NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|212549635|ref|NP_001131117|]
View 

FYVE, RhoGEF and PH domain-containing protein 6 [Rattus norvegicus]

Protein Classification

FYVE, RhoGEF and PH domain-containing protein 6( domain architecture ID 11101176)

FYVE, RhoGEF and PH domain-containing protein 6 (FGD6) may activate CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP, and also play a role in regulating the actin cytoskeleton and cell shape

Gene Symbol:  FGD6

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
PH1_FGD6 cd15793
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 6, N-terminal Pleckstrin ...
1054-1176 3.58e-81

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 6, N-terminal Pleckstrin Homology (PH) domain; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 275436  Cd Length: 123  Bit Score: 261.89  E-value: 3.58e-81
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1054 LSGHHEIVQPGRVFLKEGILMKLSRKVMQPRMIFLFNDALLYTTPMQSGMYKLNNMLSLAGMKVRKPTQEAYQNELKIES 1133
Cdd:cd15793     1 LNGHHEIVQPGRVFLKEGTLMKLSRKVMQPRMFFLFNDALLYTTPVQSGMYKLNNMLSLAGMKVSKPSQEAYQNELNIES 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|...
gi 212549635 1134 VERSFILSASSASERDDWLEAISRAIEEYAKKRITFCPSRSLD 1176
Cdd:cd15793    81 VERSFILSASSATERDEWLEAISRAIEEYAKKKITFNPSRSLE 123
PH2_FGD5_FGD6 cd13237
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin ...
1312-1400 1.14e-47

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin homology (PH) domain, C-terminus; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270057  Cd Length: 91  Bit Score: 164.89  E-value: 1.14e-47
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1312 MSGYLYRSKGSKKPWKHLWFVIKNKVLYTYAASEDVAALESQPLLGFTVAQVKD--EHSDPRVFQLLHKGLLFYVFKADD 1389
Cdd:cd13237     1 MSGYLQRRKKSKKSWKRLWFVLKDKVLYTYKASEDVVALESVPLLGFTVVTIDEsfEEDESLVFQLLHKGQLPIIFRADD 80
                          90
                  ....*....|.
gi 212549635 1390 AHSTQRWIDAF 1400
Cdd:cd13237    81 AETAQRWIEAL 91
RhoGEF pfam00621
RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called ...
852-1035 5.82e-44

RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that pfam00169 domains invariably occur C-terminal to RhoGEF/DH domains.


:

Pssm-ID: 459876 [Multi-domain]  Cd Length: 176  Bit Score: 157.46  E-value: 5.82e-44
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635   852 IAKEIMSSEKVFVDVLKLLHIDFRgavahasRQLGKPVIE-DRILNQILYYLPQLYELNRDLLkeLEERMLSWAEQQRIA 930
Cdd:pfam00621    1 VIKELLQTERSYVRDLEILVEVFL-------PPNSKPLSEsEEEIKTIFSNIEEIYELHRQLL--LEELLKEWISIQRIG 71
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635   931 DIFVKKGPYLKMYSMYIKEFDKNIALLDEQCKKNSGFATVVREFEMSPRCANLALKHYLLKPVQRIPQYRLLLTDYLKNL 1010
Cdd:pfam00621   72 DIFLKFAPGFKVYSTYCSNYPKALKLLKKLLKKNPKFRAFLEELEANPECRGLDLNSFLIKPVQRIPRYPLLLKELLKHT 151
                          170       180
                   ....*....|....*....|....*
gi 212549635  1011 LEDSVDHRDTQDALAVVIEVANHAN 1035
Cdd:pfam00621  152 PPDHPDYEDLKKALEAIKEVAKQIN 176
FYVE_FGD6 cd15743
FYVE domain found in FYVE, RhoGEF and PH domain-containing protein 6 (FGD6) and similar ...
1193-1253 6.22e-38

FYVE domain found in FYVE, RhoGEF and PH domain-containing protein 6 (FGD6) and similar proteins; FGD6, also termed zinc finger FYVE domain-containing protein 24 is a putative Cdc42-specific guanine nucleotide exchange factor (GEF) whose biological function remains unclear. It is a homologue of FGD1 and contains a DBL homology (DH) domain and pleckstrin homology (PH) domain in the middle region, a FYVE domain, and another PH domain in the C-terminus, but lacks the N-terminal proline-rich domain (PRD) found in FGD1. Moreover, the FYVE domain of FGD6 is a canonical FYVE domain, which has been found in many proteins involved in membrane trafficking and phosphoinositide metabolism, and has been defined by three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCR patch, and a C-terminal RVC motif, which form a compact phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding site.


:

Pssm-ID: 277282 [Multi-domain]  Cd Length: 61  Bit Score: 136.03  E-value: 6.22e-38
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 212549635 1193 PIWIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGLDYLKGQPARVCELCF 1253
Cdd:cd15743     1 PIWIPDSRVTMCMICTSEFTVTWRRHHCRACGKVVCGSCSSNKAPLEYLKNKSARVCDECF 61
 
Name Accession Description Interval E-value
PH1_FGD6 cd15793
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 6, N-terminal Pleckstrin ...
1054-1176 3.58e-81

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 6, N-terminal Pleckstrin Homology (PH) domain; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275436  Cd Length: 123  Bit Score: 261.89  E-value: 3.58e-81
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1054 LSGHHEIVQPGRVFLKEGILMKLSRKVMQPRMIFLFNDALLYTTPMQSGMYKLNNMLSLAGMKVRKPTQEAYQNELKIES 1133
Cdd:cd15793     1 LNGHHEIVQPGRVFLKEGTLMKLSRKVMQPRMFFLFNDALLYTTPVQSGMYKLNNMLSLAGMKVSKPSQEAYQNELNIES 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|...
gi 212549635 1134 VERSFILSASSASERDDWLEAISRAIEEYAKKRITFCPSRSLD 1176
Cdd:cd15793    81 VERSFILSASSATERDEWLEAISRAIEEYAKKKITFNPSRSLE 123
PH2_FGD5_FGD6 cd13237
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin ...
1312-1400 1.14e-47

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin homology (PH) domain, C-terminus; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270057  Cd Length: 91  Bit Score: 164.89  E-value: 1.14e-47
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1312 MSGYLYRSKGSKKPWKHLWFVIKNKVLYTYAASEDVAALESQPLLGFTVAQVKD--EHSDPRVFQLLHKGLLFYVFKADD 1389
Cdd:cd13237     1 MSGYLQRRKKSKKSWKRLWFVLKDKVLYTYKASEDVVALESVPLLGFTVVTIDEsfEEDESLVFQLLHKGQLPIIFRADD 80
                          90
                  ....*....|.
gi 212549635 1390 AHSTQRWIDAF 1400
Cdd:cd13237    81 AETAQRWIEAL 91
RhoGEF pfam00621
RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called ...
852-1035 5.82e-44

RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that pfam00169 domains invariably occur C-terminal to RhoGEF/DH domains.


Pssm-ID: 459876 [Multi-domain]  Cd Length: 176  Bit Score: 157.46  E-value: 5.82e-44
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635   852 IAKEIMSSEKVFVDVLKLLHIDFRgavahasRQLGKPVIE-DRILNQILYYLPQLYELNRDLLkeLEERMLSWAEQQRIA 930
Cdd:pfam00621    1 VIKELLQTERSYVRDLEILVEVFL-------PPNSKPLSEsEEEIKTIFSNIEEIYELHRQLL--LEELLKEWISIQRIG 71
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635   931 DIFVKKGPYLKMYSMYIKEFDKNIALLDEQCKKNSGFATVVREFEMSPRCANLALKHYLLKPVQRIPQYRLLLTDYLKNL 1010
Cdd:pfam00621   72 DIFLKFAPGFKVYSTYCSNYPKALKLLKKLLKKNPKFRAFLEELEANPECRGLDLNSFLIKPVQRIPRYPLLLKELLKHT 151
                          170       180
                   ....*....|....*....|....*
gi 212549635  1011 LEDSVDHRDTQDALAVVIEVANHAN 1035
Cdd:pfam00621  152 PPDHPDYEDLKKALEAIKEVAKQIN 176
RhoGEF smart00325
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange ...
852-1036 4.37e-39

Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Improved coverage.


Pssm-ID: 214619 [Multi-domain]  Cd Length: 180  Bit Score: 143.98  E-value: 4.37e-39
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635    852 IAKEIMSSEKVFVDVLKLLHIDFRGAVahasrQLGKPVIEDRILNQILYYLPQLYELNRDLLKELEERMLSWAE-QQRIA 930
Cdd:smart00325    1 VLKELLQTERNYVRDLKLLVEVFLKPL-----KKELKLLSPNELETLFGNIEEIYEFHRDFLDELEERIEEWDDsVERIG 75
                            90       100       110       120       130       140       150       160
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635    931 DIFVKKGPYLKMYSMYIKEFDKNIALLdEQCKKNSGFATVVREFEMSPRCANLALKHYLLKPVQRIPQYRLLLTDYLKNL 1010
Cdd:smart00325   76 DVFLKLEEFFKIYSEYCSNHPDALELL-KKLKKNPRFQKFLKEIESSPQCRRLTLESLLLKPVQRLTKYPLLLKELLKHT 154
                           170       180
                    ....*....|....*....|....*.
gi 212549635   1011 LEDSVDHRDTQDALAVVIEVANHAND 1036
Cdd:smart00325  155 PEDHEDREDLKKALKAIKELANQVNE 180
FYVE_FGD6 cd15743
FYVE domain found in FYVE, RhoGEF and PH domain-containing protein 6 (FGD6) and similar ...
1193-1253 6.22e-38

FYVE domain found in FYVE, RhoGEF and PH domain-containing protein 6 (FGD6) and similar proteins; FGD6, also termed zinc finger FYVE domain-containing protein 24 is a putative Cdc42-specific guanine nucleotide exchange factor (GEF) whose biological function remains unclear. It is a homologue of FGD1 and contains a DBL homology (DH) domain and pleckstrin homology (PH) domain in the middle region, a FYVE domain, and another PH domain in the C-terminus, but lacks the N-terminal proline-rich domain (PRD) found in FGD1. Moreover, the FYVE domain of FGD6 is a canonical FYVE domain, which has been found in many proteins involved in membrane trafficking and phosphoinositide metabolism, and has been defined by three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCR patch, and a C-terminal RVC motif, which form a compact phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding site.


Pssm-ID: 277282 [Multi-domain]  Cd Length: 61  Bit Score: 136.03  E-value: 6.22e-38
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 212549635 1193 PIWIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGLDYLKGQPARVCELCF 1253
Cdd:cd15743     1 PIWIPDSRVTMCMICTSEFTVTWRRHHCRACGKVVCGSCSSNKAPLEYLKNKSARVCDECF 61
RhoGEF cd00160
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous ...
850-1035 1.05e-34

Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains.


Pssm-ID: 238091 [Multi-domain]  Cd Length: 181  Bit Score: 131.27  E-value: 1.05e-34
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635  850 HHIAKEIMSSEKVFVDVLKLLHIDFRGAVahasRQLGKPVIEDrILNQILYYLPQLYELNRDLLKELEERMLSW-AEQQR 928
Cdd:cd00160     2 QEVIKELLQTERNYVRDLKLLVEVFLKPL----DKELLPLSPE-EVELLFGNIEEIYEFHRIFLKSLEERVEEWdKSGPR 76
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635  929 IADIFVKKGPYLKMYSMYIKEFDKNIALLDEQCKKNSGFATVVREFEmsPRCANLALKHYLLKPVQRIPQYRLLLTDYLK 1008
Cdd:cd00160    77 IGDVFLKLAPFFKIYSEYCSNHPDALELLKKLKKFNKFFQEFLEKAE--SECGRLKLESLLLKPVQRLTKYPLLLKELLK 154
                         170       180
                  ....*....|....*....|....*..
gi 212549635 1009 NLLEDSVDHRDTQDALAVVIEVANHAN 1035
Cdd:cd00160   155 HTPDGHEDREDLKKALEAIKEVASQVN 181
FYVE pfam01363
FYVE zinc finger; The FYVE zinc finger is named after four proteins that it has been found in: ...
1193-1258 1.56e-28

FYVE zinc finger; The FYVE zinc finger is named after four proteins that it has been found in: Fab1, YOTB/ZK632.12, Vac1, and EEA1. The FYVE finger has been shown to bind two Zn++ ions. The FYVE finger has eight potential zinc coordinating cysteine positions. Many members of this family also include two histidines in a motif R+HHC+XCG, where + represents a charged residue and X any residue. We have included members which do not conserve these histidine residues but are clearly related.


Pssm-ID: 426221 [Multi-domain]  Cd Length: 68  Bit Score: 109.39  E-value: 1.56e-28
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 212549635  1193 PIWIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGLD--YLKGQPARVCELCFQELQK 1258
Cdd:pfam01363    1 PVWVPDSSATVCMICSKPFTFFRRRHHCRNCGRVFCSACSSKKISLLpeLGSNKPVRVCDACYDTLQK 68
FYVE smart00064
Protein present in Fab1, YOTB, Vac1, and EEA1; The FYVE zinc finger is named after four ...
1192-1258 2.24e-24

Protein present in Fab1, YOTB, Vac1, and EEA1; The FYVE zinc finger is named after four proteins where it was first found: Fab1, YOTB/ZK632.12, Vac1, and EEA1. The FYVE finger has been shown to bind two Zn2+ ions. The FYVE finger has eight potential zinc coordinating cysteine positions. The FYVE finger is structurally related to the PHD finger and the RING finger. Many members of this family also include two histidines in a motif R+HHC+XCG, where + represents a charged residue and X any residue. The FYVE finger functions in the membrane recruitment of cytosolic proteins by binding to phosphatidylinositol 3-phosphate (PI3P), which is prominent on endosomes. The R+HHC+XCG motif is critical for PI3P binding.


Pssm-ID: 214499 [Multi-domain]  Cd Length: 68  Bit Score: 97.50  E-value: 2.24e-24
                            10        20        30        40        50        60
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 212549635   1192 APIWIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGLDYL-KGQPARVCELCFQELQK 1258
Cdd:smart00064    1 RPHWIPDEEVSNCMGCGKEFNLTKRRHHCRNCGRIFCSKCSSKKAPLPKLgIERPVRVCDDCYENLNG 68
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
1311-1402 6.39e-12

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 63.34  E-value: 6.39e-12
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635   1311 TMSGYLY-RSKGSKKPWKHLWFVIKNKVLYTYAASEDVAALESQ---PLLGFTVAQVKDE--HSDPRVFQLLHKGLLFYV 1384
Cdd:smart00233    2 IKEGWLYkKSGGGKKSWKKRYFVLFNSTLLYYKSKKDKKSYKPKgsiDLSGCTVREAPDPdsSKKPHCFEIKTSDRKTLL 81
                            90
                    ....*....|....*...
gi 212549635   1385 FKADDAHSTQRWIDAFQE 1402
Cdd:smart00233   82 LQAESEEEREKWVEALRK 99
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
1067-1159 4.43e-11

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 61.03  E-value: 4.43e-11
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635   1067 FLKEGILMKLS---RKVMQPRMIFLFNDALLYTTPMQSGM-YKLNNMLSLAGMKVRKPTQEA---YQNELKIESVER-SF 1138
Cdd:smart00233    1 VIKEGWLYKKSgggKKSWKKRYFVLFNSTLLYYKSKKDKKsYKPKGSIDLSGCTVREAPDPDsskKPHCFEIKTSDRkTL 80
                            90       100
                    ....*....|....*....|.
gi 212549635   1139 ILSASSASERDDWLEAISRAI 1159
Cdd:smart00233   81 LLQAESEEEREKWVEALRKAI 101
PH pfam00169
PH domain; PH stands for pleckstrin homology.
1311-1402 1.78e-08

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 53.72  E-value: 1.78e-08
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635  1311 TMSGYLYRSKGSKKP-WKHLWFVIKNKVLYTY---AASEDVAALESQPLLGFTVAQVKDEHSDPR--VFQLLHKGLLF-- 1382
Cdd:pfam00169    2 VKEGWLLKKGGGKKKsWKKRYFVLFDGSLLYYkddKSGKSKEPKGSISLSGCEVVEVVASDSPKRkfCFELRTGERTGkr 81
                           90       100
                   ....*....|....*....|.
gi 212549635  1383 -YVFKADDAHSTQRWIDAFQE 1402
Cdd:pfam00169   82 tYLLQAESEEERKDWIKAIQS 102
PH pfam00169
PH domain; PH stands for pleckstrin homology.
1069-1160 1.33e-07

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 51.02  E-value: 1.33e-07
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635  1069 KEGILMKLSRKVM---QPRMIFLFNDALLYTTPMQSGM-YKLNNMLSLAGMKVRKPTQEAYQNE-------LKIESVERS 1137
Cdd:pfam00169    3 KEGWLLKKGGGKKkswKKRYFVLFDGSLLYYKDDKSGKsKEPKGSISLSGCEVVEVVASDSPKRkfcfelrTGERTGKRT 82
                           90       100
                   ....*....|....*....|...
gi 212549635  1138 FILSASSASERDDWLEAISRAIE 1160
Cdd:pfam00169   83 YLLQAESEEERKDWIKAIQSAIR 105
ROM1 COG5422
RhoGEF, Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases [Signal transduction ...
904-1029 5.77e-05

RhoGEF, Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases [Signal transduction mechanisms];


Pssm-ID: 227709 [Multi-domain]  Cd Length: 1175  Bit Score: 47.96  E-value: 5.77e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635  904 QLYELNRDLLKELEERMLSWAEQQRIADIFVKKGPYLKMYSMYIKEFDKNIALLDEQCKKNSGFATVVREFEMSPRCANL 983
Cdd:COG5422   538 EIYAVNSKLLKALTNRQCLSPIVNGIADIFLDYVPKFEPFIKYGASQPYAKYEFEREKSVNPNFARFDHEVERLDESRKL 617
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*.
gi 212549635  984 ALKHYLLKPVQRIPQYRLLLTDYLKNLLEDSVDHRDTQDALAVVIE 1029
Cdd:COG5422   618 ELDGYLTKPTTRLARYPLLLEEVLKFTDPDNPDTEDIPKVIDMLRE 663
 
Name Accession Description Interval E-value
PH1_FGD6 cd15793
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 6, N-terminal Pleckstrin ...
1054-1176 3.58e-81

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 6, N-terminal Pleckstrin Homology (PH) domain; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275436  Cd Length: 123  Bit Score: 261.89  E-value: 3.58e-81
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1054 LSGHHEIVQPGRVFLKEGILMKLSRKVMQPRMIFLFNDALLYTTPMQSGMYKLNNMLSLAGMKVRKPTQEAYQNELKIES 1133
Cdd:cd15793     1 LNGHHEIVQPGRVFLKEGTLMKLSRKVMQPRMFFLFNDALLYTTPVQSGMYKLNNMLSLAGMKVSKPSQEAYQNELNIES 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|...
gi 212549635 1134 VERSFILSASSASERDDWLEAISRAIEEYAKKRITFCPSRSLD 1176
Cdd:cd15793    81 VERSFILSASSATERDEWLEAISRAIEEYAKKKITFNPSRSLE 123
PH1_FGD5_FGD6 cd13389
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6, N-terminal ...
1054-1174 1.08e-59

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6, N-terminal Pleckstrin Homology (PH) domain; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275424  Cd Length: 124  Bit Score: 200.57  E-value: 1.08e-59
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1054 LSGHHEIVQPGRVFLKEGILMKLSRKVMQPRMIFLFNDALLYTTPMQS-GMYKLNNMLSLAGMKVRKPTQEAYQNELKIE 1132
Cdd:cd13389     1 LLGQYNIVKPGRKLIKEGELMKVSRKEMQPRYFFLFNDCLLYTTPVQSsGMLKLNNELPLSGMKVKLPEDEEYSNEFQII 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|..
gi 212549635 1133 SVERSFILSASSASERDDWLEAISRAIEEYAKKRITFCPSRS 1174
Cdd:cd13389    81 STKRSFTLIASSEEERDEWVKALSRAIEEHTKKQRTFAENVS 122
PH2_FGD5_FGD6 cd13237
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin ...
1312-1400 1.14e-47

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin homology (PH) domain, C-terminus; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270057  Cd Length: 91  Bit Score: 164.89  E-value: 1.14e-47
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1312 MSGYLYRSKGSKKPWKHLWFVIKNKVLYTYAASEDVAALESQPLLGFTVAQVKD--EHSDPRVFQLLHKGLLFYVFKADD 1389
Cdd:cd13237     1 MSGYLQRRKKSKKSWKRLWFVLKDKVLYTYKASEDVVALESVPLLGFTVVTIDEsfEEDESLVFQLLHKGQLPIIFRADD 80
                          90
                  ....*....|.
gi 212549635 1390 AHSTQRWIDAF 1400
Cdd:cd13237    81 AETAQRWIEAL 91
RhoGEF pfam00621
RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called ...
852-1035 5.82e-44

RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that pfam00169 domains invariably occur C-terminal to RhoGEF/DH domains.


Pssm-ID: 459876 [Multi-domain]  Cd Length: 176  Bit Score: 157.46  E-value: 5.82e-44
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635   852 IAKEIMSSEKVFVDVLKLLHIDFRgavahasRQLGKPVIE-DRILNQILYYLPQLYELNRDLLkeLEERMLSWAEQQRIA 930
Cdd:pfam00621    1 VIKELLQTERSYVRDLEILVEVFL-------PPNSKPLSEsEEEIKTIFSNIEEIYELHRQLL--LEELLKEWISIQRIG 71
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635   931 DIFVKKGPYLKMYSMYIKEFDKNIALLDEQCKKNSGFATVVREFEMSPRCANLALKHYLLKPVQRIPQYRLLLTDYLKNL 1010
Cdd:pfam00621   72 DIFLKFAPGFKVYSTYCSNYPKALKLLKKLLKKNPKFRAFLEELEANPECRGLDLNSFLIKPVQRIPRYPLLLKELLKHT 151
                          170       180
                   ....*....|....*....|....*
gi 212549635  1011 LEDSVDHRDTQDALAVVIEVANHAN 1035
Cdd:pfam00621  152 PPDHPDYEDLKKALEAIKEVAKQIN 176
RhoGEF smart00325
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange ...
852-1036 4.37e-39

Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Improved coverage.


Pssm-ID: 214619 [Multi-domain]  Cd Length: 180  Bit Score: 143.98  E-value: 4.37e-39
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635    852 IAKEIMSSEKVFVDVLKLLHIDFRGAVahasrQLGKPVIEDRILNQILYYLPQLYELNRDLLKELEERMLSWAE-QQRIA 930
Cdd:smart00325    1 VLKELLQTERNYVRDLKLLVEVFLKPL-----KKELKLLSPNELETLFGNIEEIYEFHRDFLDELEERIEEWDDsVERIG 75
                            90       100       110       120       130       140       150       160
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635    931 DIFVKKGPYLKMYSMYIKEFDKNIALLdEQCKKNSGFATVVREFEMSPRCANLALKHYLLKPVQRIPQYRLLLTDYLKNL 1010
Cdd:smart00325   76 DVFLKLEEFFKIYSEYCSNHPDALELL-KKLKKNPRFQKFLKEIESSPQCRRLTLESLLLKPVQRLTKYPLLLKELLKHT 154
                           170       180
                    ....*....|....*....|....*.
gi 212549635   1011 LEDSVDHRDTQDALAVVIEVANHAND 1036
Cdd:smart00325  155 PEDHEDREDLKKALKAIKELANQVNE 180
PH1_FGD5 cd15792
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 5, N-terminal Pleckstrin ...
1056-1169 6.78e-39

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 5, N-terminal Pleckstrin Homology (PH) domain; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275435  Cd Length: 123  Bit Score: 141.13  E-value: 6.78e-39
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1056 GHHEIVQPGRVFLKEGILMKLSRKVMQPRMIFLFNDALLYTTPMQSGMYKLNNMLSLAGMKVRKPTQEAYQNELKIESVE 1135
Cdd:cd15792     3 GQRDLLQPGREFVKEGTLMKVSGKNRHPRHLFLMNDVLLYTYPQKDGKYRLKNTLAVSGMKVSRPVIEKAQNVLKIEVSE 82
                          90       100       110
                  ....*....|....*....|....*....|....
gi 212549635 1136 RSFILSASSASERDDWLEAISRAIEEYAKKRITF 1169
Cdd:cd15792    83 VCLTLSASSCSERDEWYSCLSRTIPDDYKAQNAS 116
FYVE_FGD6 cd15743
FYVE domain found in FYVE, RhoGEF and PH domain-containing protein 6 (FGD6) and similar ...
1193-1253 6.22e-38

FYVE domain found in FYVE, RhoGEF and PH domain-containing protein 6 (FGD6) and similar proteins; FGD6, also termed zinc finger FYVE domain-containing protein 24 is a putative Cdc42-specific guanine nucleotide exchange factor (GEF) whose biological function remains unclear. It is a homologue of FGD1 and contains a DBL homology (DH) domain and pleckstrin homology (PH) domain in the middle region, a FYVE domain, and another PH domain in the C-terminus, but lacks the N-terminal proline-rich domain (PRD) found in FGD1. Moreover, the FYVE domain of FGD6 is a canonical FYVE domain, which has been found in many proteins involved in membrane trafficking and phosphoinositide metabolism, and has been defined by three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCR patch, and a C-terminal RVC motif, which form a compact phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding site.


Pssm-ID: 277282 [Multi-domain]  Cd Length: 61  Bit Score: 136.03  E-value: 6.22e-38
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 212549635 1193 PIWIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGLDYLKGQPARVCELCF 1253
Cdd:cd15743     1 PIWIPDSRVTMCMICTSEFTVTWRRHHCRACGKVVCGSCSSNKAPLEYLKNKSARVCDECF 61
PH1_FDG_family cd13328
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia family proteins, N-terminal ...
1069-1155 2.46e-36

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia family proteins, N-terminal Pleckstrin homology (PH) domain; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Mutations in the FGD1 gene are responsible for the X-linked disorder known as faciogenital dysplasia (FGDY). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275410  Cd Length: 92  Bit Score: 132.61  E-value: 2.46e-36
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1069 KEGILMKLSRK--VMQPRMIFLFNDALLYTTPMQSGM---YKLNNMLSLAGMKVRKPTQEAYQNELKIESVERSFILSAS 1143
Cdd:cd13328     1 KEGQILKLSAKngTPQPRYLFLFNDMLLYCVPKLSLVgqkFSVRNRLDVAGMKVREPVNENYPHTFKISGKERSLELQAS 80
                          90
                  ....*....|..
gi 212549635 1144 SASERDDWLEAI 1155
Cdd:cd13328    81 SAEEKDEWIQAI 92
RhoGEF cd00160
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous ...
850-1035 1.05e-34

Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains.


Pssm-ID: 238091 [Multi-domain]  Cd Length: 181  Bit Score: 131.27  E-value: 1.05e-34
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635  850 HHIAKEIMSSEKVFVDVLKLLHIDFRGAVahasRQLGKPVIEDrILNQILYYLPQLYELNRDLLKELEERMLSW-AEQQR 928
Cdd:cd00160     2 QEVIKELLQTERNYVRDLKLLVEVFLKPL----DKELLPLSPE-EVELLFGNIEEIYEFHRIFLKSLEERVEEWdKSGPR 76
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635  929 IADIFVKKGPYLKMYSMYIKEFDKNIALLDEQCKKNSGFATVVREFEmsPRCANLALKHYLLKPVQRIPQYRLLLTDYLK 1008
Cdd:cd00160    77 IGDVFLKLAPFFKIYSEYCSNHPDALELLKKLKKFNKFFQEFLEKAE--SECGRLKLESLLLKPVQRLTKYPLLLKELLK 154
                         170       180
                  ....*....|....*....|....*..
gi 212549635 1009 NLLEDSVDHRDTQDALAVVIEVANHAN 1035
Cdd:cd00160   155 HTPDGHEDREDLKKALEAIKEVASQVN 181
FYVE_endofin cd15729
FYVE domain found in endofin and similar proteins; Endofin, also termed zinc finger FYVE ...
1189-1256 5.44e-29

FYVE domain found in endofin and similar proteins; Endofin, also termed zinc finger FYVE domain-containing protein 16 (ZFY16), or endosome-associated FYVE domain protein, is a FYVE domain-containing protein that is localized to EEA1-containing endosomes. It is regulated by phosphoinositol lipid and engaged in endosome-mediated receptor modulation. Endofin is involved in Bone morphogenetic protein (BMP) signaling through interacting with Smad1 preferentially and enhancing Smad1 phosphorylation and nuclear localization upon BMP stimulation. It also functions as a scaffold protein that brings Smad4 to the proximity of the receptor complex in Transforming growth factor (TGF)-beta signaling. Moreover, endofin is a novel tyrosine phosphorylation target downstream of epidermal growth factor receptor (EGFR) in EGF-signaling. In addition, endofin plays a role in endosomal trafficking by recruiting cytosolic TOM1, an important molecule for membrane recruitment of clathrin, onto endosomal membranes.


Pssm-ID: 277268 [Multi-domain]  Cd Length: 68  Bit Score: 110.52  E-value: 5.44e-29
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 212549635 1189 GAKAPIWIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGLDYLKGQPARVCELCFQEL 1256
Cdd:cd15729     1 GKVAPVWVPDSEAPNCMQCEVKFTFTKRRHHCRACGKVLCSACCSLKARLEYLDNKEARVCVPCYQTL 68
FYVE pfam01363
FYVE zinc finger; The FYVE zinc finger is named after four proteins that it has been found in: ...
1193-1258 1.56e-28

FYVE zinc finger; The FYVE zinc finger is named after four proteins that it has been found in: Fab1, YOTB/ZK632.12, Vac1, and EEA1. The FYVE finger has been shown to bind two Zn++ ions. The FYVE finger has eight potential zinc coordinating cysteine positions. Many members of this family also include two histidines in a motif R+HHC+XCG, where + represents a charged residue and X any residue. We have included members which do not conserve these histidine residues but are clearly related.


Pssm-ID: 426221 [Multi-domain]  Cd Length: 68  Bit Score: 109.39  E-value: 1.56e-28
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 212549635  1193 PIWIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGLD--YLKGQPARVCELCFQELQK 1258
Cdd:pfam01363    1 PVWVPDSSATVCMICSKPFTFFRRRHHCRNCGRVFCSACSSKKISLLpeLGSNKPVRVCDACYDTLQK 68
FYVE smart00064
Protein present in Fab1, YOTB, Vac1, and EEA1; The FYVE zinc finger is named after four ...
1192-1258 2.24e-24

Protein present in Fab1, YOTB, Vac1, and EEA1; The FYVE zinc finger is named after four proteins where it was first found: Fab1, YOTB/ZK632.12, Vac1, and EEA1. The FYVE finger has been shown to bind two Zn2+ ions. The FYVE finger has eight potential zinc coordinating cysteine positions. The FYVE finger is structurally related to the PHD finger and the RING finger. Many members of this family also include two histidines in a motif R+HHC+XCG, where + represents a charged residue and X any residue. The FYVE finger functions in the membrane recruitment of cytosolic proteins by binding to phosphatidylinositol 3-phosphate (PI3P), which is prominent on endosomes. The R+HHC+XCG motif is critical for PI3P binding.


Pssm-ID: 214499 [Multi-domain]  Cd Length: 68  Bit Score: 97.50  E-value: 2.24e-24
                            10        20        30        40        50        60
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 212549635   1192 APIWIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGLDYL-KGQPARVCELCFQELQK 1258
Cdd:smart00064    1 RPHWIPDEEVSNCMGCGKEFNLTKRRHHCRNCGRIFCSKCSSKKAPLPKLgIERPVRVCDDCYENLNG 68
PH1_FARP1-like cd01220
FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin ...
1060-1166 2.50e-24

FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin Homology (PH) domain, repeat 1; Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FARP6 (also called Zinc finger FYVE domain-containing protein 24). They are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. Little is known about FARP1 and FARP6, though FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. FARP1 and FARP2 are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. FARP6 is composed of Dbl-homology (DH), and two C-terminal PH domains separated by a FYVE domain. This hierarchy contains the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269928  Cd Length: 109  Bit Score: 98.93  E-value: 2.50e-24
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1060 IVQPGRVFLKEGILMKLSRKVMQPRMIFLFNDALLYT--TPMQSGMYKLNNMLSLAGMKVRKPTQE-AYQNELKIESVER 1136
Cdd:cd01220     1 LVQPGREFIREGCLQKLSKKGLQQRMFFLFSDVLLYTsrSPTPSLQFKVHGQLPLRGLMVEESEPEwGVAHCFTIYGGNR 80
                          90       100       110
                  ....*....|....*....|....*....|
gi 212549635 1137 SFILSASSASERDDWLEAISRAIEEyAKKR 1166
Cdd:cd01220    81 ALTVAASSEEEKERWLEDLQRAIDA-AKKS 109
FYVE_FGD5 cd15742
FYVE-like domain found in FYVE, RhoGEF and PH domain-containing protein 5 (FGD5) and similar ...
1193-1258 2.55e-24

FYVE-like domain found in FYVE, RhoGEF and PH domain-containing protein 5 (FGD5) and similar proteins; FGD5, also termed zinc finger FYVE domain-containing protein 23, is an endothelial cell (EC)-specific guanine nucleotide exchange factor (GEF) that regulates endothelial adhesion, survival, and angiogenesis by modulating phosphatidylinositol 3-kinase signaling. It functions as a novel genetic regulator of vascular pruning by activation of endothelial cell-targeted apoptosis. FGD5 is a homologue of FGD1 and contains a DBL homology (DH) domain, a pleckstrin homology (PH) domain, a FYVE domain, and another PH domain in the C-terminus, but lacks the N-terminal proline-rich domain (PRD) found in FGD1. The FYVE domain of FGD5 resembles a FYVE-like domain that is different from the canonical FYVE domains, since it lacks one of the three conserved signature motifs (the WxxD motif) that are involved in phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding and exhibits altered lipid binding specificities.


Pssm-ID: 277281 [Multi-domain]  Cd Length: 67  Bit Score: 97.31  E-value: 2.55e-24
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 212549635 1193 PIWIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGLDYLKGQPARVCELCFQELQK 1258
Cdd:cd15742     1 PTLVPVSHVMMCMNCGSDFTLTLRRHHCHACGKIVCRNCSRNKYPLKYLKDRPAKVCDGCFAELRK 66
FYVE_PKHF cd15717
FYVE domain found in protein containing both PH and FYVE domains 1 (phafin-1), 2 (phafin-2), ...
1194-1253 3.56e-22

FYVE domain found in protein containing both PH and FYVE domains 1 (phafin-1), 2 (phafin-2), and similar proteins; This family includes protein containing both PH and FYVE domains 1 (phafin-1) and 2 (phafin-2). Phafin-1 is a representative of a novel family of PH and FYVE domain-containing proteins called phafins. It is a ubiquitously expressed pro-apoptotic protein via translocating to lysosomes, facilitating apoptosis induction through a lysosomal-mitochondrial apoptotic pathway. Phafin-2 is a ubiquitously expressed endoplasmic reticulum-associated protein that facilitates tumor necrosis factor alpha (TNF-alpha)-triggered cellular apoptosis through endoplasmic reticulum (ER)-mitochondrial apoptotic pathway. It is an endosomal phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) effector, as well as an interactor of the endosomal-tethering protein EEA1. It regulates endosome fusion upstream of Rab5. Phafin-2 also functions as a novel regulator of endocytic epidermal growth factor receptor (EGFR) degradation through a role in endosomal fusion.


Pssm-ID: 277257 [Multi-domain]  Cd Length: 61  Bit Score: 90.89  E-value: 3.56e-22
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 212549635 1194 IWIPDTRATMCMICT-SEFTLTWRRHHCRACGKIVCQACSSNKCGLDYLKGQPARVCELCF 1253
Cdd:cd15717     1 VWVPDSEAPVCMHCKkTKFTAINRRHHCRKCGAVVCGACSSKKFLLPHQSSKPLRVCDTCY 61
PH_Phafin2-like cd01218
Phafin2 (also called EAPF, FLJ13187, ZFYVE18 or PLEKHF2) Pleckstrin Homology (PH) domain; ...
1043-1158 9.17e-21

Phafin2 (also called EAPF, FLJ13187, ZFYVE18 or PLEKHF2) Pleckstrin Homology (PH) domain; Phafin2 is differentially expressed in the liver cancer cell and regulates the structure and function of the endosomes through Rab5-dependent processes. Phafin2 modulates the cell's response to extracellular stimulation by modulating the receptor density on the cell surface. Phafin2 contains a PH domain and a FYVE domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269927 [Multi-domain]  Cd Length: 123  Bit Score: 89.24  E-value: 9.17e-21
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1043 NFQKLMQIQYSLSGH-HEIVQPGRVFLKEGILMKLSRKVMQPRMIFLFNDALLYTT-PMQSGMYKLNNMLSLAGMKVR-K 1119
Cdd:cd01218     5 NRRRIAAVESCFGGSgQPLVKPGRVLVGEGVLTKVCRKKPKPRQFFLFNDILVYGSiVINKKKYNKQRIIPLEDVKIEdL 84
                          90       100       110
                  ....*....|....*....|....*....|....*....
gi 212549635 1120 PTQEAYQNELKIESVERSFILSASSASERDDWLEAISRA 1158
Cdd:cd01218    85 EDTGELKNGWQIISPKKSFVVYAATATEKSEWMDHINKC 123
FYVE_LST2 cd15731
FYVE domain found in lateral signaling target protein 2 homolog (Lst2) and similar proteins; ...
1193-1253 1.24e-18

FYVE domain found in lateral signaling target protein 2 homolog (Lst2) and similar proteins; Lst2, also termed zinc finger FYVE domain-containing protein 28, is a monoubiquitinylated phosphoprotein that functions as a negative regulator of epidermal growth factor receptor (EGFR) signaling. Unlike other FYVE domain-containing proteins, Lst2 displays primarily non-endosomal localization. Its endosomal localization is regulated by monoubiquitinylation. Lst2 physically binds Trim3, also known as BERP or RNF22, which is a coordinator of endosomal trafficking and interacts with Hrs and a complex that biases cargo recycling.


Pssm-ID: 277270 [Multi-domain]  Cd Length: 65  Bit Score: 81.24  E-value: 1.24e-18
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 212549635 1193 PIWIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGL-DYLKGQPARVCELCF 1253
Cdd:cd15731     3 PLWVPDEACPQCMACSAPFTVLRRRHHCRNCGKIFCSRCSSNSVPLpRYGQMKPVRVCNHCF 64
FYVE_ZFY26 cd15724
FYVE domain found in FYVE domain-containing protein 26 (ZFY26 or ZFYVE26); ZFY26, also termed ...
1195-1254 1.60e-18

FYVE domain found in FYVE domain-containing protein 26 (ZFY26 or ZFYVE26); ZFY26, also termed FYVE domain-containing centrosomal protein (FYVE-CENT), or spastizin, is a phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding protein that localizes to the centrosome and midbody. ZFY26 and its interacting partners TTC19 and KIF13A are required for cytokinesis. It also interacts with Beclin 1, a subunit of class III phosphatidylinositol 3-kinase complex, and may have potential implications for carcinogenesis. In addition, it has been considered as the causal agent of a rare form of hereditary spastic paraplegia. ZFY26 contains a FYVE domain that is important for targeting of FYVE-CENT to the midbody.


Pssm-ID: 277263 [Multi-domain]  Cd Length: 61  Bit Score: 80.64  E-value: 1.60e-18
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 212549635 1195 WIPDTRATMCMICTSE-FTLTWRRHHCRACGKIVCQACSSNKCGLDYLKGQPARVCELCFQ 1254
Cdd:cd15724     1 WVPDEAVSVCMVCQVErFSMFNRRHHCRRCGRVVCSSCSTKKMLVEGYRENPVRVCDQCYE 61
FYVE_FGD1_2_4 cd15741
FYVE domain found in FYVE, RhoGEF and PH domain-containing protein facio-genital dysplasia ...
1193-1256 8.56e-18

FYVE domain found in FYVE, RhoGEF and PH domain-containing protein facio-genital dysplasia FGD1, FGD2, FGD4; This family represents a group of Rho GTPase cell division cycle 42 (Cdc42)-specific guanine nucleotide exchange factors (GEFs), including FYVE, RhoGEF and PH domain-containing protein FGD1, FGD2 and FGD4. FGD1, also termed faciogenital dysplasia 1 protein, or Rho/Rac guanine nucleotide exchange factor FGD1 (Rho/Rac GEF), or zinc finger FYVE domain-containing protein 3, is a central regulator of extracellular matrix remodeling and belongs to the DBL family of GEFs that regulate the activation of the Rho GTPases. FGD1 is encoded by gene FGD1. Disabling mutations in the FGD1 gene cause the human X-linked developmental disorder faciogenital dysplasia (FGDY, also known as Aarskog-Scott syndrome). FGD2, also termed zinc finger FYVE domain-containing protein 4, is expressed in antigen-presenting cells, including B lymphocytes, macrophages, and dendritic cells. It localizes to early endosomes and active membrane ruffles. It plays a role in leukocyte signaling and vesicle trafficking in cells specialized to present antigen in the immune system. FGD4, also termed actin filament-binding protein frabin, or FGD1-related F-actin-binding protein, or zinc finger FYVE domain-containing protein 6, functions as an F-actin-binding (FAB) protein showing significant homology to FGD1. It induces the formation of filopodia through the activation of Cdc42 in fibroblasts. Those FGD proteins possess a similar domain organization that contains a DBL homology (DH) domain, a pleckstrin homology (PH) domain, a FYVE domain, and another PH domain in the C-terminus. However, each FGD has a unique N-terminal region that may directly or indirectly interact with F-actin. FGD1 and FGD4 have an N-terminal proline-rich domain (PRD) and an N-terminal F-actin binding (FAB) domain, respectively. This model corresponds to the FYVE domain, which has been found in many proteins involved in membrane trafficking and phosphoinositide metabolism, and has been defined by three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCR patch, and a C-terminal RVC motif, which form a compact phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding site. FGD1 possesses a FYVE-like domain that lack the N-terminal WxxD motif. Moreover, FGD2 is the only known RhoGEF family member shown to have a functional FYVE domain and endosomal binding activity.


Pssm-ID: 277280 [Multi-domain]  Cd Length: 65  Bit Score: 78.68  E-value: 8.56e-18
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 212549635 1193 PIWIPDTRATMCMICTSEF-TLTWRRHHCRACGKIVCQACSSNKCGLDYLKGQPARVCELCFQEL 1256
Cdd:cd15741     1 PRWVRDNEVTMCMRCKEPFnALTRRRHHCRACGYVVCWKCSDYKATLEYDGNKLNRVCKHCYVIL 65
FYVE_EEA1 cd15730
FYVE domain found in early endosome antigen 1 (EEA1) and similar proteins; EEA1, also termed ...
1193-1256 1.38e-17

FYVE domain found in early endosome antigen 1 (EEA1) and similar proteins; EEA1, also termed endosome-associated protein p162, or zinc finger FYVE domain-containing protein 2, is an essential component of the endosomal fusion machinery and required for the fusion and maturation of early endosomes in endocytosis. It forms a parallel coiled-coil homodimer in cells. EEA1 serves as the p97 ATPase substrate and the p97 ATPase may regulate the size of early endosomes by governing the oligomeric state of EEA1. It can interact with the GTP-bound form of Rab22a and be involved in endosomal membrane trafficking. EEA1 also functions as an obligate scaffold for angiotensin II-induced Akt activation in early endosomes. It can be phosphorylated by p38 mitogen-activated protein kinase (MAPK) and further regulate mu opioid receptor endocytosis. EEA1 consists of an N-terminal C2H2 Zn2+ finger, four long heptad repeats, and a C-terminal region containing a calmodulin binding (IQ) motif, a Rab5 interaction site, and a FYVE domain. This model corresponds to the FYVE domain that is responsible for binding phosphatidyl inositol-3-phosphate (PtdIns3P or PI3P) on the membrane.


Pssm-ID: 277269 [Multi-domain]  Cd Length: 63  Bit Score: 78.21  E-value: 1.38e-17
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 212549635 1193 PIWIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGLDYLKgQPARVCELCFQEL 1256
Cdd:cd15730     1 RKWADDEEVQNCMACGKGFSVTVRKHHCRQCGNIFCNECSSKTATTPSSK-KPVRVCDACFDDL 63
FYVE_like_SF cd00065
FYVE domain like superfamily; FYVE domain is a 60-80 residue double zinc finger ...
1203-1253 2.15e-17

FYVE domain like superfamily; FYVE domain is a 60-80 residue double zinc finger motif-containing module named after the four proteins, Fab1, YOTB, Vac1, and EEA1. The canonical FYVE domains are distinguished from other zinc fingers by three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif, which form a compact phosphatidylinositol 3-phosphate (PtdIns3P, also termed PI3P)-binding site. They are found in many membrane trafficking regulators, including EEA1, Hrs, Vac1p, Vps27p, and FENS-1, which locate to early endosomes, specifically bind PtdIns3P, and play important roles in vesicular traffic and in signal transduction. Some proteins, such as rabphilin-3A and alpha-Rab3-interacting molecules (RIMs), are also involved in membrane trafficking and bind to members of the Rab subfamily of GTP hydrolases. However, they contain FYVE-related domains that are structurally similar to the canonical FYVE domains but lack the three signature sequences. At this point, they may not bind to phosphoinositides. In addition, this superfamily also contains the third group of proteins, caspase-associated ring proteins CARP1 and CARP2. They do not localize to membranes in the cell and are involved in the negative regulation of apoptosis, specifically targeting two initiator caspases, caspase 8 and caspase 10, which are distinguished from other FYVE-type proteins. Moreover, these proteins have an altered sequence in the basic ligand binding patch and lack the WxxD motif that is conserved only in phosphoinositide binding FYVE domains. Thus they constitute a family of unique FYVE-type domains called FYVE-like domains. The FYVE domain is structurally similar to the RING domain and the PHD finger. This superfamily also includes ADDz zinc finger domain, which is a PHD-like zinc finger motif that contains two parts, a C2-C2 and a PHD-like zinc finger.


Pssm-ID: 277249 [Multi-domain]  Cd Length: 52  Bit Score: 77.19  E-value: 2.15e-17
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 212549635 1203 MCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGLDYLK-GQPARVCELCF 1253
Cdd:cd00065     1 RCMLCGKKFSLFRRRHHCRRCGRVFCSKCSSKKLPLPSFGsGKPVRVCDSCY 52
FYVE_PKHF1 cd15754
FYVE domain found in protein containing both PH and FYVE domains 1 (phafin-1) and similar ...
1195-1256 5.49e-17

FYVE domain found in protein containing both PH and FYVE domains 1 (phafin-1) and similar proteins; Phafin-1, also termed lysosome-associated apoptosis-inducing protein containing PH (pleckstrin homology) and FYVE domains (LAPF), or pleckstrin homology domain-containing family F member 1 (PKHF1), or PH domain-containing family F member 1, or apoptosis-inducing protein, or PH and FYVE domain-containing protein 1, or zinc finger FYVE domain-containing protein 15, is a representative of a novel family of PH and FYVE domain-containing proteins called phafins. It is a ubiquitously expressed pro-apoptotic protein via translocating to lysosomes, facilitating apoptosis induction through a lysosomal-mitochondrial apoptotic pathway.


Pssm-ID: 277293 [Multi-domain]  Cd Length: 64  Bit Score: 76.53  E-value: 5.49e-17
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 212549635 1195 WIPDTRATMCMICT-SEFTLTWRRHHCRACGKIVCQACSSNKCGLDYLKGQPARVCELCFQEL 1256
Cdd:cd15754     2 WIPDKATDICMRCTqTNFSLLTRRHHCRKCGFVVCHECSRQRFLIPRLSPKPVRVCSLCYRKL 64
FYVE_ZF21 cd15727
FYVE domain found in zinc finger FYVE domain-containing protein 21 (ZF21) and similar proteins; ...
1192-1252 1.22e-16

FYVE domain found in zinc finger FYVE domain-containing protein 21 (ZF21) and similar proteins; ZF21 is phosphoinositide-binding protein that functions as a regulator of focal adhesions and cell movement through interaction with focal adhesion kinase. It can also bind to the cytoplasmic tail of membrane type 1 matrix metalloproteinase, a potent invasion-promoting protease, and play a key role in regulating multiple aspects of cancer cell migration and invasion. ZF21 contains a FYVE domain, which corresponds to this model.


Pssm-ID: 277266 [Multi-domain]  Cd Length: 64  Bit Score: 75.49  E-value: 1.22e-16
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 212549635 1192 APIWIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNK------CGLDylkgqPARVCELC 1252
Cdd:cd15727     1 EPPWVPDKECPVCMSCKKKFDFFKRRHHCRRCGKCFCSDCCSNKvplprmCFVD-----PVRVCNEC 62
FYVE_PKHF2 cd15755
FYVE domain found in protein containing both PH and FYVE domains 2 (phafin-2) and similar ...
1194-1256 1.52e-16

FYVE domain found in protein containing both PH and FYVE domains 2 (phafin-2) and similar proteins; Phafin-2, also termed endoplasmic reticulum-associated apoptosis-involved protein containing PH and FYVE domains (EAPF), or pleckstrin homology domain-containing family F member 2 (PKHF2), or PH domain-containing family F member 2, or PH and FYVE domain-containing protein 2, or zinc finger FYVE domain-containing protein 18, is a ubiquitously expressed endoplasmic reticulum-associated protein that facilitates tumor necrosis factor alpha (TNF-alpha)-triggered cellular apoptosis through endoplasmic reticulum (ER)-mitochondrial apoptotic pathway. It is an endosomal phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) effector, as well as an interactor of the endosomal-tethering protein EEA1. It regulates endosome fusion upstream of Rab5. Phafin-2 also functions as a novel regulator of endocytic epidermal growth factor receptor (EGFR) degradation through a role in endosomal fusion.


Pssm-ID: 277294 [Multi-domain]  Cd Length: 64  Bit Score: 75.07  E-value: 1.52e-16
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 212549635 1194 IWIPDTRATMCMICTS-EFTLTWRRHHCRACGKIVCQACSSNKCGLDYLKGQPARVCELCFQEL 1256
Cdd:cd15755     1 VWVPDSEATVCMRCQKaKFTPVNRRHHCRKCGFVVCGPCSEKKFLLPSQSSKPVRVCDFCYDLL 64
FYVE_scVPS27p_like cd15760
FYVE domain found in Saccharomyces cerevisiae vacuolar protein sorting-associated protein 27 ...
1195-1253 1.53e-16

FYVE domain found in Saccharomyces cerevisiae vacuolar protein sorting-associated protein 27 (scVps27p) and similar proteins; scVps27p, also termed Golgi retention defective protein 11, is the putative yeast counterpart of the mammalian protein Hrs and is involved in endosome maturation. It is a mono-ubiquitin-binding protein that interacts with ubiquitinated cargoes, such as Hse1p, and is required for protein sorting into the multivesicular body. Vps27p forms a complex with Hse1p. The complex binds ubiquitin and mediates endosomal protein sorting. At the endosome, Vps27p and a trimeric protein complex, ESCRT-1, bind ubiquitin and are important for multivesicular body (MVB) sorting. Vps27p contains an N-terminal VHS (Vps27/Hrs/STAM) domain, a FYVE domain that binds PtdIns3P, followed by two ubiquitin-interacting motifs (UIMs), and a C-terminal clathrin-binding motif.


Pssm-ID: 277299 [Multi-domain]  Cd Length: 59  Bit Score: 75.03  E-value: 1.53e-16
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 212549635 1195 WIPDTRatmCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGLDYL--KGQPARVCELCF 1253
Cdd:cd15760     2 WKPDSR---CDVCRKKFGLFKRRHHCRNCGDSFCSEHSSRRIPLPHLgpLGVPQRVCDRCF 59
PH2_FGD1-4 cd13236
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins pleckstrin homology (PH) ...
1303-1399 1.90e-16

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins pleckstrin homology (PH) domain, C-terminus; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Not much is known about FGD2. FGD1 is the best characterized member of the group with mutations here leading to the X-linked disorder known as faciogenital dysplasia (FGDY). Both FGD1 and FGD3 are targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. However, FGD1 and FGD3 induced significantly different morphological changes in HeLa Tet-Off cells and while FGD1 induced long finger-like protrusions, FGD3 induced broad sheet-like protrusions when the level of GTP-bound Cdc42 was significantly increased by the inducible expression of FGD3. They also reciprocally regulated cell motility in inducibly expressed in HeLa Tet-Off cells, FGD1 stimulated cell migration while FGD3 inhibited it. FGD1 and FGD3 therefore play different roles to regulate cellular functions, even though their intracellular levels are tightly controlled by the same destruction pathway through SCF(FWD1/beta-TrCP). FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270056  Cd Length: 105  Bit Score: 76.23  E-value: 1.90e-16
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1303 VSANTEDSTMSGYLYRSkGSKKPWKHLWFVIKNK---VLYTYAASEDVAALESQPLLGFTVAQVKDE--HSDPRVFQLLH 1377
Cdd:cd13236     1 ASAVPENSLLCGFLQYS-EKGKTWQKVWCVIPRTeplVLYLYGAPQDVRAQRTIPLPGCEVTVPPPEerLDGRHVFKLSQ 79
                          90       100
                  ....*....|....*....|..
gi 212549635 1378 KGLLFYvFKADDAHSTQRWIDA 1399
Cdd:cd13236    80 SKQSHY-FSAESEELQQRWLEA 100
FYVE_WDFY3 cd15719
FYVE domain found in WD40 repeat and FYVE domain-containing protein 3 (WDFY3) and similar ...
1195-1256 2.38e-15

FYVE domain found in WD40 repeat and FYVE domain-containing protein 3 (WDFY3) and similar proteins; WDFY3, also termed autophagy-linked FYVE protein (Alfy), is a ubiquitously expressed phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding protein required for selective macroautophagic degradation of aggregated proteins. It regulates the protein degradation through the direct interaction with the autophagy protein Atg5. Moreover, WDFY3 acts as a scaffold that bridges its cargo to the macroautophagic machinery via the creation of a greater complex with Atg12, Atg16L, and LC3. It also functionally associates with sequestosome-1/p62 (SQSTM1) in osteoclasts. WDFY3 shuttles between the nucleus and cytoplasm. It predominantly localizes to the nucleus and nuclear membrane under basal conditions, but is recruited to cytoplasmic ubiquitin-positive protein aggregates under stress conditions. WDFY3 contains a PH-BEACH domain assemblage, five WD40 repeats and a PtdIns3P-binding FYVE domain.


Pssm-ID: 277259 [Multi-domain]  Cd Length: 65  Bit Score: 71.65  E-value: 2.38e-15
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 212549635 1195 WIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGLDYLK-GQPARVCELCFQEL 1256
Cdd:cd15719     3 WVKDEGGDSCTGCSVRFSLTERRHHCRNCGQLFCSKCSRFESEIRRLRiSRPVRVCQACYNIL 65
FYVE_MTMR4 cd15733
FYVE domain found in myotubularin-related protein 4 (MTMR4) and similar proteins; MTMR4, also ...
1195-1253 9.14e-15

FYVE domain found in myotubularin-related protein 4 (MTMR4) and similar proteins; MTMR4, also termed FYVE domain-containing dual specificity protein phosphatase 2 (FYVE-DSP2), or zinc finger FYVE domain-containing protein 11, is an dual specificity protein phosphatase that specifically dephosphorylates phosphatidylinositol 3-phosphate (PtdIns3P or PI3P). It is localizes to early endosomes, as well as to Rab11- and Sec15-positive recycling endosomes, and regulates sorting from early endosomes. Moreover, MTMR4 is preferentially associated with and dephosphorylated the activated regulatory Smad proteins (R-Smads) in cytoplasm to keep transforming growth factor (TGF) beta signaling in homeostasis. It also functions as an essential negative modulator for the homeostasis of bone morphogenetic protein (BMP)/decapentaplegic (Dpp) signaling. In addition, MTMR4 acts as a novel interactor of the ubiquitin ligase Nedd4 (neural-precursor-cell-expressed developmentally down-regulated 4) and may play a role in the biological process of muscle breakdown. MTMR4 contains an N-terminal PH-GRAM (PH-G) domain, a MTM phosphatase domain, a coiled-coil region, and a C-terminal FYVE domain.


Pssm-ID: 277272 [Multi-domain]  Cd Length: 60  Bit Score: 69.77  E-value: 9.14e-15
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1195 WIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGLDYLK-GQPARVCELCF 1253
Cdd:cd15733     1 WVPDHAASHCFGCDCEFWLAKRKHHCRNCGNVFCADCSNYKLPIPDEQlYDPVRVCNSCY 60
FYVE_RUFY1_like cd15721
FYVE domain found in RUN and FYVE domain-containing protein RUFY1, RUFY2 and similar proteins; ...
1195-1253 1.94e-14

FYVE domain found in RUN and FYVE domain-containing protein RUFY1, RUFY2 and similar proteins; This family includes RUN and FYVE domain-containing protein RUFY1 and RUFY2. RUFY1, also termed FYVE-finger protein EIP1, or La-binding protein 1, or Rab4-interacting protein (Rabip4), or Zinc finger FYVE domain-containing protein 12 (ZFY12), a human homologue of mouse Rabip4, an effector of Rab4 GTPase that regulates recycling of endocytosed cargo. RUFY1 is an endosomal protein that functions as a dual effector of Rab4 and Rab14 and is involved in efficient recycling of transferrin (Tfn). It is a downstream effector of Etk, a downstream tyrosine kinase of PI3-kinase that is involved in regulation of vesicle trafficking. RUFY2, also termed Rab4-interacting protein related, is a novel embryonic factor that is present in the nucleus at early stages of embryonic development. It may have both endosomal functions in the cytoplasm and nuclear functions. Both RUFY1 and RUFY2 contain an N-terminal RUN domain and a C-terminal FYVE domain with two coiled-coil domains in-between.


Pssm-ID: 277261 [Multi-domain]  Cd Length: 58  Bit Score: 68.95  E-value: 1.94e-14
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 212549635 1195 WIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGLDYlKGQPARVCELCF 1253
Cdd:cd15721     1 WADDKEVTHCQQCEKEFSLSRRKHHCRNCGGIFCNSCSDNTMPLPS-SAKPVRVCDTCY 58
FYVE_MTMR3 cd15732
FYVE domain found in myotubularin-related protein 3 (MTMR3) and similar proteins; MTMR3, also ...
1195-1253 3.77e-14

FYVE domain found in myotubularin-related protein 3 (MTMR3) and similar proteins; MTMR3, also termed Myotubularin-related phosphatase 3, or FYVE domain-containing dual specificity protein phosphatase 1 (FYVE-DSP1), or zinc finger FYVE domain-containing protein 10, is a ubiquitously expressed phosphoinositide 3-phosphatase specific for phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) and phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) and PIKfyve, which produces PtdIns(3,5)P2 from PtdIns3P. It regulates cell migration through modulating phosphatidylinositol 5-phosphate (PtdIns5P) levels. MTMR3 contains an N-terminal PH-GRAM (PH-G) domain, a MTM phosphatase domain, a coiled-coil region, and a C-terminal FYVE domain. Unlike conventional FYVE domains, the FYVE domain of MTMR3 neither confers endosomal localization nor binds to PtdIns3P. It is also not required for the enzyme activity of MTMR3. In contrast, the PH-G domain binds phosphoinositides.


Pssm-ID: 277271 [Multi-domain]  Cd Length: 61  Bit Score: 68.39  E-value: 3.77e-14
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1195 WIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGLDYLKG-QPARVCELCF 1253
Cdd:cd15732     2 WVPDHLAASCYGCEREFWLASRKHHCRNCGNVFCGSCCNQKLPVPSQQLfEPSRVCKSCF 61
FYVE_ZFYV1 cd15734
FYVE domains found in zinc finger FYVE domain-containing protein 1 (ZFYV1) and similar ...
1195-1253 4.74e-14

FYVE domains found in zinc finger FYVE domain-containing protein 1 (ZFYV1) and similar proteins; ZFYV1, also termed double FYVE-containing protein 1 (DFCP1), or SR3, or tandem FYVE fingers-1, is a novel tandem FYVE domain containing protein that binds phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) with high specificity over other phosphoinositides. The subcellular distribution of exogenously-expressed ZFYV1 to Golgi, endoplasmic reticulum (ER) and vesicular is governed in part by its FYVE domains but unaffected by wortmannin, a PI3-kinase inhibitor. In addition to C-terminal tandem FYVE domain, ZFYV1 contains an N-terminal putative C2H2 type zinc finger and a possible nucleotide binding P-loop.


Pssm-ID: 277273 [Multi-domain]  Cd Length: 61  Bit Score: 68.13  E-value: 4.74e-14
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 212549635 1195 WIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKC-----GLDYlkgqPARVCELCF 1253
Cdd:cd15734     2 WVPDSEIKECSVCKRPFSPRLSKHHCRACGQGVCDDCSKNRRpvpsrGWDH----PVRVCDPCA 61
FYVE_spVPS27p_like cd15735
FYVE domain found in Schizosaccharomyces pombe vacuolar protein sorting-associated protein 27 ...
1193-1253 6.52e-14

FYVE domain found in Schizosaccharomyces pombe vacuolar protein sorting-associated protein 27 (spVps27p) and similar proteins; spVps27p, also termed suppressor of ste12 deletion protein 4 (Sst4p), is a conserved homolog of budding Saccharomyces cerevisiae Vps27 and of mammalian Hrs. It functions as a downstream factor for phosphatidylinositol 3-kinase (PtdIns 3-kinase) in forespore membrane formation with normal morphology. It colocalizes and interacts with Hse1p, a homolog of Saccharomyces cerevisiae Hse1p and of mammalian STAM, to form a complex whose ubiquitin-interacting motifs (UIMs) are important for sporulation. spVps27p contains a VHS (Vps27p/Hrs/Stam) domain, a FYVE domain, and two UIMs.


Pssm-ID: 277274 [Multi-domain]  Cd Length: 59  Bit Score: 67.55  E-value: 6.52e-14
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 212549635 1193 PIWIPdtrATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGLDYLK-GQPARVCELCF 1253
Cdd:cd15735     1 PEWVD---SDVCMRCRTAFTFTNRKHHCRNCGGVFCQQCSSKSLPLPHFGiNQPVRVCDGCY 59
FYVE_FYCO1 cd15726
FYVE domain found in FYVE and coiled-coil domain-containing protein 1 (FYCO1) and similar ...
1195-1253 9.64e-14

FYVE domain found in FYVE and coiled-coil domain-containing protein 1 (FYCO1) and similar proteins; FYCO1, also termed zinc finger FYVE domain-containing protein 7, is a phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding protein that is associated with the exterior of autophagosomes and mediates microtubule plus-end-directed vesicle transport. It acts as an effector of GTP-bound Rab7, a GTPase that recruits FYCO1 to autophagosomes and has been implicated in autophagosome-lysosomal fusion. FYCO1 also interacts with two microtubule motor proteins, kinesin (KIF) 5B and KIF23, and thus functions as a platform for assembly of vesicle fusion and trafficking factors. FYCO1 contains an N-terminal alpha-helical RUN domain followed by a long central coiled-coil region, a FYVE domain and a GOLD (Golgi dynamics) domain in C-terminus.


Pssm-ID: 277265 [Multi-domain]  Cd Length: 58  Bit Score: 66.81  E-value: 9.64e-14
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 212549635 1195 WIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKcGLDYLKGQPARVCELCF 1253
Cdd:cd15726     1 WQDDTDVTHCLDCKSEFSWMVRRHHCRLCGRIFCYACSNFY-VLTAHGGKKERCCKACF 58
FYVE_RUFY1 cd15758
FYVE domain found in RUN and FYVE domain-containing protein 1 (RUFY1) and similar proteins; ...
1191-1252 1.54e-13

FYVE domain found in RUN and FYVE domain-containing protein 1 (RUFY1) and similar proteins; RUFY1, also termed FYVE-finger protein EIP1, or La-binding protein 1, or Rab4-interacting protein (Rabip4), or Zinc finger FYVE domain-containing protein 12 (ZFY12), a human homologue of mouse Rabip4, an effector of Rab4 GTPase that regulates recycling of endocytosed cargo. RUFY1 is an endosomal protein that functions as a dual effector of Rab4 and Rab14 and is involved in efficient recycling of transferrin (Tfn). It is a downstream effector of Etk, a downstream tyrosine kinase of PI3-kinase that is involved in regulation of vesicle trafficking. RUFY1 contains an N-terminal RUN domain and a C-terminal FYVE domain with two coiled-coil domains in-between.


Pssm-ID: 277297 [Multi-domain]  Cd Length: 71  Bit Score: 67.01  E-value: 1.54e-13
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 212549635 1191 KAPIWIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGL-DYLKgqPARVCELC 1252
Cdd:cd15758     2 KGHAWLKDDEATHCKQCEKEFSISRRKHHCRNCGHIFCNTCSSNELALpSYPK--PVRVCDSC 62
FYVE_ANFY1 cd15728
FYVE domain found in ankyrin repeat and FYVE domain-containing protein 1 (ANFY1) and similar ...
1204-1256 1.21e-12

FYVE domain found in ankyrin repeat and FYVE domain-containing protein 1 (ANFY1) and similar proteins; ANFY1, also termed ankyrin repeats hooked to a zinc finger motif (Ankhzn), is a novel cytoplasmic protein that belongs to a new group of double zinc finger proteins involved in vesicle or protein transport. It is ubiquitously expressed in a spatiotemporal-specific manner and is located on endosomes. ANFY1 contains an N-terminal coiled-coil region and a BTB/POZ domain, ankyrin repeats in the middle, and a C-terminal FYVE domain.


Pssm-ID: 277267 [Multi-domain]  Cd Length: 63  Bit Score: 63.98  E-value: 1.21e-12
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 212549635 1204 CMICTSEFTLTWRRHHCRACGKIVCQACSSNKCG-LDYLKGQPARVCELCFQEL 1256
Cdd:cd15728    10 CYECGVKFGITTRKHHCRHCGRLLCSKCSTKEVPiIKFDLNKPVRVCDVCFDVL 63
FYVE_Hrs cd15720
FYVE domain found in hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) ...
1204-1256 2.34e-12

FYVE domain found in hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) and similar proteins; Hrs, also termed protein pp110, is a tyrosine phosphorylated protein that plays an important role in the signaling pathway of HGF. It is localized to early endosomes and an essential component of the endosomal sorting and trafficking machinery. Hrs interacts with hypertonia-associated protein Trak1, a novel regulator of endosome-to-lysosome trafficking. It can also forms an Hrs/actinin-4/BERP/myosin V protein complex that is required for efficient transferrin receptor (TfR) recycling but not for epidermal growth factor receptor (EGFR) degradation. Moreover, Hrs, together with STAM proteins, STAM1 and STAM2, and EPs15, forms a multivalent ubiquitin-binding complex that sorts ubiquitinated proteins into the multivesicular body pathway, and plays a regulatory role in endocytosis/exocytosis. Furthermore, Hrs functions as an interactor of the neurofibromatosis 2 tumor suppressor protein schwannomin/merlin. It is also involved in the inhibition of citron kinase-mediated HIV-1 budding. Hrs contains a single ubiquitin-interacting motif (UIM) that is crucial for its function in receptor sorting, and a FYVE domain that harbors double Zn2+ binding sites.


Pssm-ID: 277260 [Multi-domain]  Cd Length: 61  Bit Score: 63.17  E-value: 2.34e-12
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 212549635 1204 CMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGL-DYLKGQPARVCELCFQEL 1256
Cdd:cd15720     8 CHRCRVQFGVFQRKHHCRACGQVFCGKCSSKSSTIpKFGIEKEVRVCDPCYEKL 61
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
1311-1402 6.39e-12

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 63.34  E-value: 6.39e-12
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635   1311 TMSGYLY-RSKGSKKPWKHLWFVIKNKVLYTYAASEDVAALESQ---PLLGFTVAQVKDE--HSDPRVFQLLHKGLLFYV 1384
Cdd:smart00233    2 IKEGWLYkKSGGGKKSWKKRYFVLFNSTLLYYKSKKDKKSYKPKgsiDLSGCTVREAPDPdsSKKPHCFEIKTSDRKTLL 81
                            90
                    ....*....|....*...
gi 212549635   1385 FKADDAHSTQRWIDAFQE 1402
Cdd:smart00233   82 LQAESEEEREKWVEALRK 99
FYVE_RBNS5 cd15716
FYVE domain found in FYVE finger-containing Rab5 effector protein rabenosyn-5 (Rbsn-5) and ...
1195-1258 7.12e-12

FYVE domain found in FYVE finger-containing Rab5 effector protein rabenosyn-5 (Rbsn-5) and similar proteins; Rbsn-5, also termed zinc finger FYVE domain-containing protein 20, is a novel Rab5 effector that is complexed to the Sec1-like protein VPS45 and recruited in a phosphatidylinositol-3-kinase-dependent fashion to early endosomes. It also binds to Rab4 and EHD1/RME-1, two regulators of the recycling route, and is involved in cargo recycling to the plasma membrane. Moreover, Rbsn-5 regulates endocytosis at the apical side of the wing epithelium and plays a role of the apical endocytic trafficking of Fmi in the establishment of planar cell polarity (PCP).


Pssm-ID: 277256 [Multi-domain]  Cd Length: 61  Bit Score: 61.59  E-value: 7.12e-12
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 212549635 1195 WIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSnkcGLDYlkgqPARVCELCFQELQK 1258
Cdd:cd15716     4 WVNDSDVPFCPDCGKKFNLARRRHHCRLCGSIMCNKCSQ---FLPL----HIRCCHHCKDLLER 60
FYVE2_Vac1p_like cd15737
FYVE domain 2 found in yeast protein VAC1 (Vac1p) and similar proteins; Vac1p, also termed ...
1195-1234 7.64e-12

FYVE domain 2 found in yeast protein VAC1 (Vac1p) and similar proteins; Vac1p, also termed vacuolar segregation protein Pep7p, or carboxypeptidase Y-deficient protein 7, or vacuolar protein sorting-associated protein 19 (Vps19p), or vacuolar protein-targeting protein 19, is a phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding protein that interacts with a Rab GTPase, GTP-bound form of Vps21p, and a Sec1p homologue, Vps45p, to facilitate Vps45p-dependent vesicle-mediated vacuolar protein sorting. It also acts as a novel regulator of vesicle docking and/or fusion at the endosome and functions in vesicle-mediated transport of Golgi precursor carboxypeptidase Y (CPY), protease A (PrA), protease B (PrB), but not alkaline phosphatase (ALP) from the trans-Golgi network-like compartment (TGN) to the endosome. Vac1p contains an N-terminal classical TFIIIA-like zinc finger, two putative zinc-binding FYVE fingers, and a C-terminal coiled coil region. The family corresponds to the second FYVE domain that is responsible for the ability of Pep7p to efficiently interact with Vac1p and Vps45p.


Pssm-ID: 277276 [Multi-domain]  Cd Length: 83  Bit Score: 62.52  E-value: 7.64e-12
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....
gi 212549635 1195 WIPDTRATMCMICTSEFTLTWRRHHCRACGKIVC----QACSSN 1234
Cdd:cd15737     2 WEDDSSVTHCPICLRSFGLLLRKHHCRLCGKVVCddrrTKCSTE 45
PH1_FGD1-4_like cd13388
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 1-4 and similar proteins, ...
1068-1155 2.03e-11

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 1-4 and similar proteins, N-terminal Pleckstrin homology (PH) domain; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Mutations in the FGD1 gene are responsible for the X-linked disorder known as faciogenital dysplasia (FGDY). Both FGD1 and FGD3 are targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. They play different roles to regulate cellular functions, even though their intracellular levels are tightly controlled by the same destruction pathway. FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275423  Cd Length: 94  Bit Score: 61.57  E-value: 2.03e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1068 LKEGILMKLSRKV--MQPRMIFLFNDALLYTTP---MQSGMYKLNNMLSLAGMKVRKPTQEAYQNELKIESVERSFILSA 1142
Cdd:cd13388     2 IKEGKILKISARNgdTQERYLFLFNDMLLYCSPrlrLIGQKYKVRARFDVDGMQVLEGDNLETPHTFYVRGKQRSLELQA 81
                          90
                  ....*....|...
gi 212549635 1143 SSASERDDWLEAI 1155
Cdd:cd13388    82 STQEEKAEWVDAI 94
PH_PEPP1_2_3 cd13248
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ...
1311-1399 2.78e-11

Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270068  Cd Length: 104  Bit Score: 61.52  E-value: 2.78e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1311 TMSGYLYRSKGSK-KPWKHLWFVIKNKVLYTYAASEDVAALESQPLLGFTV--AQVKDEHSDPRVFQLLHKGLLFYVFKA 1387
Cdd:cd13248     8 VMSGWLHKQGGSGlKNWRKRWFVLKDNCLYYYKDPEEEKALGSILLPSYTIspAPPSDEISRKFAFKAEHANMRTYYFAA 87
                          90
                  ....*....|..
gi 212549635 1388 DDAHSTQRWIDA 1399
Cdd:cd13248    88 DTAEEMEQWMNA 99
FYVE_RUFY2 cd15759
FYVE domain found in RUN and FYVE domain-containing protein 2 (RUFY2) and similar proteins; ...
1194-1252 3.00e-11

FYVE domain found in RUN and FYVE domain-containing protein 2 (RUFY2) and similar proteins; RUFY2, also termed Rab4-interacting protein related, is a novel embryonic factor that contains an N-terminal RUN domain and a C-terminal FYVE domain with two coiled-coil domains in-between. It is present in the nucleus at early stages of embryonic development. It may have both endosomal functions in the cytoplasm and nuclear functions.


Pssm-ID: 277298 [Multi-domain]  Cd Length: 71  Bit Score: 60.42  E-value: 3.00e-11
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 212549635 1194 IWIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGLDYlKGQPARVCELC 1252
Cdd:cd15759     3 VWLKDKEATHCKLCEKEFSLSKRKHHCRNCGEIFCNACSDNELPLPS-SPKPVRVCDSC 60
PH1_FDG4 cd15791
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 4, N-terminal Pleckstrin ...
1067-1155 3.61e-11

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 4, N-terminal Pleckstrin homology (PH) domain; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275434  Cd Length: 94  Bit Score: 60.78  E-value: 3.61e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1067 FLKEGILMKLSRK--VMQPRMIFLFNDALLYTTPMQS---GMYKLNNMLSLAGMKVRKPTQEAYQNELKIESVERSFILS 1141
Cdd:cd15791     1 LIKEGQILKLAARntSAQERYLFLFNNMLLYCVPKFSlvgSKYTVRTRIGIDGMKVVETQNEDYPHTFQVSGKERTLELQ 80
                          90
                  ....*....|....
gi 212549635 1142 ASSASERDDWLEAI 1155
Cdd:cd15791    81 ASSEQDKEEWIKAL 94
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
1312-1400 3.89e-11

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 60.63  E-value: 3.89e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1312 MSGYLY-RSKGSKKPWKHLWFVIKNKVLYTYAASEDV--AALESQPLLGFTVAQVKDEHSDPRVFQLLHKGLLFYVFKAD 1388
Cdd:cd00821     1 KEGYLLkRGGGGLKSWKKRWFVLFEGVLLYYKSKKDSsyKPKGSIPLSGILEVEEVSPKERPHCFELVTPDGRTYYLQAD 80
                          90
                  ....*....|..
gi 212549635 1389 DAHSTQRWIDAF 1400
Cdd:cd00821    81 SEEERQEWLKAL 92
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
1067-1159 4.43e-11

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 61.03  E-value: 4.43e-11
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635   1067 FLKEGILMKLS---RKVMQPRMIFLFNDALLYTTPMQSGM-YKLNNMLSLAGMKVRKPTQEA---YQNELKIESVER-SF 1138
Cdd:smart00233    1 VIKEGWLYKKSgggKKSWKKRYFVLFNSTLLYYKSKKDKKsYKPKGSIDLSGCTVREAPDPDsskKPHCFEIKTSDRkTL 80
                            90       100
                    ....*....|....*....|.
gi 212549635   1139 ILSASSASERDDWLEAISRAI 1159
Cdd:smart00233   81 LLQAESEEEREKWVEALRKAI 101
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
1069-1155 7.12e-11

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 59.86  E-value: 7.12e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1069 KEGILMKLSRKVM---QPRMIFLFNDALLYTTPMQSGMYKLNNMLSLAG-MKVRKPTQEAYQNELKIE-SVERSFILSAS 1143
Cdd:cd00821     1 KEGYLLKRGGGGLkswKKRWFVLFEGVLLYYKSKKDSSYKPKGSIPLSGiLEVEEVSPKERPHCFELVtPDGRTYYLQAD 80
                          90
                  ....*....|..
gi 212549635 1144 SASERDDWLEAI 1155
Cdd:cd00821    81 SEEERQEWLKAL 92
PH_CNK_insect-like cd13326
Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; ...
1314-1400 9.02e-11

Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; CNK family members function as protein scaffolds, regulating the activity and the subcellular localization of RAS activated RAF. There is a single CNK protein present in Drosophila and Caenorhabditis elegans in contrast to mammals which have 3 CNK proteins (CNK1, CNK2, and CNK3). All of the CNK members contain a sterile a motif (SAM), a conserved region in CNK (CRIC) domain, and a PSD-95/DLG-1/ZO-1 (PDZ) domain, and a PH domain. A CNK2 splice variant CNK2A also has a PDZ domain-binding motif at its C terminus and Drosophila CNK (D-CNK) also has a domain known as the Raf-interacting region (RIR) that mediates binding of the Drosophila Raf kinase. This cd contains CNKs from insects, spiders, mollusks, and nematodes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270135  Cd Length: 91  Bit Score: 59.66  E-value: 9.02e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1314 GYLYRSKGSKKP---WKHLWFVIKNKVLYTYAASEDVAALESQPLLGFTVAQVKDEHSDPRVFQLLHKGLLFYvFKADDA 1390
Cdd:cd13326     3 GWLYQRRRKGKGggkWAKRWFVLKGSNLYGFRSQESTKADCVIFLPGFTVSPAPEVKSRKYAFKVYHTGTVFY-FAAESQ 81
                          90
                  ....*....|
gi 212549635 1391 HSTQRWIDAF 1400
Cdd:cd13326    82 EDMKKWLDLL 91
FYVE_PIKfyve_Fab1 cd15725
FYVE domain found in metazoan PIKfyve, fungal and plant Fab1, and similar proteins; PIKfyve, ...
1195-1254 3.85e-10

FYVE domain found in metazoan PIKfyve, fungal and plant Fab1, and similar proteins; PIKfyve, also termed FYVE finger-containing phosphoinositide kinase, or 1-phosphatidylinositol 3-phosphate 5-kinase, or phosphatidylinositol 3-phosphate 5-kinase (PIP5K3), or phosphatidylinositol 3-phosphate 5-kinase type III (PIPkin-III or type III PIP kinase), is a phosphoinositide 5-kinase that forms a complex with its regulators, the scaffolding protein Vac14 and the lipid phosphatase Fig4. The complex is responsible for synthesizing phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] from phosphatidylinositol 3-phosphate (PtdIns3P or PI3P). Then phosphatidylinositol-5-phosphate (PtdIns5P) is generated directly from PtdIns(3,5)P2. PtdIns(3,5)P2 and PtdIns5P regulate endosomal trafficking and responses to extracellular stimuli. At this point, PIKfyve is vital in early embryonic development. Moreover, PIKfyve forms a complex with ArPIKfyve (associated regulator of PIKfyve) and SAC3 at the endomembranes, which plays a role in receptor tyrosine kinase (RTK) degradation. The phosphorylation of PIKfyve by AKT can facilitate Epidermal growth factor receptor (EGFR) degradation. In addition, PIKfyve may participate in the regulation of the glutamate transporters EAAT2, EAAT3 and EAAT4, and the cystic fibrosis transmembrane conductance regulator (CFTR). It is also essential for systemic glucose homeostasis and insulin-regulated glucose uptake/GLUT4 translocation in skeletal muscle. It can be activated by protein kinase B (PKB/Akt) and further up-regulates human ether-a-go-go (hERG) channels. This family also includes the yeast and plant orthologs of human PIKfyve, Fab1. PIKfyve and its orthologs share a similar architecture. They contain an N-terminal FYVE domain, a middle region related to the CCT/TCP-1/Cpn60 chaperonins that are involved in productive folding of actin and tubulin, a second middle domain that contains a number of conserved cysteine residues (CCR) unique to this family, and a C-terminal lipid kinase domain related to PtdInsP kinases.


Pssm-ID: 277264 [Multi-domain]  Cd Length: 62  Bit Score: 56.95  E-value: 3.85e-10
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 212549635 1195 WIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSNK---CGLDYLKGQpaRVCELCFQ 1254
Cdd:cd15725     2 WMPDSSCKECYECSEKFTTFRRRHHCRLCGQIFCSRCCNQEipgKFIGYPGDL--RVCTYCCK 62
PH1_FGD3 cd13387
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 3, N-terminal Pleckstrin ...
1067-1169 7.69e-10

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 3, N-terminal Pleckstrin homology (PH) domain; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Both FGD1 and FGD3 are targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. However, FGD1 and FGD3 induced significantly different morphological changes in HeLa Tet-Off cells and while FGD1 induced long finger-like protrusions, FGD3 induced broad sheet-like protrusions when the level of GTP-bound Cdc42 was significantly increased by the inducible expression of FGD3. They also reciprocally regulated cell motility in inducibly expressed in HeLa Tet-Off cells, FGD1 stimulated cell migration while FGD3 inhibited it. FGD1 and FGD3 therefore play different roles to regulate cellular functions, even though their intracellular levels are tightly controlled by the same destruction pathway through SCF(FWD1/beta-TrCP). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275422  Cd Length: 108  Bit Score: 57.67  E-value: 7.69e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1067 FLKEGILMKLSRK--VMQPRMIFLFNDALLYTTPMQSGM---YKLNNMLSLAGMKVRKPTQEAYQNELKIESVERSFILS 1141
Cdd:cd13387     1 LIKEGHIQKLSAKngTAQDRYLYLFNSMVLYCVPKLRLMgqkFSVREKIDIAGMQVQEIVKQNVPHTFTITGKKRSLELQ 80
                          90       100
                  ....*....|....*....|....*...
gi 212549635 1142 ASSASERDDWLEAISRAIEEYAKKRITF 1169
Cdd:cd13387    81 ARTEEEKKEWIQVIQATIEKHKQNSETF 108
PH2_FARP1-like cd13235
FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin ...
1310-1404 9.10e-10

FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin Homology (PH) domain, repeat 2; Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FARP6 (also called Zinc finger FYVE domain-containing protein 24). They are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. Little is known about FARP1 and FARP6, though FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. FARP1 and FARP2 are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. FARP6 is composed of Dbl-homology (DH), and two C-terminal PH domains separated by a FYVE domain. This hierarchy contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270055  Cd Length: 98  Bit Score: 56.94  E-value: 9.10e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1310 STMSGYLYRSKGSKKPWKHLWFVIKNKVLYTYAASEDVAALESQPLLGFTVAQVKDEHSDPR--VFQLLHKGLLfYVFKA 1387
Cdd:cd13235     3 NQMSGYLLRKFKNSNGWQKLWVVFTNFCLFFYKSHQDEFPLASLPLLGYSVGLPSEADNIDKdyVFKLQFKSHV-YFFRA 81
                          90
                  ....*....|....*..
gi 212549635 1388 DDAHSTQRWIDAFQEGT 1404
Cdd:cd13235    82 ESEYTFERWMEVIRSAT 98
FYVE_RABE_unchar cd15739
FYVE domain found in uncharacterized rab GTPase-binding effector proteins from bilateria; This ...
1195-1258 2.28e-09

FYVE domain found in uncharacterized rab GTPase-binding effector proteins from bilateria; This family includes a group of uncharacterized rab GTPase-binding effector proteins found in bilateria. Although their biological functions remain unclear, they all contain a FYVE domain that harbors a putative phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding site.


Pssm-ID: 277278 [Multi-domain]  Cd Length: 73  Bit Score: 55.04  E-value: 2.28e-09
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 212549635 1195 WIPDTRATMCMICTSEFTLTWRRHHCRACGKIVCQACSSN--KCGldyLKGQPARVCELCFQELQK 1258
Cdd:cd15739     4 WQHEDDVDQCPNCKTPFSVGKRKHHCRHCGKIFCSDCLTKtvPSG---PNRRPARVCDVCHTLLVK 66
PH1_FGD2 cd13386
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 2, N-terminal Pleckstrin ...
1067-1169 3.68e-09

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 2, N-terminal Pleckstrin homology (PH) domain; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Not much is known about FGD2. FGD1 is the best characterized member of the group with mutations here leading to the X-linked disorder known as faciogenital dysplasia (FGDY). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275421  Cd Length: 108  Bit Score: 55.69  E-value: 3.68e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1067 FLKEGILMKLSRKVMQP--RMIFLFNDALLYTTP--MQSG-MYKLNNMLSLAGMKVRKPTQEAYQNELKIESVERSFILS 1141
Cdd:cd13386     1 LLKEGPVLKISFRNNNPkeRYLFLFNNMLLYCVPkvIQVGaKFQVHMRIDVDGMKVRELNDAEFPHSFLVSGKQRTLELQ 80
                          90       100
                  ....*....|....*....|....*...
gi 212549635 1142 ASSASERDDWLEAISRAIEEYAKKRITF 1169
Cdd:cd13386    81 ARSQEEMEAWIQAFQEAIDQNEKRTETF 108
FYVE_scVPS27p_Vac1p_like cd15736
FYVE domain found in Saccharomyces cerevisiae vacuolar protein sorting-associated protein 27 ...
1204-1253 5.54e-09

FYVE domain found in Saccharomyces cerevisiae vacuolar protein sorting-associated protein 27 (scVps27p) and FYVE-related domain 1 found in yeast protein VAC1 (Vac1p) and similar proteins; The family includes Saccharomyces cerevisiae vacuolar protein sorting-associated protein 27 (scVps27p) and protein VAC1 (Vac1p). scVps27p, also termed Golgi retention defective protein 11, is the putative yeast counterpart of the mammalian protein Hrs and is involved in endosome maturation. It is a mono-ubiquitin-binding protein that interacts with ubiquitinated cargoes, such as Hse1p, and is required for protein sorting into the multivesicular body. Vps27p forms a complex with Hse1p. The complex binds ubiquitin and mediates endosomal protein sorting. At the endosome, Vps27p and a trimeric protein complex, ESCRT-1, bind ubiquitin and are important for multivesicular body (MVB) sorting. Vps27p contains an N-terminal VHS (Vps27/Hrs/STAM) domain, a FYVE domain that binds PtdIns3P, followed by two ubiquitin-interacting motifs (UIMs), and a C-terminal clathrin-binding motif. Vac1p, also termed vacuolar segregation protein Pep7p, or carboxypeptidase Y-deficient protein 7, or vacuolar protein sorting-associated protein 19 (Vps19p), or vacuolar protein-targeting protein 19, is a phosphatidylinositol 3-phosphate (PtdIns3P or PI3P)-binding protein that interacts with a Rab GTPase, GTP-bound form of Vps21p, and a Sec1p homologue, Vps45p, to facilitate Vps45p-dependent vesicle-mediated vacuolar protein sorting. It also acts as a novel regulator of vesicle docking and/or fusion at the endosome and functions in vesicle-mediated transport of Golgi precursor carboxypeptidase Y (CPY), protease A (PrA), protease B (PrB), but not alkaline phosphatase (ALP) from the trans-Golgi network-like compartment (TGN) to the endosome. Vac1p contains an N-terminal classical TFIIIA-like zinc finger, two putative zinc-binding FYVE fingers, and a C-terminal coiled coil region. The FYVE domain in both Vps27p and Vac1p harbors a zinc-binding site composed of seven Cysteines and one Histidine, which is different from that of other FYVE domain containing proteins.


Pssm-ID: 277275 [Multi-domain]  Cd Length: 56  Bit Score: 53.34  E-value: 5.54e-09
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 212549635 1204 CMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGL-----DYLKGQPARVCELCF 1253
Cdd:cd15736     2 CHTCSRTFNLNIRAHHCRKCGKLFCRRHLPNMIPLnlsayDPRNGKWYRCCHSCF 56
PH pfam00169
PH domain; PH stands for pleckstrin homology.
1311-1402 1.78e-08

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 53.72  E-value: 1.78e-08
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635  1311 TMSGYLYRSKGSKKP-WKHLWFVIKNKVLYTY---AASEDVAALESQPLLGFTVAQVKDEHSDPR--VFQLLHKGLLF-- 1382
Cdd:pfam00169    2 VKEGWLLKKGGGKKKsWKKRYFVLFDGSLLYYkddKSGKSKEPKGSISLSGCEVVEVVASDSPKRkfCFELRTGERTGkr 81
                           90       100
                   ....*....|....*....|.
gi 212549635  1383 -YVFKADDAHSTQRWIDAFQE 1402
Cdd:pfam00169   82 tYLLQAESEEERKDWIKAIQS 102
PH1_FGD1 cd01219
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 1, N-terminal Pleckstrin ...
1067-1169 2.29e-08

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 1, N-terminal Pleckstrin homology (PH) domain; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Mutations in the FGD1 gene are responsible for the X-linked disorder known as faciogenital dysplasia (FGDY). Both FGD1 and FGD3 are targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. However, FGD1 and FGD3 induced significantly different morphological changes in HeLa Tet-Off cells and while FGD1 induced long finger-like protrusions, FGD3 induced broad sheet-like protrusions when the level of GTP-bound Cdc42 was significantly increased by the inducible expression of FGD3. They also reciprocally regulated cell motility in inducibly expressed in HeLa Tet-Off cells, FGD1 stimulated cell migration while FGD3 inhibited it. FGD1 and FGD3 therefore play different roles to regulate cellular functions, even though their intracellular levels are tightly controlled by the same destruction pathway through SCF(FWD1/beta-TrCP). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275392  Cd Length: 108  Bit Score: 53.49  E-value: 2.29e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1067 FLKEGILMKLSRK--VMQPRMIFLFNDALLYTTP---MQSGMYKLNNMLSLAGMKVRKPTQEAYQNELKIESVERSFILS 1141
Cdd:cd01219     1 LIKEGHILKLSAKngTTQDRYLILFNDRLLYCVPklrLIGQKFSVRARIDVEGMELKESSSLNLPRTFLVSGKQRSLELQ 80
                          90       100
                  ....*....|....*....|....*...
gi 212549635 1142 ASSASERDDWLEAISRAIEEYAKKRITF 1169
Cdd:cd01219    81 ARTEEEKKDWIQAIQATIQRHEQTLETF 108
FYVE_WDFY1_like cd15718
FYVE domain found in WD40 repeat and FYVE domain-containing protein WDFY1 and WDFY2, and ...
1203-1253 4.93e-08

FYVE domain found in WD40 repeat and FYVE domain-containing protein WDFY1 and WDFY2, and similar proteins; This family includes WD40 repeat and FYVE domain-containing protein WDFY1 and WDFY2. WDFY1, also termed FYVE domain containing protein localized to endosomes-1 (FENS-1), or phosphoinositide-binding protein 1, or zinc finger FYVE domain-containing protein 17, is a novel single FYVE domain containing protein that binds phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) with high specificity over other phosphoinositides. WDFY1 to early endosomes requires an intact FYVE domain and is inhibited by wortmannin, a PI3-kinase inhibitor. WDFY2, also termed zinc finger FYVE domain-containing protein 22, or ProF (propeller-FYVE protein), is a phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding protein that is localized to a distinct subset of early endosomes close to the plasma membrane. It interacts preferentially with endogenous serine/threonine kinase Akt2, but not Akt1, and plays a specific role in modulating signaling through Akt downstream of the interaction of this kinase with the endosomal proteins APPL (adaptor protein containing PH domain, PTB domain, and leucine zipper motif). In addition to Akt, WDFY2 serves as a binding partner for protein kinase C, zeta (PRKCZ), and its substrate vesicle-associated membrane protein 2 (VAMP2), and is involved in vesicle cycling in various secretory pathways. Moreover, Silencing of WDFY2 by siRNA produces a strong inhibition of endocytosis. Both WDFY1 and WDFY2 contain a FYVE domain and multiple WD-40 repeats.


Pssm-ID: 277258 [Multi-domain]  Cd Length: 70  Bit Score: 51.17  E-value: 4.93e-08
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 212549635 1203 MCMICTSEF-----------TLTWRRHHCRACGKIVCQACSSNKC-----GLDYlkgqPARVCELCF 1253
Cdd:cd15718     8 NCQKCSRPFfwnfkqmwekkTLGVRQHHCRKCGKAVCDKCSSNRStipvmGFEF----PVRVCNECY 70
PH pfam00169
PH domain; PH stands for pleckstrin homology.
1069-1160 1.33e-07

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 51.02  E-value: 1.33e-07
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635  1069 KEGILMKLSRKVM---QPRMIFLFNDALLYTTPMQSGM-YKLNNMLSLAGMKVRKPTQEAYQNE-------LKIESVERS 1137
Cdd:pfam00169    3 KEGWLLKKGGGKKkswKKRYFVLFDGSLLYYKDDKSGKsKEPKGSISLSGCEVVEVVASDSPKRkfcfelrTGERTGKRT 82
                           90       100
                   ....*....|....*....|...
gi 212549635  1138 FILSASSASERDDWLEAISRAIE 1160
Cdd:pfam00169   83 YLLQAESEEERKDWIKAIQSAIR 105
PH2_FGD4_insect-like cd13238
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 4 pleckstrin homology (PH) ...
1312-1399 4.31e-07

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 4 pleckstrin homology (PH) domain, C-terminus, in insect and related arthropods; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. This cd contains insects, crustaceans, and chelicerates. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270058  Cd Length: 97  Bit Score: 49.57  E-value: 4.31e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1312 MSGYLYRSKGSKKPWKHLWFVIKNK-VLYTYAASEDVAALESQPLLGFTVAQVKDEHSD--------PRVFQLLHKGLLF 1382
Cdd:cd13238     1 LSGYLKLKTNGRKTWSRRWFALQPDfVLYSYKSQEDKLPLTATPVPGFLVTLLEKGSAVdplndpkrPRTFKMFHVKKSY 80
                          90
                  ....*....|....*..
gi 212549635 1383 YvFKADDAHSTQRWIDA 1399
Cdd:cd13238    81 Y-FQANDGDEQKKWVLT 96
FYVE_RUFY3 cd15744
FYVE-related domain found in RUN and FYVE domain-containing protein 3 (RUFY3) and similar ...
1204-1253 5.71e-07

FYVE-related domain found in RUN and FYVE domain-containing protein 3 (RUFY3) and similar proteins; RUFY3, also termed Rap2-interacting protein x (RIPx or RPIPx), or single axon-regulated protein (singar), is an N-terminal RUN domain and a C-terminal FYVE domain containing protein predominantly expressed in the brain. It suppresses formation of surplus axons for neuronal polarity. Unlike other RUFY proteins, RUFY3 can associate with the GTP-bound active form of Rab5. Moreover, the FYVE domain of RUFY3 resembles the FYVE-related domain as it lacks the WxxD motif (x for any residue).


Pssm-ID: 277283 [Multi-domain]  Cd Length: 52  Bit Score: 47.41  E-value: 5.71e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 212549635 1204 CMICTSE-FTLTWRRHHCRACGKIVCQACSSNKCGLDYLKGQPARVCELCF 1253
Cdd:cd15744     2 CSLCQEDfASLALPKHNCYNCGGTFCDACSSNELPLPSSIYEPARVCDVCY 52
FYVE_ZFY19 cd15749
FYVE-related domain found in FYVE domain-containing protein 19 (ZFY19) and similar proteins; ...
1204-1253 6.50e-07

FYVE-related domain found in FYVE domain-containing protein 19 (ZFY19) and similar proteins; ZFY19, also termed mixed lineage leukemia (MLL) partner containing FYVE domain, is encoded by a novel gene, MLL partner containing FYVE domain (MPFYVE). The FYVE domain of ZFY19 resembles FYVE-related domains that are structurally similar to the canonical FYVE domains but lack the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. The biological function of ZFY19 remains unclear.


Pssm-ID: 277288 [Multi-domain]  Cd Length: 51  Bit Score: 47.50  E-value: 6.50e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 212549635 1204 CMICTSEFTLTWRRHHCRACGKIVCQACSSNKCGLDYLKGQPARVCELCF 1253
Cdd:cd15749     2 CFGCAAKFSLFKKECGCKNCGRSFCKGCLTFSAVVPRKGNQKQKVCKQCH 51
FYVE_RUFY4 cd15745
FYVE-related domain found in RUN and FYVE domain-containing protein 4 (RUFY4) and similar ...
1204-1253 9.71e-07

FYVE-related domain found in RUN and FYVE domain-containing protein 4 (RUFY4) and similar proteins; RUFY4 belongs to the FUFY protein family which is characterized by the presence of an N-terminal RUN domain and a C-terminal FYVE domain. The FYVE domain of RUFY4 resembles the FYVE-related domain as it lacks the WxxD motif (x for any residue). The biological function of RUFY4 still remains unclear.


Pssm-ID: 277284 [Multi-domain]  Cd Length: 52  Bit Score: 47.11  E-value: 9.71e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 212549635 1204 CMICTSEFTLTWRRHHCRACGKIVCQACSS-NKCGLDYLKGQPARVCELCF 1253
Cdd:cd15745     2 CAICAKAFSLFRRKYVCRLCGGVVCHSCSSeDLVLSVPDTCIYLRVCKTCY 52
PH_CNK_mammalian-like cd01260
Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; ...
1314-1397 2.38e-06

Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; CNK family members function as protein scaffolds, regulating the activity and the subcellular localization of RAS activated RAF. There is a single CNK protein present in Drosophila and Caenorhabditis elegans in contrast to mammals which have 3 CNK proteins (CNK1, CNK2, and CNK3). All of the CNK members contain a sterile a motif (SAM), a conserved region in CNK (CRIC) domain, and a PSD-95/DLG-1/ZO-1 (PDZ) domain, and, with the exception of CNK3, a PH domain. A CNK2 splice variant CNK2A also has a PDZ domain-binding motif at its C terminus and Drosophila CNK (D-CNK) also has a domain known as the Raf-interacting region (RIR) that mediates binding of the Drosophila Raf kinase. This cd contains CNKs from mammals, chickens, amphibians, fish, and crustacea. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269962  Cd Length: 114  Bit Score: 47.79  E-value: 2.38e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1314 GYLYRSKGSK----KPWKHLWFVIKNKVLYTYAASEDVAALESQPLLGFTVAQVKdEHSDPRVFQLLHKGLLFYVFKADD 1389
Cdd:cd01260    17 GWLWKKKEAKsffgQKWKKYWFVLKGSSLYWYSNQQDEKAEGFINLPDFKIERAS-ECKKKYAFKACHPKIKTFYFAAEN 95

                  ....*...
gi 212549635 1390 AHSTQRWI 1397
Cdd:cd01260    96 LDDMNKWL 103
PH_13 pfam16652
Pleckstrin homology domain;
1065-1166 5.79e-06

Pleckstrin homology domain;


Pssm-ID: 465218  Cd Length: 143  Bit Score: 47.39  E-value: 5.79e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635  1065 RVFLKEGILMKL-SRKVMQPrmiFLFNDALLYTTPM------------------QSGMYK----LNNMLslagmkVRKPT 1121
Cdd:pfam16652   22 RKLLHSGKLYKVkSNKELVG---FLFNDFLLLTQPVkplssagtdklfssksniQYKMYKtpifLNEVM------VKLPT 92
                           90       100       110       120       130
                   ....*....|....*....|....*....|....*....|....*....|.
gi 212549635  1122 qEAYQNE--LKIESVERSFILSASSASERDDWLEAISRAIEEY----AKKR 1166
Cdd:pfam16652   93 -DPSSSEptFQLSHIDRVYTLKAESPNERTAWVKKIKEASELYieteKKKR 142
PH_FAPP1_FAPP2 cd01247
Four phosphate adaptor protein 1 and 2 Pleckstrin homology (PH) domain; Human FAPP1 (also ...
1312-1400 6.33e-06

Four phosphate adaptor protein 1 and 2 Pleckstrin homology (PH) domain; Human FAPP1 (also called PLEKHA3/Pleckstrin homology domain-containing, family A member 3) regulates secretory transport from the trans-Golgi network to the plasma membrane. It is recruited through binding of PH domain to phosphatidylinositol 4-phosphate (PtdIns(4)P) and a small GTPase ADP-ribosylation factor 1 (ARF1). These two binding sites have little overlap the FAPP1 PH domain to associate with both ligands simultaneously and independently. FAPP1 has a N-terminal PH domain followed by a short proline-rich region. FAPP1 is a member of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), and Goodpasture antigen binding protein (GPBP). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. FAPP2 (also called PLEKHA8/Pleckstrin homology domain-containing, family A member 8), a member of the Glycolipid lipid transfer protein(GLTP) family has an N-terminal PH domain that targets the TGN and C-terminal GLTP domain. FAPP2 functions to traffic glucosylceramide (GlcCer) which is made in the Golgi. It's interaction with vesicle-associated membrane protein-associated protein (VAP) could be a means of regulation. Some FAPP2s share the FFAT-like motifs found in GLTP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269951  Cd Length: 100  Bit Score: 46.24  E-value: 6.33e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1312 MSGYLYRSKGSKKPWKHLWFVIKNKVLYTYAASEDVaALESQPLLGFTVAQVKDEHSDPRVFQLLHKGLLFYVFKADDAH 1391
Cdd:cd01247     1 MEGVLWKWTNYLSGWQPRWFVLDDGVLSYYKSQEEV-NQGCKGSVKMSVCEIIVHPTDPTRMDLIIPGEQHFYLKASSAA 79

                  ....*....
gi 212549635 1392 STQRWIDAF 1400
Cdd:cd01247    80 ERQRWLVAL 88
FYVE_WDFY1 cd15756
FYVE domain found in WD40 repeat and FYVE domain-containing protein 1 (WDFY1) and similar ...
1212-1257 1.25e-05

FYVE domain found in WD40 repeat and FYVE domain-containing protein 1 (WDFY1) and similar proteins; WDFY1, also termed FYVE domain containing protein localized to endosomes-1 (FENS-1), or phosphoinositide-binding protein 1, or zinc finger FYVE domain-containing protein 17, is a novel single FYVE domain containing protein that binds phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) with high specificity over other phosphoinositides. WDFY1 to early endosomes requires an intact FYVE domain and is inhibited by wortmannin, a PI3-kinase inhibitor. In addition to FYVE domain, WDFY1 harbors multiple WD-40 repeats.


Pssm-ID: 277295 [Multi-domain]  Cd Length: 76  Bit Score: 44.67  E-value: 1.25e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*..
gi 212549635 1212 TLTWRRHHCRACGKIVCQACSSNKCGLDYLKGQ-PARVCELCFQELQ 1257
Cdd:cd15756    28 TLGLRQHHCRKCGQAVCGKCSSKRSSYPIMGFEfQVRVCDSCFETIK 74
PH1_PH_fungal cd13298
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ...
1312-1404 1.40e-05

Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270110  Cd Length: 106  Bit Score: 45.31  E-value: 1.40e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1312 MSGYLYRSKGSKKPWKHLWFVIKNKVLYTYAASEDVAALESQPLLGFT-VAQVKDeHSDPRVFQL------LHkgllfyv 1384
Cdd:cd13298     8 KSGYLLKRSRKTKNWKKRWVVLRPCQLSYYKDEKEYKLRRVINLSELLaVAPLKD-KKRKNVFGIytpsknLH------- 79
                          90       100
                  ....*....|....*....|
gi 212549635 1385 FKADDAHSTQRWIDAFQEGT 1404
Cdd:cd13298    80 FRATSEKDANEWVEALREEF 99
PH_ITSN cd13264
Intersectin Pleckstrin homology (PH) domain; ITSNs, an adaptor protein family, play a role in ...
1065-1162 1.56e-05

Intersectin Pleckstrin homology (PH) domain; ITSNs, an adaptor protein family, play a role in endo- and exocytosis, actin cytoskeleton rearrangement and signal transduction. There are two human ITSN genes: ITSN1 and ITSN2. They share significant sequence identity and a similar domain structure having both short and long isoforms produced by alternative splicing. The short isoform (ITSN-S) consists of two Eps15 homology domains (EH1 and EH2), a coiled-coil region (CCR) and five Src homology 3 domains (SH3A-E). The EH domains bind to Asn-Pro-Phe motifs and are implicated in endocytosis and vesicle transport. The SH3 domains bind to proline-rich sequences and are commonly found in proteins implicated in cell signalling pathways, cytoskeletal organization and membrane traffic. The long isoform (ITSN-L) contains three additional C-terminal domains, a Dbl homology domain (DH), a Pleckstrin homology domain (PH) and a C2 domain. The tandem DH-PH domains are present in all Dbl family of GEFs. ITSN acts specifically on Cdc42 through its DH domain with no portion of the PH domain making contact with Cdc42. This is in contrast to Dbs which requires the PH domain for full catalytic activity. The ITSN PH domain binds phosphoinositides. C2 domains are usually involved in Ca2+-dependent and Ca2+-independent phospholipid binding. There are more than 30 proteins that interact with ITSNs. ITSN-S is present in mammals, frogs, flies and nematodes, while ITSN-L is present only in vertebrates. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270084  Cd Length: 132  Bit Score: 45.91  E-value: 1.56e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1065 RVFLKEGILMKL-SRKVMQprmIFLFNDALLYTTPMQSG------------------MYKlnNMLSLAGMKVRKPTQEAY 1125
Cdd:cd13264    14 RKFLHSGKLYKAkSNKELY---GFLFNDFLLLTQPIKPLgssgndfvfdnkaniqykMYK--TPIFLNEVLVKLPTDPSG 88
                          90       100       110
                  ....*....|....*....|....*....|....*...
gi 212549635 1126 QNEL-KIESVERSFILSASSASERDDWLEAISRAIEEY 1162
Cdd:cd13264    89 DEPIfHISHIDRVYTLRAESINERTAWVQKIKAASELY 126
PH_Sbf1_hMTMR5 cd01235
Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a ...
1308-1401 5.71e-05

Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a myotubularin-related pseudo-phosphatase. Both Sbf1 and myotubularin interact with the SET domains of Hrx and other epigenetic regulatory proteins, but Sbf1 lacks phosphatase activity due to several amino acid changes in its structurally preserved catalytic pocket. It contains pleckstrin (PH), GEF, and myotubularin homology domains that are thought to be responsible for signaling and growth control. Sbf1 functions as an inhibitor of cellular growth. The N-terminal GEF homology domain serves to inhibit the transforming effects of Sbf1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269941  Cd Length: 106  Bit Score: 43.47  E-value: 5.71e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1308 EDSTMSGYLYRSKGSKKPWKHLWFVI---KNKVLYtYAASE--------DVAALES-QPLLGFTVAQVKDEHSDprVFQL 1375
Cdd:cd01235     1 ENRTHEGYLYKRGALLKGWKQRWFVLdstKHQLRY-YESREdtkckgfiDLAEVESvTPATPIIGAPKRADEGA--FFDL 77
                          90       100
                  ....*....|....*....|....*.
gi 212549635 1376 LHKGLLFYvFKADDAHSTQRWIDAFQ 1401
Cdd:cd01235    78 KTNKRVYN-FCAFDAESAQQWIEKIQ 102
ROM1 COG5422
RhoGEF, Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases [Signal transduction ...
904-1029 5.77e-05

RhoGEF, Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases [Signal transduction mechanisms];


Pssm-ID: 227709 [Multi-domain]  Cd Length: 1175  Bit Score: 47.96  E-value: 5.77e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635  904 QLYELNRDLLKELEERMLSWAEQQRIADIFVKKGPYLKMYSMYIKEFDKNIALLDEQCKKNSGFATVVREFEMSPRCANL 983
Cdd:COG5422   538 EIYAVNSKLLKALTNRQCLSPIVNGIADIFLDYVPKFEPFIKYGASQPYAKYEFEREKSVNPNFARFDHEVERLDESRKL 617
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*.
gi 212549635  984 ALKHYLLKPVQRIPQYRLLLTDYLKNLLEDSVDHRDTQDALAVVIE 1029
Cdd:COG5422   618 ELDGYLTKPTTRLARYPLLLEEVLKFTDPDNPDTEDIPKVIDMLRE 663
PH_TAAP2-like cd13255
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ...
1068-1164 6.33e-05

Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270075  Cd Length: 110  Bit Score: 43.56  E-value: 6.33e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1068 LKEGILMK--LSRKVMQPRMIFLFNDALLYTTpmQSGMYKLNNMLSLAGMKVRKPTQ-EAYQNELKIESVERSFILSASS 1144
Cdd:cd13255     7 LKAGYLEKkgERRKTWKKRWFVLRPTKLAYYK--NDKEYRLLRLIDLTDIHTCTEVQlKKHDNTFGIVTPARTFYVQADS 84
                          90       100
                  ....*....|....*....|
gi 212549635 1145 ASERDDWLEAISRAIEEYAK 1164
Cdd:cd13255    85 KAEMESWISAINLARQALRA 104
FYVE_FGD3 cd15740
FYVE-like domain found in FYVE, RhoGEF and PH domain-containing protein 3 (FGD3) and similar ...
1204-1253 7.28e-05

FYVE-like domain found in FYVE, RhoGEF and PH domain-containing protein 3 (FGD3) and similar proteins; FGD3, also termed zinc finger FYVE domain-containing protein 5, is a putative Cdc42-specific guanine nucleotide exchange factor (GEF) that undergoes the ubiquitin ligase SCFFWD1/beta-TrCP-mediated proteasomal degradation. It is a homologue of FGD1 and contains a DBL homology (DH) domain and pleckstrin homology (PH) domain in the middle region, a FYVE domain, and another PH domain in the C-terminus, but lacks the N-terminal proline-rich domain (PRD) found in FGD1. Due to this difference, FGD3 may play different roles from that of FGD1 to regulate cell morphology or motility. The FYVE domain of FGD3 resembles a FYVE-like domain that is different from the canonical FYVE domains, since it lacks one of the three conserved signature motifs (the WxxD motif) that are involved in phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding and exhibits altered lipid binding specificities.


Pssm-ID: 277279 [Multi-domain]  Cd Length: 54  Bit Score: 41.91  E-value: 7.28e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 212549635 1204 CMICTSEF-TLTWRRHHCRACGKIVCQACSSNKCgldyLKGQPARVCELCF 1253
Cdd:cd15740     8 CKGCNESFnSITKRRHHCKQCGAVICGKCSEFKD----LASRHNRVCRDCF 54
PH_alsin cd13269
Alsin Pleckstrin homology (PH) domain; The ALS2 gene encodes alsin, a GEF, that has dual ...
1088-1160 7.40e-05

Alsin Pleckstrin homology (PH) domain; The ALS2 gene encodes alsin, a GEF, that has dual specificity for Rac1 and Rab5 GTPases. Alsin mutations in the form of truncated proteins are responsible for motor function disorders including juvenile-onset amyotrophic lateral sclerosis, familial juvenile primary lateral sclerosis, and infantile-onset ascending hereditary spastic paralysis. The alsin protein is widely expressed in the developing CNS including neurons of the cerebral cortex, brain stem, spinal cord, and cerebellum. Alsin contains a regulator of chromosome condensation 1 (RCC1) domain, a Rho guanine nucleotide exchanging factor (RhoGEF) domain, a PH domain, a Membrane Occupation and Recognition Nexus (MORN), a vacuolar protein sorting 9 (Vps9) domain, and a Dbl homology (DH) domain. Alsin interacts with Rab5 through its Vps9 domain and through this interaction modulates early endosome fusion and trafficking. The GEF activity of alsin towards Rab5 is regulated by Rac1 function. The GEF activity of alsin for Rac1 occurs via its DH domain and this interaction plays a role in promoting spinal motor neuron survival via multiple Rac-dependent signaling pathways. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241423  Cd Length: 106  Bit Score: 43.15  E-value: 7.40e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 212549635 1088 LFNDALLYTTpmqsgmYKLNNMLSLAGMKVrKPTQE--AYQNELKIESVERSFILSASSASERDDWLEAISRAIE 1160
Cdd:cd13269    34 LFNDALVHAQ------FSTHHIFPLATLWV-EPIPDedSGQNALKITTPEESFTLVASTPQEKAEWLRAINQAID 101
PH_Osh1p_Osh2p_yeast cd13292
Yeast oxysterol binding protein homologs 1 and 2 Pleckstrin homology (PH) domain; Yeast Osh1p ...
1311-1401 1.49e-04

Yeast oxysterol binding protein homologs 1 and 2 Pleckstrin homology (PH) domain; Yeast Osh1p is proposed to function in postsynthetic sterol regulation, piecemeal microautophagy of the nucleus, and cell polarity establishment. Yeast Osh2p is proposed to function in sterol metabolism and cell polarity establishment. Both Osh1p and Osh2p contain 3 N-terminal ankyrin repeats, a PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. OSBP andOsh1p PH domains specifically localize to the Golgi apparatus in a PtdIns4P-dependent manner. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241446  Cd Length: 103  Bit Score: 42.30  E-value: 1.49e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1311 TMSGYLYRSKGSKKPWKHLWFVIKNKVLYTYAASEDvAALESQPLLGFTVAQVKDEHSDPRVFQLLHKGLL---FYVfKA 1387
Cdd:cd13292     3 TMKGYLKKWTNYAKGYKTRWFVLEDGVLSYYRHQDD-EGSACRGSINMKNARLVSDPSEKLRFEVSSKTSGspkWYL-KA 80
                          90
                  ....*....|....
gi 212549635 1388 DDAHSTQRWIDAFQ 1401
Cdd:cd13292    81 NHPVEAARWIQALQ 94
PH_SKIP cd13309
SifA and kinesin-interacting protein Pleckstrin homology (PH) domain; SKIP (also called ...
1311-1400 1.86e-04

SifA and kinesin-interacting protein Pleckstrin homology (PH) domain; SKIP (also called PLEKHM2/Pleckstrin homology domain-containing family M member 2) is a soluble cytosolic protein that contains a RUN domain and a PH domain separated by a unstructured linker region. SKIP is a target of the Salmonella effector protein SifA and the SifA-SKIP complex regulates kinesin-1 on the bacterial vacuole. The PH domain of SKIP binds to the N-terminal region of SifA while the N-terminus of SKIP is proposed to bind the TPR domain of the kinesin light chain. The opposite side of the SKIP PH domain is proposed to bind phosphoinositides. TSifA, SKIP, SseJ, and RhoA family GTPases are also thought to promote host membrane tubulation. Recently, it was shown that the lysosomal GTPase Arl8 binds to the kinesin-1 linker SKIP and that both are required for the normal intracellular distribution of lysosomes. Interestingly, two kinesin light chain binding motifs (WD) in SKIP have now been identified to match a consensus sequence for a kinesin light chain binding site found in several proteins including calsyntenin-1/alcadein, caytaxin, and vaccinia virus A36. SKIP has also been shown to interact with Rab1A. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270119  Cd Length: 103  Bit Score: 41.98  E-value: 1.86e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1311 TMSGYLY----RSKGSKKPWKHLWFVIKNKVLYTYAASEDVAALESQPLLGFTVAQVKDEHSDPR--VFQLLHKGLLFYV 1384
Cdd:cd13309     1 TKEGMLMyktgTSYLGGETWKPGYFLLKNGVLYQYPDRSDRLPLLSISLGGEQCGGCRRINNTERphTFELILTDRSSLE 80
                          90
                  ....*....|....*.
gi 212549635 1385 FKADDAHSTQRWIDAF 1400
Cdd:cd13309    81 LAAPDEYEASEWLQSL 96
PH_RhoGap25-like cd13263
Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; ...
1308-1400 2.22e-04

Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; RhoGAP25 (also called ArhGap25) like other RhoGaps are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. This hierarchy contains RhoGAP22, RhoGAP24, and RhoGAP25. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270083  Cd Length: 114  Bit Score: 41.99  E-value: 2.22e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1308 EDSTMSGYLYRSKGSKKPWKHLWFVIKNKVLYTYAASEDVAALESQPLLGFTVAQVKDEHSDPRVFqllhkglLFYVFKA 1387
Cdd:cd13263     1 ERPIKSGWLKKQGSIVKNWQQRWFVLRGDQLYYYKDEDDTKPQGTIPLPGNKVKEVPFNPEEPGKF-------LFEIIPG 73
                          90
                  ....*....|...
gi 212549635 1388 DDAHSTQRWIDAF 1400
Cdd:cd13263    74 GGGDRMTSNHDSY 86
PH_RalBD_exo84 cd01226
Exocyst complex 84-kDa subunit Ral-binding domain/Pleckstrin Homology (PH) domain; The Sec6/8 ...
1063-1166 2.47e-04

Exocyst complex 84-kDa subunit Ral-binding domain/Pleckstrin Homology (PH) domain; The Sec6/8 complex, also called the exocyst complex, forms an octameric protein (Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70 and Exo84) involved in the tethering of secretory vesicles to specific regions on the plasma membrane. The regulation of Sec6/8 complex differs between mammals and yeast. Mamalian Exo84 and Sec5 are effector targets for active Ral GTPases which are not present in yeast. Ral GTPases are members of the Ras superfamily, and as such cycle between an active GTP-bound state and an inactive GDP-bound state. The Exo84 Ral-binding domain adopts a PH domain fold. Mammalian Exo84 and Sec5 competitively bind to active RalA. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269933  Cd Length: 115  Bit Score: 41.87  E-value: 2.47e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1063 PGRVFLKEGILMKLSRKVMQPR---MIFLFNDALLYTTPMQS----GMYKLN---NMLSLAGMKVRKptQEAYQNELKIE 1132
Cdd:cd01226     4 PGRYLLHEGDLLELDPDDYKPIqkvHLFLLNDVLLIASWLPNrrgpVRYKFQalyPLEDLAVVNVKD--LGPVKNAFKLL 81
                          90       100       110
                  ....*....|....*....|....*....|....
gi 212549635 1133 SVERSFILSASSASERDDWLEAISRAIEEYAKKR 1166
Cdd:cd01226    82 TFPETRVFQCENAKIKKEWLEKFEQAKRAKLAKE 115
FYVE_MTMR_unchar cd15738
FYVE-related domain found in uncharacterized myotubularin-related proteins mainly from ...
1195-1253 2.54e-04

FYVE-related domain found in uncharacterized myotubularin-related proteins mainly from eumetazoa; This family includes a group of uncharacterized myotubularin-related proteins mainly found in eumetazoa. Although their biological functions remain unclear, they share similar domain architecture that consists of an N-terminal pleckstrin homology (PH) domain, a highly conserved region related to myotubularin proteins, a C-terminal FYVE domain. The model corresponds to the FYVE domain, which resembles the FYVE-related domain as it has an altered sequence in the basic ligand binding patch.


Pssm-ID: 277277 [Multi-domain]  Cd Length: 61  Bit Score: 40.39  E-value: 2.54e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1195 WIPDTRATMCMiCTSEFTLTWRRHHCRACGKIVCQACSSNKCGLD-YLKGQPARVCELCF 1253
Cdd:cd15738     3 WKSFRNVTECS-CSTPFDHFSKKHHCWRCGNVFCTRCIDKQRALPgHLSQRPVPVCRACY 61
PH-GRAM1_AGT26 cd13215
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, ...
1306-1401 2.90e-04

Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1; ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275402  Cd Length: 116  Bit Score: 41.84  E-value: 2.90e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1306 NTEDSTMSGYLY-RSKGSKKPWKHlWFVIKNKVLYTYAASEDVAAlesqPLL------GFTVAQVKDEHSDPRVFQLLHK 1378
Cdd:cd13215    17 RSGAVIKSGYLSkRSKRTLRYTRY-WFVLKGDTLSWYNSSTDLYF----PAGtidlryATSIELSKSNGEATTSFKIVTN 91
                          90       100
                  ....*....|....*....|...
gi 212549635 1379 GLLfYVFKADDAHSTQRWIDAFQ 1401
Cdd:cd13215    92 SRT-YKFKADSETSADEWVKALK 113
PH_IQSEC cd13318
IQ motif and SEC7 domain-containing protein family Pleckstrin homology domain; The IQSEC (also ...
1075-1161 4.20e-04

IQ motif and SEC7 domain-containing protein family Pleckstrin homology domain; The IQSEC (also called BRAG/Brefeldin A-resistant Arf-gunanine nucleotide exchange factor) family are a subset of Arf GEFs that have been shown to activate Arf6, which acts in the endocytic pathway to control the trafficking of a subset of cargo proteins including integrins and have key roles in the function and organization of distinct excitatory and inhibitory synapses in the retina. The family consists of 3 members: IQSEC1 (also called BRAG2/GEP100), IQSEC2 (also called BRAG1), and IQSEC3 (also called SynArfGEF, BRAG3, or KIAA1110). IQSEC1 interacts with clathrin and modulates cell adhesion by regulating integrin surface expression and in addition to Arf6, it also activates the class II Arfs, Arf4 and Arf5. Mutations in IQSEC2 cause non-syndromic X-linked intellectual disability as well as reduced activation of Arf substrates (Arf1, Arf6). IQSEC3 regulates Arf6 at inhibitory synapses and associates with the dystrophin-associated glycoprotein complex and S-SCAM. These members contains a IQ domain that may bind calmodulin, a PH domain that is thought to mediate membrane localization by binding of phosphoinositides, and a SEC7 domain that can promote GEF activity on ARF. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270128  Cd Length: 128  Bit Score: 41.53  E-value: 4.20e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1075 KLSRKVMQPRMIFLFNDALLYTT----PMQSGMYKLNNMLSLAGMKVRKPTQEAYQNELKIESVERSFIL---SASSASE 1147
Cdd:cd13318    19 KREKPGLHQREVFLFNDLLVVTKifskKKSSVTYSFRQSFSLLGMQVLLFETSHYPFGIRLTSPLDNKVLitfNARNESD 98
                          90
                  ....*....|....
gi 212549635 1148 RDDWLEAISRAIEE 1161
Cdd:cd13318    99 RKKFVEDLRESILE 112
FYVE_SlaC2-c cd15753
FYVE-related domain found in Slp homolog lacking C2 domains c (SlaC2-c) and similar proteins; ...
1204-1255 8.66e-04

FYVE-related domain found in Slp homolog lacking C2 domains c (SlaC2-c) and similar proteins; SlaC2-c, also termed Rab effector MyRIP, or exophilin-8, or myosin-VIIa- and Rab-interacting protein, or synaptotagmin-like protein lacking C2 domains c, is a GTP-bound form of Rab27A-, myosin Va/VIIa-, and actin-binding protein mainly present on retinal melanosomes and secretory granules. It may play a role in insulin granule exocytosis. It is also involved in the control of isoproterenol (IPR)-induced amylase release from parotid acinar cells. SlaC2-c belongs to the Slp homolog lacking C2 domains (Slac2) family. It contains an N-terminal Slp homology domain (SHD), but lacks tandem C2 domains. The SHD consists of two conserved regions, designated SHD1 (Slp homology domain 1) and SHD2, which may function as protein interaction sites. The SHD1 and SHD2 of SlaC2-c are separated by a putative FYVE zinc finger, which resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. Moreover, Slac2-c has a middle myosin-binding domain and a C-terminal actin-binding domain.


