction partners PYK2, FAK, PEP and p95PKL. When expressed in human leukocytic cells, leupaxin significantly suppressed integrin-mediated cell adhesion to fibronectin and the tyrosine phosphorylation of paxillin. These findings indicate that leupaxin may negatively regulate the functions of paxillin during integrin signaling. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188796 [Multi-domain]  Cd Length: 52  Bit Score: 48.58  E-value: 1.21e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09412    1 CGSCGLPITGRCISALGRKFHPEHFVCAFCLRPLTQGSFKEQSGKPYCSTCF 52
PDZ_syntrophin-like cd06801
PDZ domain of syntrophins, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), ...
15-73 1.56e-07

PDZ domain of syntrophins, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of syntrophins (including alpha-1-syntrophin, beta-1-syntrophin, beta-2-syntrophin, gamma-1-syntrophin, and gamma-2-syntrophin), and related domains. Syntrophins play a role in recruiting various signaling molecules into signaling complexes and help provide appropriate spatiotemporal regulation of signaling pathways. They function in cytoskeletal organization and maintenance; as components of the dystrophin-glycoprotein complex (DGC), they help maintain structural integrity of skeletal muscle fibers. They link voltage-gated sodium channels to the actin cytoskeleton and the extracellular matrix, and control the localization and activity of the actin reorganizing proteins such as PI3K, PI(3,4)P2 and TAPP1. Through association with various cytoskeletal proteins within the cells, they are involved in processes such as regulation of focal adhesions, myogenesis, calcium homeostasis, and cell migration. They also have roles in synapse formation and in the organization of utrophin, acetylcholine receptor, and acetylcholinesterase at the neuromuscular synapse. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This syntrophin-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467262 [Multi-domain]  Cd Length: 83  Bit Score: 49.11  E-value: 1.56e-07
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|
gi 300069041  15 GFRLQGGKDFNMPLTISSLKDGGKASQAH-VRIGDVVLSIDGISAQGMTHLEAQNKIKAC 73
Cdd:cd06801   14 GISIKGGAEHKMPILISKIFKGQAADQTGqLFVGDAILSVNGENLEDATHDEAVQALKNA 73
PDZ_PTPN3-4-like cd06706
PDZ domain of tyrosine-protein phosphatase non-receptor type 3 (PTPN3), tyrosine-protein ...
15-73 3.01e-07

PDZ domain of tyrosine-protein phosphatase non-receptor type 3 (PTPN3), tyrosine-protein phosphatase non-receptor type 4 (PTNP4), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of PTPN3, PTPN4 and related domains. PTPN3 (also known as protein-tyrosine phosphatase H1, PTP-H1) has a tumor-suppressive or a tumor-promoting role in many cancers. It serves as a specific phosphatase for the MAP kinase p38gamma; the two interact via their PDZ domains and cooperate to promote Ras-induced oncogenesis. Interaction partners of the PTPN3 PDZ domain include p38gamma and human papillomavirus E6 oncoprotein. PTPN4 (also known as protein-tyrosine phosphatase MEG1) plays a role in immunity, learning, synaptic plasticity or cell homeostasis. p38gamma is also an interaction partner of the PTPN4 PDZ domain: PTPN4 regulates neuronal cell homeostasis by protecting neurons against apoptosis; binding of the C terminus of p38gamma to the PDZ domain of PTPN4, antagonizes the catalytic autoinhibition of PTPN4, leading to cell apoptosis. Other interaction partners of the PTPN4 PDZ domain include glutamate receptor subunit GluN2A, and RABV strain G protein, among others. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PTPN3-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467190 [Multi-domain]  Cd Length: 90  Bit Score: 48.46  E-value: 3.01e-07
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 300069041  15 GFRLQGGKDFNMPLTISSLKDGGKASQAHVRI--GDVVLSIDGISAQGMTHLEAQNKIKAC 73
Cdd:cd06706   17 GFNVKGGVDQKMPVIVSRVAPGTPADLCIPRLneGDQVLLINGRDISEHTHDQVVMFIKAS 77
PDZ_Lin-7-like cd06796
PDZ domain of protein Lin-7 and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), ...
15-80 3.51e-07

PDZ domain of protein Lin-7 and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of Lin-7 (also known as LIN-7 or LIN7), and related domains. Lin-7 targets and organize protein complexes to epithelial and synaptic plasma membranes. There are three mammalian Lin-7 homologs: Lin-7A (protein lin-7 homolog A, also known as mammalian lin-seven protein 1 (MALS-1), vertebrate lin-7 homolog 1 (Veli-1), tax interaction protein 33); Lin-7B (also known as MALS-2, Veli-2); and Lin-7C (also known as MALS-3, Veli-3). Lin-7 is involved in localization of the Let-23 growth factor receptor to the basolateral membrane of epithelial cells, in tight junction localization of insulin receptor substrate p53 (IRSp53), in retaining gamma-aminobutyric (GABA) transporter (BGT-1) at the basolateral surface of epithelial cells, and in regulating recruitment of neurotransmitter receptors to the postsynaptic density (PSD). The Lin7 PDZ domain binds Let-23, BGT and beta-catenin, and NMDA (N-methyl-D-aspartate) receptor NR2B. Lin-7 also binds to the PDZ binding motif located in the C-terminal tail of Rhotekin, an effector protein for small GTPase Rho. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Lin-7-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467258 [Multi-domain]  Cd Length: 86  Bit Score: 48.20  E-value: 3.51e-07
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 300069041  15 GFRLQGGKDFNMPLTISSLKDGGKAS-QAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMT 80
Cdd:cd06796   15 GFNVMGGKEQNSPIYISRIIPGGVADrHGGLKRGDQLLSVNGVSVEGEHHEKAVELLKAAQGSVKLV 81
LIM_ALP_like cd09360
The LIM domain of ALP (actinin-associated LIM protein) family; This family represents the LIM ...
457-506 4.02e-07

The LIM domain of ALP (actinin-associated LIM protein) family; This family represents the LIM domain of ALP (actinin-associated LIM protein) family. Four proteins: ALP, CLP36, RIL, and Mystique have been classified into the ALP subfamily of LIM domain proteins. Each member of the subfamily contains an N-terminal PDZ domain and a C-terminal LIM domain. Functionally, these proteins bind to alpha-actinin through their PDZ domains and bind or other signaling molecules through their LIM domains. ALP proteins have been implicated in cardiac and skeletal muscle structure, function and disease, platelet, and epithelial cell motility. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188746 [Multi-domain]  Cd Length: 52  Bit Score: 46.98  E-value: 4.02e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCET 506
Cdd:cd09360    1 CDKCGNGIVGVVVKARDKNRHPECFVCADCGLNLKNKGYFFIEDELYCET 50
LIM2_Enigma cd09456
The second LIM domain of Enigma; The second LIM domain of Enigma: Enigma was initially ...
398-449 4.91e-07

The second LIM domain of Enigma; The second LIM domain of Enigma: Enigma was initially characterized in humans as a protein containing three LIM domains at the C-terminus and a PDZ domain at N-terminus. The third LIM domain specifically interacts with the insulin receptor and the second LIM domain interacts with the receptor tyrosine kinase Ret and the adaptor protein APS. Thus Enigma is implicated in signal transduction processes, such as mitogenic activity, insulin related actin organization, and glucose metabolism. Enigma is expressed in multiple tissues, such as skeletal muscle, heart, bone and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188840 [Multi-domain]  Cd Length: 52  Bit Score: 46.53  E-value: 4.91e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09456    1 CAKCKKKITGEIMHALKMTWHVHCFTCAACKTPIRNRAFYMEEGAPYCERDY 52
PDZ12_MUPP1-like cd06675
PDZ domain 12 of multi-PDZ-domain protein 1 (MUPP1), PDZ domain 10 of protein-associated tight ...
27-80 5.63e-07

PDZ domain 12 of multi-PDZ-domain protein 1 (MUPP1), PDZ domain 10 of protein-associated tight junction (PATJ, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 12 of MUPP1, PDZ domain 10 of PATJ, and related domains. MUPP1 and PATJ serve as scaffolding proteins linking different proteins and protein complexes involved in the organization of tight junctions and epithelial polarity. MUPP1 contains an L27 (Lin-2 and Lin-7 binding) domain and 13 PDZ domains. PATJ (also known as INAD-like) contains an L27 domain and ten PDZ domains. MUPP1 and PATJ share several binding partners, including junctional adhesion molecules (JAM), zonula occludens (ZO)-3, Pals1 (protein associated with Lin-7), Par (partitioning defective)-6 proteins, and nectins (adherence junction adhesion molecules). PATJ lacks 3 PDZ domains seen in MUPP1: PDZ6, 9, and 13; consequently, MUPP1 PDZ7 and 8 align with PATJ PDZ6 and 7; and MUPP1 PDZ domains 10-12 align with PATJ PDZ domains 8-10. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MUPP1-like PDZ12 family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F


Pssm-ID: 467163 [Multi-domain]  Cd Length: 86  Bit Score: 47.74  E-value: 5.63e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 300069041  27 PLTISSLKDGGKASQAH-VRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMT 80
Cdd:cd06675   29 PVFIAMIQPNGVAAQTGkLKVGDRIVSINGQSTDGLTHSEAVNLLKNASGTIILQ 83
LIM1_Testin cd09413
The first LIM domain of Testin; The first LIM domain of Testin: Testin contains three ...
516-568 5.95e-07

The first LIM domain of Testin; The first LIM domain of Testin: Testin contains three C-terminal LIM domains and a PET protein-protein interaction domain at the N-terminal. Testin is a cytoskeleton associated focal adhesion protein that localizes along actin stress fibers, at cell-cell-contact areas, and at focal adhesion plaques. Testin interacts with a variety of cytoskeletal proteins, including zyxin, mena, VASP, talin, and actin and it is involved in cell motility and adhesion events. Knockout mice experiments reveal that tumor repressor function of Testin. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188797  Cd Length: 58  Bit Score: 46.68  E-value: 5.95e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 300069041 516 CRGCEFPIEAGD--MFLEALGYT--WHDTCFVCSVCCESLEGQTFFSKKDKPLCKKH 568
Cdd:cd09413    1 CYCCKQPMKEGDpaVYAERAGYDklWHPACFVCSTCGELLVDMIYFWKNGKLYCGRH 57
PDZ1_Scribble-like cd06704
PDZ domain 1 of Drosophila Scribble, human Scribble homolog, and related domains; PDZ (PSD-95 ...
30-83 6.18e-07

PDZ domain 1 of Drosophila Scribble, human Scribble homolog, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 1 of Drosophila Scribble (also known as LAP4), human Scribble homolog (also known as hScrib, LAP4, CriB1, ScrB1 and Vartul), and related domains. They belong to the LAP family, which describes proteins that contain either one or four PDZ domains and 16 LRRs (leucine-rich repeats) and function in controlling cell shape, size and subcellular protein localization. In Drosophila, the Scribble complex, comprising Scribble, discs large, and lethal giant larvae, plays a role in apico-basal cell polarity, in other forms of polarity, including regulation of the actin cytoskeleton, cell signaling and vesicular trafficking, and in tumor development. Mammalian Scribble is important in many aspects of cancer development. Scribble and its homologs can be downregulated or overexpressed in cancer; they have a role in cancer beyond their function in loss of cell polarity. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Scribble-like family PDZ1 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467188 [Multi-domain]  Cd Length: 87  Bit Score: 47.27  E-value: 6.18e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041  30 ISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQR 83
Cdd:cd06704   34 ISRVTEGGPAAKAGVRVGDKLLEVNGVDLVDADHHEAVEALKNSGNTVTMVVLR 87
LIM2_Paxillin cd09407
The second LIM domain of paxillin; The second LIM domain of paxillin: Paxillin is an adaptor ...
398-449 6.27e-07

The second LIM domain of paxillin; The second LIM domain of paxillin: Paxillin is an adaptor protein, which recruits key components of the signal-transduction machinery to specific sub-cellular locations to respond to environmental changes rapidly. The C-terminal region of paxillin contains four LIM domains which target paxillin to focal adhesions, presumably through a direct association with the cytoplasmic tail of beta-integrin. The N-terminal of paxillin is leucine-rich LD-motifs. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. The binding partners of paxillin are diverse and include protein tyrosine kinases, such as Src and FAK, structural proteins, such as vinculin and actopaxin, and regulators of actin organization. Paxillin recruits these proteins to their function sites to control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188791 [Multi-domain]  Cd Length: 52  Bit Score: 46.49  E-value: 6.27e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09407    1 CYYCNGPILDKVVTALDRTWHPEHFFCAQCGAFFGPEGFHEKDGKAYCRKDY 52
LIM1_LIMK cd09364
The first LIM domain of LIMK (LIM domain Kinase ); The first LIM domain of LIMK (LIM domain ...
516-568 6.45e-07

The first LIM domain of LIMK (LIM domain Kinase ); The first LIM domain of LIMK (LIM domain Kinase ): LIMK protein family is comprised of two members LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, and altering the rate of actin depolymerisation. LIMKs can function in both cytoplasm and nucleus and are expressed in all tissues. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. However, LIMK1 and LIMk2 have different cellular locations. While LIMK1 localizes mainly at focal adhesions, LIMK2 is found in cytoplasmic punctae, suggesting that they may have different cellular functions. The LIM domains of LIMK have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188750 [Multi-domain]  Cd Length: 53  Bit Score: 46.33  E-value: 6.45e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 516 CRGCEFPIEAGDmFLEALGYTWHDTCFVCSVCCESLEGQtFFSKKDKPLCKKH 568
Cdd:cd09364    1 CAGCRGKILDSQ-YVQALNQDWHCDCFRCSVCSDSLSNW-YFEKDGKLYCRKD 51
LIM3_Paxillin cd09409
The third LIM domain of paxillin; The third LIM domain of paxillin: Paxillin is an adaptor ...
516-570 7.91e-07

The third LIM domain of paxillin; The third LIM domain of paxillin: Paxillin is an adaptor protein, which recruits key components of the signal-transduction machinery to specific sub-cellular locations to respond to environmental changes rapidly. The C-terminal region of paxillin contains four LIM domains which target paxillin to focal adhesions, presumably through a direct association with the cytoplasmic tail of beta-integrin. The N-terminal of paxillin is leucine-rich LD-motifs. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. The binding partners of paxillin are diverse and include protein tyrosine kinases, such as Src and FAK, structural proteins, such as vinculin and actopaxin, and regulators of actin organization. Paxillin recruits these proteins to their function sites to control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188793 [Multi-domain]  Cd Length: 53  Bit Score: 45.99  E-value: 7.91e-07
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 300069041 516 CRGCEFPIEagDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKHAH 570
Cdd:cd09409    1 CGGCARAIL--ENYISALNTLWHPECFVCRECFTPFVNGSFFEHDGQPYCEAHYH 53
DUF4749 pfam15936
Domain of unknown function (DUF4749); This presumed domain is functionally uncharacterized. ...
105-196 1.00e-06

Domain of unknown function (DUF4749); This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is typically between 121 and 170 amino acids in length. It is usually found in association with pfam00595 (PDZ) and pfam00412 (LIM), and often contains the conserved Zasp-like motif (IPR006643).


Pssm-ID: 464948 [Multi-domain]  Cd Length: 98  Bit Score: 47.03  E-value: 1.00e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 300069041  105 SESAQELAEGQ----RRGSQGDIKQQNGPPRKHIVERNTEFYhipthsdaskKRLIEDTE-DWRPRtgttQSRSFRILAQ 179
Cdd:pfam15936  16 SENIQDALSGQlsglAGSSEGGKPPPSRPPKKPVVDADSEVY----------KMLQENQEpKEPPR----QSGSFRVLQE 81
                          90
                  ....*....|....*..
gi 300069041  180 ITGTEHLTESENDNTKK 196
Cdd:pfam15936  82 ILETEYLQPPEEELNRP 98
LIM1_FHL1 cd09344
The first LIM domain of Four and a half LIM domains protein 1; The first LIM domain of Four ...
516-567 1.05e-06

The first LIM domain of Four and a half LIM domains protein 1; The first LIM domain of Four and a half LIM domains protein 1 (FHL1): FHL1 is heavily expressed in skeletal and cardiac muscles. It plays important roles in muscle growth, differentiation, and sarcomere assembly by acting as a modulator of transcription factors. Defects in FHL1 gene are responsible for a number of Muscular dystrophy-like muscle disorders. It has been detected that FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188730  Cd Length: 54  Bit Score: 45.90  E-value: 1.05e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKK 567
Cdd:cd09344    1 CAECRKPIGADSKELHHKNRYWHETCFRCAKCYKPLANEPFVAKDNKILCGK 52
LIM4_Paxillin cd09411
The fourth LIM domain of Paxillin; The fourth LIM domain of Paxillin: Paxillin is an adaptor ...
398-449 1.08e-06

The fourth LIM domain of Paxillin; The fourth LIM domain of Paxillin: Paxillin is an adaptor protein, which recruits key components of the signal-transduction machinery to specific sub-cellular locations to respond to environmental changes rapidly. The C-terminal region of paxillin contains four LIM domains which target paxillin to focal adhesions, presumably through a direct association with the cytoplasmic tail of beta-integrin. The N-terminal of paxillin is leucine-rich LD-motifs. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. The binding partners of paxillin are diverse and include protein tyrosine kinases, such as Src and FAK, structural proteins, such as vinculin and actopaxin, and regulators of actin organization. Paxillin recruits these proteins to their function sites to control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188795 [Multi-domain]  Cd Length: 52  Bit Score: 45.71  E-value: 1.08e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09411    1 CSGCQKPITGRCITAMGKKFHPEHFVCAFCLKQLNKGTFKEQNDKPYCHNCF 52
LIM2_LIMK cd09365
The second LIM domain of LIMK (LIM domain Kinase ); The second LIM domain of LIMK (LIM domain ...
398-449 1.10e-06

The second LIM domain of LIMK (LIM domain Kinase ); The second LIM domain of LIMK (LIM domain Kinase ): LIMK protein family is comprised of two members LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, and altering the rate of actin depolymerization. LIMKs can function in both cytoplasm and nucleus and are expressed in all tissues. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. However, LIMK1 and LIMk2 have different cellular locations. While LIMK1 localizes mainly at focal adhesions, LIMK2 is found in cytoplasmic punctae, suggesting that they may have different cellular functions. The LIM domains of LIMK have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188751 [Multi-domain]  Cd Length: 54  Bit Score: 45.82  E-value: 1.10e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKntmAYIGFVE-----EKGALYCELCY 449
Cdd:cd09365    1 CHGCSQIITGPVMVAGDHKFHPECFSCSSCK---AFIGDGDsyalvERSKLYCGVCY 54
cpPDZ_CPP-like cd06782
circularly permuted PDZ domain of C-terminal processing peptidase (CPP), a serine protease, ...
28-95 1.23e-06

circularly permuted PDZ domain of C-terminal processing peptidase (CPP), a serine protease, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of CPP (also known as tail-specific protease, PRC protein, Protease Re, and Photosystem II D1 protein processing peptidase), and related domains. CPP belongs to the peptidase S41A family. It cleaves a C-terminal 11 residue peptide from the precursor form of penicillin-binding protein 3, and may have a role in protecting bacterium from thermal and osmotic stresses. In the plant chloroplast, the enzyme removes the C-terminal extension of the D1 polypeptide of photosystem II. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains and as well as those with circular permutations and domain swapping of beta-strands. The canonical PDZ domain contains six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2); arranged as A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. This CPP-like PDZ domain is a circularly permuted PDZ domain which places beta-strand A on the C-terminus. Another permutation exists in the PDZ superfamily which places both beta-strands A and B on the C-terminus.


Pssm-ID: 467623 [Multi-domain]  Cd Length: 88  Bit Score: 46.71  E-value: 1.23e-06
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 300069041  28 LTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGS-LNMTLQRASAaakSEPVSV 95
Cdd:cd06782   16 LVVVSPIPGGPAEKAGIKPGDVIVAVDGESVRGMSLDEVVKLLRGPKGTkVKLTIRRGGE---GEPRDV 81
PDZ_RapGEF2_RapGEF6-like cd06755
PDZ domain of Rap guanine nucleotide exchange factor 2 and Rap guanine nucleotide exchange ...
12-74 1.24e-06

PDZ domain of Rap guanine nucleotide exchange factor 2 and Rap guanine nucleotide exchange factor 6, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of Rap guanine nucleotide exchange factor 2 (RapGEF2, also named RA-GEF-1, PDZ-GEF1, CNrasGEF and nRapGEP) and Rap guanine nucleotide exchange factor 6 (RapGEF6, also named RA-GEF-2 and PDZ-GEF2). RapGEF2 and RapGEF6 constitute a subfamily of guanine nucleotide exchange factors (GEFs) for RAP small GTPases that is characterized by the possession of the PDZ and Ras/Rap-associating domains. They activate Rap small GTPases, by catalyzing the release of GDP from the inactive GDP-bound forms, thereby accelerating GTP loading to yield the active GTP-bound forms. The PDZ domain of RapGEF6 (also known as PDZ-GEF2) binds junctional adhesion molecule A (JAM-A). PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This RapGEF2 and RapGEF6 family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467237 [Multi-domain]  Cd Length: 83  Bit Score: 46.49  E-value: 1.24e-06
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 300069041  12 APWGFRLQGGKDFNMPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACT 74
Cdd:cd06755   12 SPLHFSLLGGSEKGFGIFVSKVEKGSKAAEAGLKRGDQILEVNGQNFENITLKKALEILRNNT 74
LIM2_abLIM cd09328
The second LIM domain on actin binding LIM (abLIM) proteins; The second LIM domain of actin ...
457-489 1.36e-06

The second LIM domain on actin binding LIM (abLIM) proteins; The second LIM domain of actin binding LIM (abLIM) proteins: Three homologous members of the abLIM protein family have been identified; abLIM-1, abLIM-2 and abLIM-3. The N-terminal of abLIM consists of four tandem repeats of LIM domains and the C-terminal of acting binding LIM protein is a villin headpiece domain, which has strong actin binding activity. The abLIM-1, which is expressed in retina, brain, and muscle tissue, has been indicated to function as a tumor suppressor. AbLIM-2 and -3, mainly expressed in muscle and neuronal tissue, bind to F-actin strongly. They may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription. It has shown that LIM domains of abLIMs interact with STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. All LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188714  Cd Length: 56  Bit Score: 45.41  E-value: 1.36e-06
                         10        20        30
                 ....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKP 489
Cdd:cd09328    4 CDSCQDFVEGEVVSALGKTYHPKCFVCSVCRQP 36
LIM3_abLIM cd09329
The third LIM domain of actin binding LIM (abLIM) proteins; The third LIM domain of actin ...
398-449 1.68e-06

The third LIM domain of actin binding LIM (abLIM) proteins; The third LIM domain of actin binding LIM (abLIM) proteins: Three homologous members of the abLIM protein family have been identified; abLIM-1, abLIM-2 and abLIM-3. The N-terminal of abLIM consists of four tandem repeats of LIM domains and the C-terminal of acting binding LIM protein is a villin headpiece domain, which has strong actin binding activity. The abLIM-1, which is expressed in retina, brain, and muscle tissue, has been indicated to function as a tumor suppressor. AbLIM-2 and -3, mainly expressed in muscle and neuronal tissue, bind to F-actin strongly. They may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription. It has shown that LIM domains of abLIMs interact with STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. All LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188715 [Multi-domain]  Cd Length: 52  Bit Score: 45.00  E-value: 1.68e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 300069041 398 CAHCNQVIR-GPFLVALGKSWHPEEFNCAHCKNTMA--YIGfveEKGALYCELCY 449
Cdd:cd09329    1 CAGCGQEIKnGQALLALDKQWHVWCFKCKECGKVLTgeYMG---KDGKPYCERDY 52
LIM_DA1 cd09396
The Lim domain of DA1; The Lim domain of DA1: DA1 contains one copy of LIM domain and a domain ...
398-449 1.78e-06

The Lim domain of DA1; The Lim domain of DA1: DA1 contains one copy of LIM domain and a domain of unknown function. DA1 is predicted as an ubiquitin receptor, which sets final seed and organ size by restricting the period of cell proliferation. The LIM domain is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188782 [Multi-domain]  Cd Length: 53  Bit Score: 44.94  E-value: 1.78e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 398 CAHCNQVI-RGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09396    1 CAGCKSEIgHGRFLSALGAVWHPECFRCHACRKPIAEHEFSVSGNDPYHKSCY 53
LIM1_Paxillin cd09405
The first LIM domain of paxillin; The first LIM domain of paxillin: Paxillin is an adaptor ...
515-570 2.00e-06

The first LIM domain of paxillin; The first LIM domain of paxillin: Paxillin is an adaptor protein, which recruits key components of the signal-transduction machinery to specific sub-cellular locations to respond to environmental changes rapidly. The C-terminal region of paxillin contains four LIM domains which target paxillin to focal adhesions, presumably through a direct association with the cytoplasmic tail of beta-integrin. The N-terminal of paxillin is leucine-rich LD-motifs. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. The binding partners of paxillin are diverse and include protein tyrosine kinases, such as Src and FAK, structural proteins, such as vinculin and actopaxin, and regulators of actin organization. Paxillin recruits these proteins to their function sites to control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight cons erved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188789 [Multi-domain]  Cd Length: 54  Bit Score: 45.00  E-value: 2.00e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 300069041 515 ICRGCEFPIeAGDMfLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKHAH 570
Cdd:cd09405    1 VCGACKKPI-AGQV-VTAMGKTWHPEHFVCTHCQEEIGSRNFFERDGQPYCEKDYH 54
LIM4_Leupaxin cd09412
The fourth LIM domain of Leupaxin; The fourth LIM domain of Leupaxin: Leupaxin is a ...
457-508 2.22e-06

The fourth LIM domain of Leupaxin; The fourth LIM domain of Leupaxin: Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. Leupaxin belongs to the paxillin focal adhesion protein family. Same as other members of the family, it has four leucine-rich LD-motifs in the N-terminus and four LIM domains in the C-terminus. It may function in cell type-specific signaling by associating with interaction partners PYK2, FAK, PEP and p95PKL. When expressed in human leukocytic cells, leupaxin significantly suppressed integrin-mediated cell adhesion to fibronectin and the tyrosine phosphorylation of paxillin. These findings indicate that leupaxin may negatively regulate the functions of paxillin during integrin signaling. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188796 [Multi-domain]  Cd Length: 52  Bit Score: 44.72  E-value: 2.22e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09412    1 CGSCGLPITGRCISALGRKFHPEHFVCAFCLRPLTQGSFKEQSGKPYCSTCF 52
LIM_LASP cd09447
The LIM domain of LIM and SH3 Protein (LASP); The LIM domain of LIM and SH3 Protein (LASP): ...
457-508 2.26e-06

The LIM domain of LIM and SH3 Protein (LASP); The LIM domain of LIM and SH3 Protein (LASP): LASP family contains two highly homologous members, LASP-1 and LASP-2. LASP contains a LIM motif at its amino terminus, a src homology 3 (SH3) domains at its C-terminal part, and a nebulin-like region in the middle. LASP-1 and -2 are highly conserved in their LIM, nebulin-like, and SH3 domains ,but differ significantly at their linker regions. Both proteins are ubiquitously expressed and involved in cytoskeletal architecture, especially in the organization of focal adhesions. LASP-1 and LASP-2, are important during early embryo- and fetogenesis and are highly expressed in the central nervous system of the adult. However, only LASP-1 seems to participate significantly in neuronal differentiation and plays an important functional role in migration and proliferation of certain cancer cells while the role of LASP-2 is more structural. The expression of LASP-1 in breast tumors is increased significantly. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188831  Cd Length: 53  Bit Score: 44.67  E-value: 2.26e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKILG-EVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09447    1 CARCGKTVYPtEKLNCLDKIWHKGCFKCEVCGMTLNMKNYKGYNKKPYCNAHY 53
LIM1_Leupaxin cd09406
The first LIM domain of Leupaxin; The first LIM domain of Leupaxin: Leupaxin is a cytoskeleton ...
516-570 2.40e-06

The first LIM domain of Leupaxin; The first LIM domain of Leupaxin: Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. Leupaxin belongs to the paxillin focal adhesion protein family. Same as other members of the family, it has four leucine-rich LD-motifs in the N-terminus and four LIM domains in the C-terminus. It may function in cell type-specific signaling by associating with interaction partners PYK2, FAK, PEP and p95PKL. When expressed in human leukocytic cells, leupaxin significantly suppressed integrin-mediated cell adhesion to fibronectin and the tyrosine phosphorylation of paxillin. These findings indicate that leupaxin may negatively regulate the functions of paxillin during integrin signaling. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188790 [Multi-domain]  Cd Length: 55  Bit Score: 44.86  E-value: 2.40e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 300069041 516 CRGCEFPIeAGDMfLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKHAH 570
Cdd:cd09406    3 CASCQKPI-AGQV-VTALGQTWHPEHFVCCQCGKELGSRPFFERNGQAYCEEDYH 55
LIM1_Ajuba_like cd09352
The first LIM domain of Ajuba-like proteins; The first LIM domain of Ajuba-like proteins: ...
457-508 2.99e-06

The first LIM domain of Ajuba-like proteins; The first LIM domain of Ajuba-like proteins: Ajuba like LIM protein family includes three highly homologous proteins Ajuba, Limd1, and WTIP. Members of the family contain three tandem C-terminal LIM domains and a proline-rich N-terminal region. This family of proteins functions as scaffolds, participating in the assembly of numerous protein complexes. In the cytoplasm, Ajuba binds Grb2 to modulate serum-stimulated ERK activation. Ajuba also recruits the TNF receptor-associated factor 6 (TRAF6) to p62 and activates PKCKappa activity. Ajuba interacts with alpha-catenin and F-actin to contribute to the formation or stabilization of adheren junctions by linking adhesive receptors to the actin cytoskeleton. Although Ajuba is a cytoplasmic protein, it can shuttle into the nucleus. In nucleus, Ajuba functions as a corepressor for the zinc finger-protein Snail. It binds to the SNAG repression domain of Snail through its LIM region. Arginine methyltransferase-5 (Prmt5), a protein in the complex, is recruited to Snai l through an interaction with Ajuba. This ternary complex functions to repress E-cadherin, a Snail target gene. In addition, Ajuba contains functional nuclear-receptor interacting motifs and selectively interacts with retinoic acid receptors (RARs) and rexinoid receptor (RXRs) to negatively regulate retinoic acid signaling. Wtip, the Wt1-interacting protein, was originally identified as an interaction partner of the Wilms tumour protein 1 (WT1). Wtip is involved in kidney and neural crest development. Wtip interacts with the receptor tyrosine kinase Ror2 and inhibits canonical Wnt signaling. LIMD1 was reported to inhibit cell growth and metastases. The inhibition may be mediated through an interaction with the protein barrier-to-autointegration (BAF), a component of SWI/SNF chromatin-remodeling protein; or through the interaction with retinoblastoma protein (pRB), resulting in inhibition of E2F-mediated transcription, and expression of the majority of genes with E2F1- responsive elements. Recently, Limd1 was shown to interact with the p62/sequestosome protein and influence IL-1 and RANKL signaling by facilitating the assembly of a p62/TRAF6/a-PKC multi-protein complex. The Limd1-p62 interaction affects both NF-kappaB and AP-1 activity in epithelial cells and osteoclasts. Moreover, LIMD1 functions as tumor repressor to block lung tumor cell line in vitro and in vivo. Recent studies revealed that LIM proteins Wtip, LIMD1 and Ajuba interact with components of RNA induced silencing complexes (RISC) as well as eIF4E and the mRNA m7GTP cap-protein complex and are required for microRNA-mediated gene silencing. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188738  Cd Length: 54  Bit Score: 44.35  E-value: 2.99e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 457 CGRCQRKILG--EVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09352    1 CVKCGKGVYGasQACQAMGNLYHTNCFTCCSCGRTLRGKAFYNVNGKVYCEEDY 54
PDZ4_LNX1_2-like cd06680
PDZ domain 4 of human Ligand of Numb protein X 1 (LNX1) and LNX2, and related domains; PDZ ...
11-80 3.42e-06

PDZ domain 4 of human Ligand of Numb protein X 1 (LNX1) and LNX2, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 4 of LNX1 (also known as PDZ domain-containing RING finger protein 2, PDZRN2)and LNX2 (also known as PDZ domain-containing RING finger protein 1, PDZRN1), and related domains. LNX1 and LNX2 are Ring (Really Interesting New Gene) finger and PDZ domain-containing E3 ubiquitin ligases that bind to the cell fate determinant protein NUMB and mediate its ubiquitination. LNX1 can ubiquitinate a number of other ligands including PPFIA1, KLHL11, KIF7 and ERC2. LNX1 and LNX2 each have four PDZ domains. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This LNX family PDZ4 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467168 [Multi-domain]  Cd Length: 89  Bit Score: 45.42  E-value: 3.42e-06
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 300069041  11 PAPWGFRLQGGKDF---NMPLTISSLKDGGKASQ-AHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMT 80
Cdd:cd06680   10 SGSLGFSIVGGYEEshgNQPFFVKSIVPGTPAYNdGRLKCGDIILAVNGVSTVGMSHAALVPLLKEQRGRVTLT 83
PDZ2-PTPN13_FRMPD2-like cd06792
PDZ domain 2 of tyrosine kinase PTPN13, FERM and PDZ domain-containing protein 2 (FRMPD2), and ...
15-83 3.65e-06

PDZ domain 2 of tyrosine kinase PTPN13, FERM and PDZ domain-containing protein 2 (FRMPD2), and similar domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of human PTPN13, and related domains. PTPN13, also known as Fas-associated protein-tyrosine phosphatase 1 (FAP-1), protein-tyrosine phosphatase 1E (PTP-E1), and protein-tyrosine phosphatase (PTPL1), negatively regulates FAS-mediated apoptosis and NGFR-mediated pro-apoptotic signaling, and may also regulate phosphoinositide 3-kinase (PI3K) signaling. It contains 5 PDZ domains; interaction partners of its second PDZ domain (PDZ2) include the Fas receptor (TNFRSF6) and thyroid receptor-interacting protein 6 (TRIP6). The second PDZ (PDZ2) domain, but not PDZ1 or PDZ3, of FRMPD2 binds to GluN2A and GluN2B, two subunits of N-methyl-d-aspartic acid (NMDA) receptors. Other binding partners of the FRMPDZ2 PDZ2 domain include NOD2, and catenin family members, delta catenin (CTNND2), armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF) and p0071 (also known as plakophilin 4; PKP4). PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PTPN13-like family PDZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467254 [Multi-domain]  Cd Length: 87  Bit Score: 45.28  E-value: 3.65e-06
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 300069041  15 GFRLQGGKDFNMPLT---ISSLKDGGKASQ-AHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQR 83
Cdd:cd06792   15 GISVTGGINTSVRHGgiyVKSLVPGGAAEQdGRIQKGDRLLEVNGVSLEGVTHKQAVECLKNAGQVVTLVLER 87
LIM4_PINCH cd09334
The fourth LIM domain of protein PINCH; The fourth LIM domain of protein PINCH: PINCH plays a ...
515-568 4.08e-06

The fourth LIM domain of protein PINCH; The fourth LIM domain of protein PINCH: PINCH plays a pivotal role in the assembly of focal adhesions (FAs), regulating diverse functions in cell adhesion, growth, and differentiation through LIM-mediated protein-protein interactions. PINCH comprises an array of five LIM domains that interact with integrin-linked kinase (ILK), Nck2 (also called Nckbeta or Grb4) and other interaction partners. These interactions are essential for triggering the FA assembly and for relaying diverse mechanical and biochemical signals between Cell-extracellular matrix and the actin cytoskeleton. The PINCH LIM4 domain recognizes the third SH3 domain of another adaptor protein, Nck2. This step is an important component of integrin signaling event. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assem bly of multimeric protein complexes.


