protein tyrosine phosphatase type IVA 1 [Danio rerio]
protein-tyrosine phosphatase family protein( domain architecture ID 1000023)
cys-based protein-tyrosine phosphatase (PTP) family protein may be a PTP or a dual-specificity phosphatase (DUSP or DSP), and may catalyze the dephosphorylation of target phosphoproteins at tyrosine or tyrosine and serine/threonine residues, respectively
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
PTP_DSP_cys super family | cl28904 | cys-based protein tyrosine phosphatase and dual-specificity phosphatase superfamily; This ... |
1-167 | 1.08e-119 | ||||
cys-based protein tyrosine phosphatase and dual-specificity phosphatase superfamily; This superfamily is composed of cys-based phosphatases, which includes classical protein tyrosine phosphatases (PTPs) as well as dual-specificity phosphatases (DUSPs or DSPs). They are characterized by a CxxxxxR conserved catalytic loop (where C is the catalytic cysteine, x is any amino acid, and R is an arginine). PTPs are part of the tyrosine phosphorylation/dephosphorylation regulatory mechanism, and are important in the response of the cells to physiologic and pathologic changes in their environment. DUSPs show more substrate diversity (including RNA and lipids) and include pTyr, pSer, and pThr phosphatases. The actual alignment was detected with superfamily member cd18537: Pssm-ID: 475123 [Multi-domain] Cd Length: 167 Bit Score: 335.12 E-value: 1.08e-119
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
PTP-IVa1 | cd18537 | protein tyrosine phosphatase type IVA 1; Protein tyrosine phosphatase type IVA 1 (PTP-IVa1), ... |
1-167 | 1.08e-119 | ||||
protein tyrosine phosphatase type IVA 1; Protein tyrosine phosphatase type IVA 1 (PTP-IVa1), also known as protein-tyrosine phosphatase of regenerating liver 1 (PRL-1), stimulates progression from G1 into S phase during mitosis and enhances cell proliferation, cell motility and invasive activity, and promotes cancer metastasis. It may play a role in the development and maintenance of differentiating epithelial tissues. PRL-1 promotes cell growth and migration by activating both the ERK1/2 and RhoA pathways. It is a member of the PTP-IVa/PRL family of small, prenylated phosphatases that are the most oncogenic of all PTPs. PRLs associate with magnesium transporters of the cyclin M (CNNM) family, which results in increased intracellular magnesium levels that promote oncogenic transformation. Pssm-ID: 350513 [Multi-domain] Cd Length: 167 Bit Score: 335.12 E-value: 1.08e-119
|
||||||||
PTZ00242 | PTZ00242 | protein tyrosine phosphatase; Provisional |
11-160 | 3.32e-72 | ||||
protein tyrosine phosphatase; Provisional Pssm-ID: 185524 [Multi-domain] Cd Length: 166 Bit Score: 214.89 E-value: 3.32e-72
|
||||||||
CDC14 | COG2453 | Protein-tyrosine phosphatase [Signal transduction mechanisms]; |
35-156 | 1.42e-19 | ||||
Protein-tyrosine phosphatase [Signal transduction mechanisms]; Pssm-ID: 441989 [Multi-domain] Cd Length: 140 Bit Score: 79.63 E-value: 1.42e-19
|
||||||||
PTPc_motif | smart00404 | Protein tyrosine phosphatase, catalytic domain motif; |
64-147 | 2.68e-11 | ||||
Protein tyrosine phosphatase, catalytic domain motif; Pssm-ID: 214649 [Multi-domain] Cd Length: 105 Bit Score: 57.37 E-value: 2.68e-11
|
||||||||
Y_phosphatase | pfam00102 | Protein-tyrosine phosphatase; |
29-148 | 2.27e-10 | ||||
Protein-tyrosine phosphatase; Pssm-ID: 459674 [Multi-domain] Cd Length: 234 Bit Score: 57.25 E-value: 2.27e-10
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
PTP-IVa1 | cd18537 | protein tyrosine phosphatase type IVA 1; Protein tyrosine phosphatase type IVA 1 (PTP-IVa1), ... |
1-167 | 1.08e-119 | ||||
protein tyrosine phosphatase type IVA 1; Protein tyrosine phosphatase type IVA 1 (PTP-IVa1), also known as protein-tyrosine phosphatase of regenerating liver 1 (PRL-1), stimulates progression from G1 into S phase during mitosis and enhances cell proliferation, cell motility and invasive activity, and promotes cancer metastasis. It may play a role in the development and maintenance of differentiating epithelial tissues. PRL-1 promotes cell growth and migration by activating both the ERK1/2 and RhoA pathways. It is a member of the PTP-IVa/PRL family of small, prenylated phosphatases that are the most oncogenic of all PTPs. PRLs associate with magnesium transporters of the cyclin M (CNNM) family, which results in increased intracellular magnesium levels that promote oncogenic transformation. Pssm-ID: 350513 [Multi-domain] Cd Length: 167 Bit Score: 335.12 E-value: 1.08e-119
|
||||||||
PTP-IVa2 | cd18536 | protein tyrosine phosphatase type IVA 2; Protein tyrosine phosphatase type IVA 2 (PTP-IVa2), ... |
4-158 | 3.69e-111 | ||||
protein tyrosine phosphatase type IVA 2; Protein tyrosine phosphatase type IVA 2 (PTP-IVa2), also known as protein-tyrosine phosphatase of regenerating liver 2 (PRL-2), stimulates progression from G1 into S phase during mitosis and promotes tumors. It regulates tumor cell migration and invasion through an ERK-dependent signaling pathway. Its overexpression correlates with breast tumor formation and progression. PRL-2 is a member of the PTP-IVa/PRL family of small, prenylated phosphatases that are the most oncogenic of all PTPs. PRLs associate with magnesium transporters of the cyclin M (CNNM) family, which results in increased intracellular magnesium levels that promote oncogenic transformation. Pssm-ID: 350512 [Multi-domain] Cd Length: 155 Bit Score: 313.09 E-value: 3.69e-111
|
||||||||
PTP-IVa | cd14500 | protein tyrosine phosphatase type IVA family; Protein tyrosine phosphatases type IVA (PTP-IVa), ... |
5-158 | 1.74e-106 | ||||
protein tyrosine phosphatase type IVA family; Protein tyrosine phosphatases type IVA (PTP-IVa), also known as protein-tyrosine phosphatases of regenerating liver (PRLs) constitute a family of small, prenylated phosphatases that are the most oncogenic of all PTPs. They stimulate progression from G1 into S phase during mitosis and enhances cell proliferation, cell motility and invasive activity, and promotes cancer metastasis. They associate with magnesium transporters of the cyclin M (CNNM) family, which results in increased intracellular magnesium levels that promote oncogenic transformation. Vertebrates contain three members: PRL-1, PRL-2, and PRL-3. Pssm-ID: 350350 [Multi-domain] Cd Length: 156 Bit Score: 301.06 E-value: 1.74e-106
|
||||||||
PTP-IVa3 | cd18535 | protein tyrosine phosphatase type IVA 3; Protein tyrosine phosphatase type IVA 3 (PTP-IVa3), ... |
5-158 | 2.08e-100 | ||||