Pssm-ID: 277292  Cd Length: 49  Bit Score: 38.54  E-value: 8.66e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 212549635 1204 CMICTSEFTLTW-RRHHCRACGKIVCQACSSnkcgldYLKGQPARVCELCFQE 1255
Cdd:cd15753     2 CMRCCSPFTFLFnRKRQCRDCKFNVCKSCAS------YDKKEKGWTCNVCQKQ 48
FYVE_protrudin cd15723
FYVE-related domain found in protrudin and similar proteins; Protrudin, also termed zinc ...
1204-1256 9.83e-04

FYVE-related domain found in protrudin and similar proteins; Protrudin, also termed zinc finger FYVE domain-containing protein 27 (ZFY27 or ZFYVE27), is a FYVE domain-containing protein involved in transport of neuronal cargoes and implicated in the onset of hereditary spastic paraplegia (HSP). It is involved in neurite outgrowth through binding to spastin. Moreover, it functions as a key regulator of the Rab11-dependent membrane trafficking during neurite extension. It serves as an adaptor molecule that links its associated proteins, such as Rab11-GDP, VAP-A and -B, Surf4, and RTN3, to KIF5, a motor protein that mediates anterograde vesicular transport in neurons, and thus plays a key role in the maintenance of neuronal function. The FYVE domain of protrudin resembles a FYVE-related domain that is structurally similar to the canonical FYVE domains but lacks the three signature sequences: an N-terminal WxxD motif (x for any residue), the central basic R(R/K)HHCRxCG patch, and a C-terminal RVC motif. In addition, unlike canonical FYVE domains that is located to early endosomes and specifically binds to phosphatidylinositol 3-phosphate (PtdIns3P or PI3P), the FYVE domain of protrudin is located to plasma membrane and preferentially binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3). In addition to FYVE-related domain, protrudin also contains a Rab11-binding domain (RBD11), two hydrophobic domains, HP-1 and HP-2, an FFAT motif, and a coiled-coil domain.


Pssm-ID: 277262 [Multi-domain]  Cd Length: 62  Bit Score: 38.63  E-value: 9.83e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 212549635 1204 CMICTSEFT-LTWRRHHCRACGKIVCQACSSNKCGLDYL-------KGQPARVCELCFQEL 1256
Cdd:cd15723     2 CTGCGASFSvLLKKRRSCNNCGNAFCSRCCSKKVPRSVMgatapaaQRETVFVCSGCNDKL 62
PH_TAAP2-like cd13255
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ...
1313-1402 1.38e-03

Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270075  Cd Length: 110  Bit Score: 39.70  E-value: 1.38e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1313 SGYLYRSKGSKKPWKHLWFVIKNKVLYTYAASEDVAALESQPLLGF-TVAQVKDEHSDpRVFQLLHKGLLFYvFKADDAH 1391
Cdd:cd13255     9 AGYLEKKGERRKTWKKRWFVLRPTKLAYYKNDKEYRLLRLIDLTDIhTCTEVQLKKHD-NTFGIVTPARTFY-VQADSKA 86
                          90
                  ....*....|.
gi 212549635 1392 STQRWIDAFQE 1402
Cdd:cd13255    87 EMESWISAINL 97
PH_ACAP cd13250
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ...
1131-1160 1.53e-03

ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270070  Cd Length: 98  Bit Score: 39.12  E-value: 1.53e-03
                          10        20        30
                  ....*....|....*....|....*....|
gi 212549635 1131 IESVERSFILSASSASERDDWLEAISRAIE 1160
Cdd:cd13250    65 VISPTKSYMLQAESEEDRQAWIQAIQSAIA 94
FYVE_WDFY2 cd15757
FYVE domain found in WD40 repeat and FYVE domain-containing protein 2 (WDFY2); WDFY2, also ...
1216-1252 1.68e-03

FYVE domain found in WD40 repeat and FYVE domain-containing protein 2 (WDFY2); WDFY2, also termed zinc finger FYVE domain-containing protein 22, or ProF (propeller-FYVE protein), is a phosphatidylinositol 3-phosphate (PtdIns3P or PI3P) binding protein that is localized to a distinct subset of early endosomes close to the plasma membrane. It interacts preferentially with endogenous serine/threonine kinase Akt2, but not Akt1, and plays a specific role in modulating signaling through Akt downstream of the interaction of this kinase with the endosomal proteins APPL (adaptor protein containing PH domain, PTB domain, and leucine zipper motif). In addition to Akt, WDFY2 serves as a binding partner for protein kinase C, zeta (PRKCZ), and its substrate vesicle-associated membrane protein 2 (VAMP2), and is involved in vesicle cycling in various secretory pathways. Moreover, Silencing of WDFY2 by siRNA produces a strong inhibition of endocytosis. WDFY2 contains WD40 motifs and a FYVE domain.


Pssm-ID: 277296 [Multi-domain]  Cd Length: 70  Bit Score: 38.51  E-value: 1.68e-03
                          10        20        30
                  ....*....|....*....|....*....|....*...
gi 212549635 1216 RRHHCRACGKIVCQACSSNKCGLDYLKGQ-PARVCELC 1252
Cdd:cd15757    32 RQHHCRKCGKAVCGKCSSKRSTIPLMGFEfEVRVCDSC 69
PH2_ADAP cd01251
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called ...
1121-1160 2.18e-03

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241282  Cd Length: 105  Bit Score: 39.11  E-value: 2.18e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|
gi 212549635 1121 TQEAYQNELKIESVERSFILSASSASERDDWLEAISRAIE 1160
Cdd:cd01251    65 IKGHWGFGFTLVTPDRTFLLSAETEEERREWITAIQKVLE 104
PH_9 pfam15410
Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.
1313-1399 2.20e-03

Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.


Pssm-ID: 434701  Cd Length: 118  Bit Score: 39.33  E-value: 2.20e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635  1313 SGYLYR-----SKGSKKP-----WKHLWFVIKNKVLYTY--------AASEDVAALESQPLLGFTV-----AQVKDEHSD 1369
Cdd:pfam15410    3 KGIVMRkccfeSKGKKTPrgkrsWKMVYAVLKDLVLYLYkdehppesSQFEDKKSLKNAPVGKIRLhhalaTPAPDYTKK 82
                           90       100       110
                   ....*....|....*....|....*....|
gi 212549635  1370 PRVFQLLHKGLLFYVFKADDAHSTQRWIDA 1399
Cdd:pfam15410   83 SHVFRLQTADGAEYLFQTGSPKELQEWVDT 112
PH_RARhoGAP cd13319
RA and RhoGAP domain-containing protein Pleckstrin homology PH domain; RARhoGAP (also called ...
1065-1155 2.25e-03

RA and RhoGAP domain-containing protein Pleckstrin homology PH domain; RARhoGAP (also called Rho GTPase-activating protein 20 and ARHGAP20 ) is thought to function in rearrangements of the cytoskeleton and cell signaling events that occur during spermatogenesis. RARhoGAP was also shown to be activated by Rap1 and to induce inactivation of Rho, resulting in the neurite outgrowth. Recent findings show that ARHGAP20, even although it is located in the middle of the MDR on 11q22-23, is expressed at higher levels in chronic lymphocytic leukemia patients with 11q22-23 and/or 13q14 deletions and its expression pattern suggests a functional link between cases with 11q22-23 and 13q14 deletions. The mechanism needs to be further studied. RARhoGAP contains a PH domain, a Ras-associating domain, a Rho-GAP domain, and ANXL repeats. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270129  Cd Length: 97  Bit Score: 38.76  E-value: 2.25e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1065 RVFLKEGILmKLSR-KVMQPRMIFLFNDALLYTTPMQSGMYKLNNMLSLAGMKVRKPTQEayQNElKIESVERSFIL--- 1140
Cdd:cd13319     1 RTFLLEGPV-QLTRgLQTQERHLFLFSDVLVVAKPKSKNSFKLKHKIRLSELWLASCVDE--VCE-GSKSADKSFVLgwp 76
                          90       100
                  ....*....|....*....|.
gi 212549635 1141 ------SASSASERDDWLEAI 1155
Cdd:cd13319    77 ttnfvaTFSSQEEKDLWLSFL 97
PH_rhotekin2 cd13249
Anillin Pleckstrin homology (PH) domain; Anillin (Rhotekin/RTKN; also called PLEKHK/Pleckstrin ...
1311-1400 2.34e-03

Anillin Pleckstrin homology (PH) domain; Anillin (Rhotekin/RTKN; also called PLEKHK/Pleckstrin homology domain-containing family K) is an actin binding protein involved in cytokinesis. It interacts with GTP-bound Rho proteins and results in the inhibition of their GTPase activity. Dysregulation of the Rho signal transduction pathway has been implicated in many forms of cancer. Anillin proteins have a N-terminal HRI domain/ACC (anti-parallel coiled-coil) finger domain or Rho-binding domain binds small GTPases from the Rho family. The C-terminal PH domain helps target anillin to ectopic septin containing foci. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270069  Cd Length: 111  Bit Score: 39.29  E-value: 2.34e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1311 TMSGYLYRSKGSKKP--WKHLWFVIKNKVLYTYAASEDVAAlESQPLLGFTV-------AQVKDEHSDPRVFQLLHK--- 1378
Cdd:cd13249     3 MMSGYLSQQQSVEGLqsWTRLYCVLKGGNLLCYYSPEEIEA-KVEPLLTIPInketrirAVEKDSKGRASSLSIINPysg 81
                          90       100
                  ....*....|....*....|..
gi 212549635 1379 GLLFYVFKADDAHSTQRWIDAF 1400
Cdd:cd13249    82 EEVTHVLSADSREELQKWMEAL 103
PH_RASA1 cd13260
RAS p21 protein activator (GTPase activating protein) 1 Pleckstrin homology (PH) domain; RASA1 ...
1312-1401 2.85e-03

RAS p21 protein activator (GTPase activating protein) 1 Pleckstrin homology (PH) domain; RASA1 (also called RasGap1 or p120) is a member of the RasGAP family of GTPase-activating proteins. RASA1 contains N-terminal SH2-SH3-SH2 domains, followed by two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Splice variants lack the N-terminal domains. It is a cytosolic vertebrate protein that acts as a suppressor of RAS via its C-terminal GAP domain function, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. Additionally, it is involved in mitogenic signal transmission towards downstream interacting partners through its N-terminal SH2-SH3-SH2 domains. RASA1 interacts with a number of proteins including: G3BP1, SOCS3, ANXA6, Huntingtin, KHDRBS1, Src, EPHB3, EPH receptor B2, Insulin-like growth factor 1 receptor, PTK2B, DOK1, PDGFRB, HCK, Caveolin 2, DNAJA3, HRAS, GNB2L1 and NCK1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270080  Cd Length: 103  Bit Score: 38.86  E-value: 2.85e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1312 MSGYLYRSKGSKKPWKHLWFVIKNK--VLYTYaasEDVAALESQPLLGFTVA---QVKDE-HSDPRVFQLL--HKGLLFY 1383
Cdd:cd13260     5 KKGYLLKKGGKNKKWKNLYFVLEGKeqHLYFF---DNEKRTKPKGLIDLSYCslyPVHDSlFGRPNCFQIVvrALNESTI 81
                          90
                  ....*....|....*....
gi 212549635 1384 V-FKADDAHSTQRWIDAFQ 1401
Cdd:cd13260    82 TyLCADTAELAQEWMRALR 100
PH_ACAP cd13250
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ...
1312-1401 3.00e-03

ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270070  Cd Length: 98  Bit Score: 38.35  E-value: 3.00e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1312 MSGYLY-RSKGSKKPWKHLWFVIK-NKVLYTYAASEDVAALESQPLLgftVAQVK-DEHSDPR-VFQLL--HKGllfYVF 1385
Cdd:cd13250     1 KEGYLFkRSSNAFKTWKRRWFSLQnGQLYYQKRDKKDEPTVMVEDLR---LCTVKpTEDSDRRfCFEVIspTKS---YML 74
                          90
                  ....*....|....*.
gi 212549635 1386 KADDAHSTQRWIDAFQ 1401
Cdd:cd13250    75 QAESEEDRQAWIQAIQ 90
PH1_Pleckstrin_2 cd13301
Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in ...
1068-1161 3.93e-03

Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270113  Cd Length: 108  Bit Score: 38.51  E-value: 3.93e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1068 LKEGILMKLSRKV--MQPRMIFLFNDALLY----TTPMQSGMyklnnmLSLAGMKVRKPTQEaYQNE---LKIESVERS- 1137
Cdd:cd13301     4 IKEGYLVKKGHVVnnWKARWFVLKEDGLEYykkkTDSSPKGM------IPLKGCTITSPCLE-YGKRplvFKLTTAKGQe 76
                          90       100
                  ....*....|....*....|....
gi 212549635 1138 FILSASSASERDDWLEAISRAIEE 1161
Cdd:cd13301    77 HFFQACSREERDAWAKDITKAITC 100
PH_AtPH1 cd13276
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ...
1069-1159 3.95e-03

Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270095  Cd Length: 106  Bit Score: 38.45  E-value: 3.95e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1069 KEGILMKLSRK---VMQPRMIFLF--NDALLYTTPmqSGMYKLNNMLSLAGM--KVRKPtqeayqNELKIESVERSFILS 1141
Cdd:cd13276     7 KQGEFIKTWRRrwfVLKQGKLFWFkePDVTPYSKP--RGVIDLSKCLTVKSAedATNKE------NAFELSTPEETFYFI 78
                          90
                  ....*....|....*...
gi 212549635 1142 ASSASERDDWLEAISRAI 1159
Cdd:cd13276    79 ADNEKEKEEWIGAIGRAI 96
PH_PKB cd01241
Protein Kinase B-like pleckstrin homology (PH) domain; PKB (also called Akt), a member of the ...
1065-1156 5.83e-03

Protein Kinase B-like pleckstrin homology (PH) domain; PKB (also called Akt), a member of the AGC kinase family, is a phosphatidylinositol 3'-kinase (PI3K)-dependent Ser/Thr kinase which alters the activity of the targeted protein. The name AGC is based on the three proteins that it is most similar to cAMP-dependent protein kinase 1 (PKA; also known as PKAC), cGMP-dependent protein kinase (PKG; also known as CGK1) and protein kinase C (PKC). Human Akt has three isoforms derived for distinct genes: Akt1/PKBalpha, Akt2/PKBbeta, and Akt3/PKBgamma. All Akts have an N-terminal PH domain with an activating Thr phosphorylation site, a kinase domain, and a short C-terminal regulatory tail with an activating Ser phosphorylation site. The PH domain recruits Akt to the plasma membrane by binding to phosphoinositides (PtdIns-3,4-P2) and is required for activation. The phosphorylation of Akt at its Thr and Ser phosphorylation sites leads to increased Akt activity toward forkhead transcription factors, the mammalian target of rapamycin (mTOR), and the Bcl-xL/Bcl-2-associated death promoter (BAD), all of which possess a consensus motif R-X-R-XX-ST-B (X = amino acid, B = bulky hydrophobic residue) for Akt phosphorylation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269947  Cd Length: 107  Bit Score: 38.00  E-value: 5.83e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 212549635 1065 RVFLKEGILMKlsR----KVMQPRMIFLFNDALLY---TTPMQSGMYK-LNNmLSLAG---MKVRKPTQeayqNELKI-- 1131
Cdd:cd01241     1 VSVVKEGWLLK--RgeyiKNWRPRYFVLKSDGSFIgykEKPKPNQDPPpLNN-FSVAEcqlMKTEKPKP----NTFIIrc 73
                          90       100
                  ....*....|....*....|....*....
gi 212549635 1132 ----ESVERSFilSASSASERDDWLEAIS 1156
Cdd:cd01241    74 lqwtTVIERTF--HVESEEEREEWMKAIQ 100
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH