glutamate receptor 4 isoform 3 precursor [Rattus norvegicus]
type 1 periplasmic-binding domain-containing protein; BMP family ABC transporter substrate-binding protein( domain architecture ID 10157277)
type 1 periplasmic-binding domain-containing protein such as the ligand binding domains of the LacI family of transcriptional regulators, the ABC transporter substrate-binding proteins, the family C GPCRs, membrane bound guanylyl cyclases including the family of natriuretic peptide receptors (NPRs), and the N-terminal LIVBP-like domains of the ionotropic glutamate receptors (iGluRs); contains the Venus flytrap-like domain which undergoes transition from an open to a closed conformational state upon ligand binding| BMP (basic membrane protein) family ABC transporter substrate-binding protein functions as the initial receptor in the ABC transport of one or more from a variety of substrates
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
PBP1_iGluR_AMPA_GluR4 | cd06388 | N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the GluR4 subunit ... |
28-400 | 0e+00 | ||||||
N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the GluR4 subunit of the AMPA receptor; N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the GluR4 subunit of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor. The AMPA receptor is a member of the glutamate-receptor ion channels (iGluRs) which are the major mediators of excitatory synaptic transmission in the central nervous system. AMPA receptors are composed of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current. Furthermore, this N-terminal domain of the iGluRs has homology with LIVBP, a bacterial periplasmic binding protein, as well as with the structurally related glutamate-binding domain of the G-protein-coupled metabotropic receptors (mGluRs). : Pssm-ID: 380611 [Multi-domain] Cd Length: 373 Bit Score: 787.68 E-value: 0e+00
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
PBP1_iGluR_AMPA_GluR4 | cd06388 | N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the GluR4 subunit ... |
28-400 | 0e+00 | ||||||
N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the GluR4 subunit of the AMPA receptor; N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the GluR4 subunit of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor. The AMPA receptor is a member of the glutamate-receptor ion channels (iGluRs) which are the major mediators of excitatory synaptic transmission in the central nervous system. AMPA receptors are composed of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current. Furthermore, this N-terminal domain of the iGluRs has homology with LIVBP, a bacterial periplasmic binding protein, as well as with the structurally related glutamate-binding domain of the G-protein-coupled metabotropic receptors (mGluRs). Pssm-ID: 380611 [Multi-domain] Cd Length: 373 Bit Score: 787.68 E-value: 0e+00
|
||||||||||
ANF_receptor | pfam01094 | Receptor family ligand binding region; This family includes extracellular ligand binding ... |
39-382 | 7.42e-62 | ||||||
Receptor family ligand binding region; This family includes extracellular ligand binding domains of a wide range of receptors. This family also includes the bacterial amino acid binding proteins of known structure. Pssm-ID: 460062 [Multi-domain] Cd Length: 347 Bit Score: 203.77 E-value: 7.42e-62
|
||||||||||
Name | Accession | Description | Interval | E-value | |||||||
PBP1_iGluR_AMPA_GluR4 | cd06388 | N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the GluR4 subunit ... |
28-400 | 0e+00 | |||||||
N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the GluR4 subunit of the AMPA receptor; N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the GluR4 subunit of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor. The AMPA receptor is a member of the glutamate-receptor ion channels (iGluRs) which are the major mediators of excitatory synaptic transmission in the central nervous system. AMPA receptors are composed of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current. Furthermore, this N-terminal domain of the iGluRs has homology with LIVBP, a bacterial periplasmic binding protein, as well as with the structurally related glutamate-binding domain of the G-protein-coupled metabotropic receptors (mGluRs). Pssm-ID: 380611 [Multi-domain] Cd Length: 373 Bit Score: 787.68 E-value: 0e+00
|
|||||||||||
PBP1_iGluR_AMPA_GluR3 | cd06387 | N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the GluR3 subunit ... |
29-399 | 0e+00 | |||||||
N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the GluR3 subunit of the AMPA receptor; N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the GluR3 subunit of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor. The AMPA receptor is a member of the glutamate-receptor ion channels (iGluRs) which are the major mediators of excitatory synaptic transmission in the central nervous system. AMPA receptors are composed of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current. Furthermore, this N-terminal domain of the iGluRs has homology with LIVBP, a bacterial periplasmic binding protein, as well as with the structurally related glutamate-binding domain of the G-protein-coupled metabotropic receptors (mGluRs). Pssm-ID: 380610 [Multi-domain] Cd Length: 375 Bit Score: 586.99 E-value: 0e+00
|
|||||||||||
PBP1_iGluR_AMPA_GluR2 | cd06389 | N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the GluR2 subunit ... |
28-400 | 0e+00 | |||||||
N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the GluR2 subunit of the AMPA receptor; N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the GluR2 subunit of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor. The AMPA receptor is a member of the glutamate-receptor ion channels (iGluRs) which are the major mediators of excitatory synaptic transmission in the central nervous system. AMPA receptors are composed of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current. Furthermore, this N-terminal domain of the iGluRs has homology with LIVBP, a bacterial periplasmic binding protein, as well as with the structurally related glutamate-binding domain of the G-protein-coupled metabotropic receptors (mGluRs). Pssm-ID: 380612 [Multi-domain] Cd Length: 372 Bit Score: 529.97 E-value: 0e+00
|
|||||||||||
PBP1_iGluR_AMPA_GluR1 | cd06390 | N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the GluR1 subunit ... |
28-397 | 0e+00 | |||||||
N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the GluR1 subunit of the AMPA receptor; N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the GluR1 subunit of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor. The AMPA receptor is a member of the glutamate-receptor ion channels (iGluRs) which are the major mediators of excitatory synaptic transmission in the central nervous system. AMPA receptors are composed of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current. Furthermore, this N-terminal domain of the iGluRs has homology with LIVBP, a bacterial periplasmic binding protein, as well as with the structurally related glutamate-binding domain of the G-protein-coupled metabotropic receptors (mGluRs). Pssm-ID: 380613 [Multi-domain] Cd Length: 367 Bit Score: 514.10 E-value: 0e+00
|
|||||||||||
PBP1_iGluR_AMPA | cd06380 | N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the AMPA receptor; ... |
28-400 | 7.98e-166 | |||||||
N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the AMPA receptor; N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor, a member of the glutamate-receptor ion channels (iGluRs). AMPA receptors are the major mediators of excitatory synaptic transmission in the central nervous system. While this N-terminal domain belongs to the periplasmic-binding fold type 1 superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type 2. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. AMPA receptors consist of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important roles in mediating the rapid excitatory synaptic current. Pssm-ID: 380603 [Multi-domain] Cd Length: 390 Bit Score: 471.38 E-value: 7.98e-166
|
|||||||||||
PBP1_iGluR_N_LIVBP-like | cd06351 | N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the NMDA, AMPA, ... |
29-397 | 9.19e-92 | |||||||
N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the NMDA, AMPA, and kainate receptor subtypes of ionotropic glutamate receptors (iGluRs); N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the NMDA, AMPA, and kainate receptor subtypes of ionotropic glutamate receptors (iGluRs). While this N-terminal domain belongs to the periplasmic-binding fold type 1 superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type 2. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. Glutamate mediates the majority of excitatory synaptic transmission in the central nervous system via two broad classes of ionotropic receptors characterized by their response to glutamate agonists: N-methyl-aspartate (NMDA) and non-NMDA receptors. NMDA receptors have intrinsically slow kinetics, are highly permeable to Ca2+, and are blocked by extracellular Mg2+ in a voltage-dependent manner. On the other hand, non-NMDA receptors have faster kinetics, are weakly permeable to Ca2+, and are not blocked by extracellular Mg2+. While non-NMDA receptors typically mediate excitatory synaptic responses at resting membrane potentials, NMDA receptors contribute to several forms of synaptic plasticity and are suggested to play an important role in the development of synaptic pathways. Pssm-ID: 380574 Cd Length: 348 Bit Score: 281.16 E-value: 9.19e-92
|
|||||||||||
PBP1_iGluR_Kainate | cd06382 | N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the kainate ... |
29-391 | 4.76e-70 | |||||||
N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the kainate receptors; N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the kainate receptors, non-NMDA ionotropic receptors which respond to the neurotransmitter glutamate. While this N-terminal domain belongs to the periplasmic-binding fold type 1 superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type 2. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. Kainate receptors have five subunits, GluR5, GluR6, GluR7, KA1 and KA2, which are structurally similar to AMPA and NMDA subunits of ionotropic glutamate receptors. KA1 and KA2 subunits can only form functional receptors with one of the GluR5-7 subunits. Moreover, GluR5-7 can also form functional homomeric receptor channels activated by kainate and glutamate when expressed in heterologous systems. Kainate receptors are involved in excitatory neurotransmission by activating postsynaptic receptors and in inhibitory neurotransmission by modulating release of the inhibitory neurotransmitter GABA through a presynaptic mechanism. Kainate receptors are closely related to AMAP receptors. In contrast of AMPA receptors, kainate receptors play only a minor role in signaling at synapses and their function is not well defined. Pssm-ID: 380605 Cd Length: 335 Bit Score: 224.79 E-value: 4.76e-70
|
|||||||||||
PBP1_iGluR_non_NMDA-like | cd06368 | N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the non-NMDA ... |
29-391 | 1.22e-69 | |||||||
N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the non-NMDA (N-methyl-D-aspartate) subtypes of ionotropic glutamate receptors; N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the non-NMDA (N-methyl-D-asparate) subtypes of ionotropic glutamate receptors. While this N-terminal domain belongs to the periplasmic-binding fold type 1 superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type 2. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. Glutamate mediates the majority of excitatory synaptic transmission in the central nervous system via two broad classes of ionotropic receptors, characterized by their response to glutamate agonists: N-methyl-D-aspartate (NMDA) and non-NMDA receptors. NMDA receptors have intrinsically slow kinetics, are highly permeable to Ca2+, and are blocked by extracellular Mg2+ in a voltage-dependent manner. Non-NMDA receptors have faster kinetics, are most often only weakly permeable to Ca2+, and are not blocked by extracellular Mg2+. While non-NMDA receptors typically mediate excitatory synaptic responses at resting membrane potentials, NMDA receptors contribute several forms of synaptic plasticity and are thought to play an important role in the development of synaptic pathways. Non-NMDA receptors include alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionate (AMPA) and kainate receptors. Pssm-ID: 380591 [Multi-domain] Cd Length: 339 Bit Score: 223.78 E-value: 1.22e-69
|
|||||||||||
ANF_receptor | pfam01094 | Receptor family ligand binding region; This family includes extracellular ligand binding ... |
39-382 | 7.42e-62 | |||||||
Receptor family ligand binding region; This family includes extracellular ligand binding domains of a wide range of receptors. This family also includes the bacterial amino acid binding proteins of known structure. Pssm-ID: 460062 [Multi-domain] Cd Length: 347 Bit Score: 203.77 E-value: 7.42e-62
|
|||||||||||
PBP1_iGluR_delta_2 | cd06391 | N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the delta2 ... |
28-396 | 1.65e-16 | |||||||
N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the delta2 receptor of an orphan glutamate receptor family; N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the delta2 receptor of an orphan glutamate receptor family. While this N-terminal domain belongs to the periplasmic-binding fold type 1 superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type 2. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. Although the delta receptors are a member of the ionotropic glutamate receptor family, they cannot be activated by AMPA, kainate, NMDA, glutamate, or any other ligands. Phylogenetic analysis shows that both GluRdelta1 and GluRalpha2 are closer related to non-NMDA receptors. GluRdelta2 was shown to function as an AMPA-like receptor by mutation analysis. Moreover, targeted disruption of GluRdelta2 gene caused motor coordination impairment, Purkinje cell maturation, and long-term depression of synaptic transmission. It has been suggested that GluRdelta2 is the receptor for cerebellin 1, a glycoprotein of the Clq and tumor necrosis factor family that is secreted from cerebellar granule cells. Pssm-ID: 380614 [Multi-domain] Cd Length: 402 Bit Score: 80.85 E-value: 1.65e-16
|
|||||||||||
PBP1_iGluR_Kainate_KA1_2 | cd06394 | N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the KA1 and KA2 ... |
197-390 | 8.35e-16 | |||||||
N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the KA1 and KA2 subunits of Kainate receptor; N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the KA1 and KA2 subunits of Kainate receptor. While this N-terminal domain belongs to the periplasmic-binding fold type 1 superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type 2. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. There are five types of kainate receptors, GluR5, GluR6, GluR7, KA1, and KA2, which are structurally similar to AMPA and NMDA subunits of ionotropic glutamate receptors. KA1 and KA2 subunits can only form functional receptors with one of the GluR5-7 subunits. Moreover, GluR5-7 can also form functional homomeric receptor channels activated by kainate and glutamate when expressed in heterologous systems. Kainate receptors are involved in excitatory neurotransmission by activating postsynaptic receptors and in inhibitory neurotransmission by modulating release of the inhibitory neurotransmitter GABA through a presynaptic mechanism. Kainate receptors are closely related to AMPA receptors. In contrast of AMPA receptors, kainate receptors play only a minor role in signaling at synapses and their function is not well defined. Pssm-ID: 380616 Cd Length: 379 Bit Score: 78.41 E-value: 8.35e-16
|
|||||||||||
PBP1_iGluR_delta-like | cd06381 | N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of an orphan family ... |
28-391 | 2.21e-15 | |||||||
N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of an orphan family of delta receptors, GluRdelta1 and GluRdelta2; This CD represents the N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of an orphan family of delta receptors, GluRdelta1 and GluRdelta2. While this N-terminal domain belongs to the periplasmic-binding fold type 1 superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type 2. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. Although the delta receptors are a member of the ionotropic glutamate receptor family, they cannot be activated by AMPA, kainate, NMDA, glutamate, or any other ligands. Phylogenetic analysis shows that both GluRdelta1 and GluRalpha2 are more homologous to non-NMDA receptors. GluRdelta2 was shown to function as an AMPA-like receptor by mutation analysis. Moreover, targeted disruption of GluRdelta2 gene caused motor coordination impairment, Purkinje cell maturation, and long-term depression of synaptic transmission. It has been suggested that GluRdelta2 is the receptor for cerebellin 1, a glycoprotein of the Clq, and the tumor necrosis factor family which is secreted from cerebellar granule cells. Furthermore, recent studies have shown that the orphan GluRdelta1 plays an essential role in high-frequency hearing and ionic homeostasis in the basal cochlea and that the locus encoding GluRdelta1 may be involved in congenial or acquired high-frequency hearing loss in humans. Pssm-ID: 380604 [Multi-domain] Cd Length: 401 Bit Score: 77.34 E-value: 2.21e-15
|
|||||||||||
PBP1_iGluR_delta_1 | cd06392 | N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the delta1 ... |
29-367 | 9.77e-15 | |||||||
N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the delta1 receptor of an orphan glutamate receptor family; N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the delta1 receptor of an orphan glutamate receptor family. While this N-terminal domain belongs to the periplasmic-binding fold type 1 superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type 2. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. Although the delta receptors are a member of the ionotropic glutamate receptor family, they cannot be activated by AMPA, kainate, NMDA, glutamate, or any other ligands. Phylogenetic analysis shows that both GluRdelta1 and GluRalpha2 may be closer related to non-NMDA receptors. In contrast to GluRdelta2, GluRdelta1 is expressed in many areas in the developing CNS, including the hippocampus and the caudate putamen. Furthermore, recent studies have shown that the orphan GluRdelta1 plays an essential role in high-frequency hearing and ionic homeostasis in the basal cochlea and that the locus encoding GluRdelta1 may be involved in congenial or acquired high-frequency hearing loss in humans. Pssm-ID: 380615 Cd Length: 402 Bit Score: 75.43 E-value: 9.77e-15
|
|||||||||||
PBP1_GPCR_family_C-like | cd06350 | ligand-binding domain of membrane-bound glutamate receptors that mediate excitatory ... |
23-238 | 1.49e-04 | |||||||
ligand-binding domain of membrane-bound glutamate receptors that mediate excitatory transmission on the cellular surface through initial binding of glutamate; categorized into ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (m; Ligand-binding domain of membrane-bound glutamate receptors that mediate excitatory transmission on the cellular surface through initial binding of glutamate and are categorized into ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The metabotropic glutamate receptors (mGluR) are key receptors in the modulation of excitatory synaptic transmission in the central nervous system. The mGluRs are coupled to G proteins and are thus distinct from the iGluRs which internally contain ligand-gated ion channels. The mGluR structure is divided into three regions: the extracellular region, the seven-spanning transmembrane region and the cytoplasmic region. The extracellular region is further divided into the ligand-binding domain (LBD) and the cysteine-rich domain. The LBD has sequence similarity to the LIVBP, which is a bacterial periplasmic protein (PBP), as well as to the extracellular region of both iGluR and the gamma-aminobutyric acid (GABA)b receptor. iGluRs are divided into three main subtypes based on pharmacological profile: NMDA, AMPA, and kainate receptors. All family C GPCRs have a large extracellular N terminus that contain a domain with homology to bacterial periplasmic amino acid-binding proteins. Pssm-ID: 380573 Cd Length: 350 Bit Score: 43.82 E-value: 1.49e-04
|
|||||||||||
PBP1_glutamate_receptors-like | cd06269 | ligand-binding domain of family C G-protein couples receptors (GPCRs), membrane bound guanylyl ... |
29-311 | 4.07e-04 | |||||||
ligand-binding domain of family C G-protein couples receptors (GPCRs), membrane bound guanylyl cyclases such as natriuretic peptide receptors (NPRs), and N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain of ionotropic glutamate rece; This CD represents the ligand-binding domain of the family C G-protein couples receptors (GPCRs), membrane bound guanylyl cyclases such as the family of natriuretic peptide receptors (NPRs), and the N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the ionotropic glutamate receptors, all of which are structurally similar and related to the periplasmic-binding fold type 1 family. The family C GPCRs consists of metabotropic glutamate receptor (mGluR), a calcium-sensing receptor (CaSR), gamma-aminobutyric acid receptor (GABAbR), the promiscuous L-alpha-amino acid receptor GPR6A, families of taste and pheromone receptors, and orphan receptors. Truncated splicing variants of the orphan receptors are not included in this CD. The family C GPCRs are activated by endogenous agonists such as amino acids, ions, and sugar based molecules. Their amino terminal ligand-binding region is homologous to the bacterial leucine-isoleucine-valine binding protein (LIVBP) and a leucine binding protein (LBP). The ionotropic glutamate receptors (iGluRs) have an integral ion channel and are subdivided into three major groups based on their pharmacology and structural similarities: NMDA receptors, AMPA receptors, and kainate receptors. The family of membrane bound guanylyl cyclases is further divided into three subfamilies: the ANP receptor (GC-A)/C-type natriuretic peptide receptor (GC-B), the heat-stable enterotoxin receptor (GC-C)/sensory organ specific membrane GCs such as retinal receptors (GC-E, GC-F), and olfactory receptors (GC-D and GC-G). Pssm-ID: 380493 [Multi-domain] Cd Length: 332 Bit Score: 42.40 E-value: 4.07e-04
|
|||||||||||
PBP1_SAP_GC-like | cd06370 | Ligand-binding domain of membrane bound guanylyl cyclases; Ligand-binding domain of membrane ... |
141-194 | 4.40e-03 | |||||||
Ligand-binding domain of membrane bound guanylyl cyclases; Ligand-binding domain of membrane bound guanylyl cyclases (GCs), which are known to be activated by sperm-activating peptides (SAPs), such as speract or resact. These ligand peptides are released by a range of invertebrates to stimulate the metabolism and motility of spermatozoa and are also potent chemoattractants. These GCs contain a single transmembrane segment, an extracellular ligand binding domain, and intracellular protein kinase-like and cyclase catalytic domains. GCs of insect and nematodes, which exhibit high sequence similarity to the speract receptor are also included in this model. Pssm-ID: 380593 [Multi-domain] Cd Length: 400 Bit Score: 39.15 E-value: 4.40e-03
|
|||||||||||
PBP1_GABAb_receptor | cd06366 | ligand-binding domain of GABAb receptors, which are metabotropic transmembrane receptors for ... |
279-399 | 5.17e-03 | |||||||
ligand-binding domain of GABAb receptors, which are metabotropic transmembrane receptors for gamma-aminobutyric acid (GABA); Ligand-binding domain of GABAb receptors, which are metabotropic transmembrane receptors for gamma-aminobutyric acid (GABA). GABA is the major inhibitory neurotransmitter in the mammalian CNS and, like glutamate and other transmitters, acts via both ligand gated ion channels (GABAa receptors) and G-protein coupled receptors (GABAb receptor or GABAbR). GABAa receptors are members of the ionotropic receptor superfamily which includes alpha-adrenergic and glycine receptors. The GABAb receptor is a member of a receptor superfamily which includes the mGlu receptors. The GABAb receptor is coupled to G alpha-i proteins, and activation causes a decrease in calcium, an increase in potassium membrane conductance, and inhibition of cAMP formation. The response is thus inhibitory and leads to hyperpolarization and decreased neurotransmitter release, for example. Pssm-ID: 380589 [Multi-domain] Cd Length: 404 Bit Score: 38.77 E-value: 5.17e-03
|
|||||||||||
Blast search parameters | ||||
|