protein tyrosine phosphatase type IVA 3; Protein tyrosine phosphatase type IVA 3 (PTP-IVa3), also known as protein-tyrosine phosphatase of regenerating liver 3 (PRL-3), stimulates progression from G1 into S phase during mitosis and enhances cell proliferation, cell motility and invasive activity, and promotes cancer metastasis. It exerts its oncogenic functions through activation of PI3K/Akt, which is a key regulator of the rapamycin-sensitive mTOR complex 1. PRL-3 is a member of the PTP-IVa/PRL family of small, prenylated phosphatases that are the most oncogenic of all PTPs. PRLs associate with magnesium transporters of the cyclin M (CNNM) family, which results in increased intracellular magnesium levels that promote oncogenic transformation. Pssm-ID: 350511 [Multi-domain] Cd Length: 154 Bit Score: 285.77 E-value: 2.08e-100
|
||||||||
PTZ00242 | PTZ00242 | protein tyrosine phosphatase; Provisional |
11-160 | 3.32e-72 | ||||
protein tyrosine phosphatase; Provisional Pssm-ID: 185524 [Multi-domain] Cd Length: 166 Bit Score: 214.89 E-value: 3.32e-72
|
||||||||
PTZ00393 | PTZ00393 | protein tyrosine phosphatase; Provisional |
9-155 | 1.15e-44 | ||||
protein tyrosine phosphatase; Provisional Pssm-ID: 240399 Cd Length: 241 Bit Score: 147.39 E-value: 1.15e-44
|
||||||||
CDC14_C | cd14499 | C-terminal dual-specificity phosphatase domain of CDC14 family proteins; The cell division ... |
33-157 | 1.74e-23 | ||||
C-terminal dual-specificity phosphatase domain of CDC14 family proteins; The cell division control protein 14 (CDC14) family is highly conserved in all eukaryotes, although the roles of its members seem to have diverged during evolution. Yeast Cdc14, the best characterized member of this family, is a dual-specificity phosphatase that plays key roles in cell cycle control. It preferentially dephosphorylates cyclin-dependent kinase (CDK) targets, which makes it the main antagonist of CDK in the cell. Cdc14 functions at the end of mitosis and it triggers the events that completely eliminates the activity of CDK and other mitotic kinases. It is also involved in coordinating the nuclear division cycle with cytokinesis through the cytokinesis checkpoint, and in chromosome segregation. Cdc14 phosphatases also function in DNA replication, DNA damage checkpoint, and DNA repair. Vertebrates may contain more than one Cdc14 homolog; humans have three (CDC14A, CDC14B, and CDC14C). CDC14 family proteins contain a highly conserved N-terminal pseudophosphatase domain that contributes to substrate specificity and a C-terminal catalytic dual-specificity phosphatase domain with the PTP signature motif. Pssm-ID: 350349 [Multi-domain] Cd Length: 174 Bit Score: 90.98 E-value: 1.74e-23
|
||||||||
CDC14 | COG2453 | Protein-tyrosine phosphatase [Signal transduction mechanisms]; |
35-156 | 1.42e-19 | ||||
Protein-tyrosine phosphatase [Signal transduction mechanisms]; Pssm-ID: 441989 [Multi-domain] Cd Length: 140 Bit Score: 79.63 E-value: 1.42e-19
|
||||||||
PTP_DSP_cys | cd14494 | cys-based protein tyrosine phosphatase and dual-specificity phosphatase superfamily; This ... |
17-151 | 2.55e-17 | ||||
cys-based protein tyrosine phosphatase and dual-specificity phosphatase superfamily; This superfamily is composed of cys-based phosphatases, which includes classical protein tyrosine phosphatases (PTPs) as well as dual-specificity phosphatases (DUSPs or DSPs). They are characterized by a CxxxxxR conserved catalytic loop (where C is the catalytic cysteine, x is any amino acid, and R is an arginine). PTPs are part of the tyrosine phosphorylation/dephosphorylation regulatory mechanism, and are important in the response of the cells to physiologic and pathologic changes in their environment. DUSPs show more substrate diversity (including RNA and lipids) and include pTyr, pSer, and pThr phosphatases. Pssm-ID: 350344 [Multi-domain] Cd Length: 113 Bit Score: 73.15 E-value: 2.55e-17
|
||||||||
CDKN3-like | cd14505 | cyclin-dependent kinase inhibitor 3 and similar proteins; This family is composed of ... |
34-149 | 2.71e-14 | ||||
cyclin-dependent kinase inhibitor 3 and similar proteins; This family is composed of eukaryotic cyclin-dependent kinase inhibitor 3 (CDKN3) and related archaeal and bacterial proteins. CDKN3 is also known as kinase-associated phosphatase (KAP), CDK2-associated dual-specificity phosphatase, cyclin-dependent kinase interactor 1 (CDI1), or cyclin-dependent kinase-interacting protein 2 (CIP2). It has been characterized as dual-specificity phosphatase, which function as a protein-serine/threonine phosphatase (EC 3.1.3.16) and protein-tyrosine-phosphatase (EC 3.1.3.48). It dephosphorylates CDK2 at a threonine residue in a cyclin-dependent manner, resulting in the inhibition of G1/S cell cycle progression. It also interacts with CDK1 and controls progression through mitosis by dephosphorylating CDC2. CDKN3 may also function as a tumor suppressor; its loss of function was found in a variety of cancers including glioblastoma and hepatocellular carcinoma. However, it has also been found over-expressed in many cancers such as breast, cervical, lung and prostate cancers, and may also have an oncogenic function. Pssm-ID: 350355 [Multi-domain] Cd Length: 163 Bit Score: 66.52 E-value: 2.71e-14
|
||||||||
PTP_PTPDC1 | cd14506 | protein tyrosine phosphatase domain of PTP domain-containing protein 1; protein tyrosine ... |
34-144 | 1.75e-11 | ||||
protein tyrosine phosphatase domain of PTP domain-containing protein 1; protein tyrosine phosphatase domain-containing protein 1 (PTPDC1) is an uncharacterized non-receptor class protein-tyrosine phosphatase (PTP). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. Small interfering RNA (siRNA) knockdown of the ptpdc1 gene is associated with elongated cilia. Pssm-ID: 350356 [Multi-domain] Cd Length: 206 Bit Score: 60.06 E-value: 1.75e-11
|
||||||||
PTPc_motif | smart00404 | Protein tyrosine phosphatase, catalytic domain motif; |
64-147 | 2.68e-11 | ||||
Protein tyrosine phosphatase, catalytic domain motif; Pssm-ID: 214649 [Multi-domain] Cd Length: 105 Bit Score: 57.37 E-value: 2.68e-11
|
||||||||
PTPc_DSPc | smart00012 | Protein tyrosine phosphatase, catalytic domain, undefined specificity; Protein tyrosine ... |
64-147 | 2.68e-11 | ||||
Protein tyrosine phosphatase, catalytic domain, undefined specificity; Protein tyrosine phosphatases. Homologues detected by this profile and not by those of "PTPc" or "DSPc" are predicted to be protein phosphatases with a similar fold to DSPs and PTPs, yet with unpredicted specificities. Pssm-ID: 214469 [Multi-domain] Cd Length: 105 Bit Score: 57.37 E-value: 2.68e-11
|
||||||||
DSP | cd14498 | dual-specificity phosphatase domain; The dual-specificity phosphatase domain is found in ... |
34-137 | 1.53e-10 | ||||
dual-specificity phosphatase domain; The dual-specificity phosphatase domain is found in typical and atypical dual-specificity phosphatases (DUSPs), which function as protein-serine/threonine phosphatases (EC 3.1.3.16) and protein-tyrosine-phosphatases (EC 3.1.3.48). Typical DUSPs, also called mitogen-activated protein kinase (MAPK) phosphatases (MKPs), deactivate MAPKs by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. All MKPs contain an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. Atypical DUSPs contain the catalytic dual specificity phosphatase domain but lack the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. Also included in this family are dual specificity phosphatase-like domains of catalytically inactive members such as serine/threonine/tyrosine-interacting protein (STYX) and serine/threonine/tyrosine interacting like 1 (STYXL1), as well as active phosphatases with substrates that are not phosphoproteins such as PTP localized to the mitochondrion 1 (PTPMT1), which is a lipid phosphatase, and laforin, which is a glycogen phosphatase. Pssm-ID: 350348 [Multi-domain] Cd Length: 135 Bit Score: 56.02 E-value: 1.53e-10
|
||||||||
Y_phosphatase | pfam00102 | Protein-tyrosine phosphatase; |
29-148 | 2.27e-10 | ||||
Protein-tyrosine phosphatase; Pssm-ID: 459674 [Multi-domain] Cd Length: 234 Bit Score: 57.25 E-value: 2.27e-10
|
||||||||
DUSP23 | cd14504 | dual specificity phosphatase 23; Dual specificity phosphatase 23 (DUSP23), also known as ... |
34-139 | 5.21e-10 | ||||
dual specificity phosphatase 23; Dual specificity phosphatase 23 (DUSP23), also known as VH1-like phosphatase Z (VHZ) or low molecular mass dual specificity phosphatase 3 (LDP-3), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. DUSP23 is an atypical DUSP; it contains the catalytic dual specificity phosphatase domain but lacks the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. It is able to enhance activation of JNK and p38 MAPK, and has been shown to dephosphorylate p44-ERK1 (MAPK3) in vitro. It has been associated with cell growth and human primary cancers. It has also been identified as a cell-cell adhesion regulatory protein; it promotes the dephosphorylation of beta-catenin at Tyr 142 and enhances the interaction between alpha- and beta-catenin. Pssm-ID: 350354 [Multi-domain] Cd Length: 142 Bit Score: 54.59 E-value: 5.21e-10
|
||||||||
PTPc | cd00047 | catalytic domain of protein tyrosine phosphatases; Protein tyrosine phosphatases (PTP, EC 3.1. ... |
63-149 | 1.47e-07 | ||||
catalytic domain of protein tyrosine phosphatases; Protein tyrosine phosphatases (PTP, EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides; they regulate phosphotyrosine levels in signal transduction pathways. The depth of the active site cleft renders the enzyme specific for phosphorylated Tyr (pTyr) residues, instead of pSer or pThr. This family has a distinctive active site signature motif, HCSAGxGRxG, and are characterized as either transmembrane, receptor-like or non-transmembrane (soluble) PTPs. Receptor-like PTP domains tend to occur in two copies in the cytoplasmic region of the transmembrane proteins, only one copy may be active. Pssm-ID: 350343 [Multi-domain] Cd Length: 200 Bit Score: 49.21 E-value: 1.47e-07
|
||||||||
TpbA-like | cd14529 | bacterial protein tyrosine and dual-specificity phosphatases related to Pseudomonas aeruginosa ... |
35-157 | 1.87e-07 | ||||
bacterial protein tyrosine and dual-specificity phosphatases related to Pseudomonas aeruginosa TpbA; This subfamily contains bacterial protein tyrosine phosphatases (PTPs) and dual-specificity phosphatases (DUSPs) related to Pseudomonas aeruginosa TpbA, a DUSP that negatively regulates biofilm formation by converting extracellular quorum sensing signals and to Mycobacterium tuberculosis PtpB, a PTP virulence factor that attenuates host immune defenses by interfering with signal transduction pathways in macrophages. PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides, while DUSPs function as protein-serine/threonine phosphatases (EC 3.1.3.16) and PTPs. Pssm-ID: 350378 [Multi-domain] Cd Length: 158 Bit Score: 48.14 E-value: 1.87e-07
|
||||||||
PTPc-N4 | cd14601 | catalytic domain of tyrosine-protein phosphatase non-receptor type 4; Tyrosine-protein ... |
63-137 | 2.69e-07 | ||||
catalytic domain of tyrosine-protein phosphatase non-receptor type 4; Tyrosine-protein phosphatase non-receptor type 4 (PTPN4), also called protein-tyrosine phosphatase MEG1, belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN4 functions in TCR cell signaling, apoptosis, cerebellar synaptic plasticity, and innate immune responses. It specifically inhibits the TRIF-dependent TLR4 pathway by suppressing tyrosine phosphorylation of TRAM. It is a large modular protein containing an N-terminal FERM domain, a PDZ domain and a C-terminal catalytic PTP domain; the PDZ domain regulates the catalytic activity of PTPN4. Pssm-ID: 350449 [Multi-domain] Cd Length: 212 Bit Score: 48.40 E-value: 2.69e-07
|
||||||||
PTPc-N20_13 | cd14538 | catalytic domain of tyrosine-protein phosphatase non-receptor type 20 and type 13; ... |
68-144 | 1.57e-06 | ||||
catalytic domain of tyrosine-protein phosphatase non-receptor type 20 and type 13; Tyrosine-protein phosphatase non-receptor type 20 (PTPN20) and type 13 (PTPN13, also known as PTPL1) belong to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. Human PTPN20 is a widely expressed phosphatase with a dynamic subcellular distribution that is targeted to sites of actin polymerization. Human PTPN13 is an important regulator of tumor aggressiveness. Pssm-ID: 350386 [Multi-domain] Cd Length: 207 Bit Score: 46.21 E-value: 1.57e-06
|
||||||||
PRK12361 | PRK12361 | hypothetical protein; Provisional |
34-163 | 1.95e-06 | ||||
hypothetical protein; Provisional Pssm-ID: 183473 [Multi-domain] Cd Length: 547 Bit Score: 46.54 E-value: 1.95e-06
|
||||||||
PTPc | smart00194 | Protein tyrosine phosphatase, catalytic domain; |
63-145 | 3.51e-06 | ||||
Protein tyrosine phosphatase, catalytic domain; Pssm-ID: 214550 [Multi-domain] Cd Length: 259 Bit Score: 45.73 E-value: 3.51e-06
|
||||||||
PTPMT1 | cd14524 | protein-tyrosine phosphatase mitochondrial 1; Protein-tyrosine phosphatase mitochondrial 1 or ... |
37-153 | 5.82e-06 | ||||