Pssm-ID: 188720 [Multi-domain]  Cd Length: 54  Bit Score: 44.27  E-value: 4.08e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 515 ICRGCEFPIEagDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKH 568
Cdd:cd09334    2 ICGACRRPIE--GRVVTALGKHWHVEHFVCAKCEKPFLGHRHYEKKGLAYCETH 53
PDZ3_PDZD2-PDZ1_hPro-IL-16-like cd06759
PDZ domain 3 of PDZ domain containing 2 (PDZD2), PDZ domain 1 of human pro-interleukin-16 ...
15-71 4.09e-06

PDZ domain 3 of PDZ domain containing 2 (PDZD2), PDZ domain 1 of human pro-interleukin-16 (isoform 1, 1332 AA), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 3 of PDZD2, also known as KIAA0300, PIN-1, activated in prostate cancer (AIPC) and PDZ domain-containing protein 3 (PDZK3). PDZD2 has seven PDZ domains. PDZD2 is expressed at exceptionally high levels in the pancreas and certain cancer tissues, such as prostate cancer. It promotes the proliferation of insulinoma cells and is upregulated during prostate tumorigenesis. In osteosarcoma (OS), the microRNA miR-363 acts as a tumor suppressor by inhibiting PDZD2. This family also includes the first PDZ domain (PDZ1) of human pro-interleukin-16 (isoform 1, also known as nPro-Il-16; 1332 amino-acid protein). Precursor IL-16 is cleaved to produce pro-IL-16 and mature IL-16 (derived from the C-terminal 121 AA). Pro-IL-16 functions as a regulator of T cell growth; mature IL-16 is a CD4 ligand that induces chemotaxis and CD25 expression in CD4+ T cells. IL-16 bioactivity has been closely associated with the progression of several different cancers. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PDZD2-like family PDZ3 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467240 [Multi-domain]  Cd Length: 87  Bit Score: 44.96  E-value: 4.09e-06
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 300069041  15 GFRLQGGKDF---NMPLTISSLKDGGKASQ-AHVRIGDVVLSIDGISAQGMTHLEAQNKIK 71
Cdd:cd06759   15 GFSIVGGRDSprgPMGIYVKTIFPGGAAAEdGRLKEGDEILEVNGESLQGLTHQEAIQKFK 75
LIM1_LIMPETin cd09414
The first LIM domain of protein LIMPETin; The first LIM domain of protein LIMPETin: LIMPETin ...
516-568 4.16e-06

The first LIM domain of protein LIMPETin; The first LIM domain of protein LIMPETin: LIMPETin contains 6 LIM domains at the C-terminal and an N-terminal PET domain. Four of the six LIM domains are highly homologous to the four and half LIM domain protein family and two of them show sequence similarity to the LIM domains of the Testin family. Thus, LIMPETin may be the recombinant product of genes coding testin and FHL proteins. In Schistosoma mansoni, where LIMPETin was first identified, LIMPETin is down regulated in sexually mature adult Schistosoma females compared to sexually immature adult females and adult male. Its differential expression indicates that it is a transcription regulator. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188798 [Multi-domain]  Cd Length: 58  Bit Score: 44.31  E-value: 4.16e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 300069041 516 CRGCEFPIEAGDMFLEA----LGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKH 568
Cdd:cd09414    1 CGGCSEPLKYGELAVTApkfgESLLWHPACFRCSTCEELLVDLTYCVHDDQIYCERH 57
LIM1_Testin_like cd09340
The first LIM domain of Testin-like family; The first LIM domain of Testin_like family: This ...
457-508 4.45e-06

The first LIM domain of Testin-like family; The first LIM domain of Testin_like family: This family includes testin, prickle, dyxin and LIMPETin. Structurally, testin and prickle proteins contain three LIM domains at C-terminal; LIMPETin has six LIM domains; and dyxin presents only two LIM domains. However, all members of the family contain a PET protein-protein interaction domain. Testin is a cytoskeleton associated focal adhesion protein that localizes along actin stress fibers, at cell-cell-contact areas, and at focal adhesion plaques. Testin interacts with a variety of cytoskeletal proteins, including zyxin, mena, VASP, talin, and actin and it is involved in cell motility and adhesion events. Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). Dyxin involves in lung and heart development by interaction with GATA6 and blocking GATA6 activated target genes. LIMPETin might be the recombinant product of genes coding testin and four and half LIM proteins and its function is not well understood. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188726  Cd Length: 58  Bit Score: 44.13  E-value: 4.45e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*...
gi 300069041 457 CGRCQRKIL-GEVI----NALKQ-TWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09340    1 CEKCKEPINpGEVAvfaeRAGEDaCWHPGCFVCETCNELLVDLIYFYHDGKIYCGRHY 58
LIM1_UF1 cd09397
LIM domain in proteins of unknown function; The first Lim domain of a LIM domain containing ...
457-508 5.35e-06

LIM domain in proteins of unknown function; The first Lim domain of a LIM domain containing protein: The functions of the proteins are unknown. The members of this family contain two copies of LIM domain. The LIM domain is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188783 [Multi-domain]  Cd Length: 58  Bit Score: 43.79  E-value: 5.35e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 300069041 457 CGRCQRKILGEVI----NALKQTWHVSCFVCVACGKPIRNNV-FHLEDGEPYCETDY 508
Cdd:cd09397    1 CRKCGLEIEGKSIsskdGELSGQWHRECFVCTTCGCPFQFSVpCYVLDDKPYCQQHY 57
LIM2_CRP3 cd09482
The second LIM domain of Cysteine Rich Protein 3 (CRP3/MLP); The second LIM domain of Cysteine ...
457-508 5.49e-06

The second LIM domain of Cysteine Rich Protein 3 (CRP3/MLP); The second LIM domain of Cysteine Rich Protein 3 (CRP3/MLP): Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to short glycine-rich repeats (GRRs). The CRP family members include CRP1, CRP2, CRP3/MLP and TLPCRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription circuits, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network.CRP3 also called Muscle LIM Protein (MLP), which is a striated muscle-specific factor that enhances myogenic differentiation. The second LIM domain of CRP3/MLP interacts with cytoskeletal protein beta-spectrin. CRP3/MLP also interacts with the basic helix-loop-helix myogenic transcription factors MyoD, myogenin, and MRF4 thereby increasing their affinity for specific DNA regulatory elements. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188866 [Multi-domain]  Cd Length: 54  Bit Score: 43.85  E-value: 5.49e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKILG-EVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09482    1 CPRCGKSVYAaEKVMGGGKPWHKTCFRCAICGKSLESTTVTDKDGELYCKVCY 53
LIM_ALP cd09450
This family represents the LIM domain of ALP, actinin-associated LIM protein; This family ...
457-506 5.83e-06

This family represents the LIM domain of ALP, actinin-associated LIM protein; This family represents the LIM domain of ALP, actinin-associated LIM protein. ALP contains an N-terminal PDZ domain, a C-terminal LIM domain and an ALP-subfamily-specific 34-amino-acid motif termed ALP-like motif (AM), which contains a putative consensus protein kinase C (PKC) phosphorylation site and two alpha-helices. ALP proteins are found in heart and in skeletal muscle. ALP may act as a signaling molecule which is regulated by PKC-dependent signaling. ALP plays an essential role in the development of RV (right ventricle) chamber. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188834 [Multi-domain]  Cd Length: 53  Bit Score: 43.74  E-value: 5.83e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCET 506
Cdd:cd09450    1 CDKCGSGIVGTVVKARDKYRHPECFVCSDCNLNLKQKGYFFVEGQLYCEA 50
LIM3_PINCH cd09333
The third LIM domain of protein PINCH; The third LIM domain of protein PINCH: PINCH plays ...
398-449 5.94e-06

The third LIM domain of protein PINCH; The third LIM domain of protein PINCH: PINCH plays pivotal roles in the assembly of focal adhesions (FAs), regulating diverse functions in cell adhesion, growth, and differentiation through LIM-mediated protein-protein interactions. PINCH comprises an array of five LIM domains that interact with integrin-linked kinase (ILK), Nck2 (also called Nckbeta or Grb4) and other interaction partners. These interactions are essential for triggering the FA assembly and for relaying diverse mechanical and biochemical signals between Cell-extracellular matrix and the actin cytoskeleton. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188719  Cd Length: 51  Bit Score: 43.52  E-value: 5.94e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGfVEEKGALYCELCY 449
Cdd:cd09333    1 CQKCHAIIEEQHLKFKGDPYHPYHFNCANCGKELTADA-RELKGELYCLRCH 51
LIM2_PINCH cd09332
The second LIM domain of protein PINCH; The second LIM domain of protein PINCH: PINCH plays a ...
398-448 7.52e-06

The second LIM domain of protein PINCH; The second LIM domain of protein PINCH: PINCH plays a pivotal role in the assembly of focal adhesions (FAs), regulating diverse functions in cell adhesion, growth, and differentiation through LIM-mediated protein-protein interactions. PINCH comprises an array of five LIM domains that interact with integrin-linked kinase (ILK), Nck2 (also called Nckbeta or Grb4) and other interaction partners. These interactions are essential for triggering the FA assembly and for relaying diverse mechanical and biochemical signals between Cell-extracellular matrix and the actin cytoskeleton. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188718 [Multi-domain]  Cd Length: 52  Bit Score: 43.48  E-value: 7.52e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELC 448
Cdd:cd09332    1 CGKCGEFVIGRVIKAMNNNWHPDCFRCEICNKELADIGFVKNAGRALCHPC 51
LIM2_Lhx2_Lhx9 cd09377
The second LIM domain of Lhx2 and Lhx9 family; The second LIM domain of Lhx2 and Lhx9 family: ...
457-508 7.53e-06

The second LIM domain of Lhx2 and Lhx9 family; The second LIM domain of Lhx2 and Lhx9 family: Lhx2 and Lhx9 are highly homologous LHX regulatory proteins. They belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Although Lhx2 and Lhx9 are highly homologous, they seems to play regulatory roles in different organs. In animals, Lhx2 plays important roles in eye, cerebral cortex, limb, the olfactory organs, and erythrocyte development. Lhx2 gene knockout mice exhibit impaired patterning of the cortical hem and the telencephalon of the developing brain, and a lack of development in olfactory structures. Lhx9 is expressed in several regions of the developing mouse brain, the spinal cord, the pancreas, in limb mesenchyme, and in the urogenital region. Lhx9 plays critical roles in gonad development. Homozygous mice lacking functional Lhx9 alleles exhibit numerous urogenital defects, such as gonadal agenesis, infertility, and undetectable levels of testosterone and estradiol coupled with high FSH levels. Lhx9 null mice are phenotypically female, even those that are genotypically male. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188763  Cd Length: 59  Bit Score: 43.42  E-value: 7.53e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 300069041 457 CGRCQRKILGE--VINALKQTWHVSCFVCVACGKPIRN-NVFHLEDGEPYCETDY 508
Cdd:cd09377    5 CARCHLGISASelVMRARDLVFHLNCFTCATCNKPLTKgDHFGMRDGLVYCRLHY 59
LIM1_Prickle cd09415
The first LIM domain of Prickle; The first LIM domain of Prickle: Prickle contains three ...
516-568 8.48e-06

The first LIM domain of Prickle; The first LIM domain of Prickle: Prickle contains three C-terminal LIM domains and a N-terminal PET domain. Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). PCP establishment requires the conserved Frizzled/Dishevelled PCP pathway. Prickle interacts with Dishevelled, thereby modulating Frizzled/Dishevelled activity and PCP signaling. Four forms of prickles have been identified: prickle 1-4. The best characterized is prickle 1 and prickle 2 which are differentially expressed. While prickle 1 is expressed in fetal heart and hematological malignancies, prickle 2 is found in fetal brain, adult cartilage, pancreatic islet, and some types of timorous cells. Mutations in prickle 1 have been linked to progressive myoclonus epilepsy. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188799  Cd Length: 59  Bit Score: 43.40  E-value: 8.48e-06
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 300069041 516 CRGCEFPIEAGDMFLEA----LGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKH 568
Cdd:cd09415    1 CEQCGEQISGGDIAVFAsragPGACWHPACFVCSTCKELLVDLIYFYQDGKVYCGRH 57
LIM1_Zyxin cd09349
The first LIM domain of Zyxin; The first LIM domain of Zyxin: Zyxin exhibits three copies of ...
457-508 1.08e-05

The first LIM domain of Zyxin; The first LIM domain of Zyxin: Zyxin exhibits three copies of the LIM domain, an extensive proline-rich domain and a nuclear export signal. Localized at sites of cell substratum adhesion in fibroblasts, Zyxin interacts with alpha-actinin, members of the cysteine-rich protein (CRP) family, proteins that display Src homology 3 (SH3) domains and Ena/VASP family members. Zyxin and its partners have been implicated in the spatial control of actin filament assembly as well as in pathways important for cell differentiation. In addition to its functions at focal adhesion plaques, recent work has shown that zyxin moves from the sites of cell contacts to the nucleus, where it directly participates in the regulation of gene expression. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188735 [Multi-domain]  Cd Length: 87  Bit Score: 44.07  E-value: 1.08e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 457 CGRCQRKIL--GEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09349   34 CGICGQPLSrtQPAVRALGHLFHVTCFTCHQCEQQLQGQQFYSLEGKPYCEECY 87
LIM_TLP_like cd09401
The LIM domains of thymus LIM protein (TLP); The LIM domain of thymus LIM protein (TLP) like ...
457-508 1.12e-05

The LIM domains of thymus LIM protein (TLP); The LIM domain of thymus LIM protein (TLP) like proteins: This family includes the LIM domains of TLP and CRIP (Cysteine-Rich Intestinal Protein). TLP is the distant member of the CRP family of proteins. TLP has two isomers (TLP-A and TLP-B) and sharing approximately 30% with each of the three other CRPs. Like CRP1, CRP2 and CRP3/MLP, TLP has two LIM domains, connected by a flexible linker region. Unlike the CRPs, TLP lacks the nuclear targeting signal (K/R-K/R-Y-G-P-K) and is localized solely in the cytoplasm. TLP is specifically expressed in the thymus in a subset of cortical epithelial cells. TLP has a role in development of normal thymus and in controlling the development and differentiation of thymic epithelial cells. CRIP is a short LIM protein with only one LIM domain. CRIP gene is developmentally regulated and can be induced by glucocorticoid hormones during the first three postnatal weeks. The domain shows close sequence homology to LIM domain of thymus LIM protein. However, unlike the TLP proteins which have two LIM domains, the members of this family have only one LIM domain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188785 [Multi-domain]  Cd Length: 53  Bit Score: 42.71  E-value: 1.12e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKI-LGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09401    1 CPKCGKPVyFAEKKTSLGRDWHKPCLRCEKCKKTLTPGQHSEHEGKPYCNKCY 53
PDZ13_MUPP1-like cd06676
PDZ domain 13 of multi-PDZ-domain protein 1 (MUPP1) and related domains; PDZ (PSD-95 ...
10-81 1.12e-05

PDZ domain 13 of multi-PDZ-domain protein 1 (MUPP1) and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 13 of MUPP1. MUPP1 and PATJ serve as scaffolding proteins linking different proteins and protein complexes involved in the organization of tight junctions and epithelial polarity. MUPP1 contains an L27 (Lin-2 and Lin-7 binding) domain and 13 PDZ domains. PATJ (also known as INAD-like) contains an L27 domain and ten PDZ domains. PATJ lacks 3 PDZ domains seen in MUPP1: PDZ6, PDZ9, and PDZ13. This MuPP1-like PDZ13 domain is therefore absent from PATJ. MUPP1 and PATJ share several binding partners, including junctional adhesion molecules (JAM), zonula occludens (ZO)-3, Pals1 (protein associated with Lin-7), Par (partitioning defective)-6 proteins, and nectins (adherence junction adhesion molecules). PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MUPP1-like family PDZ13 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467164 [Multi-domain]  Cd Length: 83  Bit Score: 43.87  E-value: 1.12e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 300069041  10 GPAPWGFRLQGGKDF---NMPLTISSLKDGGKASQ-AHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTL 81
Cdd:cd06676    7 GSDGLGFSIVGGFGSphgDLPIYVKTVFEKGAAAEdGRLKRGDQILAVNGESLEGVTHEEAVNILKKTKGTVTLTV 82
LIM5_LIMPETin cd09430
The fifth LIM domain of protein LIMPETin; The fifth LIM domain of protein LIMPETin: LIMPETin ...
516-565 1.17e-05

The fifth LIM domain of protein LIMPETin; The fifth LIM domain of protein LIMPETin: LIMPETin contains 6 LIM domains at the C-terminal and an N-terminal PET domain. Four of the six LIM domains are highly homologous to the four and half LIM domain protein family and two of them show sequence similarity to the LIM domains of the testin family. Thus, LIMPETin may be the recombinant product of genes coding testin and FHL proteins. In Schistosoma mansoni, where LIMPETin was first identified, LIMPETin is down regulated in sexually mature adult Schistosoma females compared to sexually immature adult females and adult male. Its differential expression indicates that it is a transcription regulator. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188814  Cd Length: 52  Bit Score: 42.85  E-value: 1.17e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 300069041 516 CRGCEFPIEAGDMFLEalGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09430    1 CSKCNKIINSGGVTYK--NEPWHRECFTCTNCSKSLAGQRFTSRDEKPYC 48
LIM2_Lrg1p_like cd09392
The second LIM domain of Lrg1p, a LIM and RhoGap domain containing protein; The second LIM ...
398-449 1.40e-05

The second LIM domain of Lrg1p, a LIM and RhoGap domain containing protein; The second LIM domain of Lrg1p, a LIM and RhoGap domain containing protein: The members of this family contain three tandem repeats of LIM domains and a Rho-type GTPase activating protein (RhoGap) domain. Lrg1p is a Rho1 GTPase-activating protein required for efficient cell fusion in yeast. Lrg1p-GAP domain strongly and specifically stimulates the GTPase activity of Rho1p, a regulator of beta (1-3)-glucan synthase in vitro. The LIM domain is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188778 [Multi-domain]  Cd Length: 53  Bit Score: 42.73  E-value: 1.40e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTM-AYIGFVEEKGALYCELCY 449
Cdd:cd09392    1 CFKCGGALRGSYITALGRKYHVEHFTCSVCPTVFgPNDSYYEHEGKIYCHYHY 53
LIM1_LIMK cd09364
The first LIM domain of LIMK (LIM domain Kinase ); The first LIM domain of LIMK (LIM domain ...
398-445 1.51e-05

The first LIM domain of LIMK (LIM domain Kinase ); The first LIM domain of LIMK (LIM domain Kinase ): LIMK protein family is comprised of two members LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, and altering the rate of actin depolymerisation. LIMKs can function in both cytoplasm and nucleus and are expressed in all tissues. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. However, LIMK1 and LIMk2 have different cellular locations. While LIMK1 localizes mainly at focal adhesions, LIMK2 is found in cytoplasmic punctae, suggesting that they may have different cellular functions. The LIM domains of LIMK have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188750 [Multi-domain]  Cd Length: 53  Bit Score: 42.48  E-value: 1.51e-05
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*....
gi 300069041 398 CAHCNQVIR-GPFLVALGKSWHPEEFNCAHCKNTMAYIGFvEEKGALYC 445
Cdd:cd09364    1 CAGCRGKILdSQYVQALNQDWHCDCFRCSVCSDSLSNWYF-EKDGKLYC 48
LIM_TLP_like cd09401
The LIM domains of thymus LIM protein (TLP); The LIM domain of thymus LIM protein (TLP) like ...
398-449 1.57e-05

The LIM domains of thymus LIM protein (TLP); The LIM domain of thymus LIM protein (TLP) like proteins: This family includes the LIM domains of TLP and CRIP (Cysteine-Rich Intestinal Protein). TLP is the distant member of the CRP family of proteins. TLP has two isomers (TLP-A and TLP-B) and sharing approximately 30% with each of the three other CRPs. Like CRP1, CRP2 and CRP3/MLP, TLP has two LIM domains, connected by a flexible linker region. Unlike the CRPs, TLP lacks the nuclear targeting signal (K/R-K/R-Y-G-P-K) and is localized solely in the cytoplasm. TLP is specifically expressed in the thymus in a subset of cortical epithelial cells. TLP has a role in development of normal thymus and in controlling the development and differentiation of thymic epithelial cells. CRIP is a short LIM protein with only one LIM domain. CRIP gene is developmentally regulated and can be induced by glucocorticoid hormones during the first three postnatal weeks. The domain shows close sequence homology to LIM domain of thymus LIM protein. However, unlike the TLP proteins which have two LIM domains, the members of this family have only one LIM domain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188785 [Multi-domain]  Cd Length: 53  Bit Score: 42.33  E-value: 1.57e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 398 CAHCNQVIRGPFLV-ALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09401    1 CPKCGKPVYFAEKKtSLGRDWHKPCLRCEKCKKTLTPGQHSEHEGKPYCNKCY 53
LIM1_Zyxin cd09349
The first LIM domain of Zyxin; The first LIM domain of Zyxin: Zyxin exhibits three copies of ...
516-566 1.78e-05

The first LIM domain of Zyxin; The first LIM domain of Zyxin: Zyxin exhibits three copies of the LIM domain, an extensive proline-rich domain and a nuclear export signal. Localized at sites of cell substratum adhesion in fibroblasts, Zyxin interacts with alpha-actinin, members of the cysteine-rich protein (CRP) family, proteins that display Src homology 3 (SH3) domains and Ena/VASP family members. Zyxin and its partners have been implicated in the spatial control of actin filament assembly as well as in pathways important for cell differentiation. In addition to its functions at focal adhesion plaques, recent work has shown that zyxin moves from the sites of cell contacts to the nucleus, where it directly participates in the regulation of gene expression. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188735 [Multi-domain]  Cd Length: 87  Bit Score: 43.30  E-value: 1.78e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCK 566
Cdd:cd09349   34 CGICGQPLSRTQPAVRALGHLFHVTCFTCHQCEQQLQGQQFYSLEGKPYCE 84
LIM2_CRP2 cd09840
The second LIM domain of Cysteine Rich Protein 2 (CRP2); The second LIM domain of Cysteine ...
398-449 1.94e-05

The second LIM domain of Cysteine Rich Protein 2 (CRP2); The second LIM domain of Cysteine Rich Protein 2 (CRP2): Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to short glycine-rich repeats (GRRs). The CRP family members include CRP1, CRP2, CRP3/MLP and TLPCRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription circuits, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network.CRP3 also called Muscle LIM Protein (MLP), which is a striated muscle-specific factor that enhances myogenic differentiation. The second LIM domain of CRP3/MLP interacts with cytoskeletal protein beta-spectrin. CRP3/MLP also interacts with the basic helix-loop-helix myogenic transcription factors MyoD, myogenin, and MRF4 thereby increasing their affinity for specific DNA regulatory elements. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188871 [Multi-domain]  Cd Length: 54  Bit Score: 42.40  E-value: 1.94e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 398 CAHCNQ-VIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09840    1 CSRCGDsVYAAEKIMGAGKPWHKNCFRCAKCGKSLESTTLTEKEGEIYCKGCY 53
LIM5_PINCH cd09335
The fifth LIM domain of protein PINCH; The fifth LIM domain of protein PINCH: PINCH plays ...
457-508 2.11e-05

The fifth LIM domain of protein PINCH; The fifth LIM domain of protein PINCH: PINCH plays pivotal roles in the assembly of focal adhesions (FAs), regulating diverse functions in cell adhesion, growth, and differentiation through LIM-mediated protein-protein interactions. PINCH comprises an array of five LIM domains that interact with integrin-linked kinase (ILK), Nck2 (also called Nckbeta or Grb4) and other interaction partners. These interactions are essential for triggering the FA assembly and for relaying diverse mechanical and biochemical signals between Cell-extracellular matrix and the actin cytoskeleton. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188721 [Multi-domain]  Cd Length: 54  Bit Score: 41.95  E-value: 2.11e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIR-NNVFHLEDGEPYCETDY 508
Cdd:cd09335    1 CYHCNQVIEGDVVSALNKTWCVDHFSCSFCDTKLTlKSKFYEFDMKPVCKKCY 53
LIM2_Testin_like cd09341
The second LIM domain of Testin-like family; The second LIM domain of Testin-like family: This ...
396-450 2.45e-05

The second LIM domain of Testin-like family; The second LIM domain of Testin-like family: This family includes testin, prickle, dyxin and LIMPETin. Structurally, testin and prickle proteins contain three LIM domains at C-terminal; LIMPETin has six LIM domains; and dyxin presents only two LIM domains. However, all members of the family contain a PET protein-protein interaction domain. Testin is a cytoskeleton associated focal adhesion protein that localizes along actin stress fibers, at cell-cell-contact areas, and at focal adhesion plaques. Testin interacts with a variety of cytoskeletal proteins, including zyxin, mena, VASP, talin, and actin and it is involved in cell motility and adhesion events. Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). Dyxin involves in lung and heart development by interaction with GATA6 and blocking GATA6 activated target genes. LIMPETin might be the recombinant product of genes coding testin and four and half LIM proteins and its function is not well understood. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188727  Cd Length: 56  Bit Score: 41.82  E-value: 2.45e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 300069041 396 PMCAHCNQVI-RGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCYE 450
Cdd:cd09341    1 PRCAACDELIfSGEYTQAEGKNWHLKHFCCFQCDEPLGGQRYVLREGKPYCLDCYE 56
LIM3_FHL cd09346
The third LIM domain of Four and a half LIM domains protein (FHL); The third LIM domain of ...
516-565 2.53e-05

The third LIM domain of Four and a half LIM domains protein (FHL); The third LIM domain of Four and a half LIM domains protein (FHL): LIM-only protein family consists of five members, designated FHL1, FHL2, FHL3, FHL5 and LIMPETin. The first four members are composed of four complete LIM domains arranged in tandem and an N-terminal single zinc finger domain with a consensus sequence equivalent to the C-terminal half of a LIM domain. LIMPETin is an exception, containing six LIM domains. FHL1, 2 and 3 are predominantly expressed in muscle tissues, and FHL5 is highly expressed in male germ cells. FHL proteins exert their roles as transcription co-activators or co-repressors through a wide array of interaction partners. For example, FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. FHL3 int eracts with many transcription factors, such as CREB, BKLF/KLF3, CtBP2, MyoD, and MZF_1. FHL5 is a tissue-specific coactivator of CREB/CREM family transcription factors. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188732  Cd Length: 52  Bit Score: 41.93  E-value: 2.53e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 300069041 516 CRGCEFPIEAGdmflealGYT-----WHDTCFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09346    1 CAKCKKAITSG-------GVTyrdqpWHKECFVCTGCKKQLAGQRFTSRDEYPYC 48
PDZ_SNX27-like cd23070
PDZ domain of sorting nexin-27 (SNX27), and related domains; PDZ (PSD-95 (Postsynaptic density ...
27-81 2.98e-05

PDZ domain of sorting nexin-27 (SNX27), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of SNX27, and related domains. SNX27 is involved in retrograde transport from endosome to plasma membrane. The PDZ domain of SNX27 links cargo identification to retromer-mediated transport. SNX27 binds to the retromer complex (vacuolar protein sorting 26(VPS26)-VPS29-VPS35), via its PDZ domain binding to VPS26. The SNX27 PDZ domain also binds to cargo including the G-protein-coupled receptors (GPCRs): beta2-adrenergic receptor (beta2AR), beta1AR, parathyroid hormone receptor (PTHR), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), NMDA receptors, 5-hydroxytryptamine 4a receptors, frizzled receptors, and somatostatin receptor subtype 5 (SSTR5). Additional binding partners of the SNX27 PDZ domain include G protein-gated inwardly rectifying potassium (Kir3) channels, angiotensin-converting enzyme 2 (ACE2), and PTEN (phosphatase and tensin homolog deleted on chromosome 10); PTEN binding to SNX27 prevents SNX27's association with the retromer complex. SNX27 has been reported to be a host factor needed for efficient entry of an engineered SARS-CoV-2 variant, the spike protein of which contains a deletion at the S1/S2 subunit cleavage site; the PDZ domain of SNX27 binds angiotensin-converting enzyme 2 (ACE2), and may be involved in recycling ACE2 to the plasma membrane, thereby promoting viral entry. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This SNX27-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467283 [Multi-domain]  Cd Length: 93  Bit Score: 42.78  E-value: 2.98e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 300069041  27 PLT-ISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTL 81
Cdd:cd23070   36 PLQhVSAVLEGGAADKAGVRKGDRILEVNGVNVEGATHKQVVDLIKSGGDELTLTV 91
LIM1_AWH cd09373
The first LIM domain of Arrowhead (AWH); The first LIM domain of Arrowhead (AWH): Arrowhead ...
516-566 3.04e-05

The first LIM domain of Arrowhead (AWH); The first LIM domain of Arrowhead (AWH): Arrowhead belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. During embryogenesis of Drosophila, Arrowhead is expressed in each abdominal segment and in the labial segment. Late in embryonic development, expression of arrowhead is refined to the abdominal histoblasts and salivary gland imaginal ring cells themselves. The Arrowhead gene required for establishment of a subset of imaginal tissues: the abdominal histoblasts and the salivary gland imaginal rings. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188759 [Multi-domain]  Cd Length: 54  Bit Score: 41.59  E-value: 3.04e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 516 CRGCEFPIEagDMFL-EALGYTWHDTCFVCSVCCESLEGQ-TFFSKKDKPLCK 566
Cdd:cd09373    1 CTGCGEPIT--DRFLlKVSGRSWHVSCLRCCVCQTPLERQpSCFTRDRQIYCK 51
LIM1_Lrg1p_like cd09391
The first LIM domain of Lrg1p, a LIM and RhoGap domain containing protein; The first LIM ...
398-453 3.09e-05

The first LIM domain of Lrg1p, a LIM and RhoGap domain containing protein; The first LIM domain of Lrg1p, a LIM and RhoGap domain containing protein: The members of this family contain three tandem repeats of LIM domains and a Rho-type GTPase activating protein (RhoGap) domain. Lrg1p is a Rho1 GTPase-activating protein required for efficient cell fusion in yeast. Lrg1p-GAP domain strongly and specifically stimulates the GTPase activity of Rho1p, a regulator of beta (1-3)-glucan synthase in vitro. The LIM domain is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188777  Cd Length: 57  Bit Score: 41.90  E-value: 3.09e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNtmayigfveekgalyceLCYEKFF 453
Cdd:cd09391    1 CAKCGKPITGQFVRALGDVYHLDCFTCHDCGK-----------------PVASKFF 39
CtpA COG0793
C-terminal processing protease CtpA/Prc, contains a PDZ domain [Posttranslational modification, ...
15-95 3.21e-05

C-terminal processing protease CtpA/Prc, contains a PDZ domain [Posttranslational modification, protein turnover, chaperones];


Pssm-ID: 440556 [Multi-domain]  Cd Length: 341  Bit Score: 46.40  E-value: 3.21e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 300069041  15 GFRLQGGKDFnmpLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGS-LNMTLQRasaAAKSEPV 93
Cdd:COG0793   63 GAELGEEDGK---VVVVSVIPGSPAEKAGIKPGDIILAIDGKSVAGLTLDDAVKLLRGKAGTkVTLTIKR---PGEGEPI 136

                 ..
gi 300069041  94 SV 95
Cdd:COG0793  137 TV 138
LIM_LASP_like cd09359
The LIM domain of LIM and SH3 Protein (LASP)-like proteins; The LIM domain of LIM and SH3 ...
457-508 3.59e-05

The LIM domain of LIM and SH3 Protein (LASP)-like proteins; The LIM domain of LIM and SH3 Protein (LASP) like proteins: This family contains two types of LIM containing proteins; LASP and N-RAP. LASP family contains two highly homologous members, LASP-1 and LASP-2. LASP contains a LIM motif at its amino terminus, a src homology 3 (SH3) domains at its C-terminal part, and a nebulin-like region in the middle. LASP-1 and -2 are highly conserved in their LIM, nebulin-like, and SH3 domains, but differ significantly at their linker regions. Both proteins are ubiquitously expressed and involved in cytoskeletal architecture, especially in the organization of focal adhesions. LASP-1 and LASP-2, are important during early embryo- and fetogenesis and are highly expressed in the central nervous system of the adult. However, only LASP-1 seems to participate significantly in neuronal differentiation and plays an important functional role in migration and proliferation of certain cancer cells while the role of LASP-2 is more structural. The expression of LASP-1 in breast tumors is increased significantly. N-RAP is a muscle-specific protein concentrated at myotendinous junctions in skeletal muscle and intercalated disks in cardiac muscle. LIM domain is found at the N-terminus of N-RAP and the C-terminal of N-RAP contains a region with multiple of nebulin repeats. N-RAP functions as a scaffolding protein that organizes alpha-actinin and actin into symmetrical I-Z-I structures in developing myofibrils. Nebulin repeat is known as actin binding domain. The N-RAP is hypothesized to form antiparallel dimerization via its LIM domain. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188745  Cd Length: 53  Bit Score: 41.48  E-value: 3.59e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKIL-GEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09359    1 CARCGKIVYpTEKVNCLDKTWHKACFHCEVCKMTLNMNNYKGYQKKPYCNAHY 53
LIM4_Paxillin cd09411
The fourth LIM domain of Paxillin; The fourth LIM domain of Paxillin: Paxillin is an adaptor ...
457-506 3.78e-05

The fourth LIM domain of Paxillin; The fourth LIM domain of Paxillin: Paxillin is an adaptor protein, which recruits key components of the signal-transduction machinery to specific sub-cellular locations to respond to environmental changes rapidly. The C-terminal region of paxillin contains four LIM domains which target paxillin to focal adhesions, presumably through a direct association with the cytoplasmic tail of beta-integrin. The N-terminal of paxillin is leucine-rich LD-motifs. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. The binding partners of paxillin are diverse and include protein tyrosine kinases, such as Src and FAK, structural proteins, such as vinculin and actopaxin, and regulators of actin organization. Paxillin recruits these proteins to their function sites to control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188795 [Multi-domain]  Cd Length: 52  Bit Score: 41.47  E-value: 3.78e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCET 506
Cdd:cd09411    1 CSGCQKPITGRCITAMGKKFHPEHFVCAFCLKQLNKGTFKEQNDKPYCHN 50
LIM3_Fhl2 cd09431
The third LIM domain of Four and a half LIM domains protein 2 (FHL2); The third LIM domain of ...
457-504 3.88e-05

The third LIM domain of Four and a half LIM domains protein 2 (FHL2); The third LIM domain of Four and a half LIM domains protein 2 (FHL2): FHL2 is one of the best studied FHL proteins. FHL2 expression is most abundant in the heart, and in brain, liver and lung to a lesser extent. FHL2 participates in a wide range of cellular processes, such as transcriptional regulation, signal transduction, and cell survival by binding to various protein partners. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. Although FHL2 is abundantly expressed in heart, the fhl2 null mice are viable and had no detectable abnormal cardiac phenotype. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to s upport the assembly of multimeric protein complexes.


