tRNA-dihydrouridine synthase family protein such as tRNA-dihydrouridine synthase, which catalyzes the synthesis of dihydrouridine, a modified base found in the D-loop of most tRNAs
Dihydrouridine synthase-like (DUS-like) FMN-binding domain. Members of this family catalyze ...
28-257
2.32e-106
Dihydrouridine synthase-like (DUS-like) FMN-binding domain. Members of this family catalyze the reduction of the 5,6-double bond of a uridine residue on tRNA. Dihydrouridine modification of tRNA is widely observed in prokaryotes and eukaryotes, and also in some archaea. Most dihydrouridines are found in the D loop of t-RNAs. The role of dihydrouridine in tRNA is currently unknown, but may increase conformational flexibility of the tRNA. It is likely that different family members have different substrate specificities, which may overlap. 1VHN, a putative flavin oxidoreductase, has high sequence similarity to DUS. The enzymatic mechanism of 1VHN is not known at the present.
:
Pssm-ID: 239200 [Multi-domain] Cd Length: 231 Bit Score: 309.81 E-value: 2.32e-106
Dihydrouridine synthase-like (DUS-like) FMN-binding domain. Members of this family catalyze ...
28-257
2.32e-106
Dihydrouridine synthase-like (DUS-like) FMN-binding domain. Members of this family catalyze the reduction of the 5,6-double bond of a uridine residue on tRNA. Dihydrouridine modification of tRNA is widely observed in prokaryotes and eukaryotes, and also in some archaea. Most dihydrouridines are found in the D loop of t-RNAs. The role of dihydrouridine in tRNA is currently unknown, but may increase conformational flexibility of the tRNA. It is likely that different family members have different substrate specificities, which may overlap. 1VHN, a putative flavin oxidoreductase, has high sequence similarity to DUS. The enzymatic mechanism of 1VHN is not known at the present.
Pssm-ID: 239200 [Multi-domain] Cd Length: 231 Bit Score: 309.81 E-value: 2.32e-106
Dihydrouridine synthase (Dus); Members of this family catalyze the reduction of the 5,6-double ...
32-288
6.75e-80
Dihydrouridine synthase (Dus); Members of this family catalyze the reduction of the 5,6-double bond of a uridine residue on tRNA. Dihydrouridine modification of tRNA is widely observed in prokaryotes and eukaryotes, and also in some archae. Most dihydrouridines are found in the D loop of t-RNAs. The role of dihydrouridine in tRNA is currently unknown, but may increase conformational flexibility of the tRNA. It is likely that different family members have different substrate specificities, which may overlap. Dus 1 from Saccharomyces cerevisiae acts on pre-tRNA-Phe, while Dus 2 acts on pre-tRNA-Tyr and pre-tRNA-Leu. Dus 1 is active as a single subunit, requiring NADPH or NADH, and is stimulated by the presence of FAD. Some family members may be targeted to the mitochondria and even have a role in mitochondria.
Pssm-ID: 426126 Cd Length: 309 Bit Score: 245.31 E-value: 6.75e-80
tRNA-dihydrouridine synthase [Translation, ribosomal structure and biogenesis]; ...
32-311
1.14e-69
tRNA-dihydrouridine synthase [Translation, ribosomal structure and biogenesis]; tRNA-dihydrouridine synthase is part of the Pathway/BioSystem: tRNA modification
Pssm-ID: 439812 [Multi-domain] Cd Length: 310 Bit Score: 219.19 E-value: 1.14e-69
putative TIM-barrel protein, nifR3 family; This model represents one branch of COG0042 ...
30-316
6.85e-42
putative TIM-barrel protein, nifR3 family; This model represents one branch of COG0042 (Predicted TIM-barrel enzymes, possibly dehydrogenases, nifR3 family). This branch includes NifR3 itself, from Rhodobacter capsulatus. It excludes a broadly distributed but more sparsely populated subfamily that contains sll0926 from Synechocystis PCC6803, HI0634 from Haemophilus influenzae, and BB0225 from Borrelia burgdorferi. It also excludes a shorter and more distant archaeal subfamily.The function of nifR3, a member of this family, is unknown, but it is found in an operon with nitrogen-sensing two component regulators in Rhodobacter capsulatus.Members of this family show a distant relationship to alpha/beta (TIM) barrel enzymes such as dihydroorotate dehydrogenase and glycolate oxidase. [Unknown function, General]
Pssm-ID: 129820 Cd Length: 319 Bit Score: 147.51 E-value: 6.85e-42
Dihydrouridine synthase-like (DUS-like) FMN-binding domain. Members of this family catalyze ...
28-257
2.32e-106
Dihydrouridine synthase-like (DUS-like) FMN-binding domain. Members of this family catalyze the reduction of the 5,6-double bond of a uridine residue on tRNA. Dihydrouridine modification of tRNA is widely observed in prokaryotes and eukaryotes, and also in some archaea. Most dihydrouridines are found in the D loop of t-RNAs. The role of dihydrouridine in tRNA is currently unknown, but may increase conformational flexibility of the tRNA. It is likely that different family members have different substrate specificities, which may overlap. 1VHN, a putative flavin oxidoreductase, has high sequence similarity to DUS. The enzymatic mechanism of 1VHN is not known at the present.
Pssm-ID: 239200 [Multi-domain] Cd Length: 231 Bit Score: 309.81 E-value: 2.32e-106
Dihydrouridine synthase (Dus); Members of this family catalyze the reduction of the 5,6-double ...
32-288
6.75e-80
Dihydrouridine synthase (Dus); Members of this family catalyze the reduction of the 5,6-double bond of a uridine residue on tRNA. Dihydrouridine modification of tRNA is widely observed in prokaryotes and eukaryotes, and also in some archae. Most dihydrouridines are found in the D loop of t-RNAs. The role of dihydrouridine in tRNA is currently unknown, but may increase conformational flexibility of the tRNA. It is likely that different family members have different substrate specificities, which may overlap. Dus 1 from Saccharomyces cerevisiae acts on pre-tRNA-Phe, while Dus 2 acts on pre-tRNA-Tyr and pre-tRNA-Leu. Dus 1 is active as a single subunit, requiring NADPH or NADH, and is stimulated by the presence of FAD. Some family members may be targeted to the mitochondria and even have a role in mitochondria.
Pssm-ID: 426126 Cd Length: 309 Bit Score: 245.31 E-value: 6.75e-80
tRNA-dihydrouridine synthase [Translation, ribosomal structure and biogenesis]; ...
32-311
1.14e-69
tRNA-dihydrouridine synthase [Translation, ribosomal structure and biogenesis]; tRNA-dihydrouridine synthase is part of the Pathway/BioSystem: tRNA modification
Pssm-ID: 439812 [Multi-domain] Cd Length: 310 Bit Score: 219.19 E-value: 1.14e-69
putative TIM-barrel protein, nifR3 family; This model represents one branch of COG0042 ...
30-316
6.85e-42
putative TIM-barrel protein, nifR3 family; This model represents one branch of COG0042 (Predicted TIM-barrel enzymes, possibly dehydrogenases, nifR3 family). This branch includes NifR3 itself, from Rhodobacter capsulatus. It excludes a broadly distributed but more sparsely populated subfamily that contains sll0926 from Synechocystis PCC6803, HI0634 from Haemophilus influenzae, and BB0225 from Borrelia burgdorferi. It also excludes a shorter and more distant archaeal subfamily.The function of nifR3, a member of this family, is unknown, but it is found in an operon with nitrogen-sensing two component regulators in Rhodobacter capsulatus.Members of this family show a distant relationship to alpha/beta (TIM) barrel enzymes such as dihydroorotate dehydrogenase and glycolate oxidase. [Unknown function, General]
Pssm-ID: 129820 Cd Length: 319 Bit Score: 147.51 E-value: 6.85e-42
tRNA dihydrouridine synthase A; This model represents one branch of COG0042 (Predicted ...
32-251
8.25e-23
tRNA dihydrouridine synthase A; This model represents one branch of COG0042 (Predicted TIM-barrel enzymes, possibly dehydrogenases, nifR3 family). It represents a distinct subset by a set of shared unique motifs, a conserved pattern of insertions/deletions relative to other nifR3 homologs, and by subclustering based on cross-genome bidirectional best hits. Members are found in species as diverse as the proteobacteria, a spirochete, a cyanobacterium, and Deinococcus radiodurans. NifR3 itself, a protein of unknown function associated with nitrogen regulation in Rhodobacter capsulatus, is not a member of this branch. Members of this family show a distant relationship to alpha/beta (TIM) barrel enzymes such as dihydroorotate dehydrogenase and glycolate oxidase. [Protein synthesis, tRNA and rRNA base modification]
Pssm-ID: 129825 Cd Length: 318 Bit Score: 96.43 E-value: 8.25e-23
Old yellow enzyme (OYE)-like FMN binding domain. OYE was the first flavin-dependent enzyme ...
124-247
7.50e-16
Old yellow enzyme (OYE)-like FMN binding domain. OYE was the first flavin-dependent enzyme identified, however its true physiological role remains elusive to this day. Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Members of OYE family include trimethylamine dehydrogenase, 2,4-dienoyl-CoA reductase, enoate reductase, pentaerythriol tetranitrate reductase, xenobiotic reductase, and morphinone reductase.
Pssm-ID: 239201 [Multi-domain] Cd Length: 327 Bit Score: 76.84 E-value: 7.50e-16
Old yellow enzyme (OYE)-related FMN binding domain, group 2. Each monomer of OYE contains FMN ...
124-249
5.40e-10
Old yellow enzyme (OYE)-related FMN binding domain, group 2. Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Other members of OYE family include trimethylamine dehydrogenase, 2,4-dienoyl-CoA reductase, enoate reductase, pentaerythriol tetranitrate reductase, xenobiotic reductase, and morphinone reductase.
Pssm-ID: 240084 [Multi-domain] Cd Length: 338 Bit Score: 59.52 E-value: 5.40e-10
Old yellow enzyme (OYE) YqjM-like FMN binding domain. YqjM is involved in the oxidative stress ...
124-247
4.27e-07
Old yellow enzyme (OYE) YqjM-like FMN binding domain. YqjM is involved in the oxidative stress response of Bacillus subtilis. Like the other OYE members, each monomer of YqjM contains FMN as a non-covalently bound cofactor and uses NADPH as a reducing agent. The YqjM enzyme exists as a homotetramer that is assembled as a dimer of catalytically dependent dimers, while other OYE members exist only as monomers or dimers. Moreover, the protein displays a shared active site architecture where an arginine finger at the COOH terminus of one monomer extends into the active site of the adjacent monomer and is directly involved in substrate recognition. Another remarkable difference in the binding of the ligand in YqjM is represented by the contribution of the NH2-terminal tyrosine instead of a COOH-terminal tyrosine in OYE and its homologs.
Pssm-ID: 239242 [Multi-domain] Cd Length: 336 Bit Score: 50.57 E-value: 4.27e-07
Old yellow enzyme (OYE)-related FMN binding domain, group 4. Each monomer of OYE contains FMN ...
124-247
2.63e-05
Old yellow enzyme (OYE)-related FMN binding domain, group 4. Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Other members of OYE family include trimethylamine dehydrogenase, 2,4-dienoyl-CoA reductase, enoate reductase, pentaerythriol tetranitrate reductase, xenobiotic reductase, and morphinone reductase.
Pssm-ID: 240086 [Multi-domain] Cd Length: 353 Bit Score: 45.28 E-value: 2.63e-05
2,4-dienoyl-CoA reductase (DCR) FMN-binding domain. DCR in E. coli is an iron-sulfur ...
124-255
1.17e-04
2,4-dienoyl-CoA reductase (DCR) FMN-binding domain. DCR in E. coli is an iron-sulfur flavoenzyme which contains FMN, FAD, and a 4Fe-4S cluster. It is also a monomer, unlike that of its eukaryotic counterparts which form homotetramers and lack the flavin and iron-sulfur cofactors. Metabolism of unsaturated fatty acids requires auxiliary enzymes in addition to those used in b-oxidation. After a given number of cycles through the b-oxidation pathway, those unsaturated fatty acyl-CoAs with double bonds at even-numbered carbon positions contain 2-trans, 4-cis double bonds that can not be modified by enoyl-CoA hydratase. DCR utilizes NADPH to remove the C4-C5 double bond. DCR can catalyze the reduction of both natural fatty acids with cis double bonds, as well as substrates containing trans double bonds. The reaction is initiated by hybrid transfer from NADPH to FAD, which in turn transfers electrons, one at a time, to FMN via the 4Fe-4S cluster. The fully reduced FMN provides a hydrid ion to the C5 atom of substrate, and Tyr and His are proposed to form a catalytic dyad that protonates the C4 atom of the substrate and completes the reaction.
Pssm-ID: 239240 [Multi-domain] Cd Length: 353 Bit Score: 43.43 E-value: 1.17e-04
Dihydroorotate dehydrogenase (DHOD) class 1B FMN-binding domain. DHOD catalyzes the oxidation ...
77-251
2.94e-04
Dihydroorotate dehydrogenase (DHOD) class 1B FMN-binding domain. DHOD catalyzes the oxidation of (S)-dihydroorotate to orotate. This is the fourth step and the only redox reaction in the de novo biosynthesis of UMP, the precursor of all pyrimidine nucleotides. DHOD requires FMN as co-factor. DHOD divides into class 1 and class 2 based on their amino acid sequences and cellular location. Members of class 1 are cytosolic enzymes and multimers while class 2 enzymes are membrane associated and monomeric. The class 1 enzymes can be further divided into subtypes 1A and 1B which are homodimers and heterotetrameric proteins, respectively.
Pssm-ID: 240091 [Multi-domain] Cd Length: 296 Bit Score: 41.77 E-value: 2.94e-04
L-alanine-DL-glutamate epimerase or related enzyme of enolase superfamily [Cell wall/membrane ...
119-239
4.61e-04
L-alanine-DL-glutamate epimerase or related enzyme of enolase superfamily [Cell wall/membrane/envelope biogenesis, General function prediction only]; L-alanine-DL-glutamate epimerase or related enzyme of enolase superfamily is part of the Pathway/BioSystem: Non-phosphorylated Entner-Doudoroff pathway
Pssm-ID: 443975 [Multi-domain] Cd Length: 359 Bit Score: 41.35 E-value: 4.61e-04
Mandelate racemase (MR)-like subfamily of the enolase superfamily. Enzymes of this subgroup ...
106-215
7.80e-04
Mandelate racemase (MR)-like subfamily of the enolase superfamily. Enzymes of this subgroup share three conserved carboxylate ligands for the essential divalent metal ion (usually Mg2+), two aspartates and a glutamate, and conserved catalytic residues, a Lys-X-Lys motif and a conserved histidine-aspartate dyad. Members of the MR subgroup are mandelate racemase, D-glucarate/L-idarate dehydratase (GlucD), D-altronate/D-mannonate dehydratase , D-galactonate dehydratase (GalD) , D-gluconate dehydratase (GlcD), and L-rhamnonate dehydratase (RhamD).
Pssm-ID: 239432 [Multi-domain] Cd Length: 357 Bit Score: 40.67 E-value: 7.80e-04
L-Ala-D/L-Glu epimerase catalyzes the epimerization of L-Ala-D/L-Glu and other dipeptides. The ...
138-237
1.75e-03
L-Ala-D/L-Glu epimerase catalyzes the epimerization of L-Ala-D/L-Glu and other dipeptides. The genomic context and the substrate specificity of characterized members of this family from E.coli and B.subtilis indicates a possible role in the metabolism of the murein peptide of peptidoglycan, of which L-Ala-D-Glu is a component. L-Ala-D/L-Glu epimerase is a member of the enolase-superfamily, which is characterized by the presence of an enolate anion intermediate which is generated by abstraction of the alpha-proton of the carboxylate substrate by an active site residue and is stabilized by coordination to the essential Mg2+ ion.
Pssm-ID: 239435 [Multi-domain] Cd Length: 316 Bit Score: 39.48 E-value: 1.75e-03
Thiamine monophosphate synthase; Thiamine monophosphate synthase (TMP) (EC:2.5.1.3) catalyzes the substitution of the pyrophosphate of 2-methyl-4-amino-5- hydroxymethylpyrimidine pyrophosphate by 4-methyl-5- (beta-hydroxyethyl)thiazole phosphate to yield thiamine phosphate. This Pfam family also includes the regulatory protein TENI, a protein from Bacillus subtilis that regulates the production of several extracellular enzymes by reducing alkaline protease production. While TenI shows high sequence similarity with thiamin phosphate synthase, the purified protein has no thiamin phosphate synthase activity. Instead, it is a thiazole tautomerase.
Pssm-ID: 426849 [Multi-domain] Cd Length: 180 Bit Score: 36.37 E-value: 8.95e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options