glutamate receptor ionotropic, NMDA 3A isoform 2 precursor [Mus musculus]
glutamate receptor( domain architecture ID 11570956)
glutamate receptor is a glutamate-gated receptor that probably acts as a non-selective cation channel and may be involved in light-signal transduction and calcium homeostasis via the regulation of calcium influx into cells
List of domain hits
Name | Accession | Description | Interval | E-value | |||||||
PBP1_iGluR_NMDA_NR3 | cd06377 | N-terminal leucine-isoleucine-valine-binding protein (LIVBP)-like domain of the NR3 subunit of ... |
40-496 | 0e+00 | |||||||
N-terminal leucine-isoleucine-valine-binding protein (LIVBP)-like domain of the NR3 subunit of NMDA receptor family; N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the NR3 subunit of NMDA receptor family. The ionotropic N-methyl-D-asparate (NMDA) subtype of glutamate receptor serves critical functions in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer composed of two NR1 and two NR2 (A, B, C, and D) or of NR3 (A and B) subunits. The receptor controls a cation channel that is highly permeable to monovalent ions and calcium and exhibits voltage-dependent inhibition by magnesium. Dual agonists, glutamate and glycine, are required for efficient activation of the NMDA receptor. Among NMDA receptor subtypes, the NR2B subunit containing receptors appear particularly important for pain perception; thus NR2B-selective antagonists may be useful in the treatment of chronic pain. : Pssm-ID: 380600 [Multi-domain] Cd Length: 373 Bit Score: 535.09 E-value: 0e+00
|
|||||||||||
PBP2_iGluR_NMDA_Nr3 | cd13720 | The ligand-binding domain of the NR3 subunit of ionotropic NMDA (N-methyl-D-aspartate) ... |
512-908 | 1.47e-176 | |||||||
The ligand-binding domain of the NR3 subunit of ionotropic NMDA (N-methyl-D-aspartate) glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily; This group contains the ligand-binding domain of the NR3 subunit of NMDA receptor family. The ionotropic N-methyl-d-asparate (NMDA) subtype of glutamate receptors serves critical functions in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer composed of two NR1 and two NR2 (A, B, C, and D) or of NR3 (A and B) subunits. The receptor controls a cation channel that is highly permeable to monovalent ions and calcium and exhibits voltage-dependent inhibition by magnesium. Dual agonists, glutamate and glycine, are required for efficient activation of the NMDA receptor. Among NMDA receptor subtypes, the NR2B subunit containing receptors appear particularly important for pain perception; thus NR2B-selective antagonists may be useful in the treatment of chronic pain. : Pssm-ID: 270438 [Multi-domain] Cd Length: 283 Bit Score: 518.25 E-value: 1.47e-176
|
|||||||||||
Lig_chan | pfam00060 | Ligand-gated ion channel; This family includes the four transmembrane regions of the ... |
674-941 | 6.79e-75 | |||||||
Ligand-gated ion channel; This family includes the four transmembrane regions of the ionotropic glutamate receptors and NMDA receptors. : Pssm-ID: 459656 [Multi-domain] Cd Length: 267 Bit Score: 248.38 E-value: 6.79e-75
|
|||||||||||
Name | Accession | Description | Interval | E-value | |||||||
PBP1_iGluR_NMDA_NR3 | cd06377 | N-terminal leucine-isoleucine-valine-binding protein (LIVBP)-like domain of the NR3 subunit of ... |
40-496 | 0e+00 | |||||||
N-terminal leucine-isoleucine-valine-binding protein (LIVBP)-like domain of the NR3 subunit of NMDA receptor family; N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the NR3 subunit of NMDA receptor family. The ionotropic N-methyl-D-asparate (NMDA) subtype of glutamate receptor serves critical functions in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer composed of two NR1 and two NR2 (A, B, C, and D) or of NR3 (A and B) subunits. The receptor controls a cation channel that is highly permeable to monovalent ions and calcium and exhibits voltage-dependent inhibition by magnesium. Dual agonists, glutamate and glycine, are required for efficient activation of the NMDA receptor. Among NMDA receptor subtypes, the NR2B subunit containing receptors appear particularly important for pain perception; thus NR2B-selective antagonists may be useful in the treatment of chronic pain. Pssm-ID: 380600 [Multi-domain] Cd Length: 373 Bit Score: 535.09 E-value: 0e+00
|
|||||||||||
PBP2_iGluR_NMDA_Nr3 | cd13720 | The ligand-binding domain of the NR3 subunit of ionotropic NMDA (N-methyl-D-aspartate) ... |
512-908 | 1.47e-176 | |||||||
The ligand-binding domain of the NR3 subunit of ionotropic NMDA (N-methyl-D-aspartate) glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily; This group contains the ligand-binding domain of the NR3 subunit of NMDA receptor family. The ionotropic N-methyl-d-asparate (NMDA) subtype of glutamate receptors serves critical functions in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer composed of two NR1 and two NR2 (A, B, C, and D) or of NR3 (A and B) subunits. The receptor controls a cation channel that is highly permeable to monovalent ions and calcium and exhibits voltage-dependent inhibition by magnesium. Dual agonists, glutamate and glycine, are required for efficient activation of the NMDA receptor. Among NMDA receptor subtypes, the NR2B subunit containing receptors appear particularly important for pain perception; thus NR2B-selective antagonists may be useful in the treatment of chronic pain. Pssm-ID: 270438 [Multi-domain] Cd Length: 283 Bit Score: 518.25 E-value: 1.47e-176
|
|||||||||||
Lig_chan | pfam00060 | Ligand-gated ion channel; This family includes the four transmembrane regions of the ... |
674-941 | 6.79e-75 | |||||||
Ligand-gated ion channel; This family includes the four transmembrane regions of the ionotropic glutamate receptors and NMDA receptors. Pssm-ID: 459656 [Multi-domain] Cd Length: 267 Bit Score: 248.38 E-value: 6.79e-75
|
|||||||||||
PBPe | smart00079 | Eukaryotic homologues of bacterial periplasmic substrate binding proteins; Prokaryotic ... |
776-909 | 2.83e-36 | |||||||
Eukaryotic homologues of bacterial periplasmic substrate binding proteins; Prokaryotic homologues are represented by a separate alignment: PBPb Pssm-ID: 197504 [Multi-domain] Cd Length: 133 Bit Score: 133.57 E-value: 2.83e-36
|
|||||||||||
Lig_chan-Glu_bd | pfam10613 | Ligated ion channel L-glutamate- and glycine-binding site; This region, sometimes called the ... |
514-658 | 9.47e-31 | |||||||
Ligated ion channel L-glutamate- and glycine-binding site; This region, sometimes called the S1 domain, is the luminal domain just upstream of the first, M1, transmembrane region of transmembrane ion-channel proteins, and it binds L-glutamate and glycine. It is found in association with Lig_chan, pfam00060. Pssm-ID: 463166 [Multi-domain] Cd Length: 111 Bit Score: 116.85 E-value: 9.47e-31
|
|||||||||||
HisJ | COG0834 | ABC-type amino acid transport/signal transduction system, periplasmic component/domain [Amino ... |
578-909 | 9.55e-14 | |||||||
ABC-type amino acid transport/signal transduction system, periplasmic component/domain [Amino acid transport and metabolism, Signal transduction mechanisms]; Pssm-ID: 440596 [Multi-domain] Cd Length: 223 Bit Score: 71.55 E-value: 9.55e-14
|
|||||||||||
Name | Accession | Description | Interval | E-value | |||||||
PBP1_iGluR_NMDA_NR3 | cd06377 | N-terminal leucine-isoleucine-valine-binding protein (LIVBP)-like domain of the NR3 subunit of ... |
40-496 | 0e+00 | |||||||