Pssm-ID: 188815  Cd Length: 57  Bit Score: 41.51  E-value: 3.88e-05
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*...
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYC 504
Cdd:cd09431    1 CVQCKKPITTGGVTYRDQPWHKECFVCTGCKKQLSGQRFTSRDDFAYC 48
PDZ_tamalin_CYTIP-like cd06713
PDZ domain of tamalin, cytohesin-1-interacting protein (CYTIP), and related domains; PDZ ...
13-79 4.04e-05

PDZ domain of tamalin, cytohesin-1-interacting protein (CYTIP), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of tamalin, cytohesin-1-interacting protein, and related domains. Tamalin (trafficking regulator and scaffold protein tamalin, also known as general receptor for phosphoinositides 1-associated scaffold protein, GRASP) functions to link receptors, including group 1 metabotropic glutamate receptors (mGluRs), to neuronal proteins. The tamalin PDZ domain binds the C-terminal domains of group I mGluRs; it also binds potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2), neurotrophin-3 (NT3) TrkCT1-truncated receptor, SAP90/PSD-95-associated protein, and tamalin itself. CYTIP (cytohesin-1-interacting protein, also known as Pleckstrin homology Sec7 and coiled-coil domain-binding protein) sequesters cytohesin-1 in the cytoplasm, limiting its interaction with beta2 integrins; cytohesin-1 binds the CYTIP coiled coil domain. The CYTIP PDZ domain can bind the C-terminal peptide of protocadherin alpha-1 (PCDHA1), indicating a possible interaction between the two. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This tamalin-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467197 [Multi-domain]  Cd Length: 91  Bit Score: 42.61  E-value: 4.04e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 300069041  13 PWGFRLQ----GGKDFN---MPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNM 79
Cdd:cd06713   15 TFGFEIQtyglHHKNSNeveMCTYVCRVHEDSPAYLAGLTAGDVILSVNGVSVEGASHQEIVELIRSSGNTLRL 88
LIM1_LIMK2 cd09463
The first LIM domain of LIMK2 (LIM domain Kinase 2); The first LIM domain of LIMK2 (LIM domain ...
457-509 4.05e-05

The first LIM domain of LIMK2 (LIM domain Kinase 2); The first LIM domain of LIMK2 (LIM domain Kinase 2): LIMK2 is a member of the LIMK protein family, which comprises LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain, and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, altering the rate of actin depolymerization. LIMK activity is activated by phosphorylation of a threonine residue within the activation loop of the kinase by p21-activated kinases 1 and 4 and by Rho kinase. LIMKs can function in both cytoplasm and nucleus. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. LIMK2 is expressed in all tissues. While LIMK1 localizes mainly at focal adhesions, LIMK2 is found in cytoplasmic punctae, suggesting that they may have different cellular functions. The activity of LIM kinase 2 to regulate cofilin phosphorylation is inhibited by the direct binding of Par-3. LIMK2 activation promotes cell cycle progression. The phenotype of Limk2 knockout mice shows a defect in spermatogenesis. The LIM domains have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188847 [Multi-domain]  Cd Length: 53  Bit Score: 41.40  E-value: 4.05e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 457 CGRCQRKIL-GEVINALKQTWHVSCFVCVACGKPIRNNVFHlEDGEPYCETDYY 509
Cdd:cd09463    1 CTGCGGRIQdSFHYRVVQEAWHNSCFQCSVCQDLLTNWYYE-KDGKLYCHKHYW 53
PDZ3_LNX1_2-like cd06679
PDZ domain 3 of human Ligand of Numb protein X 1 (LNX1) and LNX2, and related domains; PDZ ...
20-82 4.11e-05

PDZ domain 3 of human Ligand of Numb protein X 1 (LNX1) and LNX2, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 3 of LNX1 (also known as PDZ domain-containing RING finger protein 2, PDZRN2) and LNX2 (also known as PDZ domain-containing RING finger protein 1, PDZRN1), and related domains. LNX1 and LNX2 are Ring (Really Interesting New Gene) finger and PDZ domain-containing E3 ubiquitin ligases that bind to the cell fate determinant protein NUMB and mediate its ubiquitination. LNX1 can ubiquitinate a number of other ligands including PPFIA1, KLHL11, KIF7 and ERC2. LNX1 and LNX2 each have four PDZ domains. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This LNX family PDZ3 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467167 [Multi-domain]  Cd Length: 88  Bit Score: 42.24  E-value: 4.11e-05
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 300069041  20 GGKDFNMPLTISSLK-DGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQ 82
Cdd:cd06679   22 GSRRGDLPIYVTNVQpDGCLGRDGRIKKGDVLLSINGISLTNLSHSEAVAVLKASAASSSIVLK 85
LIM1_Lmx1b cd09371
The first LIM domain of Lmx1b; The first LIM domain of Lmx1b: Lmx1b belongs to the LHX protein ...
516-567 4.30e-05

The first LIM domain of Lmx1b; The first LIM domain of Lmx1b: Lmx1b belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. In mouse, Lmx1b functions in the developing limbs and eyes, the kidneys, the brain, and in cranial mesenchyme. The disruption of Lmx1b gene results kidney and limb defects. In the brain, Lmx1b is important for generation of mesencephalic dopamine neurons and the differentiation of serotonergic neurons. In the mouse eye, Lmx1b regulates anterior segment (cornea, iris, ciliary body, trabecular meshwork, and lens) development. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188757 [Multi-domain]  Cd Length: 53  Bit Score: 41.21  E-value: 4.30e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 516 CRGCEFPIEagDMFL-EALGYTWHDTCFVCSVCCESLEGQTFFskKDKPL-CKK 567
Cdd:cd09371    1 CAGCQRPIS--DRYLlRVNERSWHEECLQCSVCQQPLTTSCYF--RDRKLyCKQ 50
LIM3_FHL cd09346
The third LIM domain of Four and a half LIM domains protein (FHL); The third LIM domain of ...
457-504 4.80e-05

The third LIM domain of Four and a half LIM domains protein (FHL); The third LIM domain of Four and a half LIM domains protein (FHL): LIM-only protein family consists of five members, designated FHL1, FHL2, FHL3, FHL5 and LIMPETin. The first four members are composed of four complete LIM domains arranged in tandem and an N-terminal single zinc finger domain with a consensus sequence equivalent to the C-terminal half of a LIM domain. LIMPETin is an exception, containing six LIM domains. FHL1, 2 and 3 are predominantly expressed in muscle tissues, and FHL5 is highly expressed in male germ cells. FHL proteins exert their roles as transcription co-activators or co-repressors through a wide array of interaction partners. For example, FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. FHL3 int eracts with many transcription factors, such as CREB, BKLF/KLF3, CtBP2, MyoD, and MZF_1. FHL5 is a tissue-specific coactivator of CREB/CREM family transcription factors. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188732  Cd Length: 52  Bit Score: 41.16  E-value: 4.80e-05
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*...
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYC 504
Cdd:cd09346    1 CAKCKKAITSGGVTYRDQPWHKECFVCTGCKKQLAGQRFTSRDEYPYC 48
LIM2_Zyxin cd09353
The second LIM domain of Zyxin; The second LIM domain of Zyxin: Zyxin exhibits three copies of ...
457-509 4.86e-05

The second LIM domain of Zyxin; The second LIM domain of Zyxin: Zyxin exhibits three copies of the LIM domain, an extensive proline-rich domain and a nuclear export signal. Localized at sites of cellsubstratum adhesion in fibroblasts, Zyxin interacts with alpha-actinin, members of the cysteine-rich protein (CRP) family, proteins that display Src homology 3 (SH3) domains and Ena/VASP family members. Zyxin and its partners have been implicated in the spatial control of actin filament assembly as well as in pathways important for cell differentiation. In addition to its functions at focal adhesion plaques, recent work has shown that zyxin moves from the sites of cell contacts to the nucleus, where it directly participates in the regulation of gene expression. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors o r scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188739 [Multi-domain]  Cd Length: 60  Bit Score: 41.45  E-value: 4.86e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDG-EPYCETDYY 509
Cdd:cd09353    1 CAVCDQKITDRMLKATGKSYHPQCFTCVVCKCPLEGESFIVDQAnQPHCVNDYH 54
LIM2_CRP2 cd09840
The second LIM domain of Cysteine Rich Protein 2 (CRP2); The second LIM domain of Cysteine ...
457-508 5.02e-05

The second LIM domain of Cysteine Rich Protein 2 (CRP2); The second LIM domain of Cysteine Rich Protein 2 (CRP2): Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to short glycine-rich repeats (GRRs). The CRP family members include CRP1, CRP2, CRP3/MLP and TLPCRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription circuits, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network.CRP3 also called Muscle LIM Protein (MLP), which is a striated muscle-specific factor that enhances myogenic differentiation. The second LIM domain of CRP3/MLP interacts with cytoskeletal protein beta-spectrin. CRP3/MLP also interacts with the basic helix-loop-helix myogenic transcription factors MyoD, myogenin, and MRF4 thereby increasing their affinity for specific DNA regulatory elements. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188871 [Multi-domain]  Cd Length: 54  Bit Score: 41.25  E-value: 5.02e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKILG-EVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09840    1 CSRCGDSVYAaEKIMGAGKPWHKNCFRCAKCGKSLESTTLTEKEGEIYCKGCY 53
PDZ6_GRIP1-2-like cd06683
PDZ domain 6 of glutamate receptor-interacting protein 1 (GRIP1) and GRIP2, and related ...
4-66 5.35e-05

PDZ domain 6 of glutamate receptor-interacting protein 1 (GRIP1) and GRIP2, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) binding proteins GRIP1 (ABP/GRIP2) and GRIP2, and related domains. GRIP1 and GRIP2 each have 7 PDZ domains. The interaction of GRIP1 and GRIP2 with GluA2/3 (AMPAR subunit) regulates AMPAR trafficking and synaptic targeting. GRIP1 has an essential role in regulating AMPAR trafficking during synaptic plasticity and learning and memory. GRIP1 and GRIP2 interact with a variety of other proteins associated with protein trafficking and internalization, for example GRIP1 also interacts with KIF5 (also known as kinesin 1), EphB receptors, scaffold protein liprin-alpha, and the rasGEF GRASP-1. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This GRIP family PDZ6 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467171 [Multi-domain]  Cd Length: 85  Bit Score: 41.91  E-value: 5.35e-05
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 300069041   4 YSVSLV--GpAPWGFRLQGGKDFNMPLTISSLKDGGKASQ-AHVRIGDVVLSIDGISAQGMTHLEA 66
Cdd:cd06683    4 YTVELKryG-GPLGITISGTEEPFDPIVISGLTEGGLAERtGAIHVGDRILAINGESLRGKPLSEA 68
LIM_RIL cd09451
The LIM domain of RIL; The LIM domain of RIL: RIL contains an N-terminal PDZ domain, a LIM ...
457-506 5.60e-05

The LIM domain of RIL; The LIM domain of RIL: RIL contains an N-terminal PDZ domain, a LIM domain, and a short consensus C-terminal region. It is the smallest molecule in the ALP LIM domain containing protein family. RIL was identified in rat fibroblasts and in human lymphocytes. The LIM domain interacts with the AMPA glutamate receptor in dendritic spines. The consensus C-terminus interacts with PTP-BL, a submembranous protein tyrosine phosphatase and the PDZ domain is responsible to interact with alpha-actinin molecules. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188835  Cd Length: 53  Bit Score: 41.07  E-value: 5.60e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCET 506
Cdd:cd09451    1 CTRCGNGIVGTIVKARDKLYHPECFMCDDCGLNLKQRGYFFIDEQLYCET 50
LIM1_LIMK1 cd09462
The first LIM domain of LIMK1 (LIM domain Kinase 1); The first LIM domain of LIMK1 (LIM domain ...
455-509 6.02e-05

The first LIM domain of LIMK1 (LIM domain Kinase 1); The first LIM domain of LIMK1 (LIM domain Kinase 1): LIMK1 belongs to the LIMK protein family, which comprises LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain, and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, and altering the rate of actin depolymerization. LIMKs can function in both cytoplasm and nucleus. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. LIMK1 is expressed in all tissues and is localized to focal adhesions in the cell. LIMK1 can form homodimers upon binding of HSP90 and is activated by Rho effector Rho kinase and MAPKAPK2. LIMK1 is important for normal central nervous system development, and its deletion has been implicated in the development of the human genetic disorder Williams syndrome. Moreover, LIMK1 up-regulates the promoter activity of urokinase type plasminogen activator and induces its mRNA and protein expression in breast cancer cells. The LIM domains have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188846 [Multi-domain]  Cd Length: 74  Bit Score: 41.41  E-value: 6.02e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 300069041 455 PECGRCQRKIL-GEVINALKQTWHVSCFVCVACGKPIRNNvFHLEDGEPYCETDYY 509
Cdd:cd09462   20 PVCASCGQSIYdGQYLQALNSDWHADCFRCCECGASLSHW-YYEKDGRLFCKKDYW 74
LIM_ALP_like cd09360
The LIM domain of ALP (actinin-associated LIM protein) family; This family represents the LIM ...
398-446 6.76e-05

The LIM domain of ALP (actinin-associated LIM protein) family; This family represents the LIM domain of ALP (actinin-associated LIM protein) family. Four proteins: ALP, CLP36, RIL, and Mystique have been classified into the ALP subfamily of LIM domain proteins. Each member of the subfamily contains an N-terminal PDZ domain and a C-terminal LIM domain. Functionally, these proteins bind to alpha-actinin through their PDZ domains and bind or other signaling molecules through their LIM domains. ALP proteins have been implicated in cardiac and skeletal muscle structure, function and disease, platelet, and epithelial cell motility. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188746 [Multi-domain]  Cd Length: 52  Bit Score: 40.82  E-value: 6.76e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIG--FVEEKgaLYCE 446
Cdd:cd09360    1 CDKCGNGIVGVVVKARDKNRHPECFVCADCGLNLKNKGyfFIEDE--LYCE 49
LIM6_LIMPETin cd09432
The sixth LIM domain of protein LIMPETin; The sixth LIM domain of protein LIMPETin: LIMPETin ...
398-448 7.66e-05

The sixth LIM domain of protein LIMPETin; The sixth LIM domain of protein LIMPETin: LIMPETin contains 6 LIM domains at the C-terminal and an N-terminal PET domain. Four of the six LIM domains are highly homologous to the four and half LIM domain protein family and two of them show sequence similarity to the LIM domains of the testin family. Thus, LIMPETin may be the recombinant product of genes coding testin and FHL proteins. In Schistosoma mansoni, where LIMPETin was first identified, LIMPETin is down regulated in sexually mature adult Schistosoma females compared to sexually immature adult females and adult male. Its differential expression indicates that it is a transcription regulator. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188816  Cd Length: 56  Bit Score: 40.54  E-value: 7.66e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 300069041 398 CAHCNQVIRG----PFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELC 448
Cdd:cd09432    1 CAACGKPITGiggtKFISFEDRHWHNDCFNCAGCRTSLVGKGFITDGGRILCPDC 55
LIM2_Testin_like cd09341
The second LIM domain of Testin-like family; The second LIM domain of Testin-like family: This ...
516-565 7.67e-05

The second LIM domain of Testin-like family; The second LIM domain of Testin-like family: This family includes testin, prickle, dyxin and LIMPETin. Structurally, testin and prickle proteins contain three LIM domains at C-terminal; LIMPETin has six LIM domains; and dyxin presents only two LIM domains. However, all members of the family contain a PET protein-protein interaction domain. Testin is a cytoskeleton associated focal adhesion protein that localizes along actin stress fibers, at cell-cell-contact areas, and at focal adhesion plaques. Testin interacts with a variety of cytoskeletal proteins, including zyxin, mena, VASP, talin, and actin and it is involved in cell motility and adhesion events. Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). Dyxin involves in lung and heart development by interaction with GATA6 and blocking GATA6 activated target genes. LIMPETin might be the recombinant product of genes coding testin and four and half LIM proteins and its function is not well understood. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188727  Cd Length: 56  Bit Score: 40.67  E-value: 7.67e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 300069041 516 CRGCEFPIEAGDmFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09341    3 CAACDELIFSGE-YTQAEGKNWHLKHFCCFQCDEPLGGQRYVLREGKPYC 51
LIM4_FHL3 cd09434
The fourth LIM domain of Four and a half LIM domains protein 3 (FHL3); The fourth LIM domain ...
516-566 8.01e-05

The fourth LIM domain of Four and a half LIM domains protein 3 (FHL3); The fourth LIM domain of Four and a half LIM domains protein 3 (FHL3): FHL3 is highly expressed in the skeleton and cardiac muscles and possesses the transactivation and repression activities. FHL3 interacts with many transcription factors, such as CREB, BKLF/KLF3, CtBP2, MyoD, and MZF_1. Moreover, FHL3 interacts with alpha- and beta-subunits of the muscle alpha7beta1 integrin receptor. FHL3 was also proved to possess the auto-activation ability and was confirmed that the second zinc finger motif in fourth LIM domain was responsible for the auto-activation of FHL3. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188818  Cd Length: 56  Bit Score: 40.51  E-value: 8.01e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 516 CRGCEFPIEA--GDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCK 566
Cdd:cd09434    1 CAACNKPITGfgGGKYVSFEDRQWHQPCFKCSRCSVSLVGAGFFPDGDQILCR 53
LIM1_Enigma_like_1 cd09455
The first LIM domain of an Enigma subfamily with unknown function; The first LIM domain of an ...
457-505 8.74e-05

The first LIM domain of an Enigma subfamily with unknown function; The first LIM domain of an Enigma subfamily with unknown function: The Enigma LIM domain family is comprised of three characterized members: Enigma, ENH and Cypher (mouse)/ZASP (human). These subfamily members contain a single PDZ domain at the N-terminus and three LIM domains at the C-terminus. They serve as adaptor proteins, where the PDZ domain tethers the protein to the cytoskeleton and the LIM domains, recruit signaling proteins to implement corresponding functions. The members of the Enigma family have been implicated in regulating or organizing cytoskeletal structure, as well as involving multiple signaling pathways. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188839  Cd Length: 54  Bit Score: 40.52  E-value: 8.74e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCV--ACGKPIRNNVFHLEDGEPYCE 505
Cdd:cd09455    1 CESCNQQIRGPFITALGKIWCPDHFICAnaSCRRPLQDIGFVEEKGQLYCE 51
LIM5_LIMPETin cd09430
The fifth LIM domain of protein LIMPETin; The fifth LIM domain of protein LIMPETin: LIMPETin ...
398-449 9.23e-05

The fifth LIM domain of protein LIMPETin; The fifth LIM domain of protein LIMPETin: LIMPETin contains 6 LIM domains at the C-terminal and an N-terminal PET domain. Four of the six LIM domains are highly homologous to the four and half LIM domain protein family and two of them show sequence similarity to the LIM domains of the testin family. Thus, LIMPETin may be the recombinant product of genes coding testin and FHL proteins. In Schistosoma mansoni, where LIMPETin was first identified, LIMPETin is down regulated in sexually mature adult Schistosoma females compared to sexually immature adult females and adult male. Its differential expression indicates that it is a transcription regulator. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188814  Cd Length: 52  Bit Score: 40.15  E-value: 9.23e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09430    1 CSKCNKIINSGGVTYKNEPWHRECFTCTNCSKSLAGQRFTSRDEKPYCADCF 52
LIM3_Leupaxin cd09410
The third LIM domain of Leupaxin; The third LIM domain of Leupaxin: Leupaxin is a cytoskeleton ...
398-449 9.29e-05

The third LIM domain of Leupaxin; The third LIM domain of Leupaxin: Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. Leupaxin belongs to the paxillin focal adhesion protein family. Same as other members of the family, it has four leucine-rich LD-motifs in the N-terminus and four LIM domains in the C-terminus. It may function in cell type-specific signaling by associating with interaction partners PYK2, FAK, PEP and p95PKL. When expressed in human leukocytic cells, leupaxin significantly suppressed integrin-mediated cell adhesion to fibronectin and the tyrosine phosphorylation of paxillin. These findings indicate that leupaxin may negatively regulate the functions of paxillin during integrin signaling. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188794 [Multi-domain]  Cd Length: 53  Bit Score: 40.19  E-value: 9.29e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09410    1 CSGCGRPVKENYLSAANGVWHPECFVCSDCLKPFTDGSFFELDGRPLCELHY 52
PDZ6_PDZD2-PDZ3_hPro-IL-16-like cd06762
PDZ domain 6 of PDZ domain containing 2 (PDZD2), PDZ domain 3 of human pro-interleukin-16 ...
15-71 9.77e-05

PDZ domain 6 of PDZ domain containing 2 (PDZD2), PDZ domain 3 of human pro-interleukin-16 (isoform 1, 1332 AA), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 6 of PDZD2, also known as KIAA0300, PIN-1, activated in prostate cancer (AIPC) and PDZ domain-containing protein 3 (PDZK3). PDZD2 has seven PDZ domains. PDZD2 is expressed at exceptionally high levels in the pancreas and certain cancer tissues, such as prostate cancer. It promotes the proliferation of insulinoma cells and is upregulated during prostate tumorigenesis. In osteosarcoma (OS), the microRNA miR-363 acts as a tumor suppressor by inhibiting PDZD2. This family also includes the third PDZ domain (PDZ3) of human pro-interleukin-16 (isoform 1, also known as nPro-IL-16). Precursor IL-16 is cleaved to produce pro-IL-16 and C-terminal mature IL-16. Pro-IL-16 functions as a regulator of T cell growth; mature IL-16 is a CD4 ligand that induces chemotaxis and CD25 expression in CD4+ T cells. IL-16 bioactivity has been closely associated with the progression of several different cancers. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PDZD2-like family PDZ6 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467243 [Multi-domain]  Cd Length: 86  Bit Score: 41.09  E-value: 9.77e-05
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*....
gi 300069041  15 GFRLQGGKDF-NMPLTISSLKDGGKASQ-AHVRIGDVVLSIDGISAQGMTHLEAQNKIK 71
Cdd:cd06762   15 GFSLAGGSDLeNKSITVHRVFPSGLAAQeGTIQKGDRILSINGKSLKGVTHGDALSVLK 73
LIM1_LIMK2 cd09463
The first LIM domain of LIMK2 (LIM domain Kinase 2); The first LIM domain of LIMK2 (LIM domain ...
516-568 1.00e-04

The first LIM domain of LIMK2 (LIM domain Kinase 2); The first LIM domain of LIMK2 (LIM domain Kinase 2): LIMK2 is a member of the LIMK protein family, which comprises LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain, and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, altering the rate of actin depolymerization. LIMK activity is activated by phosphorylation of a threonine residue within the activation loop of the kinase by p21-activated kinases 1 and 4 and by Rho kinase. LIMKs can function in both cytoplasm and nucleus. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. LIMK2 is expressed in all tissues. While LIMK1 localizes mainly at focal adhesions, LIMK2 is found in cytoplasmic punctae, suggesting that they may have different cellular functions. The activity of LIM kinase 2 to regulate cofilin phosphorylation is inhibited by the direct binding of Par-3. LIMK2 activation promotes cell cycle progression. The phenotype of Limk2 knockout mice shows a defect in spermatogenesis. The LIM domains have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188847 [Multi-domain]  Cd Length: 53  Bit Score: 40.24  E-value: 1.00e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 516 CRGCEFPIEAGDMFlEALGYTWHDTCFVCSVCCESLEGQtFFSKKDKPLCKKH 568
Cdd:cd09463    1 CTGCGGRIQDSFHY-RVVQEAWHNSCFQCSVCQDLLTNW-YYEKDGKLYCHKH 51
LIM_DA1 cd09396
The Lim domain of DA1; The Lim domain of DA1: DA1 contains one copy of LIM domain and a domain ...
516-563 1.01e-04

The Lim domain of DA1; The Lim domain of DA1: DA1 contains one copy of LIM domain and a domain of unknown function. DA1 is predicted as an ubiquitin receptor, which sets final seed and organ size by restricting the period of cell proliferation. The LIM domain is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188782 [Multi-domain]  Cd Length: 53  Bit Score: 40.31  E-value: 1.01e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*...
gi 300069041 516 CRGCEFPIEAGDmFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKP 563
Cdd:cd09396    1 CAGCKSEIGHGR-FLSALGAVWHPECFRCHACRKPIAEHEFSVSGNDP 47
LIM2_FHL3 cd09427
The second LIM domain of Four and a half LIM domains protein 3 (FHL3); The second LIM domain ...
516-565 1.11e-04

The second LIM domain of Four and a half LIM domains protein 3 (FHL3); The second LIM domain of Four and a half LIM domains protein 3 (FHL3): FHL3 is highly expressed in the skeleton and cardiac muscles and possesses the transactivation and repression activities. FHL3 interacts with many transcription factors, such as CREB, BKLF/KLF3, CtBP2, MyoD, and MZF_1. Moreover, FHL3 interacts with alpha- and beta-subunits of the muscle alpha7beta1 integrin receptor. FHL3 was also proved to possess the auto-activation ability and was confirmed that the second zinc finger motif in fourth LIM domain was responsible for the auto-activation of FHL3. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188811  Cd Length: 58  Bit Score: 40.22  E-value: 1.11e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09427    4 CVACGKTVMPGSRKLEYEGQTWHEHCFICHGCEQPIGSRSFIPDKDEHYC 53
LIM2_Ajuba_like cd09355
The second LIM domain of Ajuba-like proteins; The second LIM domain of Ajuba-like proteins: ...
398-445 1.16e-04

The second LIM domain of Ajuba-like proteins; The second LIM domain of Ajuba-like proteins: Ajuba like LIM protein family includes three highly homologous proteins Ajuba, Limd1, and WTIP. Members of the family contain three tandem C-terminal LIM domains and a proline-rich N-terminal region. This family of proteins functions as scaffolds, participating in the assembly of numerous protein complexes. In the cytoplasm, Ajuba binds Grb2 to modulate serum-stimulated ERK activation. Ajuba also recruits the TNF receptor-associated factor 6 (TRAF6) to p62 and activates PKCKappa activity. Ajuba interacts with alpha-catenin and F-actin to contribute to the formation or stabilization of adheren junctions by linking adhesive receptors to the actin cytoskeleton. Although Ajuba is a cytoplasmic protein, it can shuttle into the nucleus. In nucleus, Ajuba functions as a corepressor for the zinc finger-protein Snail. It binds to the SNAG repression domain of Snail through its LIM region. Arginine methyltransferase-5 (Prmt5), a protein in the complex, is recruited to Snai l through an interaction with Ajuba. This ternary complex functions to repress E-cadherin, a Snail target gene. In addition, Ajuba contains functional nuclear-receptor interacting motifs and selectively interacts with retinoic acid receptors (RARs) and rexinoid receptor (RXRs) to negatively regulate retinoic acid signaling. Wtip, the Wt1-interacting protein, was originally identified as an interaction partner of the Wilms tumour protein 1 (WT1). Wtip is involved in kidney and neural crest development. Wtip interacts with the receptor tyrosine kinase Ror2 and inhibits canonical Wnt signaling. LIMD1 was reported to inhibit cell growth and metastases. The inhibition may be mediated through an interaction with the protein barrier-to-autointegration (BAF), a component of SWI/SNF chromatin-remodeling protein; or through the interaction with retinoblastoma protein (pRB), resulting in inhibition of E2F-mediated transcription, and expression of the majority of genes with E2F1- responsive elements. Recently, Limd1 was shown to interact with the p62/sequestosome protein and influence IL-1 and RANKL signaling by facilitating the assembly of a p62/TRAF6/a-PKC multi-protein complex. The Limd1-p62 interaction affects both NF-kappaB and AP-1 activity in epithelial cells and osteoclasts. Moreover, LIMD1 functions as tumor repressor to block lung tumor cell line in vitro and in vivo. Recent studies revealed that LIM proteins Wtip, LIMD1 and Ajuba interact with components of RNA induced silencing complexes (RISC) as well as eIF4E and the mRNA m7GTP cap-protein complex and are required for microRNA-mediated gene silencing. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188741 [Multi-domain]  Cd Length: 53  Bit Score: 40.02  E-value: 1.16e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*....
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGF-VEEKGALYC 445
Cdd:cd09355    1 CAVCGHLIMEMILQALGKSYHPGCFRCCVCNECLDGVPFtVDVENNIYC 49
PDZ_6 pfam17820
PDZ domain; This entry represents the PDZ domain from a wide variety of proteins.
29-83 1.19e-04

PDZ domain; This entry represents the PDZ domain from a wide variety of proteins.