protein-tyrosine phosphatase mitochondrial 1; Protein-tyrosine phosphatase mitochondrial 1 or PTP localized to the mitochondrion 1 (PTPMT1), also called phosphoinositide lipid phosphatase (PLIP), phosphatidylglycerophosphatase and protein-tyrosine phosphatase 1, or PTEN-like phosphatase, is a lipid phosphatase or phosphatidylglycerophosphatase (EC 3.1.3.27) which dephosphorylates phosphatidylglycerophosphate (PGP) to phosphatidylglycerol (PG). It is targeted to the mitochondrion by an N-terminal signal sequence and is found anchored to the matrix face of the inner membrane. It is essential for the biosynthesis of cardiolipin, a mitochondrial-specific phospholipid regulating the membrane integrity and activities of the organelle. PTPMT1 also plays a crucial role in hematopoietic stem cell (HSC) function, and has been shown to display activity toward phosphoprotein substrates. Pssm-ID: 350374 [Multi-domain] Cd Length: 149 Bit Score: 43.79 E-value: 5.82e-06
|
||||||||
DSP_MKP_classII | cd14566 | dual specificity phosphatase domain of class II mitogen-activated protein kinase phosphatase; ... |
9-138 | 6.84e-06 | ||||
dual specificity phosphatase domain of class II mitogen-activated protein kinase phosphatase; Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are eukaryotic dual-specificity phosphatases (DUSPs) that act on MAPKs and function as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). They deactivate MAPKs by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. Based on sequence homology, subcellular localization and substrate specificity, 10 MKPs can be subdivided into three subfamilies (class I-III). Class II MKPs consist of DUSP6/MKP-3, DUSP7/MKP-X and DUSP9/MKP-4, and are ERK-selective cytoplasmic MKPs. All MKPs contain an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. Pssm-ID: 350414 [Multi-domain] Cd Length: 137 Bit Score: 43.46 E-value: 6.84e-06
|
||||||||
PTPc-N20 | cd14596 | catalytic domain of tyrosine-protein phosphatase non-receptor type 20; Tyrosine-protein ... |
63-145 | 8.02e-06 | ||||
catalytic domain of tyrosine-protein phosphatase non-receptor type 20; Tyrosine-protein phosphatase non-receptor type 20 (PTPN20) belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. Human PTPN20 is a widely expressed phosphatase with a dynamic subcellular distribution that is targeted to sites of actin polymerization. Pssm-ID: 350444 [Multi-domain] Cd Length: 207 Bit Score: 44.35 E-value: 8.02e-06
|
||||||||
R-PTP-LAR-2 | cd14554 | PTP-like domain of the LAR family receptor-type tyrosine-protein phosphatases, repeat 2; The ... |
47-130 | 8.76e-06 | ||||
PTP-like domain of the LAR family receptor-type tyrosine-protein phosphatases, repeat 2; The LAR (leukocyte common antigen-related) family of receptor-type tyrosine-protein phosphatases (RPTPs) include three vertebrate members: LAR (or PTPRF), R-PTP-delta (or PTPRD), and R-PTP-sigma (or PTPRS). They belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. LAR-RPTPs are synaptic adhesion molecules; they bind to distinct synaptic membrane proteins and are physiologically responsible for mediating presynaptic development by shaping various synaptic adhesion pathways. They play roles in various aspects of neuronal development, including axon guidance, neurite extension, and synapse formation and function. LAR-RPTPs contain an extracellular region with three immunoglobulin-like (Ig) domains and four to eight fibronectin type III (FN3) repeats (determined by alternative splicing), a single transmembrane domain, followed by an intracellular region with a membrane-proximal catalytic PTP domain (repeat 1, also called D1) and a membrane-distal non-catalytic PTP-like domain (repeat 2, also called D2). This model represents the non-catalytic PTP-like domain (repeat 2). Pssm-ID: 350402 [Multi-domain] Cd Length: 238 Bit Score: 44.44 E-value: 8.76e-06
|
||||||||
DSPc | smart00195 | Dual specificity phosphatase, catalytic domain; |
27-137 | 2.15e-05 | ||||
Dual specificity phosphatase, catalytic domain; Pssm-ID: 214551 [Multi-domain] Cd Length: 138 Bit Score: 42.27 E-value: 2.15e-05
|
||||||||
DSP_laforin-like | cd14526 | dual specificity phosphatase domain of laforin and similar domains; This family is composed of ... |
97-137 | 2.93e-05 | ||||
dual specificity phosphatase domain of laforin and similar domains; This family is composed of glucan phosphatases including vertebrate dual specificity protein phosphatase laforin, also called lafora PTPase (LAFPTPase), and plant starch excess4 (SEX4). Laforin is a glycogen phosphatase; its gene is mutated in Lafora progressive myoclonus epilepsy or Lafora disease (LD), a fatal autosomal recessive neurodegenerative disorder characterized by the presence of progressive neurological deterioration, myoclonus, and epilepsy. One characteristic of LD is the accumulation of insoluble glucans. Laforin prevents LD by at least two mechanisms: by preventing hyperphosphorylation of glycogen by dephosphorylating it, allowing proper glycogen formation, and by promoting the ubiquitination of proteins involved in glycogen metabolism via its interaction with malin. Laforin contains an N-terminal CBM20 (carbohydrate-binding module, family 20) domain and a C-terminal catalytic dual specificity phosphatase (DSP) domain. Plant SEX4 regulate starch metabolism by selectively dephosphorylating glucose moieties within starch glucan chains. It contains an N-terminal catalytic DSP domain and a C-terminal Early (E) set domain. Pssm-ID: 350375 [Multi-domain] Cd Length: 146 Bit Score: 41.80 E-value: 2.93e-05
|
||||||||
DUSP3-like | cd14515 | dual specificity protein phosphatases 3, 13, 26, 27, and similar domains; This family is ... |
102-146 | 3.66e-05 | ||||
dual specificity protein phosphatases 3, 13, 26, 27, and similar domains; This family is composed of dual specificity protein phosphatase 3 (DUSP3, also known as VHR), 13B (DUSP13B, also known as TMDP), 26 (DUSP26, also known as MPK8), 13A (DUSP13A, also known as MDSP), dual specificity phosphatase and pro isomerase domain containing 1 (DUPD1), and inactive DUSP27. In general, DUSPs function as protein-serine/threonine phosphatases (EC 3.1.3.16) and protein-tyrosine-phosphatases (EC 3.1.3.48). Members of this family are atypical DUSPs; they contain the catalytic dual specificity phosphatase domain but lack the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. Inactive DUSP27 contains a dual specificity phosphatase-like domain with the active site cysteine substituted to serine. Pssm-ID: 350365 [Multi-domain] Cd Length: 148 Bit Score: 41.81 E-value: 3.66e-05
|
||||||||