N-terminal leucine-isoleucine-valine-binding protein (LIVBP)-like domain of the NR3 subunit of NMDA receptor family; N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the NR3 subunit of NMDA receptor family. The ionotropic N-methyl-D-asparate (NMDA) subtype of glutamate receptor serves critical functions in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer composed of two NR1 and two NR2 (A, B, C, and D) or of NR3 (A and B) subunits. The receptor controls a cation channel that is highly permeable to monovalent ions and calcium and exhibits voltage-dependent inhibition by magnesium. Dual agonists, glutamate and glycine, are required for efficient activation of the NMDA receptor. Among NMDA receptor subtypes, the NR2B subunit containing receptors appear particularly important for pain perception; thus NR2B-selective antagonists may be useful in the treatment of chronic pain. Pssm-ID: 380600 [Multi-domain] Cd Length: 373 Bit Score: 535.09 E-value: 0e+00
|
|||||||||||
PBP2_iGluR_NMDA_Nr3 | cd13720 | The ligand-binding domain of the NR3 subunit of ionotropic NMDA (N-methyl-D-aspartate) ... |
512-908 | 1.47e-176 | |||||||
The ligand-binding domain of the NR3 subunit of ionotropic NMDA (N-methyl-D-aspartate) glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily; This group contains the ligand-binding domain of the NR3 subunit of NMDA receptor family. The ionotropic N-methyl-d-asparate (NMDA) subtype of glutamate receptors serves critical functions in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer composed of two NR1 and two NR2 (A, B, C, and D) or of NR3 (A and B) subunits. The receptor controls a cation channel that is highly permeable to monovalent ions and calcium and exhibits voltage-dependent inhibition by magnesium. Dual agonists, glutamate and glycine, are required for efficient activation of the NMDA receptor. Among NMDA receptor subtypes, the NR2B subunit containing receptors appear particularly important for pain perception; thus NR2B-selective antagonists may be useful in the treatment of chronic pain. Pssm-ID: 270438 [Multi-domain] Cd Length: 283 Bit Score: 518.25 E-value: 1.47e-176
|
|||||||||||
PBP2_iGluR_NMDA | cd13687 | The ligand-binding domain of the NMDA (N-methyl-D-aspartate) subtype of ionotropic glutamate ... |
512-908 | 1.34e-113 | |||||||
The ligand-binding domain of the NMDA (N-methyl-D-aspartate) subtype of ionotropic glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily; The ligand-binding domain of the ionotropic NMDA subtype is structurally homologous to the periplasmic-binding fold type II superfamily, while the N-terminal domain belongs to the periplasmic-binding fold type I. The function of the NMDA subtype receptor serves critical functions in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer comprising two NR1 and two NR2 (A, B, C, and D) or NR3 (A and B) subunits. The receptor controls a cation channel that is highly permeable to monovalent ions and calcium and exhibits voltage-dependent inhibition by magnesium. Dual agonists, glutamate and glycine, are required for efficient activation of the NMDA receptor. Among NMDA receptor subtypes, the NR2B subunit containing receptors appear particularly important for pain perception; thus NR2B-selective antagonists may be useful in the treatment of chronic pain. Pssm-ID: 270405 [Multi-domain] Cd Length: 239 Bit Score: 351.94 E-value: 1.34e-113
|
|||||||||||
Lig_chan | pfam00060 | Ligand-gated ion channel; This family includes the four transmembrane regions of the ... |
674-941 | 6.79e-75 | |||||||
Ligand-gated ion channel; This family includes the four transmembrane regions of the ionotropic glutamate receptors and NMDA receptors. Pssm-ID: 459656 [Multi-domain] Cd Length: 267 Bit Score: 248.38 E-value: 6.79e-75
|
|||||||||||
PBP2_iGluR_NMDA_Nr2 | cd13718 | The ligand-binding domain of the NR2 subunit of ionotropic NMDA (N-methyl-D-aspartate) ... |
512-907 | 3.14e-66 | |||||||
The ligand-binding domain of the NR2 subunit of ionotropic NMDA (N-methyl-D-aspartate) glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily; This group contains the ligand-binding domain of the NR2 subunit of NMDA receptor family. The ionotropic N-methyl-d-asparate (NMDA) subtype of glutamate receptors serves critical functions in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer composed of two NR1 and two NR2 (A, B, C, and D) or of NR3 (A and B) subunits. The receptor controls a cation channel that is highly permeable to monovalent ions and calcium and exhibits voltage-dependent inhibition by magnesium. Dual agonists, glutamate and glycine, are required for efficient activation of the NMDA receptor. Among NMDA receptor subtypes, the NR2B subunit containing receptors appear particularly important for pain perception; thus NR2B-selective antagonists may be useful in the treatment of chronic pain. Pssm-ID: 270436 [Multi-domain] Cd Length: 283 Bit Score: 224.91 E-value: 3.14e-66
|
|||||||||||
PBP2_iGluR_NMDA_Nr1 | cd13719 | The ligand-binding domain of the NR1 subunit of ionotropic NMDA (N-methyl-D-aspartate) ... |
514-913 | 2.06e-55 | |||||||
The ligand-binding domain of the NR1 subunit of ionotropic NMDA (N-methyl-D-aspartate) glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily; This group contains the ligand binding domain of the NR1, an essential channel-forming subunit of the NMDA receptor. The ionotropic N-methyl-d-asparate (NMDA) subtype of glutamate receptors serves critical functions in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer ccomposed of two NR1 and two NR2 (A, B, C, and D) or of NR3 (A and B) subunits. The receptor controls a cation channel that is highly permeable to monovalent ions and calcium and exhibits voltage-dependent inhibition by magnesium. Dual agonists, glutamate and glycine, are required for efficient activation of the NMDA receptor. When co-expressed with NR1, the NR3 subunits form receptors that are activated by glycine alone and therefore can be classified as excitatory glycine receptors. NR1/NR3 receptors are calcium-impermeable and unaffected by ligands acting at the NR2 glutamate-binding site. Pssm-ID: 270437 [Multi-domain] Cd Length: 277 Bit Score: 194.12 E-value: 2.06e-55
|
|||||||||||
PBP2_iGluR_non_NMDA_like | cd13685 | The ligand-binding domain of non-NMDA (N-methyl-D-aspartate) type ionotropic glutamate ... |
515-907 | 6.23e-43 | |||||||
The ligand-binding domain of non-NMDA (N-methyl-D-aspartate) type ionotropic glutamate receptors, a member of the type 2 periplasmic-binding fold protein superfamily; This subfamily represents the ligand-binding domain of non-NMDA (N-methyl-D-aspartate) type ionotropic glutamate receptors including AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid) receptors (GluR1-4), kainate receptors (GluR5-7 and KA1/2), and orphan receptors delta 1/2. iGluRs form tetrameric ligand-gated ion channels, which are concentrated at postsynaptic sites in excitatory synapses where they fulfill a variety of different functions. While this ligand-binding domain of iGluRs is structurally homologous to the periplasmic binding fold type II superfamily, the N-terminal leucine/isoleucine/valine#binding protein (LIVBP)-like domain belongs to the periplasmic-binding fold type I. Pssm-ID: 270403 [Multi-domain] Cd Length: 252 Bit Score: 156.96 E-value: 6.23e-43
|
|||||||||||
PBP2_iGluR_putative | cd13717 | The ligand-binding domain of putative ionotropic glutamate receptors, a member of the type 2 ... |
577-909 | 1.22e-42 | |||||||
The ligand-binding domain of putative ionotropic glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily; This group contains glutamate receptor domain GluR. These domains are found in the GluR proteins that have been shown to function as L-glutamate activated potassium channels, also known ionotropic glutamate receptors or iGluRs. In addition to two ligand binding core domains, iGluRs typically have a channel-like domain inserted in the middle of the GluR-like domain. Animal iGluRs mediate the ion flux in the synapses of the CNS and can be subdivided into several classes depending on the neurotransmitter specificity and ion conductance properties. Their plant homologs have been shown to function in light signal transduction and calcium homeostasis. The GluR proteins belong to the PBPII superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. Pssm-ID: 270435 [Multi-domain] Cd Length: 360 Bit Score: 159.77 E-value: 1.22e-42
