ATP-grasp domain-containing protein may be related to carbamoyl phosphate synthetase and predicted to be involved in the biosynthesis of a ribonucleoside involved in stress response| acetate--CoA ligase family protein similar to ADP-forming acetate--CoA ligase that catalyzes the formation of acetate and ATP from acetyl-CoA by using ADP and phosphate
Carbamoyl-phosphate synthase L chain, ATP binding domain; Carbamoyl-phosphate synthase ...
201-403
1.24e-133
Carbamoyl-phosphate synthase L chain, ATP binding domain; Carbamoyl-phosphate synthase catalyzes the ATP-dependent synthesis of carbamyl-phosphate from glutamine or ammonia and bicarbonate. This important enzyme initiates both the urea cycle and the biosynthesis of arginine and/or pyrimidines. The carbamoyl-phosphate synthase (CPS) enzyme in prokaryotes is a heterodimer of a small and large chain. The small chain promotes the hydrolysis of glutamine to ammonia, which is used by the large chain to synthesize carbamoyl phosphate. See pfam00988. The small chain has a GATase domain in the carboxyl terminus. See pfam00117. The ATP binding domain (this one) has an ATP-grasp fold.
The actual alignment was detected with superfamily member pfam02750:
Pssm-ID: 473076 Cd Length: 203 Bit Score: 383.64 E-value: 1.24e-133
Synapsin N-terminal; This highly conserved domain of synapsin proteins has a serine at ...
1-27
9.79e-12
Synapsin N-terminal; This highly conserved domain of synapsin proteins has a serine at position 9 or 10 which is a phosphorylation site. The domain appears to be the part of the molecule that binds to calmodulin.
The actual alignment was detected with superfamily member pfam10581:
Pssm-ID: 463155 Cd Length: 32 Bit Score: 59.43 E-value: 9.79e-12
Synapsin N-terminal; This highly conserved domain of synapsin proteins has a serine at ...
1-27
9.79e-12
Synapsin N-terminal; This highly conserved domain of synapsin proteins has a serine at position 9 or 10 which is a phosphorylation site. The domain appears to be the part of the molecule that binds to calmodulin.
Pssm-ID: 463155 Cd Length: 32 Bit Score: 59.43 E-value: 9.79e-12
Glutathione synthase, LysX or RimK-type ligase, ATP-grasp superfamily [Amino acid transport ...
100-399
8.99e-09
Glutathione synthase, LysX or RimK-type ligase, ATP-grasp superfamily [Amino acid transport and metabolism, Coenzyme transport and metabolism, Translation, ribosomal structure and biogenesis, Secondary metabolites biosynthesis, transport and catabolism]; Glutathione synthase, LysX or RimK-type ligase, ATP-grasp superfamily is part of the Pathway/BioSystem: Lysine biosynthesis
Pssm-ID: 439959 [Multi-domain] Cd Length: 289 Bit Score: 56.49 E-value: 8.99e-09
alpha-L-glutamate ligase, RimK family; This family, related to bacterial glutathione ...
166-367
8.55e-05
alpha-L-glutamate ligase, RimK family; This family, related to bacterial glutathione synthetases, contains at least three different alpha-L-glutamate ligases. One is RimK, as in E. coli, which adds additional Glu residues to the native Glu-Glu C-terminus of ribosomal protein S6, but not to Lys-Glu mutants. Most species with a member of this subfamily lack an S6 homolog ending in Glu-Glu, however. Members in Methanococcus jannaschii act instead as a tetrahydromethanopterin:alpha-l-glutamate ligase (MJ0620) and a gamma-F420-2:alpha-l-glutamate ligase (MJ1001).
Pssm-ID: 273261 [Multi-domain] Cd Length: 276 Bit Score: 44.26 E-value: 8.55e-05
Synapsin N-terminal; This highly conserved domain of synapsin proteins has a serine at ...
1-27
9.79e-12
Synapsin N-terminal; This highly conserved domain of synapsin proteins has a serine at position 9 or 10 which is a phosphorylation site. The domain appears to be the part of the molecule that binds to calmodulin.
Pssm-ID: 463155 Cd Length: 32 Bit Score: 59.43 E-value: 9.79e-12
Glutathione synthase, LysX or RimK-type ligase, ATP-grasp superfamily [Amino acid transport ...
100-399
8.99e-09
Glutathione synthase, LysX or RimK-type ligase, ATP-grasp superfamily [Amino acid transport and metabolism, Coenzyme transport and metabolism, Translation, ribosomal structure and biogenesis, Secondary metabolites biosynthesis, transport and catabolism]; Glutathione synthase, LysX or RimK-type ligase, ATP-grasp superfamily is part of the Pathway/BioSystem: Lysine biosynthesis
Pssm-ID: 439959 [Multi-domain] Cd Length: 289 Bit Score: 56.49 E-value: 8.99e-09
alpha-L-glutamate ligase, RimK family; This family, related to bacterial glutathione ...
166-367
8.55e-05
alpha-L-glutamate ligase, RimK family; This family, related to bacterial glutathione synthetases, contains at least three different alpha-L-glutamate ligases. One is RimK, as in E. coli, which adds additional Glu residues to the native Glu-Glu C-terminus of ribosomal protein S6, but not to Lys-Glu mutants. Most species with a member of this subfamily lack an S6 homolog ending in Glu-Glu, however. Members in Methanococcus jannaschii act instead as a tetrahydromethanopterin:alpha-l-glutamate ligase (MJ0620) and a gamma-F420-2:alpha-l-glutamate ligase (MJ1001).
Pssm-ID: 273261 [Multi-domain] Cd Length: 276 Bit Score: 44.26 E-value: 8.55e-05
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options