Pssm-ID: 436067 [Multi-domain]  Cd Length: 54  Bit Score: 39.82  E-value: 1.19e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 300069041   29 TISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLeaQNKIKACTGS-LNMTLQR 83
Cdd:pfam17820   1 VVTAVVPGSPAERAGLRVGDVILAVNGKPVRSLEDV--ARLLQGSAGEsVTLTVRR 54
PDZ_rhophilin-like cd06712
PDZ domain of rhophilin-1, rhophilin-2, and related domains; PDZ (PSD-95 (Postsynaptic density ...
15-81 1.30e-04

PDZ domain of rhophilin-1, rhophilin-2, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of rhophilin-1, rhophilin-2, and related domains. Rhophilin-1 (RHPN1, also known as GTP-Rho-binding protein 1) and rhophilin-2 (RHPN2, also known as GTP-Rho-binding protein 2) are Rho-GTP binding proteins involved in cytoskeletal dynamics. Rhophilin-2 inhibits RhoA's activity to induce F-actin stress fibers. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This rhophilin-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467196 [Multi-domain]  Cd Length: 78  Bit Score: 40.65  E-value: 1.30e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 300069041  15 GFRLQGGKdfnmPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKAC-TGSLNMTL 81
Cdd:cd06712   14 GFTLRGDS----PVQVASVDPGSCAAEAGLKEGDYIVSVGGVDCKWSKHSEVVKLLKSAgEEGLELQV 77
LIM1_FHL2 cd09422
The first LIM domain of Four and a half LIM domains protein 2 (FHL2); The first LIM domain of ...
512-565 1.52e-04

The first LIM domain of Four and a half LIM domains protein 2 (FHL2); The first LIM domain of Four and a half LIM domains protein 2 (FHL2): FHL2 is one of the best studied FHL proteins. FHL2 expression is most abundant in the heart, and in brain, liver and lung at lesser extent. FHL2 participates in a wide range of cellular processes, such as transcriptional regulation, signal transduction, and cell survival by binding to various protein partners. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. Although FHL2 is abundantly expressed in heart, the fhl2 null mice are viable and had no detectable abnormal cardiac phenotype. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188806  Cd Length: 62  Bit Score: 39.89  E-value: 1.52e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 512 FGTICRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09422    1 YSNTCEECKKPIGCDCKDLSYKDRHWHESCFHCFQCKNSLVDKPFAAKEEHLLC 54
LIM2_Lmx1a_Lmx1b cd09378
The second LIM domain of Lmx1a and Lmx1b; The second LIM domain of Lmx1a and Lmx1b: Lmx1a and ...
457-508 1.56e-04

The second LIM domain of Lmx1a and Lmx1b; The second LIM domain of Lmx1a and Lmx1b: Lmx1a and Lmx1b belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs such as the pituitary gland and the pancreas. Mouse Lmx1a is expressed in multiple tissues, including the roof plate of the neural tube, the developing brain, the otic vesicles, the notochord, and the pancreas. In mouse, mutations in Lmx1a result in failure of the roof plate to develop. Lmx1a may act upstream of other roof plate markers such as MafB, Gdf7, Bmp6, and Bmp7. Further characterization of these mice reveals numerous defects including disorganized cerebellum, hippocampus, and cortex; altered pigmentation; female sterility, skeletal defects, and behavioral abnormalities. In the mouse, Lmx1b functions in the developing limbs and eyes, the kidneys, the brain, and in cranial mesenchyme. The disruption of Lmx1b gene results kidney and limb defects. In the brain, Lmx1b is important for generation of mesencephalic dopamine neurons and the differentiation of serotonergic neurons. In the mouse eye, Lmx1b regulates anterior segment (cornea, iris, ciliary body, trabecular meshwork, and lens) development. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188764  Cd Length: 55  Bit Score: 39.74  E-value: 1.56e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 300069041 457 CGRCQRKILGE--VINALKQTWHVSCFVCVACGKPI-RNNVFHLEDGEPYCETDY 508
Cdd:cd09378    1 CSGCLEKIAPSelVMRALENVYHLRCFCCCVCERQLqKGDEFVLKEGQLLCKSDY 55
LIM2_PINCH cd09332
The second LIM domain of protein PINCH; The second LIM domain of protein PINCH: PINCH plays a ...
457-504 1.58e-04

The second LIM domain of protein PINCH; The second LIM domain of protein PINCH: PINCH plays a pivotal role in the assembly of focal adhesions (FAs), regulating diverse functions in cell adhesion, growth, and differentiation through LIM-mediated protein-protein interactions. PINCH comprises an array of five LIM domains that interact with integrin-linked kinase (ILK), Nck2 (also called Nckbeta or Grb4) and other interaction partners. These interactions are essential for triggering the FA assembly and for relaying diverse mechanical and biochemical signals between Cell-extracellular matrix and the actin cytoskeleton. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188718 [Multi-domain]  Cd Length: 52  Bit Score: 39.63  E-value: 1.58e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*...
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYC 504
Cdd:cd09332    1 CGKCGEFVIGRVIKAMNNNWHPDCFRCEICNKELADIGFVKNAGRALC 48
LIM2_FHL2 cd09426
The second LIM domain of Four and a half LIM domains protein 2 (FHL2); The second LIM domain ...
516-565 1.71e-04

The second LIM domain of Four and a half LIM domains protein 2 (FHL2); The second LIM domain of Four and a half LIM domains protein 2 (FHL2): FHL2 is one of the best studied FHL proteins. FHL2 expression is most abundant in the heart, and in brain, liver and lung to a lesser extent. FHL2 participates in a wide range of cellular processes, such as transcriptional regulation, signal transduction, and cell survival by binding to various protein partners. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. Although FHL2 is abundantly expressed in heart, the fhl2 null mice are viable and had no detectable abnormal cardiac phenotype. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to s upport the assembly of multimeric protein complexes.


Pssm-ID: 188810  Cd Length: 57  Bit Score: 39.65  E-value: 1.71e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09426    1 CSECKKTIMPGTRKMEYKGNSWHETCFICQRCQQPIGTKSFIPKDNQNFC 50
LIM4_FHL2 cd09433
The fourth LIM domain of Four and a half LIM domains protein 2 (FHL2); The fourth LIM domain ...
516-565 1.76e-04

The fourth LIM domain of Four and a half LIM domains protein 2 (FHL2); The fourth LIM domain of Four and a half LIM domains protein 2 (FHL2): FHL2 is one of the best studied FHL proteins. FHL2 expression is most abundant in the heart, and in brain, liver and lung to a lesser extent. FHL2 participates in a wide range of cellular processes, such as transcriptional regulation, signal transduction, and cell survival by binding to various protein partners. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. Although FHL2 is abundantly expressed in heart, the fhl2 null mice are viable and had no detectable abnormal cardiac phenotype. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to s upport the assembly of multimeric protein complexes.


Pssm-ID: 188817  Cd Length: 58  Bit Score: 39.59  E-value: 1.76e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 516 CRGCEFPIEA--GDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09433    1 CAGCTNPISGlgGTKYISFEERQWHNDCFNCKKCSLSLVGRGFLTERDDILC 52
LIM1_Enigma_like cd09361
The first LIM domain of Enigma-like family; The first LIM domain of Enigma-like family: The ...
516-568 1.79e-04

The first LIM domain of Enigma-like family; The first LIM domain of Enigma-like family: The Enigma LIM domain family is comprised of three members: Enigma, ENH, and Cypher (mouse)/ZASP (human). These subfamily members contain a single PDZ domain at the N-terminus and three LIM domains at the C-terminus. Enigma was initially characterized in humans and is expressed in multiple tissues, such as skeletal muscle, heart, bone, and brain. The third LIM domain specifically interacts with the insulin receptor and the second LIM domain interacts with the receptor tyrosine kinase Ret and the adaptor protein APS. Thus Enigma is implicated in signal transduction processes, such as mitogenic activity, insulin related actin organization, and glucose metabolism. The second member, ENH protein, was first identified in rat brain. It has been shown that ENH interacts with protein kinase D1 (PKD1) via its LIM domains and forms a complex with PKD1 and the alpha1C subunit of cardiac L-type voltage-gated calcium channel in rat neonatal cardiomyocytes. The N-terminal PDZ domain interacts with alpha-actinin at the Z-line. ZASP/Cypher is required for maintenance of Z-line structure during muscle contraction, but not required for Z-line assembly. In heart, Cypher/ZASP plays a structural role through its interaction with cytoskeletal Z-line proteins. In addition, there is increasing evidence that Cypher/ZASP also performs signaling functions. Studies reveal that Cypher/ZASP interacts with and directs PKC to the Z-line, where PKC phosphorylates downstream signaling targets. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188747 [Multi-domain]  Cd Length: 52  Bit Score: 39.27  E-value: 1.79e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 516 CRGCEFPIEagDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKH 568
Cdd:cd09361    1 CAHCNQVIR--GPFLVALGRSWHPEEFTCSHCHCSLAEIGFVEEKGSLYCELC 51
LIM2_Ajuba_like cd09355
The second LIM domain of Ajuba-like proteins; The second LIM domain of Ajuba-like proteins: ...
516-556 1.93e-04

The second LIM domain of Ajuba-like proteins; The second LIM domain of Ajuba-like proteins: Ajuba like LIM protein family includes three highly homologous proteins Ajuba, Limd1, and WTIP. Members of the family contain three tandem C-terminal LIM domains and a proline-rich N-terminal region. This family of proteins functions as scaffolds, participating in the assembly of numerous protein complexes. In the cytoplasm, Ajuba binds Grb2 to modulate serum-stimulated ERK activation. Ajuba also recruits the TNF receptor-associated factor 6 (TRAF6) to p62 and activates PKCKappa activity. Ajuba interacts with alpha-catenin and F-actin to contribute to the formation or stabilization of adheren junctions by linking adhesive receptors to the actin cytoskeleton. Although Ajuba is a cytoplasmic protein, it can shuttle into the nucleus. In nucleus, Ajuba functions as a corepressor for the zinc finger-protein Snail. It binds to the SNAG repression domain of Snail through its LIM region. Arginine methyltransferase-5 (Prmt5), a protein in the complex, is recruited to Snai l through an interaction with Ajuba. This ternary complex functions to repress E-cadherin, a Snail target gene. In addition, Ajuba contains functional nuclear-receptor interacting motifs and selectively interacts with retinoic acid receptors (RARs) and rexinoid receptor (RXRs) to negatively regulate retinoic acid signaling. Wtip, the Wt1-interacting protein, was originally identified as an interaction partner of the Wilms tumour protein 1 (WT1). Wtip is involved in kidney and neural crest development. Wtip interacts with the receptor tyrosine kinase Ror2 and inhibits canonical Wnt signaling. LIMD1 was reported to inhibit cell growth and metastases. The inhibition may be mediated through an interaction with the protein barrier-to-autointegration (BAF), a component of SWI/SNF chromatin-remodeling protein; or through the interaction with retinoblastoma protein (pRB), resulting in inhibition of E2F-mediated transcription, and expression of the majority of genes with E2F1- responsive elements. Recently, Limd1 was shown to interact with the p62/sequestosome protein and influence IL-1 and RANKL signaling by facilitating the assembly of a p62/TRAF6/a-PKC multi-protein complex. The Limd1-p62 interaction affects both NF-kappaB and AP-1 activity in epithelial cells and osteoclasts. Moreover, LIMD1 functions as tumor repressor to block lung tumor cell line in vitro and in vivo. Recent studies revealed that LIM proteins Wtip, LIMD1 and Ajuba interact with components of RNA induced silencing complexes (RISC) as well as eIF4E and the mRNA m7GTP cap-protein complex and are required for microRNA-mediated gene silencing. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188741 [Multi-domain]  Cd Length: 53  Bit Score: 39.25  E-value: 1.93e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|.
gi 300069041 516 CRGCEFPIeaGDMFLEALGYTWHDTCFVCSVCCESLEGQTF 556
Cdd:cd09355    1 CAVCGHLI--MEMILQALGKSYHPGCFRCCVCNECLDGVPF 39
PDZ_PDZD11-like cd06752
PDZ domain of PDZ domain-containing protein 11, and related domains; PDZ (PSD-95 (Postsynaptic ...
12-66 1.94e-04

PDZ domain of PDZ domain-containing protein 11, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of PDZD11, and related domains. PDZD11 (also known as ATPase-interacting PDZ protein, plasma membrane calcium ATPase-interacting single-PDZ protein, PMCA-interacting single-PDZ protein, PISP) is involved in the dynamic assembly of apical junctions (AJs). It is recruited by PLEKHA7 to AJs to promote the efficient junctional recruitment and stabilization of nectins, and the efficient early phases of assembly of AJs in epithelial cells. The PDZD11 PDZ domain binds nectin-1 and nectin-3. PDZD11 also binds to a PDZ binding motif located in the C-terminal tail of the human sodium-dependent multivitamin transporter, to the cytoplasmic tail of the Menkes copper ATPase ATP7A, and to the cytoplasmic tail of all plasma membrane Ca2+-ATPase b-splice variants. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PDZD11-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467234 [Multi-domain]  Cd Length: 83  Bit Score: 40.37  E-value: 1.94e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 300069041  12 APWGFRLQGGKDFNMPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEA 66
Cdd:cd06752   11 EQLGFNIRGGKASGLGIFISKVIPDSDAHRLGLKEGDQILSVNGVDFEDIEHSEA 65
LIM3_abLIM cd09329
The third LIM domain of actin binding LIM (abLIM) proteins; The third LIM domain of actin ...
516-567 2.09e-04

The third LIM domain of actin binding LIM (abLIM) proteins; The third LIM domain of actin binding LIM (abLIM) proteins: Three homologous members of the abLIM protein family have been identified; abLIM-1, abLIM-2 and abLIM-3. The N-terminal of abLIM consists of four tandem repeats of LIM domains and the C-terminal of acting binding LIM protein is a villin headpiece domain, which has strong actin binding activity. The abLIM-1, which is expressed in retina, brain, and muscle tissue, has been indicated to function as a tumor suppressor. AbLIM-2 and -3, mainly expressed in muscle and neuronal tissue, bind to F-actin strongly. They may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription. It has shown that LIM domains of abLIMs interact with STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. All LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188715 [Multi-domain]  Cd Length: 52  Bit Score: 39.22  E-value: 2.09e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 516 CRGCEFPIEAGDMFLeALGYTWHDTCFVCSVCCESLEGQtFFSKKDKPLCKK 567
Cdd:cd09329    1 CAGCGQEIKNGQALL-ALDKQWHVWCFKCKECGKVLTGE-YMGKDGKPYCER 50
LIM1_Prickle_2 cd09484
The first LIM domain of Prickle 2; The first LIM domain of Prickle 2: Prickle contains three ...
516-568 2.17e-04

The first LIM domain of Prickle 2; The first LIM domain of Prickle 2: Prickle contains three C-terminal LIM domains and a N-terminal PET domain. Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). PCP establishment requires the conserved Frizzled/Dishevelled PCP pathway. Prickle interacts with Dishevelled, thereby modulating Frizzled/Dishevelled activity and PCP signaling. Four forms of prickles have been identified: prickle 1-4. The best characterized is prickle 1 and prickle 2 which are differentially expressed. While prickle 1 is expressed in fetal heart and hematological malignancies, prickle 2 is found in fetal brain, adult cartilage, pancreatic islet, and some types of timorous cells. Mutations in prickle 1 have been linked to progressive myoclonus epilepsy. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188868  Cd Length: 59  Bit Score: 39.55  E-value: 2.17e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 300069041 516 CRGCEFPIEAGDMFLEAL----GYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKH 568
Cdd:cd09484    1 CEQCGGQINGGDIAVFASraghGVCWHPQCFVCSVCNELLVDLIYFYQDGKIYCGRH 57
LIM_CRP_like cd09326
The LIM domains of Cysteine Rich Protein (CRP) family; The LIM domains of Cysteine Rich ...
457-508 2.20e-04

The LIM domains of Cysteine Rich Protein (CRP) family; The LIM domains of Cysteine Rich Protein (CRP) family: Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to a short glycine-rich repeats (GRRs). The known CRP family members include CRP1, CRP2, and CRP3/MLP. CRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription control, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network. CRP1, CRP2, and CRP3/MLP are involved in promoting protein assembly along the actin-based cytoskeleton. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188712  Cd Length: 53  Bit Score: 39.12  E-value: 2.20e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 300069041 457 CGRCQRKI-LGEVINALKQTWHVSCFVCVACGKP--IRNNVFHleDGEPYCETDY 508
Cdd:cd09326    1 CPRCGKSVyAAEEVIAAGKSWHKSCFTCAVCNKRldSTTLAEH--DGEIYCKSCY 53
PDZ_NHERF-like cd06768
PDZ domains of the Na+/H+ exchange regulatory cofactor (NHERF) family (NHERF1-4), and related ...
15-77 2.36e-04

PDZ domains of the Na+/H+ exchange regulatory cofactor (NHERF) family (NHERF1-4), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of the Na+/H+ exchange regulatory cofactor (NHERF) family of multi-PDZ-domain-containing scaffolding proteins (NHERF1-4), and related domains. The NHERF family includes NHERF1 (also known as EBP50), NHERF2 (also known as E3KARP; TKA-1; SIP-1), NHERF3 (also known as CAP70; CLAMP; Napi-Cap-1; PDZD1) and NHERF4 (also known as IKEPP; PDZK2; Napi-Cap-2). NHERF1 and NHERF2 have tandem PDZ domains (PDZ1-2); NHERF3 and NHERF4 have four PDZ domains (PDZ1-4). NHERFs are involved in the regulation of multiple receptors or transporters, such as type II sodium-phosphate cotransporter (Npt2a), purinergic P2Y1 receptor P2Y1R, the beta2-adrenergic receptor (beta2-AR), parathyroid hormone receptor type 1 (PTHR), the lysophosphatidic acid receptors (LPARs), sodium-hydrogen exchanger 3 (NHE3), and cystic fibrosis transmembrane conductance regulator (CFTR). NHERF-PDZ1 domain interaction partners include Npt2a, purinergic P2Y1 receptor, beta2-AR, CFTR, PTHR, NH3, G-protein-coupled receptor kinase 6 (GRK6A), platelet-derived growth factor receptor (PDGFR), B1 subunit of the H+ATPase, cholesterol, receptor for activated C-kinase RACK1, aquaporin 9, among others. The NHERF PDZ2 domain interacts with fewer proteins: NHERF1 PDZ2 binds Npt2a, PTHR, beta-catenin, aquaporin 9, and RACK1; NHERF2 PDZ2 binds LPA2, P2Y1R, and NHE3, cGMP-dependent protein kinase type II (cGKII). NHERF4 PDZ1 and PDZ4 bind the epithelial Ca(2+) channels TRPV5 and TRPV6. NHERF2/NHERF3 heterodimerization is mediated by PDZ domains of NHERF2 and the C-terminal PDZ domain recognition motif of NHERF3. NHERF4 regulates several transporters mediating influx of xenobiotics and nutrients in the small intestine. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This NHERF-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467249 [Multi-domain]  Cd Length: 80  Bit Score: 39.73  E-value: 2.36e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 300069041  15 GFRLQGGKD----FnmpltISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSL 77
Cdd:cd06768   13 GFNLHAEKGrpghF-----IREVDPGSPAERAGLKDGDRLVEVNGENVEGESHEQVVEKIKASGNQV 74
LIM2_Enigma cd09456
The second LIM domain of Enigma; The second LIM domain of Enigma: Enigma was initially ...
530-567 2.49e-04

The second LIM domain of Enigma; The second LIM domain of Enigma: Enigma was initially characterized in humans as a protein containing three LIM domains at the C-terminus and a PDZ domain at N-terminus. The third LIM domain specifically interacts with the insulin receptor and the second LIM domain interacts with the receptor tyrosine kinase Ret and the adaptor protein APS. Thus Enigma is implicated in signal transduction processes, such as mitogenic activity, insulin related actin organization, and glucose metabolism. Enigma is expressed in multiple tissues, such as skeletal muscle, heart, bone and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188840 [Multi-domain]  Cd Length: 52  Bit Score: 39.21  E-value: 2.49e-04
                         10        20        30
                 ....*....|....*....|....*....|....*...
gi 300069041 530 LEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKK 567
Cdd:cd09456   13 MHALKMTWHVHCFTCAACKTPIRNRAFYMEEGAPYCER 50
LIM1_Lhx3_Lhx4 cd09368
The first LIM domain of Lhx3 and Lhx4 family; The first LIM domain of Lhx3-Lhx4 family: Lhx3 ...
457-508 2.54e-04

The first LIM domain of Lhx3 and Lhx4 family; The first LIM domain of Lhx3-Lhx4 family: Lhx3 and Lhx4 belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. The LHX3 and LHX4 LIM-homeodomain transcription factors play essential roles in pituitary gland and nervous system development. Although LHX3 and LHX4 share marked sequence homology, the genes have different expression patterns. They play overlapping, but distinct functions during the establishment of the specialized cells of the mammalian pituitary gland and the nervous system. Lhx3 proteins have been demonstrated the ability to directly bind to the promoters/enhancers of several pituitary hormone gene promoters to cause increased transcription. Lhx3a and Lhx3b, whose mRNAs have distinct temporal expression profiles during development, are two isoforms of Lhx3. LHX4 plays essential roles in pituitary gland and nervous system development. In mice, the lhx4 gene is expressed in the developing hindbrain, cerebral cortex, pituitary gland, and spinal cord. LHX4 shows significant sequence similarity to LHX3, particularly to isoforms Lhx3a. In gene regulation experiments, the LHX4 protein exhibits regulation roles towards pituitary genes, acting on their promoters/enhancers. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188754  Cd Length: 52  Bit Score: 38.94  E-value: 2.54e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKILGEVI-NALKQTWHVSCFVCVACGKPIRNNVFHlEDGEPYCETDY 508
Cdd:cd09368    1 CGGCQEHILDRFIlKVLDRTWHAKCLKCNDCGAQLTDKCFA-RNGHVYCKDDF 52
LIM1_UF1 cd09397
LIM domain in proteins of unknown function; The first Lim domain of a LIM domain containing ...
516-570 2.57e-04

LIM domain in proteins of unknown function; The first Lim domain of a LIM domain containing protein: The functions of the proteins are unknown. The members of this family contain two copies of LIM domain. The LIM domain is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188783 [Multi-domain]  Cd Length: 58  Bit Score: 39.17  E-value: 2.57e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*...
gi 300069041 516 CRGCEFPIEAGDMFLE--ALGYTWHDTCFVCSVC-CESLEGQTFFSKKDKPLCKKHAH 570
Cdd:cd09397    1 CRKCGLEIEGKSISSKdgELSGQWHRECFVCTTCgCPFQFSVPCYVLDDKPYCQQHYH 58
LIM_N_RAP cd09446
The LIM domain of N-RAP; The LIM domain of N-RAP: N-RAP is a muscle-specific protein ...
516-568 2.70e-04

The LIM domain of N-RAP; The LIM domain of N-RAP: N-RAP is a muscle-specific protein concentrated at myotendinous junctions in skeletal muscle and intercalated disks in cardiac muscle. LIM domain is found at the N-terminus of N-RAP and the C-terminal of N-RAP contains a region with multiple of nebulin repeats. N-RAP functions as a scaffolding protein that organizes alpha-actinin and actin into symmetrical I-Z-I structures in developing myofibrils. Nebulin repeat is known as actin binding domain. The N-RAP is hypothesized to form antiparallel dimerization via its LIM domain. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188830  Cd Length: 53  Bit Score: 39.13  E-value: 2.70e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 516 CRGCEFPIEAgdmfLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKH 568
Cdd:cd09446    4 CGYGVYPAEK----INCIDQTWHKACFHCEVCKMMLTVNNFVSHQKKPYCQAH 52
LIM2_Zyxin cd09353
The second LIM domain of Zyxin; The second LIM domain of Zyxin: Zyxin exhibits three copies of ...
398-455 2.88e-04

The second LIM domain of Zyxin; The second LIM domain of Zyxin: Zyxin exhibits three copies of the LIM domain, an extensive proline-rich domain and a nuclear export signal. Localized at sites of cellsubstratum adhesion in fibroblasts, Zyxin interacts with alpha-actinin, members of the cysteine-rich protein (CRP) family, proteins that display Src homology 3 (SH3) domains and Ena/VASP family members. Zyxin and its partners have been implicated in the spatial control of actin filament assembly as well as in pathways important for cell differentiation. In addition to its functions at focal adhesion plaques, recent work has shown that zyxin moves from the sites of cell contacts to the nucleus, where it directly participates in the regulation of gene expression. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors o r scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188739 [Multi-domain]  Cd Length: 60  Bit Score: 39.14  E-value: 2.88e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*....
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGAL-YCELCYEKFFAP 455
Cdd:cd09353    1 CAVCDQKITDRMLKATGKSYHPQCFTCVVCKCPLEGESFIVDQANQpHCVNDYHRRYAP 59
LIM1_LIMK1 cd09462
The first LIM domain of LIMK1 (LIM domain Kinase 1); The first LIM domain of LIMK1 (LIM domain ...
396-449 2.92e-04

The first LIM domain of LIMK1 (LIM domain Kinase 1); The first LIM domain of LIMK1 (LIM domain Kinase 1): LIMK1 belongs to the LIMK protein family, which comprises LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain, and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, and altering the rate of actin depolymerization. LIMKs can function in both cytoplasm and nucleus. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. LIMK1 is expressed in all tissues and is localized to focal adhesions in the cell. LIMK1 can form homodimers upon binding of HSP90 and is activated by Rho effector Rho kinase and MAPKAPK2. LIMK1 is important for normal central nervous system development, and its deletion has been implicated in the development of the human genetic disorder Williams syndrome. Moreover, LIMK1 up-regulates the promoter activity of urokinase type plasminogen activator and induces its mRNA and protein expression in breast cancer cells. The LIM domains have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188846 [Multi-domain]  Cd Length: 74  Bit Score: 39.48  E-value: 2.92e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 300069041 396 PMCAHCNQVI-RGPFLVALGKSWHPEEFNCAHCKNTMAYiGFVEEKGALYCELCY 449
Cdd:cd09462   20 PVCASCGQSIyDGQYLQALNSDWHADCFRCCECGASLSH-WYYEKDGRLFCKKDY 73
LIM3_Fhl2 cd09431
The third LIM domain of Four and a half LIM domains protein 2 (FHL2); The third LIM domain of ...
516-565 2.95e-04

The third LIM domain of Four and a half LIM domains protein 2 (FHL2); The third LIM domain of Four and a half LIM domains protein 2 (FHL2): FHL2 is one of the best studied FHL proteins. FHL2 expression is most abundant in the heart, and in brain, liver and lung to a lesser extent. FHL2 participates in a wide range of cellular processes, such as transcriptional regulation, signal transduction, and cell survival by binding to various protein partners. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. Although FHL2 is abundantly expressed in heart, the fhl2 null mice are viable and had no detectable abnormal cardiac phenotype. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to s upport the assembly of multimeric protein complexes.


Pssm-ID: 188815  Cd Length: 57  Bit Score: 39.20  E-value: 2.95e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 300069041 516 CRGCEFPIEAGDMFLEAlgYTWHDTCFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09431    1 CVQCKKPITTGGVTYRD--QPWHKECFVCTGCKKQLSGQRFTSRDDFAYC 48
LIM2_FBLP-1 cd09372
The second LIM domain of the filamin-binding LIM protein-1 (FBLP-1); The second LIM domain of ...
398-445 3.04e-04

The second LIM domain of the filamin-binding LIM protein-1 (FBLP-1); The second LIM domain of the filamin-binding LIM protein-1 (FBLP-1): Fblp-1 contains a proline-rich domain near its N terminus and two LIM domains at its C terminus. FBLP-1 mRNA was detected in a variety of tissues and cells including platelets and endothelial cells. FBLP-1 binds to Filamins. The association between filamin B and FBLP-1 may play an unknown role in cytoskeletal function, cell adhesion, and cell motility. As in other LIM domains, this domain family is 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188758 [Multi-domain]  Cd Length: 53  Bit Score: 38.94  E-value: 3.04e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*....
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGF-VEEKGALYC 445
Cdd:cd09372    1 CAKCQGVITEHIIRALGKGYHPPCFTCVTCGRRIGDESFaVDEQNEVYC 49
LIM2_Lrg1p_like cd09392
The second LIM domain of Lrg1p, a LIM and RhoGap domain containing protein; The second LIM ...
457-508 3.28e-04

The second LIM domain of Lrg1p, a LIM and RhoGap domain containing protein; The second LIM domain of Lrg1p, a LIM and RhoGap domain containing protein: The members of this family contain three tandem repeats of LIM domains and a Rho-type GTPase activating protein (RhoGap) domain. Lrg1p is a Rho1 GTPase-activating protein required for efficient cell fusion in yeast. Lrg1p-GAP domain strongly and specifically stimulates the GTPase activity of Rho1p, a regulator of beta (1-3)-glucan synthase in vitro. The LIM domain is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188778 [Multi-domain]  Cd Length: 53  Bit Score: 38.88  E-value: 3.28e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPI-RNNVFHLEDGEPYCETDY 508
Cdd:cd09392    1 CFKCGGALRGSYITALGRKYHVEHFTCSVCPTVFgPNDSYYEHEGKIYCHYHY 53
LIM4_LIMPETin cd09425
The fourth LIM domain of protein LIMPETin; The fourth LIM domain of protein LIMPETin: LIMPETin ...
516-565 3.44e-04

The fourth LIM domain of protein LIMPETin; The fourth LIM domain of protein LIMPETin: LIMPETin contains 6 LIM domains at the C-terminal and an N-terminal PET domain. Four of the six LIM domains are highly homologous to the four and half LIM domain protein family and two of them show sequence similarity to the LIM domains of the Testin family. Thus, LIMPETin may be the recombinant product of genes coding testin and FHL proteins. In Schistosoma mansoni, where LIMPETin was first identified, LIMPETin is down regulated in sexually mature adult Schistosoma females compared to sexually immature adult females and adult male. Its differential expression indicates that it is a transcription regulator. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188809  Cd Length: 54  Bit Score: 38.57  E-value: 3.44e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09425    1 CDGCGEIFRAGMKKMEYKGQQWHEKCFCCCECKQPIGTKSFIPKDDDVYC 50
LIM3_FHL1 cd09429
The third LIM domain of Four and a half LIM domains protein 1 (FHL1); The third LIM domain of ...
516-565 3.67e-04

The third LIM domain of Four and a half LIM domains protein 1 (FHL1); The third LIM domain of Four and a half LIM domains protein 1 (FHL1): FHL1 is heavily expressed in skeletal and cardiac muscles. It plays important roles in muscle growth, differentiation, and sarcomere assembly by acting as a modulator of transcription factors. Defects in FHL1 gene are responsible for a number of Muscular dystrophy-like muscle disorders. It has been detected that FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188813  Cd Length: 53  Bit Score: 38.64  E-value: 3.67e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 300069041 516 CRGCEFPIEAGDMFLEalGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09429    1 CVKCNKPITSGGVTYQ--DQPWHSECFVCSSCSKKLAGQRFTAVEDQYYC 48
LIM4_Paxillin_like cd09339
The fourth LIM domain of the Paxillin-like protein family; The fourth LIM domain of the ...
457-505 3.79e-04

The fourth LIM domain of the Paxillin-like protein family; The fourth LIM domain of the Paxillin like protein family: This family consists of paxillin, leupaxin, Hic-5 (ARA55), and other related proteins. There are four LIM domains in the C-terminal of the proteins and leucine-rich LD-motifs in the N-terminal region. Members of this family are adaptor proteins to recruit key components of signal-transduction machinery to specific sub-cellular locations. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. Paxillin serves as a platform for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression that are necessary for cell migration and survival. Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. It associates with focal adhesion kinases PYK2 and pp125FAK and identified to be a component of the osteoclast pososomal signaling complex. Hic-5 controls cell proliferation, migration and senescence by functioning as coactivator for steroid receptors such as androgen receptor, glucocorticoid receptor and progesterone receptor. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188725 [Multi-domain]  Cd Length: 52  Bit Score: 38.47  E-value: 3.79e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*....
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCE 505
Cdd:cd09339    1 CAGCGKPITGRCITAMGRKFHPEHFVCAFCLKQLSKGTFKEQDDKPYCH 49
LIM2_LPP cd09354
The second LIM domain of lipoma preferred partner (LPP); The second LIM domain of lipoma ...
398-455 3.89e-04