|
|||||||||||
PBP2_iGluR_ligand_binding | cd00998 | The ligand-binding domain of ionotropic glutamate receptor family, a member of the periplasmic ... |
514-907 | 2.13e-41 | |||||||
The ligand-binding domain of ionotropic glutamate receptor family, a member of the periplasmic binding protein type II superfamily; This subfamily represents the ligand binding of ionotropic glutamate receptors. iGluRs are heterotetrameric ion channels that comprises of three functionally distinct subtypes based on their pharmacology and structural similarities: AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid), NMDA (N-methyl-D-aspartate), and kainate receptors. All three types of channels are also activated by the physiological neurotransmitter, glutamate. iGluRs are concentrated at postsynaptic sites, where they exert a variety of different functions. While this ligand-binding domain of iGluRs is structurally homologous to the periplasmic binding fold type II superfamily, the N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain belongs to the periplasmic-binding fold type I. Pssm-ID: 270219 [Multi-domain] Cd Length: 243 Bit Score: 152.53 E-value: 2.13e-41
|
|||||||||||
PBPe | smart00079 | Eukaryotic homologues of bacterial periplasmic substrate binding proteins; Prokaryotic ... |
776-909 | 2.83e-36 | |||||||
Eukaryotic homologues of bacterial periplasmic substrate binding proteins; Prokaryotic homologues are represented by a separate alignment: PBPb Pssm-ID: 197504 [Multi-domain] Cd Length: 133 Bit Score: 133.57 E-value: 2.83e-36
|
|||||||||||
PBP2_iGluR_Kainate_GluR7 | cd13723 | GluR7 subtype of kainate receptor, type 2 periplasmic-binding fold superfamily; This group ... |
578-909 | 1.28e-35 | |||||||
GluR7 subtype of kainate receptor, type 2 periplasmic-binding fold superfamily; This group contains glutamate receptor domain GluR. These domains are found in the GluR proteins that have been shown to function as L-glutamate activated potassium channels, also known ionotropic glutamate receptors or iGluRs. In addition to two ligand binding core domains, iGluRs typically have a channel-like domain inserted in the middle of the GluR-like domain. Animal iGluRs mediate the ion flux in the synapses of the CNS and can be subdivided into several classes depending on the neurotransmitter specificity and ion conductance properties. Their plant homologs have been shown to function in light signal transduction and calcium homeostasis. The GluR proteins belong to the PBPII superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. Pssm-ID: 270441 [Multi-domain] Cd Length: 369 Bit Score: 139.82 E-value: 1.28e-35
|
|||||||||||
PBP1_iGluR_NMDA | cd06367 | N-terminal leucine-isoleucine-valine-binding protein (LIVBP)-like domain of the ionotropic ... |
142-491 | 2.71e-31 | |||||||
N-terminal leucine-isoleucine-valine-binding protein (LIVBP)-like domain of the ionotropic N-methyl-D-asparate (NMDA) subtype of glutamate receptors; N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the ionotropic N-methyl-D-asparate (NMDA) subtype of glutamate receptors. While this N-terminal domain belongs to the periplasmic-binding fold type 1 superfamily, the glutamate-binding domain of the iGluR is structurally homologous to the periplasmic-binding fold type 2. The LIVBP-like domain of iGluRs is thought to play a role in the initial assembly of iGluR subunits, but it is not well understood how this domain is arranged and functions in intact iGluR. The function of the NMDA subtype receptor serves critical functions in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer comprising two NR1 and two NR2 (A, B, C, and D) or NR3 (A and B) subunits. The receptor controls a cation channel that is highly permeable to monovalent ions and calcium and exhibits voltage-dependent inhibition by magnesium. Dual agonists, glutamate and glycine, are required for efficient activation of the NMDA receptor. Among NMDA receptor subtypes, the NR2B subunit containing receptors appear particularly important for pain perception; thus NR2B-selective antagonists may be useful in the treatment of chronic pain. Pssm-ID: 380590 [Multi-domain] Cd Length: 357 Bit Score: 126.58 E-value: 2.71e-31
|
|||||||||||
Lig_chan-Glu_bd | pfam10613 | Ligated ion channel L-glutamate- and glycine-binding site; This region, sometimes called the ... |
514-658 | 9.47e-31 | |||||||
Ligated ion channel L-glutamate- and glycine-binding site; This region, sometimes called the S1 domain, is the luminal domain just upstream of the first, M1, transmembrane region of transmembrane ion-channel proteins, and it binds L-glutamate and glycine. It is found in association with Lig_chan, pfam00060. Pssm-ID: 463166 [Multi-domain] Cd Length: 111 Bit Score: 116.85 E-value: 9.47e-31
|
|||||||||||
PBP2_iGluR_Kainate | cd13714 | Kainate receptor of the type 2 periplasmic-binding fold superfamily; This group contains ... |
511-909 | 6.71e-30 | |||||||
Kainate receptor of the type 2 periplasmic-binding fold superfamily; This group contains glutamate receptor domain GluR. These domains are found in the GluR proteins that have been shown to function as L-glutamate activated potassium channels, also known ionotropic glutamate receptors or iGluRs. In addition to two ligand binding core domains, iGluRs typically have a channel-like domain inserted in the middle of the GluR-like domain. Animal iGluRs mediate the ion flux in the synapses of the CNS and can be subdivided into several classes depending on the neurotransmitter specificity and ion conductance properties. Their plant homologs have been shown to function in light signal transduction and calcium homeostasis. The GluR proteins belong to the PBPII superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. Pssm-ID: 270432 [Multi-domain] Cd Length: 251 Bit Score: 119.56 E-value: 6.71e-30
|
|||||||||||
PBP2_iGluR_kainate_KA1 | cd13724 | The ligand-binding domain of the kainate subtype KA1 of ionotropic glutamate receptors, a ... |
578-909 | 3.66e-22 | |||||||
The ligand-binding domain of the kainate subtype KA1 of ionotropic glutamate receptors, a member of the type 2 periplasmic-binding fold protein superfamily; This group contains the ligand-binding domain of the KA1 subunit of kainate receptor. While this ligand-binding domain is structurally homologous to the periplasmic binding fold type II superfamily, the N_terminal domain of kainate receptors belongs to the periplasmic-binding fold type I. There are five types of kainate receptors, GluR5, GluR6, GluR7, KA1, and KA2, which are structurally similar to AMPA and NMDA subunits of ionotropic glutamate receptors. KA1 and KA2 subunits can only form functional receptors with one of the GluR5-7 subunits. Moreover, GluR5-7 can also form functional homomeric receptor channels activated by kainate and glutamate when expressed in heterologous systems. Kainate receptors are involved in excitatory neurotransmission by activating postsynaptic receptors and in inhibitory neurotransmission by modulating release of the inhibitory neurotransmitter GABA through a presynaptic mechanism. Kainate receptors are closely related to AMAP receptors. In contrast of AMPA receptors, kainate receptors play only a minor role in signaling at synapses and their function is not well defined. Pssm-ID: 270442 [Multi-domain] Cd Length: 333 Bit Score: 98.93 E-value: 3.66e-22
|
|||||||||||
PBP2_iGluR_delta_like | cd13716 | The ligand-binding domain of the delta family of ionotropic glutamate receptors, a member of ... |
515-908 | 7.51e-22 | |||||||
The ligand-binding domain of the delta family of ionotropic glutamate receptors, a member of the type 2 periplasmic-binding fold protein superfamily; This subfamily represents the ligand-binding domain of an orphan family of delta receptors, GluRdelta1 and GluRdelta2. While this ligand-binding domain is structurally homologous to the periplasmic-binding fold type II superfamily, the N-terminal domain of iGluRs belongs to the periplasmic-binding fold type I. Although the delta receptors are members of the ionotropic glutamate receptor family, they cannot be activated by AMPA, kainate, NMDA, glutamate, or any other ligands. Phylogenetical analysis shows that both GluRdelta1 and GluRalpha2 are more homologous to non-NMDA receptors. GluRdelta2 was shown to function as an AMPA-like receptor by mutation analysis. Moreover, targeted disruption of GluRdelta2 gene caused motor coordination impairment, Purkinje cell maturation, and long-term depression of synaptic transmission. It has been suggested that GluRdelta2 is the receptor for cerebellin 1, a glycoprotein of the Clq, and the tumor necrosis factor family which is secreted from cerebellar granule cells. Furthermore, recent studies have shown that the orphan GluRdelta1 plays an essential role in high-frequency hearing and ionic homeostasis in the basal cochlea and that the locus encoding GluRdelta1 may be involved in congenial or acquired high-frequency hearing loss in humans. Pssm-ID: 270434 [Multi-domain] Cd Length: 257 Bit Score: 96.45 E-value: 7.51e-22
|
|||||||||||
PBP2_iGluR_AMPA | cd13715 | The ligand-binding domain of the AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic ... |
578-655 | 2.70e-21 | |||||||
The ligand-binding domain of the AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid) subtypes of ionotropic glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily; This family represents the ligand-binding domain of the AMPA receptor subunits, a member of non-NMDA (N-methyl-D-aspartate) type iGluRs which are ligand-gated ion channels that mediate excitatory synaptic transmission in the central nervous system. While this ligand-binding domain is structurally homologous to the periplasmic-binding fold type II superfamily, the N-terminal domain of AMPA receptors belongs to the periplasmic-binding fold type I. They consist of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current. Pssm-ID: 270433 [Multi-domain] Cd Length: 261 Bit Score: 94.73 E-value: 2.70e-21
|
|||||||||||
PBP2_iGluR_delta_1 | cd13730 | The ligand-binding domain of an orphan ionotropic glutamate receptor delta-1, a member of the ... |
513-908 | 3.83e-21 | |||||||
The ligand-binding domain of an orphan ionotropic glutamate receptor delta-1, a member of the type 2 periplasmic-binding fold protein superfamily; This group contains the ligand-binding domain of the delta1 receptor of an orphan glutamate receptor family. While this ligand-binding domain is structurally homologous to the periplasmic-binding fold type II superfamily, the N-terminal domain of delta receptors belongs to the periplasmic-binding fold type I. Although the delta receptors are a member of the ionotropic glutamate receptor family, they cannot be activated by AMPA, kainate, NMDA, glutamate, or any other ligands. Phylogenetical analysis shows that both GluRdelta1 and GluRdelta2 are more homologous to non-NMDA receptors. GluRdelta2 was shown to function as an AMPA-like receptor by mutation analysis. Moreover, targeted disruption of GluRdelta2 gene caused motor coordination impairment, Purkinje cell maturation, and long-term depression of synaptic transmission. It has been suggested that GluRdelta2 is the receptor for cerebellin 1, a glycoprotein of the Clq, and the tumor necrosis factor family which is secreted from cerebellar granule cells. Furthermore, recent studies have shown that the orphan GluRdelta1 plays an essential role in high-frequency hearing and ionic homeostasis in the basal cochlea and that the locus encoding GluRdelta1 may be involved in congenial or acquired high-frequency hearing loss in humans. Pssm-ID: 270448 [Multi-domain] Cd Length: 257 Bit Score: 94.25 E-value: 3.83e-21
|
|||||||||||
Lig_chan-Glu_bd | smart00918 | Ligated ion channel L-glutamate- and glycine-binding site; This region, sometimes called the ... |
558-621 | 1.43e-20 | |||||||
Ligated ion channel L-glutamate- and glycine-binding site; This region, sometimes called the S1 domain, is the luminal domain just upstream of the first, M1, transmembrane region of transmembrane ion-channel proteins, and it binds L-glutamate and glycine. It is found in association with Lig_chan. Pssm-ID: 214911 [Multi-domain] Cd Length: 62 Bit Score: 86.15 E-value: 1.43e-20
|
|||||||||||
PBP2_iGluR_delta_2 | cd13731 | The ligand-binding domain of an orphan ionotropic glutamate receptor delta-2, a member of the ... |
515-908 | 7.55e-20 | |||||||
The ligand-binding domain of an orphan ionotropic glutamate receptor delta-2, a member of the type 2 periplasmic-binding fold protein superfamily; This group contains the ligand-binding domain of the delta-2 receptor of an orphan glutamate receptor family. While this ligand-binding domain is structurally homologous to the periplasmic-binding fold type II superfamily, the N-terminal domain of delta receptors belongs to the periplasmic-binding fold type I. Although the delta receptors are a member of the ionotropic glutamate receptor family, they cannot be activated by AMPA, kainate, NMDA, glutamate, or any other ligands. Phylogenetical analysis shows that both GluRdelta1 and GluRalpha2 are more homologous to non-NMDA receptors. GluRdelta2 was shown to function as an AMPA-like receptor by mutation analysis. Moreover, targeted disruption of GluRdelta2 gene caused motor coordination impairment, Purkinje cell maturation, and long-term depression of synaptic transmission. It has been suggested that GluRdelta2 is the receptor for cerebellin 1, a glycoprotein of the Clq, and the tumor necrosis factor family which is secreted from cerebellar granule cells. Furthermore, recent studies have shown that the orphan GluRdelta1 plays an essential role in high-frequency hearing and ionic homeostasis in the basal cochlea and that the locus encoding GluRdelta1 may be involved in congenial or acquired high-frequency hearing loss in humans. Pssm-ID: 270449 [Multi-domain] Cd Length: 257 Bit Score: 90.48 E-value: 7.55e-20
|
|||||||||||
PBP2_iGluR_kainate_KA2 | cd13725 | The ligand-binding domain of the kainate subtype KA2 of ionotropic glutamate receptors, a ... |
578-909 | 1.61e-19 | |||||||
The ligand-binding domain of the kainate subtype KA2 of ionotropic glutamate receptors, a member of the type 2 periplasmic-binding fold protein superfamily; This group contains the ligand-binding domain of the KA2 subunit of kainate receptor. While this ligand-binding domain is structurally homologous to the periplasmic binding fold type II superfamily, the N_terminal domain of kainate receptors belongs to the periplasmic-binding fold type I. There are five types of kainate receptors, GluR5, GluR6, GluR7, KA1, and KA2, which are structurally similar to AMPA and NMDA subunits of ionotropic glutamate receptors. KA1 and KA2 subunits can only form functional receptors with one of the GluR5-7 subunits. Moreover, GluR5-7 can also form functional homomeric receptor channels activated by kainate and glutamate when expressed in heterologous systems. Kainate receptors are involved in excitatory neurotransmission by activating postsynaptic receptors and in inhibitory neurotransmission by modulating release of the inhibitory neurotransmitter GABA through a presynaptic mechanism. Kainate receptors are closely related to AMAP receptors. In contrast of AMPA receptors, kainate receptors play only a minor role in signaling at synapses and their function is not well defined. Pssm-ID: 270443 [Multi-domain] Cd Length: 250 Bit Score: 89.38 E-value: 1.61e-19