PTP_PTEN | cd14509 | protein tyrosine phosphatase-like catalytic domain of phosphatase and tensin homolog; ... |
64-137 | 4.15e-05 | ||||
protein tyrosine phosphatase-like catalytic domain of phosphatase and tensin homolog; Phosphatase and tensin homolog (PTEN), also phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN or mutated in multiple advanced cancers 1 (MMAC1), is a tumor suppressor that acts as a dual-specificity protein phosphatase and as a lipid phosphatase. It is a critical endogenous inhibitor of phosphoinositide signaling. It dephosphorylates phosphoinositide trisphosphate, and therefore, has the function of negatively regulating Akt. The PTEN/PI3K/AKT pathway regulates the signaling of multiple biological processes such as apoptosis, metabolism, cell proliferation, and cell growth. PTEN contains an N-terminal PIP-binding domain, a protein tyrosine phosphatase (PTP)-like catalytic domain, a regulatory C2 domain responsible for its cellular location, a C-tail containing phosphorylation sites, and a C-terminal PDZ domain. Pssm-ID: 350359 [Multi-domain] Cd Length: 158 Bit Score: 41.80 E-value: 4.15e-05
|
||||||||
R-PTP-S-2 | cd14627 | PTP-like domain of receptor-type tyrosine-protein phosphatase S, repeat 2; Receptor-type ... |
64-134 | 4.43e-05 | ||||
PTP-like domain of receptor-type tyrosine-protein phosphatase S, repeat 2; Receptor-type tyrosine-protein phosphatase S (PTPRS), also known as receptor-type tyrosine-protein phosphatase sigma (R-PTP-sigma), belongs to the LAR (leukocyte common antigen-related) family of receptor-type tyrosine-protein phosphatases (RPTPs), which belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRS is a receptor for glycosaminoglycans, including heparan sulfate proteoglycan and neural chondroitin sulfate proteoglycans (CSPGs), which present a barrier to axon regeneration. It also plays a role in stimulating neurite outgrowth in response to the heparan sulfate proteoglycan GPC2. PTPRS contains an extracellular region with three immunoglobulin-like (Ig) domains and four to eight fibronectin type III (FN3) repeats (determined by alternative splicing), a single transmembrane domain, followed by an intracellular region with a membrane-proximal catalytic PTP domain (repeat 1, also called D1) and a membrane-distal non-catalytic PTP-like domain (repeat 2, also called D2). This model represents the non-catalytic PTP-like domain (repeat 2). Although described as non-catalytic, this domain contains the catalytic cysteine and the active site signature motif, HCSAGxGRxG. Pssm-ID: 350475 [Multi-domain] Cd Length: 290 Bit Score: 42.41 E-value: 4.43e-05
|
||||||||
R-PTP-D-2 | cd14628 | PTP-like domain of receptor-type tyrosine-protein phosphatase D, repeat 2; Receptor-type ... |
64-134 | 4.45e-05 | ||||
PTP-like domain of receptor-type tyrosine-protein phosphatase D, repeat 2; Receptor-type tyrosine-protein phosphatase-like D (PTPRD), also known as receptor-type tyrosine-protein phosphatase delta (R-PTP-delta), belongs to the LAR (leukocyte common antigen-related) family of receptor-type tyrosine-protein phosphatases (RPTPs), which belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. LAR-RPTPs are synaptic adhesion molecules that play roles in various aspects of neuronal development, including axon guidance, neurite extension, and synapse formation and function. PTPRD is involved in pre-synaptic differentiation through interaction with SLITRK2. It contains an extracellular region with three immunoglobulin-like (Ig) domains and four to eight fibronectin type III (FN3) repeats (determined by alternative splicing), a single transmembrane domain, followed by an intracellular region with a membrane-proximal catalytic PTP domain (repeat 1, also called D1) and a membrane-distal non-catalytic PTP-like domain (repeat 2, also called D2). This model represents the non-catalytic PTP-like domain (repeat 2). Although described as non-catalytic, this domain contains the catalytic cysteine and the active site signature motif, HCSAGxGRxG. Pssm-ID: 350476 [Multi-domain] Cd Length: 292 Bit Score: 42.41 E-value: 4.45e-05
|
||||||||
DSP_MKP_classIII | cd14568 | dual specificity phosphatase domain of class III mitogen-activated protein kinase phosphatase; ... |
97-137 | 1.00e-04 | ||||
dual specificity phosphatase domain of class III mitogen-activated protein kinase phosphatase; Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are eukaryotic dual-specificity phosphatases (DUSPs) that act on MAPKs and function as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). They deactivate MAPKs by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. Based on sequence homology, subcellular localization and substrate specificity, 10 MKPs can be subdivided into three subfamilies (class I-III). Class III MKPs consist of DUSP8, DUSP10/MKP-5 and DUSP16/MKP-7, and are JNK/p38-selective phosphatases, which are found in both the cell nucleus and cytoplasm. All MKPs contain an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. Pssm-ID: 350416 [Multi-domain] Cd Length: 140 Bit Score: 40.48 E-value: 1.00e-04
|
||||||||
PTP_PTEN-like | cd14497 | protein tyrosine phosphatase-like domain of phosphatase and tensin homolog and similar ... |
4-137 | 1.45e-04 | ||||
protein tyrosine phosphatase-like domain of phosphatase and tensin homolog and similar proteins; Phosphatase and tensin homolog (PTEN) is a tumor suppressor that acts as a dual-specificity protein phosphatase and as a lipid phosphatase. It dephosphorylates phosphoinositide trisphosphate. In addition to PTEN, this family includes tensins, voltage-sensitive phosphatases (VSPs), and auxilins. They all contain a protein tyrosine phosphatase-like domain although not all are active phosphatases. Tensins are intracellular proteins that act as links between the extracellular matrix and the cytoskeleton, and thereby mediate signaling for cell shape and motility, and they may or may not have phosphatase activity. VSPs are phosphoinositide phosphatases with substrates that include phosphatidylinositol-4,5-diphosphate and phosphatidylinositol-3,4,5-trisphosphate. Auxilins are J domain-containing proteins that facilitate Hsc70-mediated dissociation of clathrin from clathrin-coated vesicles, and they do not exhibit phosphatase activity. Pssm-ID: 350347 [Multi-domain] Cd Length: 160 Bit Score: 40.26 E-value: 1.45e-04
|
||||||||
R-PTP-F-2 | cd14629 | PTP-like domain of receptor-type tyrosine-protein phosphatase F, repeat 2; Receptor-type ... |
64-134 | 1.49e-04 | ||||
PTP-like domain of receptor-type tyrosine-protein phosphatase F, repeat 2; Receptor-type tyrosine-protein phosphatase F (PTPRF), also known as leukocyte common antigen related (LAR), is the prototypical member of the LAR family of receptor-type tyrosine-protein phosphatases (RPTPs), which belong to the larger family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRF/LAR plays a role for LAR in cadherin complexes where it associates with and dephosphorylates beta-catenin, a pathway which may be critical for cadherin complex stability and cell-cell association. It also regulates focal adhesions through cyclin-dependent kinase-1 and is involved in axon guidance in the developing nervous system. It also functions in regulating insulin signaling. PTPRF contains an extracellular region with three immunoglobulin-like (Ig) domains and four to eight fibronectin type III (FN3) repeats (determined by alternative splicing), a single transmembrane domain, followed by an intracellular region with a membrane-proximal catalytic PTP domain (repeat 1, also called D1) and a membrane-distal non-catalytic PTP-like domain (repeat 2, also called D2). This model represents the non-catalytic PTP-like domain (repeat 2). Although described as non-catalytic, this domain contains the catalytic cysteine and the active site signature motif, HCSAGxGRxG. Pssm-ID: 350477 [Multi-domain] Cd Length: 291 Bit Score: 40.86 E-value: 1.49e-04
|
||||||||
DSPc | pfam00782 | Dual specificity phosphatase, catalytic domain; Ser/Thr and Tyr protein phosphatases. The ... |
37-137 | 1.51e-04 | ||||
Dual specificity phosphatase, catalytic domain; Ser/Thr and Tyr protein phosphatases. The enzyme's tertiary fold is highly similar to that of tyrosine-specific phosphatases, except for a "recognition" region. Pssm-ID: 395632 [Multi-domain] Cd Length: 127 Bit Score: 39.55 E-value: 1.51e-04
|
||||||||
DSP_STYX | cd14522 | dual specificity phosphatase-like domain of serine/threonine/tyrosine-interacting protein; ... |
75-137 | 3.78e-04 | ||||
dual specificity phosphatase-like domain of serine/threonine/tyrosine-interacting protein; Serine/threonine/tyrosine-interacting protein (STYX), also called protein tyrosine phosphatase-like protein, is a catalytically inactive member of the protein tyrosine phosphatase family that plays an integral role in regulating pathways by competing with active phosphatases for binding to MAPKs. It acts as a nuclear anchor for MAPKs, affecting their nucleocytoplasmic shuttling. Pssm-ID: 350372 [Multi-domain] Cd Length: 151 Bit Score: 38.85 E-value: 3.78e-04
|
||||||||
DUSP13A | cd14580 | dual specificity protein phosphatase 13 isoform A; Dual specificity protein phosphatase 13 ... |
36-138 | 4.17e-04 | ||||
dual specificity protein phosphatase 13 isoform A; Dual specificity protein phosphatase 13 isoform A (DUSP13A), also called branching-enzyme interacting DSP or muscle-restricted DSP (MDSP), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. DUSP13A is an atypical DUSP; it contains the catalytic dual specificity phosphatase domain but lacks the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. DUSP13A also functions as a regulator of apoptosis signal-regulating kinase 1 (ASK1), a MAPK kinase kinase, by interacting with its N-terminal domain and inducing ASK1-mediated apoptosis through the activation of caspase-3. This function is independent of phosphatase activity. Pssm-ID: 350428 [Multi-domain] Cd Length: 145 Bit Score: 38.58 E-value: 4.17e-04
|
||||||||
PTPc-N3_4 | cd14541 | catalytic domain of tyrosine-protein phosphatase non-receptor type 21 and type 14; ... |
63-122 | 4.79e-04 | ||||
catalytic domain of tyrosine-protein phosphatase non-receptor type 21 and type 14; Tyrosine-protein phosphatase non-receptor type 3 (PTPN3) and type 4 (PTPN4) belong to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN3 and PTPN4 are large modular proteins containing an N-terminal FERM domain, a PDZ domain and a C-terminal catalytic PTP domain. PTPN3 interacts with mitogen-activated protein kinase p38gamma and serves as its specific phosphatase. PTPN4 functions in TCR cell signaling, apoptosis, cerebellar synaptic plasticity, and innate immune responses. Pssm-ID: 350389 [Multi-domain] Cd Length: 212 Bit Score: 39.23 E-value: 4.79e-04
|
||||||||
PTP_fungal | cd18533 | fungal protein tyrosine phosphatases; This subfamily contains Saccharomyces cerevisiae ... |
32-117 | 5.31e-04 | ||||
fungal protein tyrosine phosphatases; This subfamily contains Saccharomyces cerevisiae protein-tyrosine phosphatases 1 (PTP1) and 2 (PTP2), Schizosaccharomyces pombe PTP1, PTP2, and PTP3, and similar fungal proteins. PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides; they regulate phosphotyrosine levels in signal transduction pathways. PTP2, together with PTP3, is the major phosphatase that dephosphorylates and inactivates the MAP kinase HOG1 and also modulates its subcellular localization. Pssm-ID: 350509 [Multi-domain] Cd Length: 212 Bit Score: 39.15 E-value: 5.31e-04
|
||||||||
PTPc-N3 | cd14600 | catalytic domain of tyrosine-protein phosphatase non-receptor type 3; Tyrosine-protein ... |
63-137 | 7.18e-04 | ||||
catalytic domain of tyrosine-protein phosphatase non-receptor type 3; Tyrosine-protein phosphatase non-receptor type 3 (PTPN3), also called protein-tyrosine phosphatase H1 (PTP-H1), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN3 interacts with mitogen-activated protein kinase p38gamma and serves as its specific phosphatase. PTPN3 and p38gamma cooperate to promote Ras-induced oncogenesis. PTPN3 is a large modular protein containing an N-terminal FERM domain, a PDZ domain and a C-terminal catalytic PTP domain. Its PDZ domain binds with the PDZ-binding motif of p38gamma and enables efficient tyrosine dephosphorylation. Pssm-ID: 350448 [Multi-domain] Cd Length: 274 Bit Score: 39.06 E-value: 7.18e-04
|
||||||||
PTPc-N12 | cd14604 | catalytic domain of tyrosine-protein phosphatase non-receptor type 12; Tyrosine-protein ... |
66-149 | 1.02e-03 | ||||
catalytic domain of tyrosine-protein phosphatase non-receptor type 12; Tyrosine-protein phosphatase non-receptor type 12 (PTPN12), also called PTP-PEST or protein-tyrosine phosphatase G1 (PTPG1), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN12 is characterized as a tumor suppressor and a pivotal regulator of EGFR/HER2 signaling. It regulates various physiological processes, including cell migration, immune response, and neuronal activity, by dephosphorylating multiple substrates including HER2, FAK, PYK2, PSTPIP, WASP, p130Cas, paxillin, Shc, catenin, c-Abl, ArgBP2, p190RhoGAP, RhoGDI, cell adhesion kinase beta, and Rho GTPase. Pssm-ID: 350452 [Multi-domain] Cd Length: 297 Bit Score: 38.38 E-value: 1.02e-03
|
||||||||
DSP_MKP | cd14512 | dual specificity phosphatase domain of mitogen-activated protein kinase phosphatase; ... |
97-137 | 1.37e-03 | ||||
dual specificity phosphatase domain of mitogen-activated protein kinase phosphatase; Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are eukaryotic dual-specificity phosphatases (DUSPs) that act on MAPKs, which are involved in gene regulation, cell proliferation, programmed cell death and stress responses, as an important feedback control mechanism that limits MAPK cascades. MKPs, also referred to as typical DUSPs, function as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). They deactivate MAPKs by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. All MKPs contain an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. Based on sequence homology, subcellular localization and substrate specificity, 10 MKPs can be subdivided into three subfamilies (class I-III). Pssm-ID: 350362 [Multi-domain] Cd Length: 136 Bit Score: 37.08 E-value: 1.37e-03
|
||||||||
R-PTPc-Q | cd14616 | catalytic domain of receptor-type tyrosine-protein phosphatase Q; Receptor-type ... |
34-117 | 1.94e-03 | ||||
catalytic domain of receptor-type tyrosine-protein phosphatase Q; Receptor-type tyrosine-protein phosphatase Q (PTPRQ or R-PTP-Q), also called phosphatidylinositol phosphatase PTPRQ, belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRQ is a member of the R3 subfamily of receptor-type phosphotyrosine phosphatases (RPTP), characterized by a unique modular composition consisting of multiple extracellular fibronectin type III (FN3) repeats (18 in PTPRQ) and a single (most RPTP subtypes have two) cytoplasmic catalytic PTP domain. It displays low tyrosine-protein phosphatase activity; rather, it functions as a phosphatidylinositol phosphatase required for auditory processes. It regulates the levels of phosphatidylinositol 4,5-bisphosphate (PIP2) in the basal region of hair bundles. It can dephosphorylate a broad range of phosphatidylinositol phosphates, including phosphatidylinositol 3,4,5-trisphosphate and most phosphatidylinositol monophosphates and diphosphates. Pssm-ID: 350464 [Multi-domain] Cd Length: 224 Bit Score: 37.58 E-value: 1.94e-03
|
||||||||
PTPc-N9 | cd14543 | catalytic domain of tyrosine-protein phosphatase non-receptor type 9; Tyrosine-protein ... |
31-137 | 2.16e-03 | ||||
catalytic domain of tyrosine-protein phosphatase non-receptor type 9; Tyrosine-protein phosphatase non-receptor type 9 (PTPN9), also called protein-tyrosine phosphatase MEG2, belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN9 plays an important role in promoting intracellular secretary vesicle fusion in hematopoietic cells and promotes the dephosphorylation of ErbB2 and EGFR in breast cancer cells, leading to impaired activation of STAT5 and STAT3. It also directly dephosphorylates STAT3 at the Tyr705 residue, resulting in its inactivation. PTPN9 has been found to be dysregulated in various human cancers, including breast, colorectal, and gastric cancer. Pssm-ID: 350391 [Multi-domain] Cd Length: 271 Bit Score: 37.34 E-value: 2.16e-03
|
||||||||
R-PTPc-J | cd14615 | catalytic domain of receptor-type tyrosine-protein phosphatase J; Receptor-type ... |
68-130 | 2.56e-03 | ||||
catalytic domain of receptor-type tyrosine-protein phosphatase J; Receptor-type tyrosine-protein phosphatase J (PTPRJ or R-PTP-J), also known as receptor-type tyrosine-protein phosphatase eta (R-PTP-eta) or density-enhanced phosphatase 1 (DEP-1) OR CD148, belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRJ is a member of the R3 subfamily of receptor-type phosphotyrosine phosphatases (RPTP), characterized by a unique modular composition consisting of multiple extracellular fibronectin type III (FN3) repeats (eight in PTPRJ) and a single (most RPTP subtypes have two) cytoplasmic catalytic PTP domain. It is expressed in various cell types including epithelial, hematopoietic, and endothelial cells. It plays a role in cell adhesion, migration, proliferation and differentiation. It dephosphorylates or contributes to the dephosphorylation of various substrates including protein kinases such as FLT3, PDGFRB, MET, RET (variant MEN2A), VEGFR-2, LYN, SRC, MAPK1, MAPK3, and EGFR, as well as PIK3R1 and PIK3R2. Pssm-ID: 350463 [Multi-domain] Cd Length: 229 Bit Score: 37.10 E-value: 2.56e-03
|
||||||||
DSP_DUSP22_15 | cd14519 | dual specificity phosphatase domain of dual specificity protein phosphatase 22, 15, and ... |
93-137 | 2.76e-03 | ||||
dual specificity phosphatase domain of dual specificity protein phosphatase 22, 15, and similar proteins; Dual specificity protein phosphatase 22 (DUSP22, also known as VHX) and 15 (DUSP15, also known as VHY) function as protein-serine/threonine phosphatases (EC 3.1.3.16) and protein-tyrosine-phosphatases (EC 3.1.3.48). They are atypical DUSPs; they contain the catalytic dual specificity phosphatase domain but lack the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. The both contain N-terminal myristoylation recognition sequences and myristoylation regulates their subcellular location. DUSP22 negatively regulates the estrogen receptor-alpha-mediated signaling pathway and the IL6-leukemia inhibitory factor (LIF)-STAT3-mediated signaling pathway. DUSP15 has been identified as a regulator of oligodendrocyte differentiation. DUSP22 is a single domain protein containing only the catalytic dual specificity phosphatase domain while DUSP15 contains a short C-terminal tail. Pssm-ID: 350369 [Multi-domain] Cd Length: 136 Bit Score: 36.19 E-value: 2.76e-03
|
||||||||
PTPc-N11_6 | cd14544 | catalytic domain of tyrosine-protein phosphatase non-receptor type 11 and type 6; ... |
64-139 | 4.91e-03 | ||||
catalytic domain of tyrosine-protein phosphatase non-receptor type 11 and type 6; Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) and type 6 (PTPN6) belong to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN11 and PTPN6, are also called SH2 domain-containing tyrosine phosphatase 2 (SHP2) and 1 (SHP1), respectively. They contain two tandem SH2 domains: a catalytic PTP domain, and a C-terminal tail with regulatory properties. Although structurally similar, they have different localization and different roles in signal transduction. PTPN11/SHP2 is expressed ubiquitously and plays a positive role in cell signaling, leading to cell activation, while PTPN6/SHP1 expression is restricted mainly to hematopoietic and epithelial cells and functions as a negative regulator of signaling events. Pssm-ID: 350392 [Multi-domain] Cd Length: 251 Bit Score: 36.29 E-value: 4.91e-03
|
||||||||
R5-PTP-2 | cd14550 | PTP-like domain of R5 subfamily receptor-type tyrosine-protein phosphatases, repeat 2; The R5 ... |
41-151 | 5.62e-03 | ||||
PTP-like domain of R5 subfamily receptor-type tyrosine-protein phosphatases, repeat 2; The R5 subfamily of receptor-type phosphotyrosine phosphatases (RPTP) is composed of receptor-type tyrosine-protein phosphatase Z (PTPRZ) and G (PTPRG). They belong to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. They are type 1 integral membrane proteins consisting of an extracellular region with a carbonic anhydrase-like (CAH) and a fibronectin type III (FN3) domains, and an intracellular region with a catalytic PTP domain (repeat 1) proximal to the membrane, and a catalytically inactive PTP-fold domain (repeat 2) distal to the membrane. This model represents the inactive PTP-like domain (repeat 2). Pssm-ID: 350398 [Multi-domain] Cd Length: 200 Bit Score: 35.76 E-value: 5.62e-03
|
||||||||
PTPc-N6 | cd14606 | catalytic domain of tyrosine-protein phosphatase non-receptor type 6; Tyrosine-protein ... |
64-139 | 6.04e-03 | ||||
catalytic domain of tyrosine-protein phosphatase non-receptor type 6; Tyrosine-protein phosphatase non-receptor type 6 (PTPN6), also called SH2 domain-containing protein-tyrosine phosphatase 1 (SHP1 or SHP-1), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPN6 expression is restricted mainly to hematopoietic and epithelial cells. It is an important regulator of hematopoietic cells, downregulating pathways that promote cell growth, survival, adhesion, and activation. It regulates glucose homeostasis by modulating insulin signalling in the liver and muscle, and it also negatively regulates bone resorption, affecting both the formation and the function of osteoclasts. PTPN6 contains two tandem SH2 domains, a catalytic PTP domain, and a C-terminal tail with regulatory properties. Pssm-ID: 350454 [Multi-domain] Cd Length: 266 Bit Score: 36.01 E-value: 6.04e-03
|
||||||||
R-PTPc-H | cd14619 | catalytic domain of receptor-type tyrosine-protein phosphatase H; Receptor-type ... |
68-137 | 6.79e-03 | ||||
catalytic domain of receptor-type tyrosine-protein phosphatase H; Receptor-type tyrosine-protein phosphatase H (PTPRH or R-PTP-H), also known as stomach cancer-associated protein tyrosine phosphatase 1 (SAP-1), belongs to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. PTPRH is a member of the R3 subfamily of receptor-type phosphotyrosine phosphatases (RPTP), characterized by a unique modular composition consisting of multiple extracellular fibronectin type III (FN3) repeats and a single (most RPTP subtypes have two) cytoplasmic catalytic PTP domain. It is localized specifically at microvilli of the brush border in gastrointestinal epithelial cells. It plays a role in intestinal immunity by regulating CEACAM20 through tyrosine dephosphorylation. It is also a negative regulator of integrin-mediated signaling and may contribute to contact inhibition of cell growth and motility. Pssm-ID: 350467 [Multi-domain] Cd Length: 233 Bit Score: 36.02 E-value: 6.79e-03
|
||||||||
DUSP14-like | cd14514 | dual specificity protein phosphatases 14, 18, 21, 28 and similar proteins; This family is ... |
35-137 | 7.03e-03 | ||||
dual specificity protein phosphatases 14, 18, 21, 28 and similar proteins; This family is composed of dual specificity protein phosphatase 14 (DUSP14, also known as MKP-6), 18 (DUSP18), 21 (DUSP21), 28 (DUSP28), and similar proteins. They function as protein-serine/threonine phosphatases (EC 3.1.3.16) and protein-tyrosine-phosphatases (EC 3.1.3.48), and are atypical DUSPs. They contain the catalytic dual specificity phosphatase domain but lack the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. DUSP14 directly interacts and dephosphorylates TGF-beta-activated kinase 1 (TAK1)-binding protein 1 (TAB1) in T cells, and negatively regulates TCR signaling and immune responses. DUSP18 has been shown to interact and dephosphorylate SAPK/JNK, and may play a role in regulating the SAPK/JNK pathway. DUSP18 and DUSP21 target to opposing sides of the mitochondrial inner membrane. DUSP28 has been implicated in hepatocellular carcinoma progression and in migratory activity and drug resistance of pancreatic cancer cells. Pssm-ID: 350364 [Multi-domain] Cd Length: 133 Bit Score: 34.84 E-value: 7.03e-03
|
||||||||
DSP_DUSP8 | cd14645 | dual specificity phosphatase domain of dual specificity protein phosphatase 8; Dual ... |
98-137 | 8.85e-03 | ||||
dual specificity phosphatase domain of dual specificity protein phosphatase 8; Dual specificity protein phosphatase 8 (DUSP8), also called DUSP hVH-5 or M3/6, functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). Like other MKPs, it deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. It belongs to the class III subfamily and is a JNK/p38-selective cytoplasmic MKP. DUSP8 controls basal and acute stress-induced ERK1/2 signaling in adult cardiac myocytes, which impacts contractility, ventricular remodeling, and disease susceptibility. It also plays a role in decreasing ureteric branching morphogenesis by inhibiting p38MAPK. DUSP8 contains an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. Pssm-ID: 350493 [Multi-domain] Cd Length: 151 Bit Score: 34.99 E-value: 8.85e-03
|
||||||||
DSP_MKP_classI | cd14565 | dual specificity phosphatase domain of class I mitogen-activated protein kinase phosphatase; ... |
97-137 | 9.72e-03 | ||||
dual specificity phosphatase domain of class I mitogen-activated protein kinase phosphatase; Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are eukaryotic dual-specificity phosphatases (DUSPs) that act on MAPKs and function as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). They deactivate MAPKs by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. Based on sequence homology, subcellular localization and substrate specificity, 10 MKPs can be subdivided into three subfamilies (class I-III). Class I MKPs consist of DUSP1/MKP-1, DUSP2 (PAC1), DUSP4/MKP-2 and DUSP5. They are all mitogen- and stress-inducible nuclear MKPs. All MKPs contain an N-terminal Cdc25/rhodanese-like domain, which is responsible for MAPK-binding, and a C-terminal catalytic dual specificity phosphatase domain. Pssm-ID: 350413 [Multi-domain] Cd Length: 138 Bit Score: 34.67 E-value: 9.72e-03
|
||||||||
Blast search parameters | ||||
|