The second LIM domain of lipoma preferred partner (LPP); The second LIM domain of lipoma preferred partner (LPP): LPP is a member of the zyxin LIM protein family and contains three LIM zinc-binding domains at the C-terminal and proline-rich region at the N-terminal. LPP initially identified as the most frequent translocation partner of HMGA2 (High Mobility Group A2) in a subgroup of benign tumors of adipose tissue (lipomas). It was also shown to be rearranged in a number of other soft tissues, as well as in a case of acute monoblastic leukemia. In addition to its involvement in tumors, LPP was inedited as a smooth muscle restricted LIM protein that plays an important role in SMC migration. LPP is localized at sites of cell adhesion, cell-cell contacts and transiently in the nucleus. In nucleus, it acts as a coactivator for the ETS domain transcription factor PEA3. In addition to PEA3, it interacts with alpha-actinin,vasodilator stimulated phosphoprotein (VASP),Palladin, and Scrib. The LIM domains are the main focal adhesion targeting elements and that the proline- rich region, which harbors binding sites for alpha-actinin and vasodilator- stimulated phosphoprotein (VASP), has a weak targeting capacity. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188740 [Multi-domain]  Cd Length: 60  Bit Score: 38.68  E-value: 3.89e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*....
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGF-VEEKGALYCELCYEKFFAP 455
Cdd:cd09354    1 CSVCSKPILDRILRATGKPYHPQCFTCVVCGKSLDGIPFtVDATNQIHCIEDFHKKFAP 59
PDZ8_MUPP1-PDZ7_PATJ-PDZ2_INAD-like cd06672
PDZ domain 8 of multi-PDZ-domain protein 1 (MUPP1), PDZ domain 7 of protein-associated tight ...
10-83 4.02e-04

PDZ domain 8 of multi-PDZ-domain protein 1 (MUPP1), PDZ domain 7 of protein-associated tight junction (PATJ), PDZ domain 2 of Drosophila melanogaster inactivation-no-after-potential D (INAD), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 8 of MUPP1, PDZ domain 7 of PATJ, and PDZ domain 2 of Drosophila melanogaster INAD, and related domains. MUPP1 and PATJ serve as scaffolding proteins linking different proteins and protein complexes involved in the organization of tight junctions and epithelial polarity. MUPP1 contains an L27 (Lin-2 and Lin-7 binding) domain and 13 PDZ domains. PATJ (also known as INAD-like) contains an L27 domain and ten PDZ domains. MUPP1 and PATJ share several binding partners, including junctional adhesion molecules (JAM), zonula occludens (ZO)-3, Pals1 (protein associated with Lin-7), Par (partitioning defective)-6 proteins, and nectins (adherence junction adhesion molecules). PATJ lacks 3 PDZ domains seen in MUPP1: PDZ6, 9, and 13; consequently, MUPP1 PDZ7 and 8 align with PATJ PDZ6 and 7; and MUPP1 PDZ domains 10-12 align with PATJ PDZ domains 8-10. INAD assembles key enzymes of the Drosophila compound eye photo-transduction pathway into a supramolecular complex, supporting efficient and fast light signaling. It contains 5 PDZ domains arranged in tandem (PDZ1-PDZ5) which independently bind various proteins. INAD PDZ2 binds eye-specific protein kinase C. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MUPP1-like family PDZ8 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467160 [Multi-domain]  Cd Length: 84  Bit Score: 39.59  E-value: 4.02e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 300069041  10 GPAPWGFRLQGGKDFN-MPLTISSLKDGGKASQ-AHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQR 83
Cdd:cd06672    9 GSSGLGLSLAGNKDRSrMSVFVVGIDPDGAAGKdGRIQVGDELLEINGQVLYGRSHLNASAIIKSAPSKVKIVFLR 84
LIM2_CRP3 cd09482
The second LIM domain of Cysteine Rich Protein 3 (CRP3/MLP); The second LIM domain of Cysteine ...
398-449 4.11e-04

The second LIM domain of Cysteine Rich Protein 3 (CRP3/MLP); The second LIM domain of Cysteine Rich Protein 3 (CRP3/MLP): Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to short glycine-rich repeats (GRRs). The CRP family members include CRP1, CRP2, CRP3/MLP and TLPCRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription circuits, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network.CRP3 also called Muscle LIM Protein (MLP), which is a striated muscle-specific factor that enhances myogenic differentiation. The second LIM domain of CRP3/MLP interacts with cytoskeletal protein beta-spectrin. CRP3/MLP also interacts with the basic helix-loop-helix myogenic transcription factors MyoD, myogenin, and MRF4 thereby increasing their affinity for specific DNA regulatory elements. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188866 [Multi-domain]  Cd Length: 54  Bit Score: 38.46  E-value: 4.11e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 398 CAHCNQ-VIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09482    1 CPRCGKsVYAAEKVMGGGKPWHKTCFRCAICGKSLESTTVTDKDGELYCKVCY 53
LIM2_abLIM cd09328
The second LIM domain on actin binding LIM (abLIM) proteins; The second LIM domain of actin ...
398-429 4.13e-04

The second LIM domain on actin binding LIM (abLIM) proteins; The second LIM domain of actin binding LIM (abLIM) proteins: Three homologous members of the abLIM protein family have been identified; abLIM-1, abLIM-2 and abLIM-3. The N-terminal of abLIM consists of four tandem repeats of LIM domains and the C-terminal of acting binding LIM protein is a villin headpiece domain, which has strong actin binding activity. The abLIM-1, which is expressed in retina, brain, and muscle tissue, has been indicated to function as a tumor suppressor. AbLIM-2 and -3, mainly expressed in muscle and neuronal tissue, bind to F-actin strongly. They may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription. It has shown that LIM domains of abLIMs interact with STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. All LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188714  Cd Length: 56  Bit Score: 38.48  E-value: 4.13e-04
                         10        20        30
                 ....*....|....*....|....*....|..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKN 429
Cdd:cd09328    4 CDSCQDFVEGEVVSALGKTYHPKCFVCSVCRQ 35
LIM4_FHL cd09347
The fourth LIM domain of Four and a half LIM domains protein (FHL); The fourth LIM domain of ...
516-567 4.13e-04

The fourth LIM domain of Four and a half LIM domains protein (FHL); The fourth LIM domain of Four and a half LIM domains protein (FHL): LIM-only protein family consists of five members, designated FHL1, FHL2, FHL3, FHL5 and LIMPETin. The first four members are composed of four complete LIM domains arranged in tandem and an N-terminal single zinc finger domain with a consensus sequence equivalent to the C-terminal half of a LIM domain. LIMPETin is an exception, containing six LIM domains. FHL1, 2 and 3 are predominantly expressed in muscle tissues, and FHL5 is highly expressed in male germ cells. FHL proteins exert their roles as transcription co-activators or co-repressors through a wide array of interaction partners. For example, FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. FHL3 interacts with many transcription factors, such as CREB, BKLF/KLF3, CtBP2, MyoD, and MZF_1. FHL5 is a tissue-specific coactivator of CREB/CREM family transcription factors. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188733  Cd Length: 56  Bit Score: 38.48  E-value: 4.13e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 516 CRGCEFPIEA--GDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKK 567
Cdd:cd09347    1 CAACTKPITGlgGAKFISFEERQWHSDCFNCGKCSVSLVGQGFLTQRDEILCPE 54
PDZ3_MAGI-1_3-like cd06733
PDZ domain 3 of membrane-associated guanylate kinase inverted 1 (MAGI-1), MAGI-2, and MAGI-3, ...
15-83 4.20e-04

PDZ domain 3 of membrane-associated guanylate kinase inverted 1 (MAGI-1), MAGI-2, and MAGI-3, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 3 of MAGI1, 2, 3 (MAGI is also known as Membrane-associated guanylate kinase, WW and PDZ domain-containing protein) and related domains. MAGI proteins have been implicated in the control of cell migration and invasion through altering the activity of phosphatase and tensin homolog (PTEN) and modulating Akt signaling. Four MAGI proteins have been identified (MAGI1-3 and MAGIX). MAGI1-3 have 6 PDZ domains and bind to the C-terminus of PTEN via their PDZ2 domain. MAGIX has a single PDZ domain that is related to MAGI1-3 PDZ domain 5. Other binding partners for MAGI1 include JAM4, C-terminal tail of high risk HPV-18 E6, megalin, TRAF6, Kir4.1 (basolateral K+ channel subunit), and cadherin 23; for MAGI2, include DASM1, dendrin, axin, beta- and delta-catenin, neuroligin, hyperpolarization-activated cation channels, beta1-adrenergic receptors, NMDA receptor, and TARPs; and for MAGI3 includes LPA2. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MAGI family PDZ3 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2); arranged as beta-strands A, -B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467215 [Multi-domain]  Cd Length: 85  Bit Score: 39.52  E-value: 4.20e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 300069041  15 GFRLQGGKDFNMPLTISSLKDGGKASQ-AHVRIGDVVLSIDGISAQGMTHLE--------AQNkikactGSLNMTLQR 83
Cdd:cd06733   14 GFRILGGTEEGSQVSIGAIVPGGAADLdGRLRTGDELLSVDGVNVVGASHHKvvdlmgnaARN------GQVNLTVRR 85
LIM3_LIMPETin cd09421
The third LIM domain of protein LIMPETin; The third LIM domain of protein LIMPETin: LIMPETin ...
512-565 4.32e-04

The third LIM domain of protein LIMPETin; The third LIM domain of protein LIMPETin: LIMPETin contains 6 LIM domains at the C-terminal and an N-terminal PET domain. Four of the six LIM domains are highly homologous to the four and half LIM domain protein family and two of them show sequence similarity to the LIM domains of the testin family. Thus, LIMPETin may be the recombinant product of genes coding testin and FHL proteins. In Schistosoma mansoni, where LIMPETin was first identified, LIMPETin is down regulated in sexually mature adult Schistosoma females compared to sexually immature adult females and adult male. Its differential expression indicates that it is a transcription regulator. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188805  Cd Length: 59  Bit Score: 38.71  E-value: 4.32e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 512 FGTICRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09421    1 FANQCEECSKIIGIDSKDLSYKDKHWHEACFLCSKCKISLVDKPFGSKADRIYC 54
PLN00049 PLN00049
carboxyl-terminal processing protease; Provisional
36-84 4.37e-04

carboxyl-terminal processing protease; Provisional


Pssm-ID: 177681 [Multi-domain]  Cd Length: 389  Bit Score: 42.80  E-value: 4.37e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 300069041  36 GGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGS-LNMTLQRA 84
Cdd:PLN00049 112 GGPAARAGIRPGDVILAIDGTSTEGLSLYEAADRLQGPEGSsVELTLRRG 161
LIM1_LIMK1 cd09462
The first LIM domain of LIMK1 (LIM domain Kinase 1); The first LIM domain of LIMK1 (LIM domain ...
515-568 4.46e-04

The first LIM domain of LIMK1 (LIM domain Kinase 1); The first LIM domain of LIMK1 (LIM domain Kinase 1): LIMK1 belongs to the LIMK protein family, which comprises LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain, and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, and altering the rate of actin depolymerization. LIMKs can function in both cytoplasm and nucleus. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. LIMK1 is expressed in all tissues and is localized to focal adhesions in the cell. LIMK1 can form homodimers upon binding of HSP90 and is activated by Rho effector Rho kinase and MAPKAPK2. LIMK1 is important for normal central nervous system development, and its deletion has been implicated in the development of the human genetic disorder Williams syndrome. Moreover, LIMK1 up-regulates the promoter activity of urokinase type plasminogen activator and induces its mRNA and protein expression in breast cancer cells. The LIM domains have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188846 [Multi-domain]  Cd Length: 74  Bit Score: 39.10  E-value: 4.46e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 515 ICRGCEFPIEAGdMFLEALGYTWHDTCFVCSVCCESLEGQtFFSKKDKPLCKKH 568
Cdd:cd09462   21 VCASCGQSIYDG-QYLQALNSDWHADCFRCCECGASLSHW-YYEKDGRLFCKKD 72
LIM2_CRP cd09403
The second LIM domain of Cysteine Rich Protein (CRP); The second LIM domain of Cysteine Rich ...
457-508 4.87e-04

The second LIM domain of Cysteine Rich Protein (CRP); The second LIM domain of Cysteine Rich Protein (CRP): Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to a short glycine-rich repeats (GRRs). The CRP family members include CRP1, CRP2, CRP3/MLP. CRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription control, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network. It is evident that CRP1, CRP2, and CRP3/MLP are involved in promoting protein assembly along the actin-based cytoskeleton. Although members of the CRP family share common binding partners, they are also capable of recognizing different and specific targets. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residu es, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188787  Cd Length: 54  Bit Score: 38.33  E-value: 4.87e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKILG-EVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09403    1 CPRCGKSVYAaEKIIGAGKPWHKNCFRCAKCGKSLESTTLADKDGEIYCKGCY 53
LIM2_FHL cd09345
The second LIM domain of Four and a half LIM domains protein (FHL); The second LIM domain of ...
474-508 5.06e-04

The second LIM domain of Four and a half LIM domains protein (FHL); The second LIM domain of Four and a half LIM domains protein (FHL): LIM-only protein family consists of five members, designated FHL1, FHL2, FHL3, FHL5 and LIMPETin. The first four members are composed of four complete LIM domains arranged in tandem and an N-terminal single zinc finger domain with a consensus sequence equivalent to the C-terminal half of a LIM domain. LIMPETin is an exception, containing six LIM domains. FHL1, 2 and 3 are predominantly expressed in muscle tissues, and FHL5 is highly expressed in male germ cells. FHL proteins exert their roles as transcription co-activators or co-repressors through a wide array of interaction partners. For example, FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. FHL3 int eracts with many transcription factors, such as CREB, BKLF/KLF3, CtBP2, MyoD, and MZF_1. FHL5 is a tissue-specific coactivator of CREB/CREM family transcription factors. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188731 [Multi-domain]  Cd Length: 54  Bit Score: 38.04  E-value: 5.06e-04
                         10        20        30
                 ....*....|....*....|....*....|....*
gi 300069041 474 QTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09345   20 KFWHEKCFTCSECKKPIGTKSFIPKDDKIYCVPCY 54
PDZ3_Dlg1-2-4-like cd06795
PDZ domain 3 of human discs large homolog 1 (Dlg1), Dlg2, and Dlg4, Drosophila disc large (Dlg) ...
10-82 5.42e-04

PDZ domain 3 of human discs large homolog 1 (Dlg1), Dlg2, and Dlg4, Drosophila disc large (Dlg), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 3 of Drosophila Dlg1, human Dlg1, 2, and 4 and related domains. Dlg1 (also known as synapse-associated protein Dlg197; SAP-97), Dlg2 (also known as channel-associated protein of synapse-110; postsynaptic density protein 93, PSD-93), Dlg4 (also known as postsynaptic density protein 95, PSD-95; synapse-associated protein 90, SAP-90) each have 3 PDZ domains and belong to the membrane-associated guanylate kinase family. Dlg1 regulates antigen receptor signaling and cell polarity in lymphocytes, B-cell proliferation and antibody production, and TGFalpha bioavailability; its PDZ3 domain binds pro-TGFalpha, and its PDZ2 domain binds the TACE metalloprotease responsible for cleaving pro-TGFalpha to a soluble form. Dlg2 is involved in N-methyl-D-aspartate (NMDA) receptor signaling, regulating surface expression of NMDA receptors in dorsal horn neurons of the spinal cord; it interacts with NMDA receptor subunits and with Shaker-type K+ channel subunits to cluster into a channel complex. The Dlg4 PDZ1 domain binds NMDA receptors, and its PDZ2 domain binds neuronal nitric oxide synthase (nNOS), forming a complex in neurons. The Drosophila Scribble complex (Scribble, Dlg, and lethal giant larvae) plays a role in apico-basal cell polarity, and in other forms of polarity, including regulation of the actin cytoskeleton, cell signaling and vesicular trafficking, and in tumor development; postsynaptic targeting of Drosophila DLG requires interactions mediated by the first two PDZ domains. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Dlg-like family PDZ3 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467257 [Multi-domain]  Cd Length: 91  Bit Score: 39.26  E-value: 5.42e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 300069041  10 GPAPWGFRLQGGKDfNMPLTISSLKDGGKAS-QAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQ 82
Cdd:cd06795   10 GSTGLGFNIVGGED-GEGIFISFILAGGPADlSGELRRGDQILSVNGVDLRNATHEQAAAALKNAGQTVTIIAQ 82
LIM2_Zyxin cd09353
The second LIM domain of Zyxin; The second LIM domain of Zyxin: Zyxin exhibits three copies of ...
516-570 5.57e-04

The second LIM domain of Zyxin; The second LIM domain of Zyxin: Zyxin exhibits three copies of the LIM domain, an extensive proline-rich domain and a nuclear export signal. Localized at sites of cellsubstratum adhesion in fibroblasts, Zyxin interacts with alpha-actinin, members of the cysteine-rich protein (CRP) family, proteins that display Src homology 3 (SH3) domains and Ena/VASP family members. Zyxin and its partners have been implicated in the spatial control of actin filament assembly as well as in pathways important for cell differentiation. In addition to its functions at focal adhesion plaques, recent work has shown that zyxin moves from the sites of cell contacts to the nucleus, where it directly participates in the regulation of gene expression. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors o r scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188739 [Multi-domain]  Cd Length: 60  Bit Score: 38.37  E-value: 5.57e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 300069041 516 CRGCEFPIEagDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDK-PLCKKHAH 570
Cdd:cd09353    1 CAVCDQKIT--DRMLKATGKSYHPQCFTCVVCKCPLEGESFIVDQANqPHCVNDYH 54
PDZ3_Scribble-like cd06702
PDZ domain 3 of Drosophila Scribble, human Scribble homolog, and related domains; PDZ (PSD-95 ...
13-83 5.71e-04

PDZ domain 3 of Drosophila Scribble, human Scribble homolog, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of Drosophila Scribble (also known as LAP4), human Scribble homolog (also known as hScrib, LAP4, CriB1, ScrB1 and Vartul), and related domains. They belong to the LAP family, which describes proteins that contain either one or four PDZ domains and 16 LRRs (leucine-rich repeats) and function in controlling cell shape, size and subcellular protein localization. In Drosophila, the Scribble complex, comprising Scribble, discs large, and lethal giant larvae, plays a role in apico-basal cell polarity, in other forms of polarity, including regulation of the actin cytoskeleton, cell signaling and vesicular trafficking, and in tumor development. Mammalian Scribble is important in many aspects of cancer development. Scribble and its homologs can be downregulated or overexpressed in cancer; they have a role in cancer beyond their function in loss of cell polarity. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Scribble-like family PDZ3 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467186 [Multi-domain]  Cd Length: 89  Bit Score: 39.16  E-value: 5.71e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 300069041  13 PWGFRLQGGKD-----F--NMP-LTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQR 83
Cdd:cd06702   11 PLGLSIVGGSDhsshpFgvDEPgIFISKVIPDGAAAKSGLRIGDRILSVNGKDLRHATHQEAVSALLSPGQEIKLLVRH 89
PDZ5_DrPTPN13-like cd23060
PDZ domain 5 of Danio rerio tyrosine-protein phosphatase non-receptor type 13 (Ptpn13) and ...
15-81 6.04e-04

PDZ domain 5 of Danio rerio tyrosine-protein phosphatase non-receptor type 13 (Ptpn13) and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 5 of Danio rerio Ptpn13, and related domains. Protein-tyrosine phosphatases (PTPs) dephosphorylate phosphotyrosyl residues in proteins that are phosphorylated by protein tyrosine kinases (PTKs). Danio rerio Ptpn13 is a classical non-receptor-like PTP. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PTPN13-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467273 [Multi-domain]  Cd Length: 80  Bit Score: 38.87  E-value: 6.04e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 300069041  15 GFRLQGGKDFNmPLTISSLKDGGKASQA-HVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTL 81
Cdd:cd23060   13 GFSLVGGEGGS-GIFVKSISPGGVADRDgRLQVGDRLLQVNGESVIGLSHSKAVNILRKAKGTVQLTV 79
LIM1_CRP1 cd09479
The first LIM domain of Cysteine Rich Protein 1 (CRP1); The first LIM domain of Cysteine Rich ...
456-508 6.08e-04

The first LIM domain of Cysteine Rich Protein 1 (CRP1); The first LIM domain of Cysteine Rich Protein 1 (CRP1): Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to a short glycine-rich repeats (GRRs). The CRP family members include CRP1, CRP2, CRP3/MLP and TLP. CRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription circuits, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network. CRP1 can associate with the actin cytoskeleton and are capable of interacting with alpha-actinin and zyxin. CRP1 was shown to regulate actin filament bundling by interaction with alpha-actinin and direct binding to actin filaments. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188863  Cd Length: 56  Bit Score: 38.07  E-value: 6.08e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 456 ECGRCQRKI-LGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09479    2 KCGVCQKTVyFAEEVQCEGRSFHKSCFLCMVCKKNLDSTTVAVHGEEIYCKSCY 55
LIM2_LPP cd09354
The second LIM domain of lipoma preferred partner (LPP); The second LIM domain of lipoma ...
457-512 6.43e-04

The second LIM domain of lipoma preferred partner (LPP); The second LIM domain of lipoma preferred partner (LPP): LPP is a member of the zyxin LIM protein family and contains three LIM zinc-binding domains at the C-terminal and proline-rich region at the N-terminal. LPP initially identified as the most frequent translocation partner of HMGA2 (High Mobility Group A2) in a subgroup of benign tumors of adipose tissue (lipomas). It was also shown to be rearranged in a number of other soft tissues, as well as in a case of acute monoblastic leukemia. In addition to its involvement in tumors, LPP was inedited as a smooth muscle restricted LIM protein that plays an important role in SMC migration. LPP is localized at sites of cell adhesion, cell-cell contacts and transiently in the nucleus. In nucleus, it acts as a coactivator for the ETS domain transcription factor PEA3. In addition to PEA3, it interacts with alpha-actinin,vasodilator stimulated phosphoprotein (VASP),Palladin, and Scrib. The LIM domains are the main focal adhesion targeting elements and that the proline- rich region, which harbors binding sites for alpha-actinin and vasodilator- stimulated phosphoprotein (VASP), has a weak targeting capacity. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188740 [Multi-domain]  Cd Length: 60  Bit Score: 38.29  E-value: 6.43e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLE-DGEPYCETDYYALF 512
Cdd:cd09354    1 CSVCSKPILDRILRATGKPYHPQCFTCVVCGKSLDGIPFTVDaTNQIHCIEDFHKKF 57
LIM2_Prickle cd09418
The second LIM domain of Prickle; The second LIM domain of Prickle: Prickle contains three ...
445-504 6.51e-04

The second LIM domain of Prickle; The second LIM domain of Prickle: Prickle contains three C-terminal LIM domains and a N-terminal PET domain. Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). PCP establishment requires the conserved Frizzled/Dishevelled PCP pathway. Prickle interacts with Dishevelled, thereby modulating Frizzled/Dishevelled activity and PCP signaling. Two forms of prickles have been identified; namely prickle 1 and prickle 2. Prickle 1 and prickle 2 are differentially expressed. While prickle 1 is expressed in fetal heart and hematological malignancies, prickle 2 is found in fetal brain, adult cartilage, pancreatic islet, and some types of timorous cells. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188802  Cd Length: 56  Bit Score: 38.18  E-value: 6.51e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|
gi 300069041 445 CELCYEKFFAPECgrcqrkilgevINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYC 504
Cdd:cd09418    3 CSACDEIIFADEC-----------TEAEGRHWHMKHFCCFECECQLGGQRYIMREGRPYC 51
LIM3_FHL1 cd09429
The third LIM domain of Four and a half LIM domains protein 1 (FHL1); The third LIM domain of ...
457-504 6.76e-04

The third LIM domain of Four and a half LIM domains protein 1 (FHL1); The third LIM domain of Four and a half LIM domains protein 1 (FHL1): FHL1 is heavily expressed in skeletal and cardiac muscles. It plays important roles in muscle growth, differentiation, and sarcomere assembly by acting as a modulator of transcription factors. Defects in FHL1 gene are responsible for a number of Muscular dystrophy-like muscle disorders. It has been detected that FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188813  Cd Length: 53  Bit Score: 37.87  E-value: 6.76e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*...
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYC 504
Cdd:cd09429    1 CVKCNKPITSGGVTYQDQPWHSECFVCSSCSKKLAGQRFTAVEDQYYC 48
LIM_Mical_like cd09358
The LIM domain of Mical (molecule interacting with CasL) like family; The LIM domain of Mical ...
516-568 6.95e-04

The LIM domain of Mical (molecule interacting with CasL) like family; The LIM domain of Mical (molecule interacting with CasL) like family: Known members of this family includes LIM domain containing proteins; Mical (molecule interacting with CasL), pollen specific protein SF3, Eplin, xin actin-binding repeat-containing protein 2 (XIRP2) and Ltd-1. The members of this family function mainly at the cytoskeleton and focal adhesions. They interact with transcription factors or other signaling molecules to play roles in muscle development, neuronal differentiation, cell growth and mobility. Eplin has also found to be tumor suppressor. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs.. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188744 [Multi-domain]  Cd Length: 53  Bit Score: 37.63  E-value: 6.95e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 300069041 516 CRGCE---FPIEagdmFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKH 568
Cdd:cd09358    1 CAVCGktvYPME----RLVADGKLFHKSCFRCSHCNKTLRLGNYASLEGKLYCKPH 52
LIM1_FHL cd09343
The first LIM domain of Four and a half LIM domains protein (FHL); The first LIM domain of ...
512-565 7.31e-04

The first LIM domain of Four and a half LIM domains protein (FHL); The first LIM domain of Four and a half LIM domains protein (FHL): LIM-only protein family consists of five members, designated FHL1, FHL2, FHL3, FHL5 and LIMPETin. The first four members are composed of four complete LIM domains arranged in tandem and an N-terminal single zinc finger domain with a consensus sequence equivalent to the C-terminal half of a LIM domain. LIMPETin is an exception, containing six LIM domains. FHL1, 2 and 3 are predominantly expressed in muscle tissues, and FHL5 is highly expressed in male germ cells. FHL proteins exert their roles as transcription co-activators or co-repressors through a wide array of interaction partners. For example, FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. FHL3 int eracts with many transcription factors, such as CREB, BKLF/KLF3, CtBP2, MyoD, and MZF_1. FHL5 is a tissue-specific coactivator of CREB/CREM family transcription factors. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188729  Cd Length: 59  Bit Score: 37.80  E-value: 7.31e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 512 FGTICRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09343    1 FANTCEECKKKIGCDSKDLSYKDRHWHEGCFKCFKCQRSLVDKPFAAKDEDLLC 54
LIM2_LIMK2 cd09465
The second LIM domain of LIMK2 (LIM domain Kinase 2); The second LIM domain of LIMK2 (LIM ...
397-449 7.72e-04

The second LIM domain of LIMK2 (LIM domain Kinase 2); The second LIM domain of LIMK2 (LIM domain Kinase 2): LIMK2 is a member of the LIMK protein family, which comprises LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain, and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, altering the rate of actin depolymerisation. LIMK activity is activated by phosphorylation of a threonine residue within the activation loop of the kinase by p21-activated kinases 1 and 4 and by Rho kinase. LIMKs can function in both cytoplasm and nucleus. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. LIMK2 is expressed in all tissues. While LIMK1 localizes mainly at focal adhesions, LIMK2 is found in cytoplasmic punctae, suggesting that they may have different cellular functions. The activity of LIM kinase 2 to regulate cofilin phosphorylation is inhibited by the direct binding of Par-3. LIMK2 activation promotes cell cycle progression. The phenotype of Limk2 knockout mice shows a defect in spermatogenesis. The LIM domains have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188849 [Multi-domain]  Cd Length: 59  Bit Score: 37.99  E-value: 7.72e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*....
gi 300069041 397 MCAHCNQVIRGPFLVALGKSWHPEEFNCAHCK------NTMAYIgfveEKGALYCELCY 449
Cdd:cd09465    5 LCHGCSLLMTGPAMVAGEYKYHPECFACMSCKviiedgDTYALV----QHTTLYCGKCH 59
LIM2_Paxillin_like cd09337
The second LIM domain of the paxillin like protein family; The second LIM domain of the ...
516-567 7.98e-04

The second LIM domain of the paxillin like protein family; The second LIM domain of the paxillin like protein family: This family consists of paxillin, leupaxin, Hic-5 (ARA55), and other related proteins. There are four LIM domains in the C-terminal of the proteins and leucine-rich LD-motifs in the N-terminal region. Members of this family are adaptor proteins to recruit key components of signal-transduction machinery to specific sub-cellular locations. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. Paxillin serves as a platform for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression that are necessary for cell migration and survival. Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. It associates with focal adhesion kinases PYK2 and pp125FAK and identified to be a component of the osteoclast pososomal signaling complex. Hic-5 controls cell proliferation, migration and senescence by functioning as coactivator for steroid receptors such as androgen receptor, glucocorticoid receptor and progesterone receptor. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188723 [Multi-domain]  Cd Length: 52  Bit Score: 37.75  E-value: 7.98e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 516 CRGCEFPIEagDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKK 567
Cdd:cd09337    1 CAYCNGPIL--DKCVTALDKTWHPEHFFCAQCGKPFGDEGFHEKDGKPYCRE 50
LIM1_Prickle_1 cd09483
The first LIM domain of Prickle 1; The first LIM domain of Prickle 1. Prickle contains three ...
516-568 8.28e-04

The first LIM domain of Prickle 1; The first LIM domain of Prickle 1. Prickle contains three C-terminal LIM domains and a N-terminal PET domain Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). PCP establishment requires the conserved Frizzled/Dishevelled PCP pathway. Prickle interacts with Dishevelled, thereby modulating Frizzled/Dishevelled activity and PCP signaling. Four forms of prickles have been identified: prickle 1-4. The best characterized is prickle 1 and prickle 2 which are differentially expressed. While prickle 1 is expressed in fetal heart and hematological malignancies, prickle 2 is found in mainly expressed in fetal brain, adult cartilage, pancreatic islet, and some types of timorous cells. In addition, Prickle 1 regulates cell movements during gastrulation and neuronal migration through interaction with the noncanonical Wnt11/Wnt5 pathway in zebrafish. Mutations in prickle 1 have been linked to progressive myoclonus epilepsy. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188867  Cd Length: 59  Bit Score: 37.98  E-value: 8.28e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 300069041 516 CRGCEFPIEAGDMFLEAL----GYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKH 568
Cdd:cd09483    1 CEQCGIKINGGEVAVFASragpGVCWHPSCFVCFTCNELLVDLIYFYQDGKIHCGRH 57
LIM5_PINCH cd09335
The fifth LIM domain of protein PINCH; The fifth LIM domain of protein PINCH: PINCH plays ...
516-567 9.42e-04

The fifth LIM domain of protein PINCH; The fifth LIM domain of protein PINCH: PINCH plays pivotal roles in the assembly of focal adhesions (FAs), regulating diverse functions in cell adhesion, growth, and differentiation through LIM-mediated protein-protein interactions. PINCH comprises an array of five LIM domains that interact with integrin-linked kinase (ILK), Nck2 (also called Nckbeta or Grb4) and other interaction partners. These interactions are essential for triggering the FA assembly and for relaying diverse mechanical and biochemical signals between Cell-extracellular matrix and the actin cytoskeleton. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188721 [Multi-domain]  Cd Length: 54  Bit Score: 37.33  E-value: 9.42e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 516 CRGCEFPIEaGDMFlEALGYTWHDTCFVCSVCCESLEGQTFFSKKD-KPLCKK 567
Cdd:cd09335    1 CYHCNQVIE-GDVV-SALNKTWCVDHFSCSFCDTKLTLKSKFYEFDmKPVCKK 51
LIM4_FHL1 cd09348
The fourth LIM domain of Four and a half LIM domains protein 1 (FHL1); The fourth LIM domain ...
454-504 9.85e-04

The fourth LIM domain of Four and a half LIM domains protein 1 (FHL1); The fourth LIM domain of Four and a half LIM domains protein 1 (FHL1): FHL1 is heavily expressed in skeletal and cardiac muscles. It plays important roles in muscle growth, differentiation, and sarcomere assembly by acting as a modulator of transcription factors. Defects in FHL1 gene are responsible for a number of Muscular dystrophy-like muscle disorders. It has been detected that FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188734  Cd Length: 64  Bit Score: 37.82  E-value: 9.85e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 300069041 454 APECGRCQRKILG-----EVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYC 504
Cdd:cd09348    2 AKKCSGCQNPITGfgkgtNVVNYEGSSWHDYCFNCKKCSLNLANKRFVFHNGQIYC 57
LIM2_CRP cd09403
The second LIM domain of Cysteine Rich Protein (CRP); The second LIM domain of Cysteine Rich ...
398-449 9.89e-04

The second LIM domain of Cysteine Rich Protein (CRP); The second LIM domain of Cysteine Rich Protein (CRP): Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to a short glycine-rich repeats (GRRs). The CRP family members include CRP1, CRP2, CRP3/MLP. CRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription control, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network. It is evident that CRP1, CRP2, and CRP3/MLP are involved in promoting protein assembly along the actin-based cytoskeleton. Although members of the CRP family share common binding partners, they are also capable of recognizing different and specific targets. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residu es, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188787  Cd Length: 54  Bit Score: 37.56  E-value: 9.89e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 398 CAHCNQ-VIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09403    1 CPRCGKsVYAAEKIIGAGKPWHKNCFRCAKCGKSLESTTLADKDGEIYCKGCY 53
PDZ2_ZO1-like_ds cd06728
PDZ domain 2 of Zonula Occludens-1 (ZO-1), ZO-2 and ZO-3, and related domains; form ...
14-83 1.03e-03

PDZ domain 2 of Zonula Occludens-1 (ZO-1), ZO-2 and ZO-3, and related domains; form domain-swapping dimers; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of ZO-1, -2, -3 and related domains. Zonula occludens proteins (ZO-1, ZO-2, ZO-3) are multi-PDZ domain proteins involved in the maintenance and biogenesis of multi-protein networks at the cytoplasmic surface of intercellular contacts in epithelial and endothelial cells. They have three N-terminal PDZ domains, PDZ1-3, followed by a Src homology-3 (SH3) domain and a guanylate kinase (GuK)-like domain. Among protein-protein interactions for all ZO proteins is the binding of the first PDZ domain (PDZ1) to the C-termini of claudins , and the homo- and hetero-dimerization of ZO-proteins via their second PDZ domain (PDZ2), which takes place by symmetrical domain swapping of the first two beta-strands of PDZ2. At the cell level, ZO-1 and ZO-2 are involved in polarity maintenance, gene transcription, cell proliferation, and tumor cell metastasis. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This ZO family PDZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467210 [Multi-domain]  Cd Length: 79  Bit Score: 37.97  E-value: 1.03e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 300069041  14 WGFRLqGGKDFNMPLTISSL--KDGGkasqahVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQR 83
Cdd:cd06728   14 YGLRL-GSRIFVKEITPDSLaaKDGN------LQEGDIILKINGTPVENLSLSEAKKLIEKSKDKLQLVVLR 78
LIM2_AWH cd09379
The second LIM domain of Arrowhead (AWH); The second LIM domain of Arrowhead (AWH): Arrowhead ...
516-568 1.07e-03

The second LIM domain of Arrowhead (AWH); The second LIM domain of Arrowhead (AWH): Arrowhead belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs such as the pituitary gland and the pancreas. During embryogenesis of Drosophila, Arrowhead is expressed in each abdominal segment and in the labial segment. Late in embryonic development, expression of arrowhead is refined to the abdominal histoblasts and salivary gland imaginal ring cells themselves. The Arrowhead gene required for establishment of a subset of imaginal tissues: the abdominal histoblasts and the salivary gland imaginal rings. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188765  Cd Length: 55  Bit Score: 37.40  E-value: 1.07e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLE-GQTFFSKKDKPLCKKH 568
Cdd:cd09379    1 CAKCSRNISASDWVRRARDHVYHLACFACDACKRQLStGEEFALIEDRVLCKAH 54
LIM2_FHL1 cd09424
The second LIM domain of Four and a half LIM domains protein 1 (FHL1); The second LIM domain ...
457-512 1.10e-03

The second LIM domain of Four and a half LIM domains protein 1 (FHL1); The second LIM domain of Four and a half LIM domains protein 1 (FHL1): FHL1 is heavily expressed in skeletal and cardiac muscles. It plays important roles in muscle growth, differentiation, and sarcomere assembly by acting as a modulator of transcription factors. Defects in FHL1 gene are responsible for a number of Muscular dystrophy-like muscle disorders. It has been detected that FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188808  Cd Length: 58  Bit Score: 37.43  E-value: 1.10e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*...
gi 300069041 457 CGRCQRKIL--GEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDYYALF 512
Cdd:cd09424    1 CKGCYKDILagDQNVEYKGNVWHKDCFTCSNCKQPIGTKSFFPKGEDFYCVPCHEKKF 58
LIM1_Lhx2_Lhx9 cd09369
The first LIM domain of Lhx2 and Lhx9 family; The first LIM domain of Lhx2 and Lhx9 family: ...
457-508 1.10e-03

The first LIM domain of Lhx2 and Lhx9 family; The first LIM domain of Lhx2 and Lhx9 family: Lhx2 and Lhx9 are highly homologous LHX regulatory proteins. They belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Although Lhx2 and Lhx9 are highly homologous, they seems to play regulatory roles in different organs. In animals, Lhx2 plays important roles in eye, cerebral cortex, limb, the olfactory organs, and erythrocyte development. Lhx2 gene knockout mice exhibit impaired patterning of the cortical hem and the telencephalon of the developing brain, and a lack of development in olfactory structures. Lhx9 is expressed in several regions of the developing mouse brain , the spinal cord, the pancreas, in limb mesenchyme, and in the urogenital region. Lhx9 plays critical roles in gonad development. Homozygous mice lacking functional Lhx9 alleles exhibit numerous urogenital defects, such as gonadal agenesis, infertility, and undetectable levels of testosterone and estradiol coupled with high FSH levels. Lhx9 null mice are phenotypically female, even those that are genotypically male. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188755 [Multi-domain]  Cd Length: 54  Bit Score: 37.32  E-value: 1.10e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 457 CGRCQRKILGE-VINALKQTWHVSCFVCVACGKPI-RNNVFHLEDGEPYCETDY 508
Cdd:cd09369    1 CAGCGEKIQDRfYLLAVDRQWHASCLKCCECRLPLdSELSCFSRDGNIYCKEDY 54
PDZ1_ZO1-like cd06727
PDZ domain 1 of Zonula Occludens-1 (ZO-1), homologs ZO-2 and ZO-3, and related domains; PDZ ...
4-83 1.10e-03

PDZ domain 1 of Zonula Occludens-1 (ZO-1), homologs ZO-2 and ZO-3, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 1 of ZO-1, -2, -3 and related domains. Zonula occludens proteins (ZO-1, ZO-2, ZO-3) are multi-PDZ domain proteins involved in the maintenance and biogenesis of multi-protein networks at the cytoplasmic surface of intercellular contacts in epithelial and endothelial cells. They have three N-terminal PDZ domains, PDZ1-3, followed by a Src homology-3 (SH3) domain and a guanylate kinase (GuK)-like domain. Among protein-protein interactions for all ZO proteins is the binding of the first PDZ domain (PDZ1) to the C-termini of claudins, and the homo- and hetero-dimerization of ZO-proteins via their second PDZ domain (PDZ2), which takes place by symmetrical domain swapping of the first two beta-strands of PDZ2. At the cell level, ZO-1 and ZO-2 are involved in polarity maintenance, gene transcription, cell proliferation, and tumor cell metastasis. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This ZO family PDZ1 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467209 [Multi-domain]  Cd Length: 87  Bit Score: 38.41  E-value: 1.10e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 300069041   4 YSVSLVGPAPWGFRL--QGGKD------FNMPLTISSLKDGGKAsQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTG 75
Cdd:cd06727    1 HTVTLHRAPGFGFGIavSGGRDnphfqsGDTSIVISDVLKGGPA-EGKLQENDRVVSVNGVSMENVEHSFAVQILRKCGK 79

                 ....*...
gi 300069041  76 SLNMTLQR 83
Cdd:cd06727   80 TANITVKR 87
LIM1_LMO2 cd09384
The first LIM domain of LMO2 (LIM domain only protein 2); The first LIM domain of LMO2 (LIM ...
516-567 1.13e-03

The first LIM domain of LMO2 (LIM domain only protein 2); The first LIM domain of LMO2 (LIM domain only protein 2): LMO2 is a nuclear protein that plays important roles in transcriptional regulation and development. The two tandem LIM domains of LMO2 support the assembly of a crucial cell-regulatory complex by interacting with both the TAL1-E47 and GATA1 transcription factors to form a DNA-binding complex that is capable of transcriptional activation. LMOs have also been shown to be involved in oncogenesis. LMO1 and LMO2 are activated in T-cell acute lymphoblastic leukemia by distinct chromosomal translocations. LMO2 was also shown to be involved in erythropoiesis and is required for the hematopoiesis in the adult animals. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188770  Cd Length: 56  Bit Score: 37.52  E-value: 1.13e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 516 CRGCEFPIEaGDMFLEALGYTWHDTCFVCSVC-CESLE-GQTFFSKKDKPLCKK 567
Cdd:cd09384    1 CGGCQQNIG-DRYFLKAIDQYWHEDCLSCDLCgCRLGEvGRRLYYKLGRKLCRR 53
LIM_Mical_like_2 cd09445
This domain belongs to the LIM domain family which are found on Mical (molecule interacting ...
467-504 1.13e-03

This domain belongs to the LIM domain family which are found on Mical (molecule interacting with CasL) like proteins; The LIM domain on proteins of unknown function: This domain belongs to the LIM domain family which are found on Mical (molecule interacting with CasL)-like proteins. Known members of the Mical-like family includes single LIM domain containing proteins, Mical (molecule interacting with CasL), pollen specific protein SF3, Eplin, xin actin-binding repeat-containing protein 2 (XIRP2), and Ltd-1. The members of this family function mainly at the cytoskeleton and focal adhesions. They interact with transcription factors or other signaling molecules to play roles in muscle development, neuronal differentiation, cell growth, and mobility. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188829 [Multi-domain]  Cd Length: 53  Bit Score: 37.06  E-value: 1.13e-03
                         10        20        30
                 ....*....|....*....|....*....|....*...
gi 300069041 467 EVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYC 504
Cdd:cd09445   12 EEIIAEKHIYHKNCFRCKDCNKQLKVDNYQSHEGNLYC 49
PDZ2_harmonin cd06738
PDZ domain 2 of harmonin isoforms a, b, and c, and related domains; PDZ (PSD-95 (Postsynaptic ...
6-81 1.15e-03

PDZ domain 2 of harmonin isoforms a, b, and c, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of harmonin isoforms a, b, and c, and related domains. Harmonin (also known as Usher Type 1C, PDZ-73 and AIE-75) is a key organizer of the Usher (USH) protein interactome. USH syndrome is the leading cause of hereditary sensory deaf-blindness in humans; three clinically distinct types of USH have been identified, type 1 to 3. The gene encoding harmonin (USH1C) is the causative gene for the USH type 1C phenotype. There are at least 10 alternatively spliced isoforms of harmonin, which are divided into three subclasses (a, b, and c). All isoforms contain the first two PDZ domains and the first coiled-coil domain. The a and b isoforms all have a third PDZ domain. The different PDZ domains are responsible for interactions with all known Usher syndrome type 1 proteins, and most Usher syndrome type 2 proteins. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This harmonin family PDZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467220 [Multi-domain]  Cd Length: 82  Bit Score: 38.07  E-value: 1.15e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 300069041   6 VSLVGPAPWGFRLQGGKDFNMPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTgSLNMTL 81
Cdd:cd06738    7 ISLVGTRGLGCSISSGPTQKPGIFISNVKPGSLAEEVGLEVGDQIVEVNGTSFTNVDHKEAVMALKSSR-HLTITV 81
LIM1_Prickle_3 cd09841
The first LIM domain of Prickle 3; The first LIM domain of Prickle 3/LIM domain only 6 (LM06): ...
516-568 1.24e-03

The first LIM domain of Prickle 3; The first LIM domain of Prickle 3/LIM domain only 6 (LM06): Prickle contains three C-terminal LIM domains and a N-terminal PET domain. Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). PCP establishment requires the conserved Frizzled/Dishevelled PCP pathway. Prickle interacts with Dishevelled, thereby modulating Frizzled/Dishevelled activity and PCP signaling. Four forms of prickles have been identified: prickle 1-4. The best characterized is prickle 1 and prickle 2 which are differentially expressed. While prickle 1 is expressed in fetal heart and hematological malignancies, prickle 2 is found in fetal brain, adult cartilage, pancreatic islet, and some types of timorous cells. Mutations in prickle 1 have been linked to progressive myoclonus epilepsy. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188872  Cd Length: 59  Bit Score: 37.16  E-value: 1.24e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*..
gi 300069041 516 CRGCEFPIEAGDMFLEA----LGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKH 568
Cdd:cd09841    1 CQQCGRQICGGDIAVFAsragLGACWHPQCFQCASCQELLVDLIYFYQDGKIYCGRH 57
LIM1_Lhx1_Lhx5 cd09367
The first LIM domain of Lhx1 (also known as Lim1) and Lhx5; The first LIM domain of Lhx1 (also ...
457-508 1.30e-03

The first LIM domain of Lhx1 (also known as Lim1) and Lhx5; The first LIM domain of Lhx1 (also known as Lim1) and Lhx5. Lhx1 and Lhx5 are closely related members of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Lhx1 is required for regulating the vertebrate head organizer, the nervous system, and female reproductive tract development. During embryogenesis in the mouse, Lhx1 is expressed early in mesodermal tissue, then later during urogenital, kidney, liver, and nervous system development. In the adult, expression is restricted to the kidney and brain. A mouse embryos with Lhx1 gene knockout cannot grow normal anterior head structures, kidneys, and gonads, but with normally developed trunk and tail morphology. In the developing nervous system, Lhx1 is required to direct the trajectories of motor axons in the limb. Lhx1 null female mice lack the oviducts and uterus. Lhx5 protein may play complementary or overlapping roles with Lhx1. The expression of Lhx5 in the anterior portion of the mouse neural tube suggests a role in patterning of the forebrain. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188753 [Multi-domain]  Cd Length: 52  Bit Score: 37.02  E-value: 1.30e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKILGE-VINALKQTWHVSCFVCVACGKPIRNNVFHlEDGEPYCETDY 508
Cdd:cd09367    1 CAGCDRPILDKfLLNVLDRAWHAKCVQCCDCKCPLTEKCFS-REGKLYCRNDF 52
PDZ3_DLG5-like cd06767
PDZ domain 3 of Discs Large 5 (Dlg5) and related domains; PDZ (PSD-95 (Postsynaptic density ...
13-82 1.30e-03

PDZ domain 3 of Discs Large 5 (Dlg5) and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 3 of Drosophila and mammalian Dlg5, and related domains. Dlg5 is a scaffold protein with multiple conserved functions that are independent of each other in regulating growth, cell polarity, and cell adhesion. It has a coiled-coil domain, 4 PDZ domains and a MAGUK domain (an SH3 domain next to a non-catalytically active guanylate kinase domain). Deregulation of Dlg5 has been implicated in the malignancy of several cancer types. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Dlg5-like family PDZ3 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467248 [Multi-domain]  Cd Length: 82  Bit Score: 38.08  E-value: 1.30e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 300069041  13 PWGFRLQGGKD---FnmpltISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQ 82
Cdd:cd06767   14 PLGISIVSGENggiF-----VSSVTEGSLAHQAGLEYGDQLLEVNGINLRNATEQQAALILRQCGDTITMLVQ 81
LIM4_Paxillin cd09411
The fourth LIM domain of Paxillin; The fourth LIM domain of Paxillin: Paxillin is an adaptor ...
516-565 1.36e-03

The fourth LIM domain of Paxillin; The fourth LIM domain of Paxillin: Paxillin is an adaptor protein, which recruits key components of the signal-transduction machinery to specific sub-cellular locations to respond to environmental changes rapidly. The C-terminal region of paxillin contains four LIM domains which target paxillin to focal adhesions, presumably through a direct association with the cytoplasmic tail of beta-integrin. The N-terminal of paxillin is leucine-rich LD-motifs. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. The binding partners of paxillin are diverse and include protein tyrosine kinases, such as Src and FAK, structural proteins, such as vinculin and actopaxin, and regulators of actin organization. Paxillin recruits these proteins to their function sites to control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188795 [Multi-domain]  Cd Length: 52  Bit Score: 36.85  E-value: 1.36e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 300069041 516 CRGCEFPIEAgdMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09411    1 CSGCQKPITG--RCITAMGKKFHPEHFVCAFCLKQLNKGTFKEQNDKPYC 48
LIM2_CRP3 cd09482
The second LIM domain of Cysteine Rich Protein 3 (CRP3/MLP); The second LIM domain of Cysteine ...
516-566 1.38e-03

The second LIM domain of Cysteine Rich Protein 3 (CRP3/MLP); The second LIM domain of Cysteine Rich Protein 3 (CRP3/MLP): Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to short glycine-rich repeats (GRRs). The CRP family members include CRP1, CRP2, CRP3/MLP and TLPCRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription circuits, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network.CRP3 also called Muscle LIM Protein (MLP), which is a striated muscle-specific factor that enhances myogenic differentiation. The second LIM domain of CRP3/MLP interacts with cytoskeletal protein beta-spectrin. CRP3/MLP also interacts with the basic helix-loop-helix myogenic transcription factors MyoD, myogenin, and MRF4 thereby increasing their affinity for specific DNA regulatory elements. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188866 [Multi-domain]  Cd Length: 54  Bit Score: 36.91  E-value: 1.38e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 300069041 516 CRGCEFPIEAGDMFLEAlGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCK 566
Cdd:cd09482    1 CPRCGKSVYAAEKVMGG-GKPWHKTCFRCAICGKSLESTTVTDKDGELYCK 50
LIM4_LIMPETin cd09425
The fourth LIM domain of protein LIMPETin; The fourth LIM domain of protein LIMPETin: LIMPETin ...
414-449 1.49e-03

The fourth LIM domain of protein LIMPETin; The fourth LIM domain of protein LIMPETin: LIMPETin contains 6 LIM domains at the C-terminal and an N-terminal PET domain. Four of the six LIM domains are highly homologous to the four and half LIM domain protein family and two of them show sequence similarity to the LIM domains of the Testin family. Thus, LIMPETin may be the recombinant product of genes coding testin and FHL proteins. In Schistosoma mansoni, where LIMPETin was first identified, LIMPETin is down regulated in sexually mature adult Schistosoma females compared to sexually immature adult females and adult male. Its differential expression indicates that it is a transcription regulator. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188809  Cd Length: 54  Bit Score: 37.03  E-value: 1.49e-03
                         10        20        30
                 ....*....|....*....|....*....|....*.
gi 300069041 414 GKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09425   19 GQQWHEKCFCCCECKQPIGTKSFIPKDDDVYCVPCY 54
LIM6_LIMPETin cd09432
The sixth LIM domain of protein LIMPETin; The sixth LIM domain of protein LIMPETin: LIMPETin ...
516-565 1.70e-03

The sixth LIM domain of protein LIMPETin; The sixth LIM domain of protein LIMPETin: LIMPETin contains 6 LIM domains at the C-terminal and an N-terminal PET domain. Four of the six LIM domains are highly homologous to the four and half LIM domain protein family and two of them show sequence similarity to the LIM domains of the testin family. Thus, LIMPETin may be the recombinant product of genes coding testin and FHL proteins. In Schistosoma mansoni, where LIMPETin was first identified, LIMPETin is down regulated in sexually mature adult Schistosoma females compared to sexually immature adult females and adult male. Its differential expression indicates that it is a transcription regulator. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188816  Cd Length: 56  Bit Score: 36.68  E-value: 1.70e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 516 CRGCEFPIEA--GDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09432    1 CAACGKPITGigGTKFISFEDRHWHNDCFNCAGCRTSLVGKGFITDGGRILC 52
LIM1_CRP cd09402
The first LIM domain of Cysteine Rich Protein (CRP); The first LIM domain of Cysteine Rich ...
457-508 1.71e-03

The first LIM domain of Cysteine Rich Protein (CRP); The first LIM domain of Cysteine Rich Protein (CRP): Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to a short glycine-rich repeats (GRRs). The CRP family members include CRP1, CRP2, CRP3/MLP. CRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription control, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network. It is evident that CRP1, CRP2, and CRP3/MLP are involved in promoting protein assembly along the actin-based cytoskeleton. Although members of the CRP family share common binding partners, they are also capable of recognizing different and specific targets. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188786  Cd Length: 53  Bit Score: 36.87  E-value: 1.71e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKIL-GEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09402    1 CGACEKTVYhAEEVQCEGRSFHKSCFLCMVCRKNLDSTTVAAHEDEIYCKSCY 53
PDZ1_FL-whirlin cd06740
PDZ domain 1 of the full-length isoform of whirlin and related domains; PDZ (PSD-95 ...
14-82 1.72e-03

PDZ domain 1 of the full-length isoform of whirlin and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 1 of the full-length isoform of whirlin and related domains. Whirlin is an essential protein for developmental pathways in photoreceptor cells of the retina and hair cells of the inner ear. The full-length whirlin isoform has two harmonin N-like domains, three PDZ domains, a proline-rich region, and a PDZ-binding motif. Whirlin isoforms may form different complexes at the periciliary membrane complex (PMC) in photoreceptors, and the stereociliary tip and base in inner ear hair cells. It interacts with ADGRV1 and usherin at the PMC; with SANS and RpgrORF15 at the connecting cilium in photoreceptors; with EPS8, MYO15A, p55, and CASK proteins at the stereociliary tip of inner ear hair cells; and with ADGRV1, usherin, and PDZD7 at the stereociliary base in inner ear hair cells. Mutations in the gene encoding whirlin (WHRN; also known as USH2D and DFNB31), have been found to cause either USH2 subtype (USH2D) or autosomal recessive non-syndromic deafness type 31 (DFNB31). Whirlin is the key protein in the USH2 complex (whirlin, usherin and GPR98) which recruits other USH2 causative proteins at the periciliary membrane in photoreceptors and the ankle link of the stereocilia in hair cells. Whirlin's interaction with espin, another stereociliary protein, may be important for the architecture of the USH2 complex. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This whirlin family PDZ1 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467222 [Multi-domain]  Cd Length: 82  Bit Score: 37.73  E-value: 1.72e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 300069041  14 WGFRLQGGKDFNMPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAqnkIKACTGSLNMTLQ 82
Cdd:cd06740   15 LGFSIRGGAEHGVGIYVSLVEPGSLAEKEGLRVGDQILRVNDVSFEKVTHAEA---VKILRVSKKLVLS 80
LIM3_Paxillin cd09409
The third LIM domain of paxillin; The third LIM domain of paxillin: Paxillin is an adaptor ...
398-449 1.81e-03

The third LIM domain of paxillin; The third LIM domain of paxillin: Paxillin is an adaptor protein, which recruits key components of the signal-transduction machinery to specific sub-cellular locations to respond to environmental changes rapidly. The C-terminal region of paxillin contains four LIM domains which target paxillin to focal adhesions, presumably through a direct association with the cytoplasmic tail of beta-integrin. The N-terminal of paxillin is leucine-rich LD-motifs. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. The binding partners of paxillin are diverse and include protein tyrosine kinases, such as Src and FAK, structural proteins, such as vinculin and actopaxin, and regulators of actin organization. Paxillin recruits these proteins to their function sites to control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188793 [Multi-domain]  Cd Length: 53  Bit Score: 36.74  E-value: 1.81e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09409    1 CGGCARAILENYISALNTLWHPECFVCRECFTPFVNGSFFEHDGQPYCEAHY 52
LIM_N_RAP cd09446
The LIM domain of N-RAP; The LIM domain of N-RAP: N-RAP is a muscle-specific protein ...
457-505 1.82e-03

The LIM domain of N-RAP; The LIM domain of N-RAP: N-RAP is a muscle-specific protein concentrated at myotendinous junctions in skeletal muscle and intercalated disks in cardiac muscle. LIM domain is found at the N-terminus of N-RAP and the C-terminal of N-RAP contains a region with multiple of nebulin repeats. N-RAP functions as a scaffolding protein that organizes alpha-actinin and actin into symmetrical I-Z-I structures in developing myofibrils. Nebulin repeat is known as actin binding domain. The N-RAP is hypothesized to form antiparallel dimerization via its LIM domain. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188830  Cd Length: 53  Bit Score: 36.82  E-value: 1.82e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 300069041 457 CGRCQRKIL-GEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCE 505
Cdd:cd09446    1 CARCGYGVYpAEKINCIDQTWHKACFHCEVCKMMLTVNNFVSHQKKPYCQ 50
LIM1_Lmx1a cd09370
The first LIM domain of Lmx1a; The first LIM domain of Lmx1a: Lmx1a belongs to the LHX protein ...
398-449 1.88e-03

The first LIM domain of Lmx1a; The first LIM domain of Lmx1a: Lmx1a belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Mouse Lmx1a is expressed in multiple tissues, including the roof plate of the neural tube, the developing brain, the otic vesicles, the notochord, and the pancreas. Human Lmx1a can be found in pancreas, skeletal muscle, adipose tissue, developing brain, mammary glands, and pituitary. The functions of Lmx1a in the developing nervous system were revealed by studies of mutant mouse. In mouse, mutations in Lmx1a result in failure of the roof plate to develop. Lmx1a may act upstream of other roof plate markers such as MafB, Gdf7, Bmp 6, and Bmp7. Further characterization of these mice reveals numerous defects including disorganized cerebellum, hippocampus, and cortex; altered pigmentation; female sterility; skeletal defects; and behavioral abnormalities. Within pancreatic cells, the Lmx1a protein interacts synergistically with the bHLH transcription factor E47 to activate the insulin gene enhancer/promoter. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188756 [Multi-domain]  Cd Length: 52  Bit Score: 36.67  E-value: 1.88e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 398 CAHCNQVIRGPFLVALGKS-WHPEEFNCAHCKNTMAYIGFVEEKgALYCELCY 449
Cdd:cd09370    1 CEGCNRVIQDRFLLRVNDSlWHERCLQCASCKEPLETTCFYRDK-KLYCKEDY 52
LIM1_SF3 cd09440
The first Lim domain of pollen specific protein SF3; The first Lim domain of pollen specific ...
410-453 1.88e-03

The first Lim domain of pollen specific protein SF3; The first Lim domain of pollen specific protein SF3: SF3 is a Lim protein that is found exclusively in mature plant pollen grains. It contains two LIM domains. The exact function of SF3 is unknown. It may be a transcription factor required for the expression of late pollen genes. It is possible that SF3 protein is involved in controlling pollen-specific processes such as male gamete maturation, pollen tube formation, or even fertilization. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188824 [Multi-domain]  Cd Length: 63  Bit Score: 37.06  E-value: 1.88e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....
gi 300069041 410 LVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCYEKFF 453
Cdd:cd09440   18 LSADGVVYHKSCFRCSHCKGTLKLSNYSSMEGVLYCKPHFEQLF 61
LIM1_CRP3 cd09481
The first LIM domain of Cysteine Rich Protein 3 (CRP3/MLP); The first LIM domain of Cysteine ...
456-508 1.91e-03

The first LIM domain of Cysteine Rich Protein 3 (CRP3/MLP); The first LIM domain of Cysteine Rich Protein 3 (CRP3/MLP): Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to short glycine-rich repeats (GRRs). The CRP family members include CRP1, CRP2, CRP3/MLP and TLPCRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription circuits, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network.CRP3 also called Muscle LIM Protein (MLP), which is a striated muscle-specific factor that enhances myogenic differentiation. CRP3/MLP interacts with cytoskeletal protein beta-spectrin. CRP3/MLP also interacts with the basic helix-loop-helix myogenic transcriptio n factors MyoD, myogenin, and MRF4 thereby increasing their affinity for specific DNA regulatory elements. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188865  Cd Length: 54  Bit Score: 36.66  E-value: 1.91e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 456 ECGRCQRKIL-GEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09481    1 KCGACEKTVYhAEEIQCNGRSFHKTCFICMACRKALDSTTVAAHESEIYCKTCY 54
PDZ_GOPC-like cd06800
PDZ domain of Golgi-associated PDZ and coiled-coil motif-containing protein (GOPC), and ...
15-83 1.91e-03

PDZ domain of Golgi-associated PDZ and coiled-coil motif-containing protein (GOPC), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of GOPC and related domains. GOPC, also known as PIST (PDZ domain protein interacting specifically with TC10), FIG (fused in glioblastoma), and CAL (CFTR-associated ligand), regulates the trafficking of a wide array of proteins, including small GTPases, receptors, and cell surface molecules such as cadherin 23 and CFTR. It may regulate CFTR chloride currents and acid-sensing ASIC3 currents by modulating cell surface expression of both channels, and may play a role in autophagy. Interaction partners of the GOPC PDZ domains include: FZD5, FZD8, ASIC3, CFTR, MUC3, ARFRP1, Ggamma13, neuroligin, and Stargazin. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This GOPC-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467261 [Multi-domain]  Cd Length: 83  Bit Score: 37.35  E-value: 1.91e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 300069041  15 GFRLQGGKDFNMPLTISSLKDGGKASQ-AHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQR 83
Cdd:cd06800   14 GISITGGKEHGVPILISEIHEGQPADRcGGLYVGDAILSVNGIDLRDAKHKEAVTILSQQRGEITLEVVY 83
LIM1_Enigma cd09452
The first LIM domain of Enigma; The first LIM domain of Enigma: Enigma was initially ...
457-508 1.93e-03

The first LIM domain of Enigma; The first LIM domain of Enigma: Enigma was initially characterized in humans as a protein containing three LIM domains at the C-terminus and a PDZ domain at N-terminus. The third LIM domain specifically interacts with the insulin receptor and the second LIM domain interacts with the receptor tyrosine kinase Ret and the adaptor protein APS. Thus Enigma is implicated in signal transduction processes such as mitogenic activity, insulin related actin organization, and glucose metabolism. Enigma is expressed in multiple tissues, such as skeletal muscle, heart, bone and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188836 [Multi-domain]  Cd Length: 52  Bit Score: 36.70  E-value: 1.93e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09452    1 CAQCNKIIRGRYLVALGRSYHPEEFTCSQCKKVLDEGGFFEEKGSIFCPKCY 52
LIM2_LMO4 cd09387
The second LIM domain of LMO4 (LIM domain only protein 4); The second LIM domain of LMO4 (LIM ...
468-507 2.07e-03

The second LIM domain of LMO4 (LIM domain only protein 4); The second LIM domain of LMO4 (LIM domain only protein 4): LMO4 is a nuclear protein that plays important roles in transcriptional regulation and development. LMO4 is involved in various functions in tumorigenesis and cellular differentiation. LMO4 proteins regulate gene expression by interacting with a wide variety of transcription factors and cofactors to form large transcription complexes. It can interact with Smad proteins, and associate with the promoter of the PAI-1 (plasminogen activator inhibitor-1) gene in a TGFbeta (transforming growth factor beta)-dependent manner. LMO4 can also form a complex with transcription regulator CREB (cAMP response element-binding protein) and interact with CLIM1 and CLIM2. In breast tissue, LMO4 interacts with multiple proteins, including the cofactor CtIP [CtBP (C-terminal binding protein)-interacting protein], the breast and ovarian tumor suppressor BRCA1 (breast-cancer susceptibility gene 1) and the LIM-domain-binding protein LDB1. Functionally, LMO4 is shown to repress BRCA1-mediated transcription activation, thus invoking a potential role for LMO4 as a negative regulator of BRCA1 in sporadic breast cancer. LMO4 also forms complex to both ERa (oestrogen receptor alpha), MTA1 (metastasis tumor antigen 1), and HDACs (histone deacetylases), implying that LMO4 is also a component of the MTA1 corepressor complex. Over-expressed LMO4 represses ERa transactivation functions in an HDAC-dependent manner, and contributes to the process of breast cancer progression by allowing the development of Era-negative phenotypes. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188773  Cd Length: 55  Bit Score: 36.69  E-value: 2.07e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|.
gi 300069041 468 VINALKQTWHVSCFVCVACG-KPIRNNVFHLEDGEPYCETD 507
Cdd:cd09387   14 VMRAQGNVYHLKCFTCSTCHnQLVPGDRFHYVNGSLFCEHD 54
LIM2_Testin_like cd09341
The second LIM domain of Testin-like family; The second LIM domain of Testin-like family: This ...
455-504 2.18e-03

The second LIM domain of Testin-like family; The second LIM domain of Testin-like family: This family includes testin, prickle, dyxin and LIMPETin. Structurally, testin and prickle proteins contain three LIM domains at C-terminal; LIMPETin has six LIM domains; and dyxin presents only two LIM domains. However, all members of the family contain a PET protein-protein interaction domain. Testin is a cytoskeleton associated focal adhesion protein that localizes along actin stress fibers, at cell-cell-contact areas, and at focal adhesion plaques. Testin interacts with a variety of cytoskeletal proteins, including zyxin, mena, VASP, talin, and actin and it is involved in cell motility and adhesion events. Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). Dyxin involves in lung and heart development by interaction with GATA6 and blocking GATA6 activated target genes. LIMPETin might be the recombinant product of genes coding testin and four and half LIM proteins and its function is not well understood. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188727  Cd Length: 56  Bit Score: 36.43  E-value: 2.18e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 300069041 455 PECGRCQRKIL-GEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYC 504
Cdd:cd09341    1 PRCAACDELIFsGEYTQAEGKNWHLKHFCCFQCDEPLGGQRYVLREGKPYC 51
LIM3_Testin_like cd09342
The third LIM domain of Testin-like family; The third LIM domain of Testin_like family: This ...
516-565 2.39e-03