|
|||||||||||
PBP2_iGluR_AMPA_GluR1 | cd13729 | The ligand-binding domain of the AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic ... |
578-666 | 4.95e-18 | |||||||
The ligand-binding domain of the AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid) subtype GluR1 of ionotropic glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily; This group contains the ligand-binding domain of the AMPA receptor subunit GluR1, a member of non-NMDA (N-methyl-D-aspartate) type iGluRs which are ligand-gated ion channels that mediate excitatory synaptic transmission in the central nervous system. While this ligand-binding domain is structurally homologous to the periplasmic-binding fold type II superfamily, the N-terminal domain of AMPA receptors belongs to the periplasmic-binding fold type I. The AMPA receptors are the most commonly found receptor in the nervous system and sensitive to the artificial glutamate analog, AMPA. They consist of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current. Pssm-ID: 270447 [Multi-domain] Cd Length: 260 Bit Score: 85.08 E-value: 4.95e-18
|
|||||||||||
PBP2_iGluR_Kainate_GluR6 | cd13721 | GluR6 subtype of kainate receptor, type 2 periplasmic-binding fold superfamily; This group ... |
578-658 | 1.07e-17 | |||||||
GluR6 subtype of kainate receptor, type 2 periplasmic-binding fold superfamily; This group contains glutamate receptor domain GluR. These domains are found in the GluR proteins that have been shown to function as L-glutamate activated potassium channels, also known ionotropic glutamate receptors or iGluRs. In addition to two ligand binding core domains, iGluRs typically have a channel-like domain inserted in the middle of the GluR-like domain. Animal iGluRs mediate the ion flux in the synapses of the CNS and can be subdivided into several classes depending on the neurotransmitter specificity and ion conductance properties. Their plant homologs have been shown to function in light signal transduction and calcium homeostasis. The GluR proteins belong to the PBPII superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. Pssm-ID: 270439 [Multi-domain] Cd Length: 251 Bit Score: 83.92 E-value: 1.07e-17
|
|||||||||||
PBP2_iGluR_AMPA_GluR2 | cd13726 | The ligand-binding domain of the AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic ... |
578-658 | 7.21e-17 | |||||||
The ligand-binding domain of the AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid) subtype GluR2 of ionotropic glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily; This group contains the ligand-binding domain of the AMPA receptor subunit GluR2, a member of non-NMDA (N-methyl-D-aspartate) type iGluRs which are ligand-gated ion channels that mediate excitatory synaptic transmission in the central nervous system. While this ligand-binding domain is structurally homologous to the periplasmic-binding fold type II superfamily, the N-terminal domain of AMPA receptors belongs to the periplasmic-binding fold type I. The AMPA receptors are the most commonly found receptor in the nervous system and sensitive to the artificial glutamate analog, AMPA. They consist of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current. Pssm-ID: 270444 [Multi-domain] Cd Length: 259 Bit Score: 81.61 E-value: 7.21e-17
|
|||||||||||
PBP2_iGluR_AMPA_GluR3 | cd13728 | The ligand-binding domain of the AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic ... |
578-658 | 8.89e-16 | |||||||
The ligand-binding domain of the AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid) subtype GluR3 of ionotropic glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily; This group contains the ligand-binding domain of the AMPA receptor subunit GluR3, a member of non-NMDA (N-methyl-D-aspartate) type iGluRs which are ligand-gated ion channels that mediate excitatory synaptic transmission in the central nervous system. While this ligand-binding domain is structurally homologous to the periplasmic-binding fold type II superfamily, the N-terminal domain of AMPA receptors belongs to the periplasmic-binding fold type I. The AMPA receptors are the most commonly found receptor in the nervous system and sensitive to the artificial glutamate analog, AMPA. They consist of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current Pssm-ID: 270446 [Multi-domain] Cd Length: 259 Bit Score: 78.58 E-value: 8.89e-16
|
|||||||||||
PBP2_iGluR_AMPA_GluR4 | cd13727 | The ligand-binding domain of the AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic ... |
578-658 | 9.87e-16 | |||||||
The ligand-binding domain of the AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid) subtype GluR4 of ionotropic glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily; This group contains the ligand-binding domain of the AMPA receptor subunit GluR4, a member of non-NMDA (N-methyl-D-aspartate) type iGluRs which are ligand-gated ion channels that mediate excitatory synaptic transmission in the central nervous system. While this ligand-binding domain is structurally homologous to the periplasmic-binding fold type II superfamily, the N-terminal domain of AMPA receptors belongs to the periplasmic-binding fold type I.The AMPA receptors are the most commonly found receptor in the nervous system and sensitive to the artificial glutamate analog, AMPA. They consist of four types of subunits (GluR1, GluR2, GluR3, and GluR4) which combine to form a tetramer and play an important role in mediating the rapid excitatory synaptic current. Pssm-ID: 270445 [Multi-domain] Cd Length: 259 Bit Score: 78.54 E-value: 9.87e-16
|
|||||||||||
PBP2_iGluR_Kainate_GluR5 | cd13722 | GluR5 subtype of kainate receptor, type 2 periplasmic-binding fold superfamily; This group ... |
578-658 | 1.77e-15 | |||||||
GluR5 subtype of kainate receptor, type 2 periplasmic-binding fold superfamily; This group contains glutamate receptor domain GluR. These domains are found in the GluR proteins that have been shown to function as L-glutamate activated potassium channels, also known ionotropic glutamate receptors or iGluRs. In addition to two ligand binding core domains, iGluRs typically have a channel-like domain inserted in the middle of the GluR-like domain. Animal iGluRs mediate the ion flux in the synapses of the CNS and can be subdivided into several classes depending on the neurotransmitter specificity and ion conductance properties. Their plant homologs have been shown to function in light signal transduction and calcium homeostasis. The GluR proteins belong to the PBPII superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. Pssm-ID: 270440 [Multi-domain] Cd Length: 250 Bit Score: 77.40 E-value: 1.77e-15
|
|||||||||||
HisJ | COG0834 | ABC-type amino acid transport/signal transduction system, periplasmic component/domain [Amino ... |
578-909 | 9.55e-14 | |||||||
ABC-type amino acid transport/signal transduction system, periplasmic component/domain [Amino acid transport and metabolism, Signal transduction mechanisms]; Pssm-ID: 440596 [Multi-domain] Cd Length: 223 Bit Score: 71.55 E-value: 9.55e-14
|
|||||||||||
PBP2_peptides_like | cd13530 | Peptide-binding protein and related homologs; type 2 periplasmic binding protein fold; This ... |
578-907 | 5.90e-12 | |||||||
Peptide-binding protein and related homologs; type 2 periplasmic binding protein fold; This domain is found in solute binding proteins that serve as initial receptors in the ABC transport, signal transduction and channel gating. The PBP2 proteins share the same architecture as periplasmic binding proteins type 1, but have a different topology. They are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the family includes ionotropic glutamate receptors and unorthodox sensor proteins involved in signal transduction. Pssm-ID: 270248 [Multi-domain] Cd Length: 217 Bit Score: 66.50 E-value: 5.90e-12
|
|||||||||||
SBP_bac_3 | pfam00497 | Bacterial extracellular solute-binding proteins, family 3; This is a sensor domain found in ... |
578-669 | 1.96e-11 | |||||||
Bacterial extracellular solute-binding proteins, family 3; This is a sensor domain found in solute-binding protein family 3 members from Gram-positive bacteria, Gram-negative bacteria and archaea. It can also be found in the N-terminal of the membrane-bound lytic murein transglycosylase F (MltF) protein. This domain recognizes Nicotinate, quidalnate, pyridine-2,5-dicarboxylate and salicylate (Matilla et. al., FEMS Microbiology Reviews, fuab043, 45, 2021, 1. https://doi.org/10.1093/femsre/fuab043). Pssm-ID: 425719 [Multi-domain] Cd Length: 221 Bit Score: 65.01 E-value: 1.96e-11
|
|||||||||||
PBP2_Arg_Lys_His | cd13624 | Substrate binding domain of the arginine-, lysine-, histidine-binding protein ArtJ; the type 2 ... |
578-662 | 7.66e-10 | |||||||
Substrate binding domain of the arginine-, lysine-, histidine-binding protein ArtJ; the type 2 periplasmic binding protein fold; This group includes the periplasmic substrate-binding protein ArtJ of the ATP-binding cassette (ABC) transport system from the thermophilic bacterium Geobacillus stearothermophilus, which is specific for arginine, lysine, and histidine. ArtJ belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270342 [Multi-domain] Cd Length: 219 Bit Score: 60.20 E-value: 7.66e-10
|
|||||||||||
PBPb | smart00062 | Bacterial periplasmic substrate-binding proteins; bacterial proteins, eukaryotic ones are in ... |
578-658 | 1.83e-09 | |||||||
Bacterial periplasmic substrate-binding proteins; bacterial proteins, eukaryotic ones are in PBPe Pssm-ID: 214497 [Multi-domain] Cd Length: 219 Bit Score: 58.88 E-value: 1.83e-09
|
|||||||||||
PBP2_GlnH | cd00994 | Glutamine binding domain of ABC-type transporter; the type 2 periplasmic binding protein fold; ... |
565-663 | 4.75e-08 | |||||||
Glutamine binding domain of ABC-type transporter; the type 2 periplasmic binding protein fold; This periplasmic substrate-binding component serves as an initial receptor in the ABC transport of glutamine in bacteria and eukaryota. GlnH belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270216 [Multi-domain] Cd Length: 218 Bit Score: 54.97 E-value: 4.75e-08
|
|||||||||||
PBP2_GluR0 | cd00997 | Bacterial GluR0 ligand-binding domain; the type 2 periplasmic binding protein fold; Glutamate ... |
791-908 | 2.55e-07 | |||||||
Bacterial GluR0 ligand-binding domain; the type 2 periplasmic binding protein fold; Glutamate receptor domain GluR0. These domains are found in the GluR0 proteins that have been shown to function as prokaryotic L-glutamate activated potassium channels, also known ionotropic glutamate receptors or iGluRs. In addition to two ligand binding core domains, iGluRs typically have a channel-like domain inserted in the middle of the GluR-like domain. The GluR0 proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. Pssm-ID: 270218 [Multi-domain] Cd Length: 218 Bit Score: 52.72 E-value: 2.55e-07
|
|||||||||||
PBP2_HisK | cd13704 | The periplasmic sensor domain of histidine kinase receptors; the type 2 periplasmic binding ... |
577-659 | 5.78e-07 | |||||||
The periplasmic sensor domain of histidine kinase receptors; the type 2 periplasmic binding fold protein; This subfamily includes the periplasmic sensor domain of the histidine kinase receptors (HisK) which are elements of the two-component signal transduction systems commonly found in bacteria and lower eukaryotes. Typically, the two-component system consists of a membrane-spanning histidine kinase sensor and a cytoplasmic response regulator. The two-component systems serve as a stimulus-response coupling mechanism to enable microorganisms to sense and respond to changes in environmental conditions. Extracellular stimuli such as small molecule ligands and ions are detected by the N-terminal periplasmic sensing domain of the sensor kinase receptor, which regulate the catalytic activity of the cytoplasmic kinase domain and promote ATP-dependent autophosphorylation of a conserved histidine residue. The phosphate is then transferred to a conserved aspartate in the response regulator through a phospho-transfer mechanism, and the activity of the response regulator is in turn regulated. The sensor domain belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space through their function as an initial high-affinity binding component. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. Pssm-ID: 270422 [Multi-domain] Cd Length: 220 Bit Score: 51.82 E-value: 5.78e-07
|
|||||||||||
PBP2_GluR0 | cd00997 | Bacterial GluR0 ligand-binding domain; the type 2 periplasmic binding protein fold; Glutamate ... |
578-658 | 6.23e-07 | |||||||
Bacterial GluR0 ligand-binding domain; the type 2 periplasmic binding protein fold; Glutamate receptor domain GluR0. These domains are found in the GluR0 proteins that have been shown to function as prokaryotic L-glutamate activated potassium channels, also known ionotropic glutamate receptors or iGluRs. In addition to two ligand binding core domains, iGluRs typically have a channel-like domain inserted in the middle of the GluR-like domain. The GluR0 proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. Pssm-ID: 270218 [Multi-domain] Cd Length: 218 Bit Score: 51.57 E-value: 6.23e-07
|
|||||||||||
PBP2_Dsm1740 | cd13629 | Amino acid-binding domain of the type 2 periplasmic binding fold superfamily; This subfamily ... |
578-668 | 6.25e-07 | |||||||
Amino acid-binding domain of the type 2 periplasmic binding fold superfamily; This subfamily includes the periplasmic binding protein type II (BPBII). This domain is found in solute binding proteins that serve as initial receptors in the ABC transport, signal transduction and channel gating. The PBPII proteins share the same architecture as periplasmic binding proteins type I (PBPI), but have a different topology. They are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBPII proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the family includes ionotropic glutamate receptors and unorthodox sensor proteins involved in signal transduction. Pssm-ID: 270347 [Multi-domain] Cd Length: 221 Bit Score: 51.42 E-value: 6.25e-07
|
|||||||||||
PBP2_GlnP | cd13619 | Glutamine-binding domain of ABC transporter, a member of the type 2 periplasmic binding fold ... |
581-662 | 3.98e-06 | |||||||
Glutamine-binding domain of ABC transporter, a member of the type 2 periplasmic binding fold protein superfamily; Periplasmic glutamine binding domain GlnP serves as an initial receptor in the ABC transport of glutamine in eubacteria. GlnP belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270337 [Multi-domain] Cd Length: 220 Bit Score: 49.24 E-value: 3.98e-06
|
|||||||||||
PBP2_GltI_DEBP | cd13688 | Substrate-binding domain of ABC aspartate-glutamate transporter; the type 2 periplasmic ... |
790-907 | 4.55e-06 | |||||||
Substrate-binding domain of ABC aspartate-glutamate transporter; the type 2 periplasmic binding protein fold; This subfamily represents the periplasmic-binding protein component of ABC transporter specific for carboxylic amino acids, including GtlI from Escherichia coli. The aspartate-glutamate binding domain belongs to the type 2 periplasmic binding protein fold superfamily (PBP2), whose many members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270406 [Multi-domain] Cd Length: 238 Bit Score: 49.17 E-value: 4.55e-06
|
|||||||||||
PBP2_HisJ_LAO_like | cd01001 | Substrate binding domain of ABC-type histidine/lysine/arginine/ornithine transporters and ... |
578-663 | 5.26e-06 | |||||||
Substrate binding domain of ABC-type histidine/lysine/arginine/ornithine transporters and related proteins; the type 2 periplasmic-binding protein fold; This family comprises the periplasmic substrate-binding proteins, including the lysine-, arginine-, ornithine-binding protein (LAO) and the histidine-binding protein (HisJ), which serve as initial receptors for active transport. HisJ and LAO proteins belong to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270222 [Multi-domain] Cd Length: 228 Bit Score: 48.83 E-value: 5.26e-06
|
|||||||||||
PBP2_Dsm1740 | cd13629 | Amino acid-binding domain of the type 2 periplasmic binding fold superfamily; This subfamily ... |
791-907 | 7.66e-06 | |||||||
Amino acid-binding domain of the type 2 periplasmic binding fold superfamily; This subfamily includes the periplasmic binding protein type II (BPBII). This domain is found in solute binding proteins that serve as initial receptors in the ABC transport, signal transduction and channel gating. The PBPII proteins share the same architecture as periplasmic binding proteins type I (PBPI), but have a different topology. They are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBPII proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the family includes ionotropic glutamate receptors and unorthodox sensor proteins involved in signal transduction. Pssm-ID: 270347 [Multi-domain] Cd Length: 221 Bit Score: 48.34 E-value: 7.66e-06
|
|||||||||||
PBP1_iGluR_NMDA_NR2 | cd06378 | N-terminal leucine-isoleucine-valine-binding protein (LIVBP)-like domain of the NR2 subunit of ... |
209-491 | 9.00e-06 | |||||||
N-terminal leucine-isoleucine-valine-binding protein (LIVBP)-like domain of the NR2 subunit of NMDA receptor family; N-terminal leucine-isoleucine-valine binding protein (LIVBP)-like domain of the NR2 subunit of NMDA receptor family. The ionotropic N-methyl-D-asparate (NMDA) subtype of glutamate receptor serves critical functions in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer composed of two NR1 and two NR2 (A, B, C, and D) or of NR3 (A and B) subunits. The receptor controls a cation channel that is highly permeable to monovalent ions and calcium and exhibits voltage-dependent inhibition by magnesium. Dual agonists, glutamate and glycine, are required for efficient activation of the NMDA receptor. Among NMDA receptor subtypes, the NR2B subunit containing receptors appear particularly important for pain perception; thus NR2B-selective antagonists may be useful in the treatment of chronic pain. Pssm-ID: 380601 Cd Length: 356 Bit Score: 49.21 E-value: 9.00e-06
|
|||||||||||
PBP2_AA_binding_like_1 | cd13625 | Substrate-binding domain of putative amino acid-binding protein; the type 2 ... |
578-662 | 1.92e-05 | |||||||
Substrate-binding domain of putative amino acid-binding protein; the type 2 periplasmic-binding protein fold; This putative amino acid-binding protein belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270343 [Multi-domain] Cd Length: 230 Bit Score: 47.37 E-value: 1.92e-05
|
|||||||||||
PBP2_Cys_DEBP_like | cd01000 | Substrate-binding domain of cysteine- and aspartate/glutamate-binding proteins; the type 2 ... |
790-907 | 8.45e-05 | |||||||
Substrate-binding domain of cysteine- and aspartate/glutamate-binding proteins; the type 2 periplasmic-binding protein fold; This family comprises of the periplasmic-binding protein component of ABC transporters specific for cysteine and carboxylic amino acids, as well as their closely related proteins. The cysteine and aspartate-glutamate binding domains belong to the type 2 periplasmic binding protein fold superfamily (PBP2), whose many members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270221 [Multi-domain] Cd Length: 228 Bit Score: 45.38 E-value: 8.45e-05
|
|||||||||||
PBP2_GluB | cd13690 | Substrate binding domain of ABC glutamate transporter; the type 2 periplasmic binding protein ... |
620-663 | 1.17e-04 | |||||||
Substrate binding domain of ABC glutamate transporter; the type 2 periplasmic binding protein fold; This group includes periplasmic glutamate-binding domain GluB from Corynebacterium efficiens and its related proteins. The GluB domain belongs to the type 2 periplasmic binding protein fold superfamily (PBP2), whose many members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270408 [Multi-domain] Cd Length: 231 Bit Score: 44.95 E-value: 1.17e-04
|
|||||||||||
PBP2_ml15202_like | cd13701 | Substrate binding domain of ABC-type histidine/lysine/arginine/ornithine transporter-like; the ... |
578-658 | 2.73e-04 | |||||||
Substrate binding domain of ABC-type histidine/lysine/arginine/ornithine transporter-like; the type 2 periplasmic-binding protein fold; This group includes uncharacterized periplasmic substrate-binding protein similar to HisJ and LAO proteins which are involved in the ABC transport of histidine-, arginine, and lysine-arginine-ornithine amino acids. This group belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270419 [Multi-domain] Cd Length: 227 Bit Score: 43.60 E-value: 2.73e-04
|
|||||||||||
PBP2_Cystine_like | cd13626 | Substrate binding domain of cystine ABC transporters; the type 2 periplasmic binding protein ... |
578-662 | 2.94e-04 | |||||||
Substrate binding domain of cystine ABC transporters; the type 2 periplasmic binding protein fold; Cystine-binding domain of periplasmic receptor-dependent ATP-binding cassette (ABC) transporters. Cystine is an oxidized dimeric form of cysteine that is required for optimal bacterial growth. In Bacillus subtilis, three ABC transporters, TcyJKLMN (YtmJKLMN), TcyABC (YckKJI), and YxeMNO are involved in uptake of cystine. Also, three uptake systems were identified in Salmonella enterica serovar Typhimurium, while in Escherichia coli, two transport systems seem to be involved in cystine uptake. Moreover, L-cystine limitation was shown to prevent virulence of Neisseria gonorrhoeae; thus, its L-cystine solute receptor (Ngo0372) may be suited as target for an antimicrobial vaccine. The cystine receptor belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270344 [Multi-domain] Cd Length: 219 Bit Score: 43.46 E-value: 2.94e-04
|
|||||||||||
PBP2_BvgS_HisK_like | cd01007 | The type 2 periplasmic ligand-binding protein domain of the sensor-kinase BvgS and histidine ... |
578-658 | 1.48e-03 | |||||||
The type 2 periplasmic ligand-binding protein domain of the sensor-kinase BvgS and histidine kinase receptors, and related proteins; This family comprises the periplasmic sensor domain of the two-component sensor-kinase systems, such as the sensor protein BvgS of Bordetella pertussis and histidine kinase receptors (HisK), and uncharacterized related proteins. Typically, the two-component system consists of a membrane spanning sensor-kinase and a cytoplasmic response regulator. It serves as a stimulus-response coupling mechanism to enable microorganisms to sense and respond to changes in environmental conditions. The N-terminal sensing domain of the sensor kinase detects extracellular signals, such as small molecule ligands and ions, which then modulate the catalytic activity of the cytoplasmic kinase domain through a phosphorylation cascade. The periplasmic sensor domain belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270228 [Multi-domain] Cd Length: 220 Bit Score: 41.36 E-value: 1.48e-03
|
|||||||||||
PBP2_mlr5654_like | cd13702 | Substrate binding domain of ABC-type histidine/lysine/arginine/ornithine transporter-like; the ... |
613-657 | 1.64e-03 | |||||||
Substrate binding domain of ABC-type histidine/lysine/arginine/ornithine transporter-like; the type 2 periplasmic-binding protein fold; This group includes uncharacterized periplasmic substrate-binding protein similar to HisJ and LAO proteins which serve as initial receptors in the ABC transport of histidine-, arginine, and lysine-arginine-ornithine amino acids. This group belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270420 [Multi-domain] Cd Length: 223 Bit Score: 41.15 E-value: 1.64e-03