The third LIM domain of Testin-like family; The third LIM domain of Testin_like family: This family includes testin, prickle, dyxin and LIMPETin. Structurally, testin and prickle proteins contain three LIM domains at C-terminal; LIMPETin has six LIM domains; and dyxin presents only two LIM domains. However, all members of the family contain a PET protein-protein interaction domain. Testin is a cytoskeleton associated focal adhesion protein that localizes along actin stress fibers, at cell-cell-contact areas, and at focal adhesion plaques. Testin interacts with a variety of cytoskeletal proteins, including zyxin, mena, VASP, talin, and actin and it is involved in cell motility and adhesion events. Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). Dyxin involves in lung and heart development by interaction with GATA6 and blocking GATA6 activated target genes. LIMPETin might be the recombinant product of genes coding testin and four and half LIM proteins and its function is not well understood. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188728  Cd Length: 57  Bit Score: 36.60  E-value: 2.39e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWH--DTCFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09342    1 CDACGEPIGPDVQRVAHNGQHWHatEECFCCSNCKKSLLGQPFLPKNGQIFC 52
LIM2_Lhx1_Lhx5 cd09375
The second LIM domain of Lhx1 (also known as Lim1) and Lhx5; The second LIM domain of Lhx1 ...
457-508 2.40e-03

The second LIM domain of Lhx1 (also known as Lim1) and Lhx5; The second LIM domain of Lhx1 (also known as Lim1) and Lhx5. Lhx1 and Lhx5 are closely related members of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Lhx1 is required for regulating the vertebrate head organizer, the nervous system, and female reproductive tract development. During embryogenesis in the mouse, Lhx1 is expressed early in mesodermal tissue, then later during urogenital, kidney, liver, and nervous system development. In the adult, expression is restricted to the kidney and brain. A mouse embryos with Lhx1 gene knockout cannot grow normal anterior head structures, kidneys, and gonads, but with normally developed trunk and tail morphology. In the developing nervous system, Lhx1 is required to direct the trajectories of motor axons in the limb. Lhx1 null female mice lack the oviducts and uterus. Lhx5 protein may play complementary or overlapping roles with Lhx1. The expression of Lhx5 in the anterior portion of the mouse neural tube suggests a role in patterning of the forebrain. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188761  Cd Length: 56  Bit Score: 36.57  E-value: 2.40e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 300069041 457 CGRCQRKILGE--VINALKQTWHVSCFVCVACGKPIR--NNVFHLEDGEPYCETDY 508
Cdd:cd09375    1 CAGCDQGISPNdlVRRARDKVFHLNCFTCMVCRKQLStgEELYILDENKFICKEDY 56
PDZ1_PDZD7-like cd10833
PDZ domain 1 of the canonical isoform 1 of PDZ domain containing 7 (PDZD7), and related ...
15-83 2.45e-03

PDZ domain 1 of the canonical isoform 1 of PDZ domain containing 7 (PDZD7), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 1 of the long isoform 1 of PDZD7, and related domains. PDZD7 is critical for the organization of Usher syndrome type 2 (USH2) complex. Usher syndrome is the leading cause of hereditary sensory deaf-blindness in humans; USH2 is the most common sub-type. Formation of the USH2 complex is based upon heterodimerization between PDZD7 and whirlin (another PDZ domain-containing protein) and a subsequent dynamic interplay between USH2 proteins via their multiple PDZ domains. The PDZD7 PDZ2 domain binds GPR98 (also known as VLGR1) and usherin (USH2A). PDZD7 and whirlin form heterodimers through their multiple PDZ domains; whirlin and PDZD7 interact with usherin and GPR98 to form an interdependent ankle link complex. PDZD7 also interacts with myosin VIIa. PDZD7 also forms homodimers through its PDZ2 domain. Various isoforms of PDZD7 produced by alternative splicing have been identified; this subgroup includes the first PDZ domain of the canonical isoform of PDZD7- isoform 1. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PDZD7-like family PDZ1 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467269 [Multi-domain]  Cd Length: 84  Bit Score: 37.03  E-value: 2.45e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 300069041  15 GFRLQGGKDFNMPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAqnkIKACTGS--LNMTLQR 83
Cdd:cd10833   15 GFSVRGGSEHGLGIFVSKVEEGSAAERAGLCVGDKITEVNGVSLENITMSSA---VKVLTGSnrLRMVVRR 82
PDZ2_APBA1_3-like cd06793
PDZ domain 2 of amyloid-beta A4 precursor protein-binding family A member 1 (APBA1), APBA2, ...
14-79 2.64e-03

PDZ domain 2 of amyloid-beta A4 precursor protein-binding family A member 1 (APBA1), APBA2, APBA3, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of APBA1, APBA2, APBA3, and related domains. The APBA/X11/Mint protein family includes three members: neuron specific APBA1 (also known as X11alpha and Mint1) and APBA2 (also known as X11beta and Mint2), and the ubiquitously expressed APBA3 (also known as X12gamma and Mint3). They are involved in regulating neuronal signaling, trafficking, and plasticity. They contain two PDZ domains (PDZ1 and PDZ2) which bind a variety of proteins: Arf GTPases (APBA1 and APBA2 PDZ2) and neurexin (APBA1 and APBA2 PDZ1 and 2) which are involved in vesicle docking and exocytosis; alpha1B subunit of N-type Ca2+ channel (APBA1 PDZ1) that is involved in ion channels; KIF17 (APBA1 PDZ1) that is involved in transport and traffic; and Alzheimer's disease related proteins, APP (APBA3 PDZ2), CCS (APBA1 PDZ2), NF-kappa-B/p65 (APBA2 PDZ2), presenilin-1 (APBA1 and APBA2 PDZ1 and PDZ2). PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This APBA1,3-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged as beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467255 [Multi-domain]  Cd Length: 78  Bit Score: 37.00  E-value: 2.64e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 300069041  14 WGFRLQGGkdfnmplTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNM 79
Cdd:cd06793   16 LGFSVQNG-------IICSLLRGGIAERGGVRVGHRIIEINGQSVVATPHEKIVQLLSNSVGEIHM 74
LIM4_Paxillin_like cd09339
The fourth LIM domain of the Paxillin-like protein family; The fourth LIM domain of the ...
516-567 2.69e-03

The fourth LIM domain of the Paxillin-like protein family; The fourth LIM domain of the Paxillin like protein family: This family consists of paxillin, leupaxin, Hic-5 (ARA55), and other related proteins. There are four LIM domains in the C-terminal of the proteins and leucine-rich LD-motifs in the N-terminal region. Members of this family are adaptor proteins to recruit key components of signal-transduction machinery to specific sub-cellular locations. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. Paxillin serves as a platform for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression that are necessary for cell migration and survival. Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. It associates with focal adhesion kinases PYK2 and pp125FAK and identified to be a component of the osteoclast pososomal signaling complex. Hic-5 controls cell proliferation, migration and senescence by functioning as coactivator for steroid receptors such as androgen receptor, glucocorticoid receptor and progesterone receptor. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188725 [Multi-domain]  Cd Length: 52  Bit Score: 36.16  E-value: 2.69e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 516 CRGCEFPIEAGdmFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKK 567
Cdd:cd09339    1 CAGCGKPITGR--CITAMGRKFHPEHFVCAFCLKQLSKGTFKEQDDKPYCHP 50
LIM1_Ajuba_like cd09352
The first LIM domain of Ajuba-like proteins; The first LIM domain of Ajuba-like proteins: ...
516-567 2.73e-03

The first LIM domain of Ajuba-like proteins; The first LIM domain of Ajuba-like proteins: Ajuba like LIM protein family includes three highly homologous proteins Ajuba, Limd1, and WTIP. Members of the family contain three tandem C-terminal LIM domains and a proline-rich N-terminal region. This family of proteins functions as scaffolds, participating in the assembly of numerous protein complexes. In the cytoplasm, Ajuba binds Grb2 to modulate serum-stimulated ERK activation. Ajuba also recruits the TNF receptor-associated factor 6 (TRAF6) to p62 and activates PKCKappa activity. Ajuba interacts with alpha-catenin and F-actin to contribute to the formation or stabilization of adheren junctions by linking adhesive receptors to the actin cytoskeleton. Although Ajuba is a cytoplasmic protein, it can shuttle into the nucleus. In nucleus, Ajuba functions as a corepressor for the zinc finger-protein Snail. It binds to the SNAG repression domain of Snail through its LIM region. Arginine methyltransferase-5 (Prmt5), a protein in the complex, is recruited to Snai l through an interaction with Ajuba. This ternary complex functions to repress E-cadherin, a Snail target gene. In addition, Ajuba contains functional nuclear-receptor interacting motifs and selectively interacts with retinoic acid receptors (RARs) and rexinoid receptor (RXRs) to negatively regulate retinoic acid signaling. Wtip, the Wt1-interacting protein, was originally identified as an interaction partner of the Wilms tumour protein 1 (WT1). Wtip is involved in kidney and neural crest development. Wtip interacts with the receptor tyrosine kinase Ror2 and inhibits canonical Wnt signaling. LIMD1 was reported to inhibit cell growth and metastases. The inhibition may be mediated through an interaction with the protein barrier-to-autointegration (BAF), a component of SWI/SNF chromatin-remodeling protein; or through the interaction with retinoblastoma protein (pRB), resulting in inhibition of E2F-mediated transcription, and expression of the majority of genes with E2F1- responsive elements. Recently, Limd1 was shown to interact with the p62/sequestosome protein and influence IL-1 and RANKL signaling by facilitating the assembly of a p62/TRAF6/a-PKC multi-protein complex. The Limd1-p62 interaction affects both NF-kappaB and AP-1 activity in epithelial cells and osteoclasts. Moreover, LIMD1 functions as tumor repressor to block lung tumor cell line in vitro and in vivo. Recent studies revealed that LIM proteins Wtip, LIMD1 and Ajuba interact with components of RNA induced silencing complexes (RISC) as well as eIF4E and the mRNA m7GTP cap-protein complex and are required for microRNA-mediated gene silencing. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188738  Cd Length: 54  Bit Score: 36.26  E-value: 2.73e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKK 567
Cdd:cd09352    1 CVKCGKGVYGASQACQAMGNLYHTNCFTCCSCGRTLRGKAFYNVNGKVYCEE 52
LIM_CRIP cd09478
The LIM domain of Cysteine-Rich Intestinal Protein (CRIP); The LIM domain of Cysteine-Rich ...
457-509 2.79e-03

The LIM domain of Cysteine-Rich Intestinal Protein (CRIP); The LIM domain of Cysteine-Rich Intestinal Protein (CRIP): CRIP is a short protein with only one LIM domain. CRIP gene is developmentally regulated and can be induced by glucocorticoid hormones during the first three postnatal weeks. The domain shows close sequence homology to LIM domain of thymus LIM protein. However, unlike the TLP proteins which have two LIM domains, the members of this family have only one LIM domain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188862  Cd Length: 54  Bit Score: 36.01  E-value: 2.79e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 457 CGRCQRKI-LGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDYY 509
Cdd:cd09478    1 CPKCDKEVyFAERVTSLGKDWHRPCLKCEKCGKTLTPGSHAEHDGKPYCNHPCY 54
LIM1_TLP cd09476
The first LIM domain of thymus LIM protein (TLP); The first LIM domain of thymus LIM protein ...
457-509 2.82e-03

The first LIM domain of thymus LIM protein (TLP); The first LIM domain of thymus LIM protein (TLP): TLP is the distant member of the CRP family of proteins. TLP has two isomers (TLP-A and TLP-B) and sharing approximately 30% with each of the three other CRPs. Like CRP1, CRP2 and CRP3/MLP, TLP has two LIM domains, connected by a flexible linker region. Unlike the CRPs, TLP lacks the nuclear targeting signal (K/R-K/R-Y-G-P-K) and is localized solely in the cytoplasm. TLP is specifically expressed in the thymus in a subset of cortical epithelial cells. TLP has a role in development of normal thymus and in controlling the development and differentiation of thymic epithelial cells. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188860  Cd Length: 54  Bit Score: 36.10  E-value: 2.82e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 457 CGRCQRKI-LGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDYY 509
Cdd:cd09476    1 CPRCDKTVyFAEKVSSLGKNWHRFCLKCERCSKILSPGGHAEHDGKPYCHKPCY 54
PDZ1_MAGI-1_3-like cd06731
PDZ domain 1 of membrane-associated guanylate kinase inverted 1 (MAGI-1), MAGI-2, and MAGI-3, ...
4-66 2.84e-03

PDZ domain 1 of membrane-associated guanylate kinase inverted 1 (MAGI-1), MAGI-2, and MAGI-3, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 1 of MAGI1, 2, 3 (MAGI is also known as Membrane-associated guanylate kinase, WW and PDZ domain-containing protein) and related domains. MAGI proteins have been implicated in the control of cell migration and invasion through altering the activity of phosphatase and tensin homolog (PTEN) and modulating Akt signaling. Four MAGI proteins have been identified (MAGI1-3 and MAGIX). MAGI1-3 have 6 PDZ domains and bind to the C-terminus of PTEN via their PDZ2 domain. MAGIX has a single PDZ domain that is related to MAGI1-3 PDZ domain 5. Other binding partners for MAGI1 include JAM4, C-terminal tail of high risk HPV-18 E6, megalin, TRAF6, Kir4.1 (basolateral K+ channel subunit), and cadherin 23; for MAGI2, include DASM1, dendrin, axin, beta- and delta-catenin, neuroligin, hyperpolarization-activated cation channels, beta1-adrenergic receptors, NMDA receptor, and TARPs; and for MAGI3 includes LPA2. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MAGI family PDZ1 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2); arranged as beta-strands A, -B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467213 [Multi-domain]  Cd Length: 85  Bit Score: 37.19  E-value: 2.84e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 300069041   4 YSVSLV-GPAPWGFRLQGGKDFNMPLTISSLKDGGKASQ-AHVRIGDVVLSIDGISAQGMTHLEA 66
Cdd:cd06731    2 IRTSLKkSARGFGFTIIGGDEPDEFLQIKSVVPDGPAALdGKLRTGDVLVSVNDTCVLGYTHADV 66
LIM2_FHL3 cd09427
The second LIM domain of Four and a half LIM domains protein 3 (FHL3); The second LIM domain ...
474-504 2.85e-03

The second LIM domain of Four and a half LIM domains protein 3 (FHL3); The second LIM domain of Four and a half LIM domains protein 3 (FHL3): FHL3 is highly expressed in the skeleton and cardiac muscles and possesses the transactivation and repression activities. FHL3 interacts with many transcription factors, such as CREB, BKLF/KLF3, CtBP2, MyoD, and MZF_1. Moreover, FHL3 interacts with alpha- and beta-subunits of the muscle alpha7beta1 integrin receptor. FHL3 was also proved to possess the auto-activation ability and was confirmed that the second zinc finger motif in fourth LIM domain was responsible for the auto-activation of FHL3. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188811  Cd Length: 58  Bit Score: 36.37  E-value: 2.85e-03
                         10        20        30
                 ....*....|....*....|....*....|.
gi 300069041 474 QTWHVSCFVCVACGKPIRNNVFHLEDGEPYC 504
Cdd:cd09427   23 QTWHEHCFICHGCEQPIGSRSFIPDKDEHYC 53
PDZ_RGS12-like cd06710
PDZ domain of regulator of G-protein signaling 12 (RGS12), and related domains; PDZ (PSD-95 ...
10-82 2.89e-03

PDZ domain of regulator of G-protein signaling 12 (RGS12), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of RGS12, and related domains. RGS12 downregulates GPCR signal transduction by increasing the GTPase activity of G-protein alpha subunits, thereby driving G-proteins into their inactive GDP-bound form. The RGS12 PDZ domain can bind selectively to C-terminal (A/S)-T-X-(L/V) motifs as found within both the CXCR2 IL-8 receptor, and the alternative 3' exon form of RGS12. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This RGS12-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467194 [Multi-domain]  Cd Length: 76  Bit Score: 36.84  E-value: 2.89e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 300069041  10 GPAPWGFRLQGgkdfNMPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQ 82
Cdd:cd06710    8 GRAGYGFTISG----QAPCVLSCVVRGSPADVAGLKAGDQILAVNGINVSKASHEDVVKLIGKCTGVLRLVIA 76
PDZ_ARHGEF11-12-like cd23069
PDZ domain of ARHGEF11, ARHGEF12, and related domains; PDZ (PSD-95 (Postsynaptic density ...
27-72 3.15e-03

PDZ domain of ARHGEF11, ARHGEF12, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of ARHGEF11, ARHGEF12, and related domains. This subfamily includes the GEFs (guanine exchange factors) ARHGEF11 (Rho guanine nucleotide exchange factor 11, known as PDZ-RhoGEF) and ARHGEF12 (Rho guanine nucleotide exchange factor 12, also known as leukemia-associated RhoGEF). GEFs activate Rho GTPases by promoting GTP binding. ARHGEF11/12 are regulators of G protein signaling (RGS) domain-containing GEFs; the RGS domain mediates their binding to and activation of Galpha (and Gq also in the case of ARHGEF12), in response to G-protein coupled receptor activation. ARHGEF11 and 12 are involved in serum-signaling, and regulate Yes-Associated Protein (YAP1)-dependent transcription. The ARHGEF12 PDZ domain binds plexin-B1 and the receptor tyrosine kinase insulin-like growth factor receptor (IGF-R1) beta-subunit. ARHGEF12 also interacts with glutamate receptor delta-1(GluD1), a postsynaptic organizer of inhibitory synapses in cortical pyramidal neurons. The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This ARHGEF11-12-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467282 [Multi-domain]  Cd Length: 76  Bit Score: 36.60  E-value: 3.15e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*.
gi 300069041  27 PLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKA 72
Cdd:cd23069   22 PVFVQSVKEGGAAYRAGVQEGDRIIKVNGTLVTHSNHLEVVKLIKS 67
LIM1_Zyxin cd09349
The first LIM domain of Zyxin; The first LIM domain of Zyxin: Zyxin exhibits three copies of ...
382-449 3.28e-03

The first LIM domain of Zyxin; The first LIM domain of Zyxin: Zyxin exhibits three copies of the LIM domain, an extensive proline-rich domain and a nuclear export signal. Localized at sites of cell substratum adhesion in fibroblasts, Zyxin interacts with alpha-actinin, members of the cysteine-rich protein (CRP) family, proteins that display Src homology 3 (SH3) domains and Ena/VASP family members. Zyxin and its partners have been implicated in the spatial control of actin filament assembly as well as in pathways important for cell differentiation. In addition to its functions at focal adhesion plaques, recent work has shown that zyxin moves from the sites of cell contacts to the nucleus, where it directly participates in the regulation of gene expression. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188735 [Multi-domain]  Cd Length: 87  Bit Score: 36.76  E-value: 3.28e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 300069041 382 LVQRAEHIPAGKRTPM--CAHCNQVI--RGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09349   16 LMQDMDHPPAAEAATNelCGICGQPLsrTQPAVRALGHLFHVTCFTCHQCEQQLQGQQFYSLEGKPYCEECY 87
LIM2_FHL1 cd09424
The second LIM domain of Four and a half LIM domains protein 1 (FHL1); The second LIM domain ...
414-453 3.48e-03

The second LIM domain of Four and a half LIM domains protein 1 (FHL1); The second LIM domain of Four and a half LIM domains protein 1 (FHL1): FHL1 is heavily expressed in skeletal and cardiac muscles. It plays important roles in muscle growth, differentiation, and sarcomere assembly by acting as a modulator of transcription factors. Defects in FHL1 gene are responsible for a number of Muscular dystrophy-like muscle disorders. It has been detected that FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188808  Cd Length: 58  Bit Score: 35.89  E-value: 3.48e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|
gi 300069041 414 GKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCYEKFF 453
Cdd:cd09424   19 GNVWHKDCFTCSNCKQPIGTKSFFPKGEDFYCVPCHEKKF 58
LIM2_Lhx1_Lhx5 cd09375
The second LIM domain of Lhx1 (also known as Lim1) and Lhx5; The second LIM domain of Lhx1 ...
516-566 3.57e-03

The second LIM domain of Lhx1 (also known as Lim1) and Lhx5; The second LIM domain of Lhx1 (also known as Lim1) and Lhx5. Lhx1 and Lhx5 are closely related members of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Lhx1 is required for regulating the vertebrate head organizer, the nervous system, and female reproductive tract development. During embryogenesis in the mouse, Lhx1 is expressed early in mesodermal tissue, then later during urogenital, kidney, liver, and nervous system development. In the adult, expression is restricted to the kidney and brain. A mouse embryos with Lhx1 gene knockout cannot grow normal anterior head structures, kidneys, and gonads, but with normally developed trunk and tail morphology. In the developing nervous system, Lhx1 is required to direct the trajectories of motor axons in the limb. Lhx1 null female mice lack the oviducts and uterus. Lhx5 protein may play complementary or overlapping roles with Lhx1. The expression of Lhx5 in the anterior portion of the mouse neural tube suggests a role in patterning of the forebrain. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188761  Cd Length: 56  Bit Score: 35.80  E-value: 3.57e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLE--GQTFFSKKDKPLCK 566
Cdd:cd09375    1 CAGCDQGISPNDLVRRARDKVFHLNCFTCMVCRKQLStgEELYILDENKFICK 53
PDZ2_DLG5-like cd06765
PDZ domain 2 of Discs Large 5 (Dlg5) and related domains; PDZ (PSD-95 (Postsynaptic density ...
18-83 3.60e-03

PDZ domain 2 of Discs Large 5 (Dlg5) and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of Drosophila and mammalian Dlg5, and related domains. Dlg5 is a scaffold protein with multiple conserved functions that are independent of each other in regulating growth, cell polarity, and cell adhesion. It has a coiled-coil domain, 4 PDZ domains and a MAGUK domain (an SH3 domain next to a non-catalytically active guanylate kinase domain). Deregulation of Dlg5 has been implicated in the malignancy of several cancer types. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Dlg5-like family PSZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467246 [Multi-domain]  Cd Length: 77  Bit Score: 36.55  E-value: 3.60e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 300069041  18 LQGGKDFNMPLT----ISSLKDGGKAS-QAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQR 83
Cdd:cd06765    4 LSGQKDSGISLEngvfISRIVPGSPAAkEGSLTVGDRIIAINGIALDNKSLSECEALLRSCRDSLSLSLMK 74
cpPDZ_Deg_HtrA-like cd06779
permuted PDZ domain of Deg/high-temperature requirement factor A (HtrA) family of housekeeping ...
30-83 3.84e-03

permuted PDZ domain of Deg/high-temperature requirement factor A (HtrA) family of housekeeping serine proteases and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of Deg/HtrA-type serine proteases that participate in folding and degradation of aberrant proteins, and in processing and maturation of native proteins. Typically, these proteases have an N-terminal serine protease domain and at least one C-terminal PDZ domain that recognizes substrates, and in some cases activates the protease function. An exception is yeast Nma11p which has two protease domains and four PDZ domains; its N-terminal half is comprised of a protease domain, followed by two PDZ domains, and its C-terminal half has a similar domain arrangement. HtrA-type proteases include the human HtrA1-4 and MBTPS2, tricorn protease, DegS, DegP and C-terminal processing peptidase, cyanobacterial serine proteases Hhoa, HhoB, and HtrA, and yeast Nma11p. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-termini of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains and as well as those with circular permutations and domain swapping of beta-strands. The canonical PDZ domain contains six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2); arranged as A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. This Deg/HtrA family PDZ domain is a circularly permuted PDZ domain which places beta-strand A at the C-terminus. Another permutation exists in the PDZ superfamily which places both beta-strands A and B on the C-terminus.


Pssm-ID: 467621 [Multi-domain]  Cd Length: 91  Bit Score: 36.89  E-value: 3.84e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041  30 ISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQR 83
Cdd:cd06779   29 VAEVIPGSPAAKAGLKEGDVILSVNGKPVTSFNDLRAALDTKKPGDSLNLTILR 82
LIM2_CRP2 cd09840
The second LIM domain of Cysteine Rich Protein 2 (CRP2); The second LIM domain of Cysteine ...
516-566 3.94e-03

The second LIM domain of Cysteine Rich Protein 2 (CRP2); The second LIM domain of Cysteine Rich Protein 2 (CRP2): Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to short glycine-rich repeats (GRRs). The CRP family members include CRP1, CRP2, CRP3/MLP and TLPCRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription circuits, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network.CRP3 also called Muscle LIM Protein (MLP), which is a striated muscle-specific factor that enhances myogenic differentiation. The second LIM domain of CRP3/MLP interacts with cytoskeletal protein beta-spectrin. CRP3/MLP also interacts with the basic helix-loop-helix myogenic transcription factors MyoD, myogenin, and MRF4 thereby increasing their affinity for specific DNA regulatory elements. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188871 [Multi-domain]  Cd Length: 54  Bit Score: 35.85  E-value: 3.94e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 300069041 516 CRGCEFPIEAGDMFLEAlGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCK 566
Cdd:cd09840    1 CSRCGDSVYAAEKIMGA-GKPWHKNCFRCAKCGKSLESTTLTEKEGEIYCK 50
LIM2_FHL5 cd09428
The second LIM domain of Four and a half LIM domains protein 5 (FHL5); The second LIM domain ...
516-565 3.97e-03

The second LIM domain of Four and a half LIM domains protein 5 (FHL5); The second LIM domain of Four and a half LIM domains protein 5 (FHL5): FHL5 is a tissue-specific coactivator of CREB/CREM family transcription factors , which are highly expressed in male germ cells and is required for post-meiotic gene expression. FHL5 associates with CREM and confers a powerful transcriptional activation function. Activation by CREB has known to occur upon phosphorylation at an essential regulatory site and the subsequent interaction with the ubiquitous coactivator CREB-binding protein (CBP). However, the activation by FHL5 is independent of phosphorylation and CBP association. It represents a new route for transcriptional activation by CREM and CREB. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188812  Cd Length: 54  Bit Score: 35.59  E-value: 3.97e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09428    1 CFHCKKTIMPGSRKLEFEGNEWHETCFVCQSCQQPIGTKPLITKENKNYC 50
LIM1_PINCH cd09331
The first LIM domain of protein PINCH; The first LIM domain of paxillin: Paxillin is an ...
516-566 3.99e-03

The first LIM domain of protein PINCH; The first LIM domain of paxillin: Paxillin is an adaptor protein, which recruits key components of the signal-transduction machinery to specific sub-cellular locations to respond to environmental changes rapidly. The C-terminal region of paxillin contains four LIM domains which target paxillin to focal adhesions, presumably through a direct association with the cytoplasmic tail of beta-integrin. The N-terminal of paxillin is leucine-rich LD-motifs. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. The binding partners of paxillin are diverse and include protein tyrosine kinases, such as Src and FAK, structural proteins, such as vinculin and actopaxin, and regulators of actin organization. Paxillin recruits these proteins to their function sites to control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188717  Cd Length: 59  Bit Score: 35.77  E-value: 3.99e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCK 566
Cdd:cd09331    1 CERCREGFEPDEKIVNSNGELYHEQCFVCAQCFQPFPDGLFYEFEGRKYCE 51
PDZ3_FL-whirlin-like cd06742
PDZ domain 3 of the full-length isoform of whirlin, PDZ domain 1 of the short isoform of ...
15-70 4.05e-03

PDZ domain 3 of the full-length isoform of whirlin, PDZ domain 1 of the short isoform of whirlin, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 3 of the full-length isoform of whirlin, PDZ domain 1 of the short isoform of whirlin, and related domains. Whirlin is an essential protein for developmental pathways in photoreceptor cells of the retina and hair cells of the inner ear. The full-length whirlin isoform has two harmonin N-like domains, three PDZ domains, a proline-rich region, and a PDZ-binding motif. Whirlin isoforms may form different complexes at the periciliary membrane complex (PMC) in photoreceptors, and the stereociliary tip and base in inner ear hair cells. It interacts with ADGRV1 and usherin at the PMC; with SANS and RpgrORF15 at the connecting cilium in photoreceptors; with EPS8, MYO15A, p55, and CASK proteins at the stereociliary tip of inner ear hair cells; and with ADGRV1, usherin, and PDZD7 at the stereociliary base in inner ear hair cells. Mutations in the gene encoding whirlin (WHRN; also known as USH2D and DFNB31), have been found to cause either USH2 subtype (USH2D) or autosomal recessive non-syndromic deafness type 31 (DFNB31). Whirlin is the key protein in the USH2 complex (whirlin, usherin and GPR98) which recruits other USH2 causative proteins at the periciliary membrane in photoreceptors and the ankle link of the stereocilia in hair cells. Whirlin's interaction with espin, another stereociliary protein, may be important for the architecture of the USH2 complex. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This whirlin family PDZ3 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F


Pssm-ID: 467224 [Multi-domain]  Cd Length: 91  Bit Score: 36.95  E-value: 4.05e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*...
gi 300069041  15 GFRLQGGKDFNMPL-TISSLKDGGKASQA-HVRIGDVVLSIDGISAQGMTHLEAQNKI 70
Cdd:cd06742   14 GIAIEGGANTKQPLpRVINIQRGGSAHNCgGLKVGHVILEVNGTSLRGLEHREAARLI 71
LIM2_Lhx3_Lhx4 cd09376
The second LIM domain of Lhx3-Lhx4 family; The second LIM domain of Lhx3-Lhx4 family: Lhx3 and ...
516-567 4.21e-03

The second LIM domain of Lhx3-Lhx4 family; The second LIM domain of Lhx3-Lhx4 family: Lhx3 and Lhx4 belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. The LHX3 and LHX4 LIM-homeodomain transcription factors play essential roles in pituitary gland and nervous system development. Although LHX3 and LHX4 share marked sequence homology, the genes have different expression patterns. They play overlapping, but distinct functions during the establishment of the specialized cells of the mammalian pituitary gland and the nervous system. Lhx3 proteins have been demonstrated the ability to directly bind to the promoters/enhancers of several pituitary hormone gene promoters to cause increased transcription.Lhx3a and Lhx3b, whose mRNAs have distinct temporal expression profiles during development, are two isoforms of Lhx3. LHX4 plays essential roles in pituitary gland and nervous system development. In mice, the lhx4 gene is expressed in the developing hindbrain, cerebral cortex, pituitary gland, and spinal cord. LHX4 shows significant sequence similarity to LHX3, particularly to isoforms Lhx3a. In gene regulation experiments, the LHX4 protein exhibits regulation roles towards pituitary genes, acting on their promoters/enhancers. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188762  Cd Length: 56  Bit Score: 35.79  E-value: 4.21e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESLE-GQTFFSKKDKPL-CKK 567
Cdd:cd09376    1 CAGCDEGIPPTQVVRRAQDNVYHLECFACFMCKRQLEtGDEFYLMEDDRLvCKK 54
PHA03307 PHA03307
transcriptional regulator ICP4; Provisional
276-417 4.34e-03

transcriptional regulator ICP4; Provisional


Pssm-ID: 223039 [Multi-domain]  Cd Length: 1352  Bit Score: 40.15  E-value: 4.34e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 300069041  276 SSEESSGSVHVKKSSSTQEPSQQP---------ASSGASPLSASEGPESPGSSRPSVAGLRSAAAFKPVGSTSVKSPSWQ 346
Cdd:PHA03307  275 WNGPSSRPGPASSSSSPRERSPSPspsspgsgpAPSSPRASSSSSSSRESSSSSTSSSSESSRGAAVSPGPSPSRSPSPS 354
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 300069041  347 RPNQAA--PSTGRISNNARSSGTGASVGP--------PQPSDQDTLVQRAEHIPAGKRTPMCAHCNQVI-----RGPFLV 411
Cdd:PHA03307  355 RPPPPAdpSSPRKRPRPSRAPSSPAASAGrptrrrarAAVAGRARRRDATGRFPAGRPRPSPLDAGAASgafyaRYPLLT 434

                  ....*.
gi 300069041  412 ALGKSW 417
Cdd:PHA03307  435 PSGEPW 440
LIM5_LIMPETin cd09430
The fifth LIM domain of protein LIMPETin; The fifth LIM domain of protein LIMPETin: LIMPETin ...
457-504 4.56e-03

The fifth LIM domain of protein LIMPETin; The fifth LIM domain of protein LIMPETin: LIMPETin contains 6 LIM domains at the C-terminal and an N-terminal PET domain. Four of the six LIM domains are highly homologous to the four and half LIM domain protein family and two of them show sequence similarity to the LIM domains of the testin family. Thus, LIMPETin may be the recombinant product of genes coding testin and FHL proteins. In Schistosoma mansoni, where LIMPETin was first identified, LIMPETin is down regulated in sexually mature adult Schistosoma females compared to sexually immature adult females and adult male. Its differential expression indicates that it is a transcription regulator. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188814  Cd Length: 52  Bit Score: 35.53  E-value: 4.56e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*...
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYC 504
Cdd:cd09430    1 CSKCNKIINSGGVTYKNEPWHRECFTCTNCSKSLAGQRFTSRDEKPYC 48
LIM3_FHL cd09346
The third LIM domain of Four and a half LIM domains protein (FHL); The third LIM domain of ...
398-449 4.76e-03