|
|||||||||||
PBP2_FliY | cd13712 | Substrate binding domain of an Escherichia coli ABC transporter; the type 2 periplasmic ... |
578-668 | 1.76e-03 | |||||||
Substrate binding domain of an Escherichia coli ABC transporter; the type 2 periplasmic binding protein fold; This group contains cystine binding domain FliY and its related proteins. Cystine is an oxidized dimeric form of cysteine that is required for optimal bacterial growth. In Bacillus subtilis, three ABC transporters, TcyJKLMN (YtmJKLMN), TcyABC (YckKJI), and YxeMNO are involved in uptake of cystine. Likewise, three uptake systems were identified in Salmonella enterica serovar Typhimurium, while in Escherichia coli, two transport systems seem to be involved in cystine uptake. Moreover, L-cystine limitation was shown to prevent virulence of Neisseria gonorrhoeae; thus, its L-cystine solute receptor (Ngo0372) may be suited as target for an antimicrobial vaccine. The cystine receptor belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270430 [Multi-domain] Cd Length: 219 Bit Score: 41.22 E-value: 1.76e-03
|
|||||||||||
PBP2_Ala | cd13628 | Periplasmic substrate binding domain of ABC-type transporter specific to alanine; the type 2 ... |
563-652 | 2.22e-03 | |||||||
Periplasmic substrate binding domain of ABC-type transporter specific to alanine; the type 2 periplasmic binding protein; This periplasmic substrate component serves as an initial receptor in the ABC transport of glutamine in eubacteria and archaea. After binding the alanine with high affinity, this domain Interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. This alanine specific domain belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. Pssm-ID: 270346 [Multi-domain] Cd Length: 219 Bit Score: 40.92 E-value: 2.22e-03
|
|||||||||||
PBP2_YxeM | cd13709 | Substrate binding domain of an ABC transporter YxeMNO; the type 2 periplasmic binding protein ... |
563-658 | 2.83e-03 | |||||||
Substrate binding domain of an ABC transporter YxeMNO; the type 2 periplasmic binding protein fold; This group contains cystine-binding domain (YxeM) of a periplasmic receptor-dependent ATP-binding cassette transporter and its closely related proteins. Cystine is an oxidized dimeric form of cysteine that is required for optimal bacterial growth. In Bacillus subtilis, three ABC transporters, TcyJKLMN (YtmJKLMN), TcyABC (YckKJI), and YxeMNO are involved in uptake of cystine. Likewise, three uptake systems were identified in Salmonella enterica serovar Typhimurium, while in Escherichia coli, two transport systems seem to be involved in cystine uptake. Moreover, L-cystine limitation was shown to prevent virulence of Neisseria gonorrhoeae; thus, its L-cystine solute receptor (Ngo0372) may be suited as target for an antimicrobial vaccine. The cystine receptor belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270427 [Multi-domain] Cd Length: 227 Bit Score: 40.41 E-value: 2.83e-03
|
|||||||||||
PBP2_Cystine_like_1 | cd13713 | Substrate binding domain of putative ABC transporters involved in cystine import; the type 2 ... |
613-666 | 2.84e-03 | |||||||
Substrate binding domain of putative ABC transporters involved in cystine import; the type 2 periplasmic binding protein fold; This group contains uncharacterized periplasmic cystine-binding domain of ATP-binding cassette (ABC) transporters. Cystine is an oxidized dimeric form of cysteine that is required for optimal bacterial growth. In Bacillus subtilis, three ABC transporters, TcyJKLMN (YtmJKLMN), TcyABC (YckKJI), and YxeMNO are involved in uptake of cystine. Likewise, three uptake systems were identified in Salmonella enterica serovar Typhimurium, while in Escherichia coli, two transport systems seem to be involved in cystine uptake. Moreover, L-cystine limitation was shown to prevent virulence of Neisseria gonorrhoeae; thus, its L-cystine solute receptor (Ngo0372) may be suited as target for an antimicrobial vaccine. The cystine receptor belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270431 [Multi-domain] Cd Length: 218 Bit Score: 40.35 E-value: 2.84e-03
|
|||||||||||
PBP2_BsGlnH | cd13689 | Substrate binding domain of ABC glutamine transporter from Bacillus subtilis; the type 2 ... |
791-909 | 3.03e-03 | |||||||
Substrate binding domain of ABC glutamine transporter from Bacillus subtilis; the type 2 periplasmic-bindig protein fold; This group includes periplasmic glutamine-binding domain GlnP from Bacillus subtilis and its related proteins. The GlnP domain belongs to the type 2 periplasmic binding protein fold superfamily (PBP2), whose many members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270407 [Multi-domain] Cd Length: 229 Bit Score: 40.68 E-value: 3.03e-03
|
|||||||||||
PBP2_Cys_DEBP_like | cd01000 | Substrate-binding domain of cysteine- and aspartate/glutamate-binding proteins; the type 2 ... |
620-658 | 3.33e-03 | |||||||
Substrate-binding domain of cysteine- and aspartate/glutamate-binding proteins; the type 2 periplasmic-binding protein fold; This family comprises of the periplasmic-binding protein component of ABC transporters specific for cysteine and carboxylic amino acids, as well as their closely related proteins. The cysteine and aspartate-glutamate binding domains belong to the type 2 periplasmic binding protein fold superfamily (PBP2), whose many members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270221 [Multi-domain] Cd Length: 228 Bit Score: 40.37 E-value: 3.33e-03
|
|||||||||||
PBP2_PheC | cd01069 | Cyclohexadienyl dehydratase, a member of the type 2 periplasmic binding fold protein ... |
578-661 | 4.31e-03 | |||||||
Cyclohexadienyl dehydratase, a member of the type 2 periplasmic binding fold protein superfamily; This subfamily includes cyclohexadienyl dehydratase PheC. These proteins catalyze the decarboxylation of prephenate to phenylpyruvate in the alternative phenylalanine biosynthesis pathway in some proteobacteria and archaea. The PheC proteins belong to the PBPII superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. Since they the PheC proteins are so similar to periplasmic binding proteins, (PBP), it is evolutionarily plausible that several pre-existing PBP proteins might have been recruited to perform the enzymatic function. Pssm-ID: 270231 [Multi-domain] Cd Length: 232 Bit Score: 40.02 E-value: 4.31e-03
|
|||||||||||
PBP2_BvgS_D2 | cd13707 | The second of the two tandem periplasmic domains of sensor-kinase BvgS; the type 2 ... |
578-663 | 6.18e-03 | |||||||
The second of the two tandem periplasmic domains of sensor-kinase BvgS; the type 2 peripasmic-binding fold protein; This group contains the second domain of the periplasmic solute-binding domains of BvgS and related proteins. BvgS is composed of two periplasmic domains homologous to bacterial periplasmic-binding proteins (PBPs), a transmembrane region followed successively by a cytoplasmic PAS (Per/ARNT/SIM), a Histidine-kinase (HK), a receiver and a Histidine phosphotransfer (Hpt) domains. The sensor protein BvgS can autophosphorylate and phosphorylate the response regulator BvgA. The BvgAS phosphorelay controls the expression of virulence factors in response to certain environmental stimuli in Bordetella pertussis. Its close homologs, Escherichia coli EvgS and Klebsiella pneumoniae KvgS, appear to be involved in the transcriptional regulation of drug efflux pumps and in countering free radical stresses and sensing iron limiting conditions, respectively. The periplasmic sensor domain of BvgS belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270425 [Multi-domain] Cd Length: 221 Bit Score: 39.51 E-value: 6.18e-03
|
|||||||||||
Blast search parameters | ||||
|