The third LIM domain of Four and a half LIM domains protein (FHL); The third LIM domain of Four and a half LIM domains protein (FHL): LIM-only protein family consists of five members, designated FHL1, FHL2, FHL3, FHL5 and LIMPETin. The first four members are composed of four complete LIM domains arranged in tandem and an N-terminal single zinc finger domain with a consensus sequence equivalent to the C-terminal half of a LIM domain. LIMPETin is an exception, containing six LIM domains. FHL1, 2 and 3 are predominantly expressed in muscle tissues, and FHL5 is highly expressed in male germ cells. FHL proteins exert their roles as transcription co-activators or co-repressors through a wide array of interaction partners. For example, FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. FHL3 int eracts with many transcription factors, such as CREB, BKLF/KLF3, CtBP2, MyoD, and MZF_1. FHL5 is a tissue-specific coactivator of CREB/CREM family transcription factors. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188732  Cd Length: 52  Bit Score: 35.38  E-value: 4.76e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09346    1 CAKCKKAITSGGVTYRDQPWHKECFVCTGCKKQLAGQRFTSRDEYPYCVDCF 52
LIM2_LIMPETin_like cd09417
The second LIM domain of protein LIMPETin and related proteins; The second LIM domain of ...
516-567 4.94e-03

The second LIM domain of protein LIMPETin and related proteins; The second LIM domain of protein LIMPETin: LIMPETin contains 6 LIM domains at the C-terminal and an N-terminal PET domain. Four of the six LIM domains are highly homologous to the four and half LIM domain protein family and two of them show sequence similarity to the LIM domains of the testin family. Thus, LIMPETin may be the recombinant product of genes coding testin and FHL proteins. In Schistosoma mansoni, where LIMPETin was first identified, LIMPETin is down regulated in sexually mature adult Schistosoma females compared to sexually immature adult females and adult male. Its differential expression indicates that it is a transcription regulator. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188801  Cd Length: 56  Bit Score: 35.58  E-value: 4.94e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 516 CRGCEFPIEAGDmFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKK 567
Cdd:cd09417    3 SVQCDELIFSGE-YTKAMNKDWHSGHFCCWQCDESLTGQRYVLRDEHPYCIK 53
LIM2_abLIM cd09328
The second LIM domain on actin binding LIM (abLIM) proteins; The second LIM domain of actin ...
513-547 5.09e-03

The second LIM domain on actin binding LIM (abLIM) proteins; The second LIM domain of actin binding LIM (abLIM) proteins: Three homologous members of the abLIM protein family have been identified; abLIM-1, abLIM-2 and abLIM-3. The N-terminal of abLIM consists of four tandem repeats of LIM domains and the C-terminal of acting binding LIM protein is a villin headpiece domain, which has strong actin binding activity. The abLIM-1, which is expressed in retina, brain, and muscle tissue, has been indicated to function as a tumor suppressor. AbLIM-2 and -3, mainly expressed in muscle and neuronal tissue, bind to F-actin strongly. They may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription. It has shown that LIM domains of abLIMs interact with STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. All LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188714  Cd Length: 56  Bit Score: 35.40  E-value: 5.09e-03
                         10        20        30
                 ....*....|....*....|....*....|....*
gi 300069041 513 GTICRGCEFPIEagDMFLEALGYTWHDTCFVCSVC 547
Cdd:cd09328    1 GTKCDSCQDFVE--GEVVSALGKTYHPKCFVCSVC 33
LIM1_Lhx2_Lhx9 cd09369
The first LIM domain of Lhx2 and Lhx9 family; The first LIM domain of Lhx2 and Lhx9 family: ...
516-567 5.11e-03

The first LIM domain of Lhx2 and Lhx9 family; The first LIM domain of Lhx2 and Lhx9 family: Lhx2 and Lhx9 are highly homologous LHX regulatory proteins. They belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Although Lhx2 and Lhx9 are highly homologous, they seems to play regulatory roles in different organs. In animals, Lhx2 plays important roles in eye, cerebral cortex, limb, the olfactory organs, and erythrocyte development. Lhx2 gene knockout mice exhibit impaired patterning of the cortical hem and the telencephalon of the developing brain, and a lack of development in olfactory structures. Lhx9 is expressed in several regions of the developing mouse brain , the spinal cord, the pancreas, in limb mesenchyme, and in the urogenital region. Lhx9 plays critical roles in gonad development. Homozygous mice lacking functional Lhx9 alleles exhibit numerous urogenital defects, such as gonadal agenesis, infertility, and undetectable levels of testosterone and estradiol coupled with high FSH levels. Lhx9 null mice are phenotypically female, even those that are genotypically male. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188755 [Multi-domain]  Cd Length: 54  Bit Score: 35.39  E-value: 5.11e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 516 CRGCEFPIeAGDMFLEALGYTWHDTCFVCSVCCESLEGQ-TFFSKKDKPLCKK 567
Cdd:cd09369    1 CAGCGEKI-QDRFYLLAVDRQWHASCLKCCECRLPLDSElSCFSRDGNIYCKE 52
LIM_Mical cd09439
The LIM domain of Mical (molecule interacting with CasL); The LIM domain of Mical (molecule ...
457-505 5.19e-03

The LIM domain of Mical (molecule interacting with CasL); The LIM domain of Mical (molecule interacting with CasL): MICAL is a large, multidomain, cytosolic protein with a single LIM domain, a calponin homology (CH) domain and a flavoprotein monooxygenase domain. In Drosophila, MICAL is expressed in axons, interacts with the neuronal A (PlexA) receptor and is required for Semapho-rin 1a (Sema-1a)-PlexA-mediated repulsive axon guidance. The LIM domain and calporin homology domain are known for interactions with the cytoskeleton, cytoskeletal adaptor proteins, and other signaling proteins. The flavoprotein monooxygenase (MO) is required for semaphorin-plexin repulsive axon guidance during axonal pathfinding in the Drosophila neuromuscular system. In addition, MICAL was characterized to interact with Rab13 and Rab8 to coordinate the assembly of tight junctions and adherens junctions in epithelial cells. Thus, MICAL was also named junctional Rab13-binding protein (JRAB). As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188823 [Multi-domain]  Cd Length: 55  Bit Score: 35.35  E-value: 5.19e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 457 CGRCQRKI-LGEVINALKQTWHVSCFVCVACGKPIR--NNVFHLEDGEPYCE 505
Cdd:cd09439    1 CYFCKKRVyVMERLSAEGLFFHRSCFKCSYCGTTLRlgAYAFDRDDGKFYCK 52
PDZ2_L-delphilin-like cd06744
PDZ domain 2 of delphilin (L-delphilin isoform), and related domains; PDZ (PSD-95 ...
15-63 5.34e-03

PDZ domain 2 of delphilin (L-delphilin isoform), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of delphilin (also known as glutamate receptor, ionotropic, delta 2-interacting protein 1, L-delphilin). Delphilin, a postsynaptic protein which it is selectively expressed at cerebellar Purkinje cells, links the glutamate receptor delta 2 subunit (GluRdelta2) with the actin cytoskeleton and various signaling molecules. Two alternatively spliced isoforms of delphilin have been characterized: L-delphilin has two PDZ domains, PDZ1 and PDZ2, and S-delphilin has a single PDZ domain (PDZ2). These two isoforms are differently palmitoylated and may be involved in controlling GluRdelta2 signaling in Purkinje cells. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This delphilin-like family PDZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F


Pssm-ID: 467226 [Multi-domain]  Cd Length: 75  Bit Score: 36.10  E-value: 5.34e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*....
gi 300069041  15 GFRLQGgkdfNMPLTISSLKDGGKASQAHVRIGDVVLSIDGISAQGMTH 63
Cdd:cd06744   12 GFTLRG----HAPVYIESVDPGSAAERAGLKPGDRILFLNGLDVRNCSH 56
LIM5_PINCH cd09335
The fifth LIM domain of protein PINCH; The fifth LIM domain of protein PINCH: PINCH plays ...
398-450 5.39e-03

The fifth LIM domain of protein PINCH; The fifth LIM domain of protein PINCH: PINCH plays pivotal roles in the assembly of focal adhesions (FAs), regulating diverse functions in cell adhesion, growth, and differentiation through LIM-mediated protein-protein interactions. PINCH comprises an array of five LIM domains that interact with integrin-linked kinase (ILK), Nck2 (also called Nckbeta or Grb4) and other interaction partners. These interactions are essential for triggering the FA assembly and for relaying diverse mechanical and biochemical signals between Cell-extracellular matrix and the actin cytoskeleton. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188721 [Multi-domain]  Cd Length: 54  Bit Score: 35.40  E-value: 5.39e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 398 CAHCNQVIRGPFLVALGKSWHPEEFNCAHCKNTMAY-IGFVEEKGALYCELCYE 450
Cdd:cd09335    1 CYHCNQVIEGDVVSALNKTWCVDHFSCSFCDTKLTLkSKFYEFDMKPVCKKCYD 54
PDZ2_MAGI-1_3-like cd06732
PDZ domain 2 of membrane-associated guanylate kinase inverted 1 (MAGI-1), MAGI-2, and MAGI-3, ...
47-83 5.57e-03

PDZ domain 2 of membrane-associated guanylate kinase inverted 1 (MAGI-1), MAGI-2, and MAGI-3, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of MAGI1, 2, 3 (MAGI is also known as Membrane-associated guanylate kinase, WW and PDZ domain-containing protein) and related domains. MAGI proteins have been implicated in the control of cell migration and invasion through altering the activity of phosphatase and tensin homolog (PTEN) and modulating Akt signaling. Four MAGI proteins have been identified (MAGI1-3 and MAGIX). MAGI1-3 have 6 PDZ domains and bind to the C-terminus of PTEN via their PDZ2 domain. MAGIX has a single PDZ domain that is related to MAGI1-3 PDZ domain 5. Other binding partners for MAGI1 include JAM4, C-terminal tail of high risk HPV-18 E6, megalin, TRAF6, Kir4.1 (basolateral K+ channel subunit), and cadherin 23; for MAGI2, include DASM1, dendrin, axin, beta- and delta-catenin, neuroligin, hyperpolarization-activated cation channels, beta1-adrenergic receptors, NMDA receptor, and TARPs; and for MAGI3 includes LPA2. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MAGI family PDZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2); arranged as beta-strands A, -B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F.


Pssm-ID: 467214 [Multi-domain]  Cd Length: 82  Bit Score: 35.99  E-value: 5.57e-03
                         10        20        30
                 ....*....|....*....|....*....|....*....
gi 300069041  47 GDVVLSIDGISAQGMTHLEAQNKIKACT--GSLNMTLQR 83
Cdd:cd06732   43 GDLIVEINGQNVQNLSHAQVVDVLKECPkgSEVTLLVQR 81
LIM_LASP_like cd09359
The LIM domain of LIM and SH3 Protein (LASP)-like proteins; The LIM domain of LIM and SH3 ...
536-568 5.62e-03

The LIM domain of LIM and SH3 Protein (LASP)-like proteins; The LIM domain of LIM and SH3 Protein (LASP) like proteins: This family contains two types of LIM containing proteins; LASP and N-RAP. LASP family contains two highly homologous members, LASP-1 and LASP-2. LASP contains a LIM motif at its amino terminus, a src homology 3 (SH3) domains at its C-terminal part, and a nebulin-like region in the middle. LASP-1 and -2 are highly conserved in their LIM, nebulin-like, and SH3 domains, but differ significantly at their linker regions. Both proteins are ubiquitously expressed and involved in cytoskeletal architecture, especially in the organization of focal adhesions. LASP-1 and LASP-2, are important during early embryo- and fetogenesis and are highly expressed in the central nervous system of the adult. However, only LASP-1 seems to participate significantly in neuronal differentiation and plays an important functional role in migration and proliferation of certain cancer cells while the role of LASP-2 is more structural. The expression of LASP-1 in breast tumors is increased significantly. N-RAP is a muscle-specific protein concentrated at myotendinous junctions in skeletal muscle and intercalated disks in cardiac muscle. LIM domain is found at the N-terminus of N-RAP and the C-terminal of N-RAP contains a region with multiple of nebulin repeats. N-RAP functions as a scaffolding protein that organizes alpha-actinin and actin into symmetrical I-Z-I structures in developing myofibrils. Nebulin repeat is known as actin binding domain. The N-RAP is hypothesized to form antiparallel dimerization via its LIM domain. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188745  Cd Length: 53  Bit Score: 35.32  E-value: 5.62e-03
                         10        20        30
                 ....*....|....*....|....*....|...
gi 300069041 536 TWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKH 568
Cdd:cd09359   20 TWHKACFHCEVCKMTLNMNNYKGYQKKPYCNAH 52
LIM4_FHL1 cd09348
The fourth LIM domain of Four and a half LIM domains protein 1 (FHL1); The fourth LIM domain ...
516-565 5.74e-03

The fourth LIM domain of Four and a half LIM domains protein 1 (FHL1); The fourth LIM domain of Four and a half LIM domains protein 1 (FHL1): FHL1 is heavily expressed in skeletal and cardiac muscles. It plays important roles in muscle growth, differentiation, and sarcomere assembly by acting as a modulator of transcription factors. Defects in FHL1 gene are responsible for a number of Muscular dystrophy-like muscle disorders. It has been detected that FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188734  Cd Length: 64  Bit Score: 35.51  E-value: 5.74e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 516 CRGCEFPIEA---GDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09348    5 CSGCQNPITGfgkGTNVVNYEGSSWHDYCFNCKKCSLNLANKRFVFHNGQIYC 57
LIM_ALP_like cd09360
The LIM domain of ALP (actinin-associated LIM protein) family; This family represents the LIM ...
516-569 5.91e-03

The LIM domain of ALP (actinin-associated LIM protein) family; This family represents the LIM domain of ALP (actinin-associated LIM protein) family. Four proteins: ALP, CLP36, RIL, and Mystique have been classified into the ALP subfamily of LIM domain proteins. Each member of the subfamily contains an N-terminal PDZ domain and a C-terminal LIM domain. Functionally, these proteins bind to alpha-actinin through their PDZ domains and bind or other signaling molecules through their LIM domains. ALP proteins have been implicated in cardiac and skeletal muscle structure, function and disease, platelet, and epithelial cell motility. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188746 [Multi-domain]  Cd Length: 52  Bit Score: 35.04  E-value: 5.91e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 516 CRGCEFPIEAgdMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCKKHA 569
Cdd:cd09360    1 CDKCGNGIVG--VVVKARDKNRHPECFVCADCGLNLKNKGYFFIEDELYCETHA 52
LIM2_Testin cd09416
The second LIM domain of Testin; The second LIM domain of Testin: Testin contains three ...
396-449 6.24e-03

The second LIM domain of Testin; The second LIM domain of Testin: Testin contains three C-terminal LIM domains and a PET protein-protein interaction domain at the N-terminal. Testin is a cytoskeleton associated focal adhesion protein that localizes along actin stress fibers, at cell-cell-contact areas, and at focal adhesion plaques. Testin interacts with a variety of cytoskeletal proteins, including zyxin, mena, VASP, talin, and actin and it is involved in cell motility and adhesion events. Knockout mice experiments reveal that tumor repressor function of testin. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188800  Cd Length: 56  Bit Score: 35.22  E-value: 6.24e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 300069041 396 PMCAHCNQVI-RGPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09416    1 PRCAGCDELIfSNEYTQAENQNWHLKHFCCFDCDNILAGEIYVMVNDKPVCKPCY 55
LIM2_FHL cd09345
The second LIM domain of Four and a half LIM domains protein (FHL); The second LIM domain of ...
398-449 6.24e-03

The second LIM domain of Four and a half LIM domains protein (FHL); The second LIM domain of Four and a half LIM domains protein (FHL): LIM-only protein family consists of five members, designated FHL1, FHL2, FHL3, FHL5 and LIMPETin. The first four members are composed of four complete LIM domains arranged in tandem and an N-terminal single zinc finger domain with a consensus sequence equivalent to the C-terminal half of a LIM domain. LIMPETin is an exception, containing six LIM domains. FHL1, 2 and 3 are predominantly expressed in muscle tissues, and FHL5 is highly expressed in male germ cells. FHL proteins exert their roles as transcription co-activators or co-repressors through a wide array of interaction partners. For example, FHL1 binds to Myosin-binding protein C, regulating myosin filament formation and sarcomere assembly. FHL2 has shown to interact with more than 50 different proteins, including receptors, structural proteins, transcription factors and cofactors, signal transducers, splicing factors, DNA replication and repair enzymes, and metabolic enzymes. FHL3 int eracts with many transcription factors, such as CREB, BKLF/KLF3, CtBP2, MyoD, and MZF_1. FHL5 is a tissue-specific coactivator of CREB/CREM family transcription factors. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188731 [Multi-domain]  Cd Length: 54  Bit Score: 34.96  E-value: 6.24e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 398 CAHCNQVIR--GPFLVALGKSWHPEEFNCAHCKNTMAYIGFVEEKGALYCELCY 449
Cdd:cd09345    1 CKACGKAIMpgSKKMEYKGKFWHEKCFTCSECKKPIGTKSFIPKDDKIYCVPCY 54
LIM1_Isl cd09366
The first LIM domain of Isl, a member of LHX protein family; The first LIM domain of Isl: Isl ...
516-568 6.48e-03

The first LIM domain of Isl, a member of LHX protein family; The first LIM domain of Isl: Isl is a member of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Isl1 and Isl2 are the two conserved members of this family. Proteins in this group are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Isl-1 is one of the LHX proteins isolated originally by virtue of its ability to bind DNA sequences from the 5'-flanking region of the rat insulin gene in pancreatic insulin-producing cells. Mice deficient in Isl-1 fail to form the dorsal exocrine pancreas and islet cells fail to differentiate. On the other hand, Isl-1 takes part in the pituitary development by activating the gonadotropin-releasing hormone receptor gene together with LHX3 and steroidogenic factor 1. Mouse Is l2 is expressed in the retinal ganglion cells and the developing spinal cord where it plays a role in motor neuron development. Same as Isl1, Isl2 may also be able to bind to the insulin gene enhancer to promote gene activation. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188752 [Multi-domain]  Cd Length: 55  Bit Score: 35.01  E-value: 6.48e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDTCFVCSVCCESL-EGQTFFSKKDKPLCKKH 568
Cdd:cd09366    1 CVGCGGKIHDQYILRVAPDLEWHAACLKCAECGQYLdETCTCFVRDGKTYCKRD 54
LIM1_CRP2 cd09480
The first LIM domain of Cysteine Rich Protein 2 (CRP2); The first LIM domain of Cysteine Rich ...
456-508 6.83e-03

The first LIM domain of Cysteine Rich Protein 2 (CRP2); The first LIM domain of Cysteine Rich Protein 2 (CRP2): The CRP family members include CRP1, CRP2, CRP3/MLP and TLP. CRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription circuits, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network. CRP2 specifically binds to protein inhibitor of activated STAT-1 (PIAS1) and a novel human protein designed CRP2BP (for CRP2 binding partner). PIAS1 specifically inhibits the STAT-1 pathway and CRP2BP is homologous to members of the histone acetyltransferase family raising the possibility that CRP2 is a modulator of cytokine-controlled pathways or is functionally active in the transcriptional regulatory network. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188864  Cd Length: 55  Bit Score: 34.96  E-value: 6.83e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 456 ECGRCQRKIL-GEVINALKQTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09480    1 KCGACGRTVYhAEEVQCDGRSFHKCCFLCMVCRKNLDSTTVAIHDQEIYCKSCY 54
LIM1_LMO1_LMO3 cd09388
The first LIM domain of LMO1 and LMO3 (LIM domain only protein 1 and 3); The first LIM domain ...
516-567 6.91e-03

The first LIM domain of LMO1 and LMO3 (LIM domain only protein 1 and 3); The first LIM domain of LMO1 and LMO3 (LIM domain only protein 1 and 3): LMO1 and LMO3 are highly homologous and belong to the LMO protein family. LMO1 and LMO3 are nuclear protein that plays important roles in transcriptional regulation and development. As LIM domains lack intrinsic DNA-binding activity, nuclear LMOs are involved in transcriptional regulation by forming complexes with other transcription factors or cofactors. For example, LMO1 interacts with the the bHLH domain of bHLH transcription factor, TAL1 (T-cell acute leukemia1)/SCL (stem cell leukemia) . LMO1 inhibits the expression of TAL1/SCL target genes. LMO3 facilitates p53 binding to its response elements, which suggests that LMO3 acts as a co-repressor of p53, suppressing p53-dependent transcriptional regulation. In addition, LMO3 interacts with neuronal transcription factor, HEN2, and acts as an oncogene in neuroblastoma. Another binding partner of LMO3 is calcium- and integrin-binding protein CIB, which binds via the second LIM domain (LIM2) of LMO3. One role of the CIB/LMO3 complex is to inhibit cell proliferation. Although LMO1 and LMO3 are highly homologous proteins, they play different roles in the regulation of the pituitary glycoprotein hormone alpha-subunit (alpha GSU) gene. Alpha GSU promoter activity was markedly repressed by LMO1 but activated by LMO3. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188774  Cd Length: 55  Bit Score: 35.22  E-value: 6.91e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 300069041 516 CRGCEFPIEAGDMfLEALGYTWHDTCFVCSVC-CESLE-GQTFFSKKDKPLCKK 567
Cdd:cd09388    1 CAGCNRKIKDRYL-LKALDQYWHEDCLKCACCdCRLGEvGSTLYTKANLILCRR 53
LIM4_LIMPETin cd09425
The fourth LIM domain of protein LIMPETin; The fourth LIM domain of protein LIMPETin: LIMPETin ...
474-508 7.44e-03

The fourth LIM domain of protein LIMPETin; The fourth LIM domain of protein LIMPETin: LIMPETin contains 6 LIM domains at the C-terminal and an N-terminal PET domain. Four of the six LIM domains are highly homologous to the four and half LIM domain protein family and two of them show sequence similarity to the LIM domains of the Testin family. Thus, LIMPETin may be the recombinant product of genes coding testin and FHL proteins. In Schistosoma mansoni, where LIMPETin was first identified, LIMPETin is down regulated in sexually mature adult Schistosoma females compared to sexually immature adult females and adult male. Its differential expression indicates that it is a transcription regulator. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188809  Cd Length: 54  Bit Score: 35.11  E-value: 7.44e-03
                         10        20        30
                 ....*....|....*....|....*....|....*
gi 300069041 474 QTWHVSCFVCVACGKPIRNNVFHLEDGEPYCETDY 508
Cdd:cd09425   20 QQWHEKCFCCCECKQPIGTKSFIPKDDDVYCVPCY 54
LIM1_Lhx4 cd09468
The first LIM domain of Lhx4; The first LIM domain of Lhx4. Lhx4 belongs to the LHX protein ...
457-508 7.60e-03

The first LIM domain of Lhx4; The first LIM domain of Lhx4. Lhx4 belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. LHX4 plays essential roles in pituitary gland and nervous system development. In mice, the lhx4 gene is expressed in the developing hindbrain, cerebral cortex, pituitary gland, and spinal cord. LHX4 shows significant sequence similarity to LHX3, particularly to isoforms Lhx3a. In gene regulation experiments, the LHX4 protein exhibits regulation roles towards pituitary genes, acting on their promoters/enhancers. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188852  Cd Length: 52  Bit Score: 34.95  E-value: 7.60e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKILGE-VINALKQTWHVSCFVCVACGKPIRNNVFHlEDGEPYCETDY 508
Cdd:cd09468    1 CAGCNQHILDKfILKVLDRHWHSSCLKCADCQMQLAERCFS-RAGNVYCKEDF 52
LIM2_Ajuba_like cd09355
The second LIM domain of Ajuba-like proteins; The second LIM domain of Ajuba-like proteins: ...
457-508 7.83e-03

The second LIM domain of Ajuba-like proteins; The second LIM domain of Ajuba-like proteins: Ajuba like LIM protein family includes three highly homologous proteins Ajuba, Limd1, and WTIP. Members of the family contain three tandem C-terminal LIM domains and a proline-rich N-terminal region. This family of proteins functions as scaffolds, participating in the assembly of numerous protein complexes. In the cytoplasm, Ajuba binds Grb2 to modulate serum-stimulated ERK activation. Ajuba also recruits the TNF receptor-associated factor 6 (TRAF6) to p62 and activates PKCKappa activity. Ajuba interacts with alpha-catenin and F-actin to contribute to the formation or stabilization of adheren junctions by linking adhesive receptors to the actin cytoskeleton. Although Ajuba is a cytoplasmic protein, it can shuttle into the nucleus. In nucleus, Ajuba functions as a corepressor for the zinc finger-protein Snail. It binds to the SNAG repression domain of Snail through its LIM region. Arginine methyltransferase-5 (Prmt5), a protein in the complex, is recruited to Snai l through an interaction with Ajuba. This ternary complex functions to repress E-cadherin, a Snail target gene. In addition, Ajuba contains functional nuclear-receptor interacting motifs and selectively interacts with retinoic acid receptors (RARs) and rexinoid receptor (RXRs) to negatively regulate retinoic acid signaling. Wtip, the Wt1-interacting protein, was originally identified as an interaction partner of the Wilms tumour protein 1 (WT1). Wtip is involved in kidney and neural crest development. Wtip interacts with the receptor tyrosine kinase Ror2 and inhibits canonical Wnt signaling. LIMD1 was reported to inhibit cell growth and metastases. The inhibition may be mediated through an interaction with the protein barrier-to-autointegration (BAF), a component of SWI/SNF chromatin-remodeling protein; or through the interaction with retinoblastoma protein (pRB), resulting in inhibition of E2F-mediated transcription, and expression of the majority of genes with E2F1- responsive elements. Recently, Limd1 was shown to interact with the p62/sequestosome protein and influence IL-1 and RANKL signaling by facilitating the assembly of a p62/TRAF6/a-PKC multi-protein complex. The Limd1-p62 interaction affects both NF-kappaB and AP-1 activity in epithelial cells and osteoclasts. Moreover, LIMD1 functions as tumor repressor to block lung tumor cell line in vitro and in vivo. Recent studies revealed that LIM proteins Wtip, LIMD1 and Ajuba interact with components of RNA induced silencing complexes (RISC) as well as eIF4E and the mRNA m7GTP cap-protein complex and are required for microRNA-mediated gene silencing. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein.


Pssm-ID: 188741 [Multi-domain]  Cd Length: 53  Bit Score: 35.01  E-value: 7.83e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|...
gi 300069041 457 CGRCQRKILGEVINALKQTWHVSCFVCVACGKPIRNNVFHLE-DGEPYCETDY 508
Cdd:cd09355    1 CAVCGHLIMEMILQALGKSYHPGCFRCCVCNECLDGVPFTVDvENNIYCVKDY 53
LIM2_Prickle cd09418
The second LIM domain of Prickle; The second LIM domain of Prickle: Prickle contains three ...
516-565 8.69e-03

The second LIM domain of Prickle; The second LIM domain of Prickle: Prickle contains three C-terminal LIM domains and a N-terminal PET domain. Prickles have been implicated in roles of regulating tissue polarity or planar cell polarity (PCP). PCP establishment requires the conserved Frizzled/Dishevelled PCP pathway. Prickle interacts with Dishevelled, thereby modulating Frizzled/Dishevelled activity and PCP signaling. Two forms of prickles have been identified; namely prickle 1 and prickle 2. Prickle 1 and prickle 2 are differentially expressed. While prickle 1 is expressed in fetal heart and hematological malignancies, prickle 2 is found in fetal brain, adult cartilage, pancreatic islet, and some types of timorous cells. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188802  Cd Length: 56  Bit Score: 34.71  E-value: 8.69e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 300069041 516 CRGCEFPIEAgDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09418    3 CSACDEIIFA-DECTEAEGRHWHMKHFCCFECECQLGGQRYIMREGRPYC 51
LIM2_Testin cd09416
The second LIM domain of Testin; The second LIM domain of Testin: Testin contains three ...
516-566 8.81e-03

The second LIM domain of Testin; The second LIM domain of Testin: Testin contains three C-terminal LIM domains and a PET protein-protein interaction domain at the N-terminal. Testin is a cytoskeleton associated focal adhesion protein that localizes along actin stress fibers, at cell-cell-contact areas, and at focal adhesion plaques. Testin interacts with a variety of cytoskeletal proteins, including zyxin, mena, VASP, talin, and actin and it is involved in cell motility and adhesion events. Knockout mice experiments reveal that tumor repressor function of testin. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188800  Cd Length: 56  Bit Score: 34.83  E-value: 8.81e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 300069041 516 CRGCEFPIEAgDMFLEALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCK 566
Cdd:cd09416    3 CAGCDELIFS-NEYTQAENQNWHLKHFCCFDCDNILAGEIYVMVNDKPVCK 52
PDZ2_MUPP1-like cd06667
PDZ domain 2 of multi-PDZ-domain protein 1 (MUPP1) and PATJ (protein-associated tight junction) ...
15-83 9.30e-03

PDZ domain 2 of multi-PDZ-domain protein 1 (MUPP1) and PATJ (protein-associated tight junction) and similar domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of MUPP1 and PATJ, and related domains. MUPP1 and PATJ serve as scaffolding proteins linking different proteins and protein complexes involved in the organization of tight junctions and epithelial polarity. MUPP1 contains an L27 (Lin-2 and Lin-7 binding) domain and 13 PDZ domains. PATJ (also known as INAD-like) contains an L27 domain and ten PDZ domains. MUPP1 and PATJ share several binding partners, including junctional adhesion molecules (JAM), zonula occludens (ZO)-3, Pals1 (protein associated with Lin-7), Par (partitioning defective)-6 proteins, and nectins (adherence junction adhesion molecules). PATJ lacks 3 PDZ domains seen in MUPP1: PDZ6, 9, and 13; consequently, MUPP1 PDZ7 and 8 align with PATJ PDZ6 and 7; and MUPP1 PDZ domains 10-12 align with PATJ PDZ domains 8-10. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MUPP1-like family PDZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F


Pssm-ID: 467155 [Multi-domain]  Cd Length: 80  Bit Score: 35.34  E-value: 9.30e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 300069041  15 GFRLQGGKdfNMPLTISSLKDGGKASQ-AHVRIGDVVLSIDGISAQGMTHLEAQNKIKACTGSLNMTLQR 83
Cdd:cd06667   13 GFGIVGGK--STGVVVKTILPGGVADRdGRLRSGDHILQIGDTNLRGMGSEQVAQVLRQCGSHVRLVVAR 80
LIM3_Testin cd09419
The third LIM domain of Testin; The third LIM domain of Testin: Testin contains three ...
516-565 9.39e-03

The third LIM domain of Testin; The third LIM domain of Testin: Testin contains three C-terminal LIM domains and a PET protein-protein interaction domain at the N-terminal. Testin is a cytoskeleton associated focal adhesion protein that localizes along actin stress fibers at cell-cell-contact areas and at focal adhesion plaques. Testin interacts with a variety of cytoskeletal proteins, including zyxin, mena, VASP, talin, and actin and it is involved in cell motility and adhesion events. Knockout mice experiments reveal that tumor repressor function of Testin. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188803  Cd Length: 59  Bit Score: 34.86  E-value: 9.39e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|..
gi 300069041 516 CRGCEFPIEAGDMFLEALGYTWHDT--CFVCSVCCESLEGQTFFSKKDKPLC 565
Cdd:cd09419    1 CQGCHNAIDPEVQRVSYNNFHWHAEpeCFLCSCCSKCLIGQKFMPVEGMVFC 52
LIM_CRP_like cd09326
The LIM domains of Cysteine Rich Protein (CRP) family; The LIM domains of Cysteine Rich ...
532-566 9.76e-03

The LIM domains of Cysteine Rich Protein (CRP) family; The LIM domains of Cysteine Rich Protein (CRP) family: Cysteine-rich proteins (CRPs) are characterized by the presence of two LIM domains linked to a short glycine-rich repeats (GRRs). The known CRP family members include CRP1, CRP2, and CRP3/MLP. CRP1, CRP2 and CRP3 share a conserved nuclear targeting signal (K/R-K/R-Y-G-P-K), which supports the fact that these proteins function not only in the cytoplasm but also in the nucleus. CRPs control regulatory pathways during cellular differentiation, and involve in complex transcription control, and the organization as well as the arrangement of the myofibrillar/cytoskeletal network. CRP1, CRP2, and CRP3/MLP are involved in promoting protein assembly along the actin-based cytoskeleton. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes.


Pssm-ID: 188712  Cd Length: 53  Bit Score: 34.49  E-value: 9.76e-03
                         10        20        30
                 ....*....|....*....|....*....|....*
gi 300069041 532 ALGYTWHDTCFVCSVCCESLEGQTFFSKKDKPLCK 566
Cdd:cd09326   16 AAGKSWHKSCFTCAVCNKRLDSTTLAEHDGEIYCK 50
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH