olfactory receptor 1742 [Rattus norvegicus]
G protein-coupled receptor family protein( domain architecture ID 705710)
G protein-coupled receptor family protein is a seven-transmembrane G protein-coupled receptor (7TM-GPCR) family protein which typically transmits an extracellular signal into the cell by the conformational rearrangement of the 7TM helices and by the subsequent binding and activation of an intracellular heterotrimeric G protein; GPCR ligands include light-sensitive compounds, odors, pheromones, hormones, and neurotransmitters
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
7tm_GPCRs super family | cl28897 | seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary ... |
22-291 | 3.50e-140 | |||||
seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary model represents the seven-transmembrane (7TM) receptors, often referred to as G protein-coupled receptors (GPCRs), which transmit physiological signals from the outside of the cell to the inside via G proteins. GPCRs constitute the largest known superfamily of transmembrane receptors across the three kingdoms of life that respond to a wide variety of extracellular stimuli including peptides, lipids, neurotransmitters, amino acids, hormones, and sensory stimuli such as light, smell and taste. All GPCRs share a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. However, some 7TM receptors, such as the type 1 microbial rhodopsins, do not activate G proteins. Based on sequence similarity, GPCRs can be divided into six major classes: class A (the rhodopsin-like family), class B (the Methuselah-like, adhesion and secretin-like receptor family), class C (the metabotropic glutamate receptor family), class D (the fungal mating pheromone receptors), class E (the cAMP receptor family), and class F (the frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections. The actual alignment was detected with superfamily member cd15918: Pssm-ID: 475119 [Multi-domain] Cd Length: 270 Bit Score: 396.60 E-value: 3.50e-140
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
7tmA_OR1_7-like | cd15918 | olfactory receptor families 1, 7, and related proteins, member of the class A family of ... |
22-291 | 3.50e-140 | |||||
olfactory receptor families 1, 7, and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor families 1 and 7, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320584 [Multi-domain] Cd Length: 270 Bit Score: 396.60 E-value: 3.50e-140
|
|||||||||
7tm_4 | pfam13853 | Olfactory receptor; The members of this family are transmembrane olfactory receptors. |
46-302 | 3.70e-41 | |||||
Olfactory receptor; The members of this family are transmembrane olfactory receptors. Pssm-ID: 404695 Cd Length: 278 Bit Score: 144.18 E-value: 3.70e-41
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
7tmA_OR1_7-like | cd15918 | olfactory receptor families 1, 7, and related proteins, member of the class A family of ... |
22-291 | 3.50e-140 | |||||
olfactory receptor families 1, 7, and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor families 1 and 7, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320584 [Multi-domain] Cd Length: 270 Bit Score: 396.60 E-value: 3.50e-140
|
|||||||||
7tmA_OR1A-like | cd15235 | olfactory receptor subfamily 1A and related proteins, member of the class A family of ... |
22-298 | 6.89e-125 | |||||
olfactory receptor subfamily 1A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 1A, 1B, 1K, 1L, 1Q and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320363 [Multi-domain] Cd Length: 278 Bit Score: 358.07 E-value: 6.89e-125
|
|||||||||
7tmA_OR | cd13954 | olfactory receptors, member of the class A family of seven-transmembrane G protein-coupled ... |
45-291 | 8.63e-111 | |||||
olfactory receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320092 [Multi-domain] Cd Length: 270 Bit Score: 322.13 E-value: 8.63e-111
|
|||||||||
7tmA_OR7-like | cd15234 | olfactory receptor family 7 and related proteins, member of the class A family of ... |
45-298 | 2.87e-103 | |||||
olfactory receptor family 7 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor family 7 and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320362 [Multi-domain] Cd Length: 277 Bit Score: 303.34 E-value: 2.87e-103
|
|||||||||
7tmA_OR5-like | cd15230 | olfactory receptor family 5 and related proteins, member of the class A family of ... |
46-291 | 2.11e-102 | |||||
olfactory receptor family 5 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor family 5, some subfamilies from families 8 and 9, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320358 Cd Length: 270 Bit Score: 300.58 E-value: 2.11e-102
|
|||||||||
7tmA_OR10A-like | cd15225 | olfactory receptor subfamily 10A and related proteins, member of the class A family of ... |
23-298 | 7.07e-101 | |||||
olfactory receptor subfamily 10A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 10A, 10C, 10H, 10J, 10V, 10R, 10J, 10W, among others, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320353 Cd Length: 277 Bit Score: 297.06 E-value: 7.07e-101
|
|||||||||
7tmA_OR5AP2-like | cd15943 | olfactory receptor subfamily 5AP2 and related proteins, member of the class A family of ... |
9-302 | 1.13e-100 | |||||
olfactory receptor subfamily 5AP2 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5AP2 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320609 [Multi-domain] Cd Length: 295 Bit Score: 297.35 E-value: 1.13e-100
|
|||||||||
7tmA_OR8S1-like | cd15229 | olfactory receptor subfamily 8S1 and related proteins, member of the class A family of ... |
23-298 | 1.37e-98 | |||||
olfactory receptor subfamily 8S1 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 8S1 and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320357 [Multi-domain] Cd Length: 277 Bit Score: 291.42 E-value: 1.37e-98
|
|||||||||
7tmA_OR5D-like | cd15410 | olfactory receptor subfamily 5D and related proteins, member of the class A family of ... |
9-302 | 1.04e-97 | |||||
olfactory receptor subfamily 5D and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5D, 5L, 5W, and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320532 Cd Length: 294 Bit Score: 289.56 E-value: 1.04e-97
|
|||||||||
7tmA_OR5V1-like | cd15231 | olfactory receptor subfamily 5V1 and related proteins, member of the class A family of ... |
23-298 | 9.99e-96 | |||||
olfactory receptor subfamily 5V1 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5V1 and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320359 [Multi-domain] Cd Length: 277 Bit Score: 284.16 E-value: 9.99e-96
|
|||||||||
7tmA_OR11A-like | cd15911 | olfactory receptor subfamily 11A and related proteins, member of the class A family of ... |
23-291 | 4.35e-94 | |||||
olfactory receptor subfamily 11A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 11A and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320577 Cd Length: 270 Bit Score: 279.75 E-value: 4.35e-94
|
|||||||||
7tmA_OR8H-like | cd15411 | olfactory receptor subfamily 8H and related proteins, member of the class A family of ... |
24-300 | 7.69e-94 | |||||
olfactory receptor subfamily 8H and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 8H, 8I, 5F and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320533 [Multi-domain] Cd Length: 279 Bit Score: 279.20 E-value: 7.69e-94
|
|||||||||
7tmA_OR5AK3-like | cd15408 | olfactory receptor subfamily 5AK3, 5AU1, and related proteins, member of the class A family of ... |
9-295 | 2.84e-93 | |||||
olfactory receptor subfamily 5AK3, 5AU1, and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5AK3, 5AU1, and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320530 Cd Length: 287 Bit Score: 278.05 E-value: 2.84e-93
|
|||||||||
7tmA_OR5A1-like | cd15417 | olfactory receptor subfamily 5A1 and related proteins, member of the class A family of ... |
23-300 | 3.77e-93 | |||||
olfactory receptor subfamily 5A1 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5A1, 5A2, 5AN1, and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320539 Cd Length: 279 Bit Score: 277.60 E-value: 3.77e-93
|
|||||||||
7tmA_OR14-like | cd15227 | olfactory receptor family 14 and related proteins, member of the class A family of ... |
49-291 | 7.04e-92 | |||||
olfactory receptor family 14 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor family 14 and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320355 Cd Length: 270 Bit Score: 273.95 E-value: 7.04e-92
|
|||||||||
7tmA_OR13-like | cd15232 | olfactory receptor family 13 and related proteins, member of the class A family of ... |
23-291 | 1.20e-91 | |||||
olfactory receptor family 13 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor family 13 (subfamilies 13A1 and 13G1) and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320360 [Multi-domain] Cd Length: 270 Bit Score: 273.36 E-value: 1.20e-91
|
|||||||||
7tmA_OR9K2-like | cd15419 | olfactory receptor subfamily 9K2 and related proteins, member of the class A family of ... |
23-300 | 4.89e-91 | |||||
olfactory receptor subfamily 9K2 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes transmembrane olfactory receptor subfamily 9K2 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320541 Cd Length: 279 Bit Score: 272.26 E-value: 4.89e-91
|
|||||||||
7tmA_OR6C-like | cd15912 | olfactory receptor subfamily 6C and related proteins, member of the class A family of ... |
48-291 | 3.52e-90 | |||||
olfactory receptor subfamily 6C and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 6C, 6X, 6J, 6T, 6V, 6M, 9A, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320578 Cd Length: 270 Bit Score: 269.74 E-value: 3.52e-90
|
|||||||||
7tmA_OR2T-like | cd15421 | olfactory receptor subfamily 2T and related proteins, member of the class A family of ... |
22-298 | 4.30e-89 | |||||
olfactory receptor subfamily 2T and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamilies 2T, 2M, 2L, 2V, 2Z, 2AE, 2AG, 2AK, 2AJ, and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320543 Cd Length: 277 Bit Score: 267.11 E-value: 4.30e-89
|
|||||||||
7tmA_OR1E-like | cd15236 | olfactory receptor subfamily 1E and related proteins, member of the class A family of ... |
23-298 | 4.85e-89 | |||||
olfactory receptor subfamily 1E and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 1E, 1J, and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320364 [Multi-domain] Cd Length: 277 Bit Score: 267.02 E-value: 4.85e-89
|
|||||||||
7tmA_OR8D-like | cd15406 | olfactory receptor subfamily 8D and related proteins, member of the class A family of ... |
13-302 | 5.49e-87 | |||||
olfactory receptor subfamily 8D and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 8D and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320528 [Multi-domain] Cd Length: 290 Bit Score: 262.30 E-value: 5.49e-87
|
|||||||||
7tmA_OR5M-like | cd15412 | olfactory receptor subfamily 5M and related proteins, member of the class A family of ... |
23-300 | 4.45e-86 | |||||
olfactory receptor subfamily 5M and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5M and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320534 Cd Length: 279 Bit Score: 259.64 E-value: 4.45e-86
|
|||||||||
7tmA_OR5C1-like | cd15945 | olfactory receptor subfamily 5C1 and related proteins, member of the class A family of ... |
9-300 | 6.74e-86 | |||||
olfactory receptor subfamily 5C1 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5C1 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320611 Cd Length: 292 Bit Score: 259.68 E-value: 6.74e-86
|
|||||||||
7tmA_OR6B-like | cd15224 | olfactory receptor subfamily 6B and related proteins, member of the class A family of ... |
23-291 | 1.12e-85 | |||||
olfactory receptor subfamily 6B and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 6B, 6A, 6Y, 6P, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320352 Cd Length: 270 Bit Score: 258.37 E-value: 1.12e-85
|
|||||||||
7tmA_OR5J-like | cd15415 | olfactory receptor subfamily 5J and related proteins, member of the class A family of ... |
22-300 | 2.84e-84 | |||||
olfactory receptor subfamily 5J and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5J and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320537 [Multi-domain] Cd Length: 279 Bit Score: 255.03 E-value: 2.84e-84
|
|||||||||
7tmA_OR2B-like | cd15947 | olfactory receptor subfamily 2B and related proteins, member of the class A family of ... |
49-291 | 1.79e-83 | |||||
olfactory receptor subfamily 2B and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor family 2 (subfamilies 2B, 2C, 2G, 2H, 2I, 2J, 2W, 2Y) and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320613 [Multi-domain] Cd Length: 270 Bit Score: 252.54 E-value: 1.79e-83
|
|||||||||
7tmA_OR5AR1-like | cd15944 | olfactory receptor subfamily 5AR1 and related proteins, member of the class A family of ... |
9-302 | 6.57e-83 | |||||
olfactory receptor subfamily 5AR1 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5AR1 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320610 [Multi-domain] Cd Length: 294 Bit Score: 252.01 E-value: 6.57e-83
|
|||||||||
7tmA_OR8K-like | cd15413 | olfactory receptor subfamily 8K and related proteins, member of the class A family of ... |
24-300 | 2.24e-82 | |||||
olfactory receptor subfamily 8K and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 8K, 8U, 8J, 5R, 5AL and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320535 Cd Length: 279 Bit Score: 250.32 E-value: 2.24e-82
|
|||||||||
7tmA_OR5H-like | cd15409 | olfactory receptor subfamily 5H and related proteins, member of the class A family of ... |
23-300 | 1.98e-81 | |||||
olfactory receptor subfamily 5H and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5H, 5K, 5AC, 5T and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320531 [Multi-domain] Cd Length: 279 Bit Score: 247.71 E-value: 1.98e-81
|
|||||||||
7tmA_OR2-like | cd15237 | olfactory receptor family 2 and related proteins, member of the class A family of ... |
23-291 | 3.56e-81 | |||||
olfactory receptor family 2 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor families 2 and 13, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320365 [Multi-domain] Cd Length: 270 Bit Score: 246.80 E-value: 3.56e-81
|
|||||||||
7tmA_OR13H-like | cd15431 | olfactory receptor subfamily 13H and related proteins, member of the class A family of ... |
23-291 | 4.07e-81 | |||||
olfactory receptor subfamily 13H and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 13H and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320548 [Multi-domain] Cd Length: 269 Bit Score: 246.37 E-value: 4.07e-81
|
|||||||||
7tmA_OR5G-like | cd15414 | olfactory receptor subfamily 5G and related proteins, member of the class A family of ... |
23-302 | 5.02e-80 | |||||
olfactory receptor subfamily 5G and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5G and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320536 [Multi-domain] Cd Length: 285 Bit Score: 244.26 E-value: 5.02e-80
|
|||||||||
7tmA_OR12D-like | cd15915 | olfactory receptor subfamily 12D and related proteins, member of the class A family of ... |
24-291 | 2.14e-77 | |||||
olfactory receptor subfamily 12D and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 12D and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320581 [Multi-domain] Cd Length: 271 Bit Score: 237.20 E-value: 2.14e-77
|
|||||||||
7tmA_OR5B-like | cd15407 | olfactory receptor subfamily 5B and related proteins, member of the class A family of ... |
49-300 | 3.69e-77 | |||||
olfactory receptor subfamily 5B and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5B and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320529 Cd Length: 279 Bit Score: 236.93 E-value: 3.69e-77
|
|||||||||
7tmA_OR5P-like | cd15416 | olfactory receptor subfamily 5P and related proteins, member of the class A family of ... |
24-300 | 5.36e-77 | |||||
olfactory receptor subfamily 5P and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5P and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320538 [Multi-domain] Cd Length: 279 Bit Score: 236.49 E-value: 5.36e-77
|
|||||||||
7tmA_OR2W-like | cd15434 | olfactory receptor subfamily 2W and related proteins, member of the class A family of ... |
49-298 | 6.53e-76 | |||||
olfactory receptor subfamily 2W and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 2W and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320551 [Multi-domain] Cd Length: 277 Bit Score: 233.43 E-value: 6.53e-76
|
|||||||||
7tmA_OR2A-like | cd15420 | olfactory receptor subfamily 2A and related proteins, member of the class A family of ... |
23-298 | 1.48e-75 | |||||
olfactory receptor subfamily 2A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 2A and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320542 [Multi-domain] Cd Length: 277 Bit Score: 232.60 E-value: 1.48e-75
|
|||||||||
7tmA_OR2_unk | cd15424 | olfactory receptor family 2, unknown subfamily, member of the class A family of ... |
23-298 | 1.38e-74 | |||||
olfactory receptor family 2, unknown subfamily, member of the class A family of seven-transmembrane G protein-coupled receptors; This group represents an unknown subfamily, conserved in some mammalia and sauropsids, in family 2 of olfactory receptors. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320544 [Multi-domain] Cd Length: 277 Bit Score: 230.39 E-value: 1.38e-74
|
|||||||||
7tmA_OR13-like | cd15430 | olfactory receptor family 13 and related proteins, member of the class A family of ... |
49-291 | 8.20e-74 | |||||
olfactory receptor family 13 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor family 13 (subfamilies 13C, 13D, 13F, and 13J), some subfamilies from OR family 2 (2K and 2S), and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320547 [Multi-domain] Cd Length: 270 Bit Score: 228.02 E-value: 8.20e-74
|
|||||||||
7tmA_OR11G-like | cd15913 | olfactory receptor OR11G and related proteins, member of the class A family of ... |
23-291 | 1.76e-73 | |||||
olfactory receptor OR11G and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 11G, 11H, and related proteins in other mammals, and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320579 Cd Length: 270 Bit Score: 227.20 E-value: 1.76e-73
|
|||||||||
7tmA_OR2F-like | cd15429 | olfactory receptor subfamily 2F and related proteins, member of the class A family of ... |
25-298 | 4.98e-71 | |||||
olfactory receptor subfamily 2F and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 2F and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320546 [Multi-domain] Cd Length: 277 Bit Score: 221.12 E-value: 4.98e-71
|
|||||||||
7tmA_OR3A-like | cd15233 | olfactory receptor subfamily 3A3 and related proteins, member of the class A family of ... |
23-298 | 5.09e-70 | |||||
olfactory receptor subfamily 3A3 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 3A3 and 3A4, and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320361 [Multi-domain] Cd Length: 277 Bit Score: 218.51 E-value: 5.09e-70
|
|||||||||
7tmA_OR4A-like | cd15939 | olfactory receptor 4A and related proteins, member of the class A family of ... |
22-291 | 6.12e-70 | |||||
olfactory receptor 4A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 4A, 4C, 4P, 4S, 4X and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320605 [Multi-domain] Cd Length: 267 Bit Score: 217.85 E-value: 6.12e-70
|
|||||||||
7tmA_OR10G-like | cd15916 | olfactory receptor subfamily 10G and related proteins, member of the class A family of ... |
23-298 | 3.92e-69 | |||||
olfactory receptor subfamily 10G and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 10G, 10S, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320582 [Multi-domain] Cd Length: 276 Bit Score: 216.16 E-value: 3.92e-69
|
|||||||||
7tmA_OR6N-like | cd15914 | olfactory receptor OR6N and related proteins, member of the class A family of ... |
23-291 | 7.59e-69 | |||||
olfactory receptor OR6N and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 6N, 6K, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320580 [Multi-domain] Cd Length: 270 Bit Score: 215.31 E-value: 7.59e-69
|
|||||||||
7tmA_OR2B2-like | cd15432 | olfactory receptor subfamily 2B2 and related proteins, member of the class A family of ... |
49-298 | 1.16e-68 | |||||
olfactory receptor subfamily 2B2 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes transmembrane olfactory receptor subfamily 2B2 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320549 [Multi-domain] Cd Length: 277 Bit Score: 215.03 E-value: 1.16e-68
|
|||||||||
7tmA_OR9G-like | cd15418 | olfactory receptor subfamily 9G and related proteins, member of the class A family of ... |
23-300 | 1.45e-68 | |||||
olfactory receptor subfamily 9G and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 9G and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320540 [Multi-domain] Cd Length: 281 Bit Score: 215.03 E-value: 1.45e-68
|
|||||||||
7tmA_OR10S1-like | cd15941 | olfactory receptor subfamily 10S1 and related proteins, member of the class A family of ... |
23-298 | 2.45e-67 | |||||
olfactory receptor subfamily 10S1 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 10S1 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320607 [Multi-domain] Cd Length: 277 Bit Score: 211.63 E-value: 2.45e-67
|
|||||||||
7tmA_OR8B-like | cd15405 | olfactory receptor subfamily 8B and related proteins, member of the class A family of ... |
21-298 | 1.21e-66 | |||||
olfactory receptor subfamily 8B and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 8B and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320527 [Multi-domain] Cd Length: 277 Bit Score: 209.97 E-value: 1.21e-66
|
|||||||||
7tmA_OR2D-like | cd15428 | olfactory receptor subfamily 2D and related proteins, member of the class A family of ... |
22-298 | 6.15e-66 | |||||
olfactory receptor subfamily 2D and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 2D and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320545 [Multi-domain] Cd Length: 277 Bit Score: 208.10 E-value: 6.15e-66
|
|||||||||
7tmA_OR4E-like | cd15940 | olfactory receptor 4E and related proteins, member of the class A family of ... |
23-291 | 2.24e-65 | |||||
olfactory receptor 4E and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 4E and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320606 [Multi-domain] Cd Length: 267 Bit Score: 206.14 E-value: 2.24e-65
|
|||||||||
7tmA_OR10D-like | cd15228 | olfactory receptor subfamily 10D and related proteins, member of the class A family of ... |
23-298 | 3.42e-64 | |||||
olfactory receptor subfamily 10D and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 10D and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320356 [Multi-domain] Cd Length: 275 Bit Score: 203.43 E-value: 3.42e-64
|
|||||||||
7tmA_OR4-like | cd15226 | olfactory receptor family 4 and related proteins, member of the class A family of ... |
23-291 | 4.95e-63 | |||||
olfactory receptor family 4 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor family 4 and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320354 [Multi-domain] Cd Length: 267 Bit Score: 200.12 E-value: 4.95e-63
|
|||||||||
7tmA_OR2Y-like | cd15433 | olfactory receptor subfamily 2Y and related proteins, member of the class A family of ... |
49-298 | 7.31e-61 | |||||
olfactory receptor subfamily 2Y and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 2Y, 2I, and related protein in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320550 [Multi-domain] Cd Length: 277 Bit Score: 195.01 E-value: 7.31e-61
|
|||||||||
7tmA_OR1330-like | cd15946 | olfactory receptor 1330 and related proteins, member of the class A family of ... |
23-291 | 9.25e-60 | |||||
olfactory receptor 1330 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes olfactory receptors 1330 from mouse, Olr859 from rat, and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320612 Cd Length: 270 Bit Score: 191.92 E-value: 9.25e-60
|
|||||||||
7tmA_OR4D-like | cd15936 | olfactory receptor 4D and related proteins, member of the class A family of ... |
22-291 | 1.98e-58 | |||||
olfactory receptor 4D and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 4D and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320602 [Multi-domain] Cd Length: 267 Bit Score: 188.31 E-value: 1.98e-58
|
|||||||||
7tmA_OR4Q2-like | cd15938 | olfactory receptor 4Q2 and related proteins, member of the class A family of ... |
23-291 | 5.46e-57 | |||||
olfactory receptor 4Q2 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 4Q2 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320604 [Multi-domain] Cd Length: 265 Bit Score: 184.69 E-value: 5.46e-57
|
|||||||||
7tmA_OR56-like | cd15223 | olfactory receptor family 56 and related proteins, member of the class A family of ... |
52-295 | 1.68e-55 | |||||
olfactory receptor family 56 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor family 56 and related proteins in other mammals, sauropsids, and fishes. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320351 [Multi-domain] Cd Length: 279 Bit Score: 181.34 E-value: 1.68e-55
|
|||||||||
7tmA_OR51_52-like | cd15917 | olfactory receptor family 51, 52, 56 and related proteins, member of the class A family of ... |
45-292 | 4.35e-55 | |||||
olfactory receptor family 51, 52, 56 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor families 51, 52, 56, and related proteins in other mammals, sauropsids, amphibians, and fishes. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 341351 Cd Length: 275 Bit Score: 180.18 E-value: 4.35e-55
|
|||||||||
7tmA_OR10G6-like | cd15942 | olfactory receptor subfamily 10G6 and related proteins, member of the class A family of ... |
25-298 | 5.43e-54 | |||||
olfactory receptor subfamily 10G6 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 10G6 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320608 Cd Length: 275 Bit Score: 177.24 E-value: 5.43e-54
|
|||||||||
7tmA_OR4Q3-like | cd15935 | olfactory receptor 4Q3 and related proteins, member of the class A family of ... |
48-291 | 6.41e-52 | |||||
olfactory receptor 4Q3 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 4Q3 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320601 [Multi-domain] Cd Length: 268 Bit Score: 171.87 E-value: 6.41e-52
|
|||||||||
7tmA_OR52R_52L-like | cd15951 | olfactory receptor subfamily 52R, 52L, and related proteins, member of the class A family of ... |
46-294 | 6.14e-50 | |||||
olfactory receptor subfamily 52R, 52L, and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamilies 52R, 52L and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320617 Cd Length: 275 Bit Score: 166.75 E-value: 6.14e-50
|
|||||||||
7tmA_OR52P-like | cd15953 | olfactory receptor subfamily 52P and related proteins, member of the class A family of ... |
46-292 | 1.45e-49 | |||||
olfactory receptor subfamily 52P and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 52P and related proteins in other mammals, sauropsids and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 341354 Cd Length: 275 Bit Score: 165.90 E-value: 1.45e-49
|
|||||||||
7tmA_OR52B-like | cd15221 | olfactory receptor subfamily 52B and related proteins, member of the class A family of ... |
46-292 | 1.57e-49 | |||||
olfactory receptor subfamily 52B and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor (OR) subfamilies 52B, 52D, 52H and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320349 Cd Length: 275 Bit Score: 165.93 E-value: 1.57e-49
|
|||||||||
7tmA_OR52I-like | cd15950 | olfactory receptor subfamily 52I and related proteins, member of the class A family of ... |
45-294 | 2.38e-48 | |||||
olfactory receptor subfamily 52I and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 52I and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320616 Cd Length: 275 Bit Score: 162.58 E-value: 2.38e-48
|
|||||||||
7tmA_OR52E-like | cd15952 | olfactory receptor subfamily 52E and related proteins, member of the class A family of ... |
46-294 | 2.40e-47 | |||||
olfactory receptor subfamily 52E and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 52E and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320618 Cd Length: 274 Bit Score: 160.24 E-value: 2.40e-47
|
|||||||||
7tmA_OR51-like | cd15222 | olfactory receptor family 51 and related proteins, member of the class A family of ... |
45-292 | 4.24e-43 | |||||
olfactory receptor family 51 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor family 51 and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320350 Cd Length: 275 Bit Score: 149.19 E-value: 4.24e-43
|
|||||||||
7tm_4 | pfam13853 | Olfactory receptor; The members of this family are transmembrane olfactory receptors. |
46-302 | 3.70e-41 | |||||
Olfactory receptor; The members of this family are transmembrane olfactory receptors. Pssm-ID: 404695 Cd Length: 278 Bit Score: 144.18 E-value: 3.70e-41
|
|||||||||
7tmA_OR4N-like | cd15937 | olfactory receptor 4N, 4M, and related proteins, member of the class A family of ... |
23-291 | 4.39e-41 | |||||
olfactory receptor 4N, 4M, and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 4N, 4M, and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320603 Cd Length: 267 Bit Score: 143.72 E-value: 4.39e-41
|
|||||||||
7tmA_OR52W-like | cd15956 | olfactory receptor subfamily 52W and related proteins, member of the class A family of ... |
46-294 | 5.43e-40 | |||||
olfactory receptor subfamily 52W and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 52W and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320622 [Multi-domain] Cd Length: 275 Bit Score: 141.15 E-value: 5.43e-40
|
|||||||||
7tmA_OR52N-like | cd15954 | olfactory receptor subfamily 52N and related proteins, member of the class A family of ... |
46-294 | 9.39e-39 | |||||
olfactory receptor subfamily 52N and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 52N and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320620 Cd Length: 276 Bit Score: 137.65 E-value: 9.39e-39
|
|||||||||
7tmA_OR52K-like | cd15948 | olfactory receptor subfamily 52K and related proteins, member of the class A family of ... |
46-295 | 3.34e-38 | |||||
olfactory receptor subfamily 52K and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 52K and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320614 [Multi-domain] Cd Length: 277 Bit Score: 136.57 E-value: 3.34e-38
|
|||||||||
7tmA_OR52M-like | cd15949 | olfactory receptor subfamily 52M and related proteins, member of the class A family of ... |
46-295 | 9.29e-35 | |||||
olfactory receptor subfamily 52M and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 52M and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320615 Cd Length: 292 Bit Score: 127.59 E-value: 9.29e-35
|
|||||||||
7tmA_OR52A-like | cd15955 | olfactory receptor subfamily 52A and related proteins, member of the class A family of ... |
46-294 | 5.36e-34 | |||||
olfactory receptor subfamily 52A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 52A and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320621 [Multi-domain] Cd Length: 276 Bit Score: 125.27 E-value: 5.36e-34
|
|||||||||
7tm_1 | pfam00001 | 7 transmembrane receptor (rhodopsin family); This family contains, amongst other ... |
45-287 | 1.28e-29 | |||||
7 transmembrane receptor (rhodopsin family); This family contains, amongst other G-protein-coupled receptors (GCPRs), members of the opsin family, which have been considered to be typical members of the rhodopsin superfamily. They share several motifs, mainly the seven transmembrane helices, GCPRs of the rhodopsin superfamily. All opsins bind a chromophore, such as 11-cis-retinal. The function of most opsins other than the photoisomerases is split into two steps: light absorption and G-protein activation. Photoisomerases, on the other hand, are not coupled to G-proteins - they are thought to generate and supply the chromophore that is used by visual opsins. Pssm-ID: 459624 [Multi-domain] Cd Length: 256 Bit Score: 113.16 E-value: 1.28e-29
|
|||||||||
7tm_classA_rhodopsin-like | cd00637 | rhodopsin receptor-like class A family of the seven-transmembrane G protein-coupled receptor ... |
42-291 | 8.78e-18 | |||||
rhodopsin receptor-like class A family of the seven-transmembrane G protein-coupled receptor superfamily; Class A rhodopsin-like receptors constitute about 90% of all GPCRs. The class A GPCRs include the light-sensitive rhodopsin as well as receptors for biogenic amines, lipids, nucleotides, odorants, peptide hormones, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Based on sequence similarity, GPCRs can be divided into six major classes: class A (rhodopsin-like family), class B (Methuselah-like, adhesion and secretin-like receptor family), class C (metabotropic glutamate receptor family), class D (fungal mating pheromone receptors), class E (cAMP receptor family), and class F (frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections. Pssm-ID: 410626 [Multi-domain] Cd Length: 275 Bit Score: 81.57 E-value: 8.78e-18
|
|||||||||
7tmA_amine_R-like | cd14967 | amine receptors and similar proteins, member of the class A family of seven-transmembrane G ... |
51-298 | 2.98e-12 | |||||
amine receptors and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; Amine receptors of the class A family of GPCRs include adrenoceptors, 5-HT (serotonin) receptors, muscarinic cholinergic receptors, dopamine receptors, histamine receptors, and trace amine receptors. The receptors of amine subfamily are major therapeutic targets for the treatment of neurological disorders and psychiatric diseases. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320098 [Multi-domain] Cd Length: 259 Bit Score: 65.28 E-value: 2.98e-12
|
|||||||||
7tmA_NTSR-like | cd14979 | neurotensin receptors and related G protein-coupled receptors, member of the class A family of ... |
52-173 | 3.30e-06 | |||||
neurotensin receptors and related G protein-coupled receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; This subfamily includes the neurotensin receptors and related G-protein coupled receptors, including neuromedin U receptors, growth hormone secretagogue receptor, motilin receptor, the putative GPR39 and the capa receptors from insects. These receptors all bind peptide hormones with diverse physiological effects. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320110 [Multi-domain] Cd Length: 300 Bit Score: 47.73 E-value: 3.30e-06
|
|||||||||
7tmA_Vasopressin_Oxytocin | cd15196 | vasopressin and oxytocin receptors, member of the class A family of seven-transmembrane G ... |
53-149 | 7.90e-06 | |||||
vasopressin and oxytocin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Vasopressin (also known as arginine vasopressin or anti-diuretic hormone) and oxytocin are synthesized in the hypothalamus and are released from the posterior pituitary gland. The actions of vasopressin are mediated by the interaction of this hormone with three receptor subtypes: V1aR, V1bR, and V2R. These subtypes are differ in localization, function, and signaling pathways. Activation of V1aR and V1bR stimulate phospholipase C, while activation of V2R stimulates adenylate cyclase. Although vasopressin and oxytocin differ only by two amino acids and stimulate the same cAMP/PKA pathway, they have divergent physiological functions. Vasopressin is involved in regulating blood pressure and the balance of water and sodium ions, whereas oxytocin plays an important role in the uterus during childbirth and in lactation. Pssm-ID: 320324 [Multi-domain] Cd Length: 264 Bit Score: 46.46 E-value: 7.90e-06
|
|||||||||
7tmA_SREB-like | cd15005 | super conserved receptor expressed in brain and related proteins, member of the class A family ... |
49-154 | 1.71e-05 | |||||
super conserved receptor expressed in brain and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; The SREB (super conserved receptor expressed in brain) subfamily consists of at least three members, named SREB1 (GPR27), SREB2 (GPR85), and SREB3 (GPR173). They are very highly conserved G protein-coupled receptors throughout vertebrate evolution, however no endogenous ligands have yet been identified. SREB2 is greatly expressed in brain regions involved in psychiatric disorders and cognition, such as the hippocampal dentate gyrus. Genetic studies in both humans and mice have shown that SREB2 influences brain size and negatively regulates hippocampal adult neurogenesis and neurogenesis-dependent cognitive function, all of which are suggesting a potential link between SREB2 and schizophrenia. All three SREB genes are highly expressed in differentiated hippocampal neural stem cells. Furthermore, all GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320134 [Multi-domain] Cd Length: 329 Bit Score: 45.91 E-value: 1.71e-05
|
|||||||||
7tmA_TAARs | cd15055 | trace amine-associated receptors, member of the class A family of seven-transmembrane G ... |
51-154 | 1.78e-05 | |||||
trace amine-associated receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; The trace amine-associated receptors (TAARs) are a distinct subfamily within the class A G protein-coupled receptor family. Trace amines are endogenous amines of unknown function that have strong structural and metabolic similarity to classical monoamine neurotransmitters (serotonin, noradrenaline, adrenaline, dopamine, and histamine), which play critical roles in human and animal physiological activities such as cognition, consciousness, mood, motivation, perception, and autonomic responses. However, trace amines are found in the mammalian brain at very low concentrations compared to classical monoamines. Trace amines, including p-tyramine, beta-phenylethylamine, and tryptamine, are also thought to act as chemical messengers to exert their biological effects in vertebrates. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320183 [Multi-domain] Cd Length: 285 Bit Score: 45.62 E-value: 1.78e-05
|
|||||||||
7tmA_GPR101 | cd15215 | orphan G protein-coupled receptor 101, member of the class A family of seven-transmembrane G ... |
60-149 | 1.98e-05 | |||||
orphan G protein-coupled receptor 101, member of the class A family of seven-transmembrane G protein-coupled receptors; Gpr101, an orphan GPCR, is predominantly expressed in the brain within discrete nuclei and is predicted to couple to the stimulatory G(s) protein, a potent activator of adenylate cyclase. GPR101 has been implicated in mediating the actions of GnRH-(1-5), a pentapeptide formed by metallopeptidase cleavage of the decapeptide gonadotropin-releasing hormone (GnRH), which plays a critical role in the regulation of the hypothalamic-pituitary-gonadal axis. GnRH-(1-5) acts on GPR101 to stimulate epidermal growth factor (EFG) release and EFG-receptor (EGFR) phosphorylation, leading to enhanced cell migration and invasion in the Ishikawa endometrial cancer cell line. Furthermore, these effects of GnRH-(1-5) are also dependent on enzymatic activation of matrix metallopeptidase-9 (MMP-9). GPR101 is a member of the class A family of GPCRs, which includes receptors for hormones, neurotransmitters, sensory stimuli, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320343 [Multi-domain] Cd Length: 261 Bit Score: 45.22 E-value: 1.98e-05
|
|||||||||
7tmA_EDG-like | cd14972 | endothelial differentiation gene family, member of the class A family of seven-transmembrane G ... |
51-294 | 1.04e-04 | |||||
endothelial differentiation gene family, member of the class A family of seven-transmembrane G protein-coupled receptors; This group represents the endothelial differentiation gene (Edg) family of G-protein coupled receptors, melanocortin/ACTH receptors, and cannabinoid receptors as well as their closely related receptors. The Edg GPCRs bind blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). Melanocortin receptors bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. Two types of cannabinoid receptors, CB1 and CB2, are activated by naturally occurring endocannabinoids, cannabis plant-derived cannabinoids such as tetrahydrocannabinol, or synthetic cannabinoids. The CB receptors are involved in the various physiological processes such as appetite, mood, memory, and pain sensation. CB1 receptor is expressed predominantly in central and peripheral neurons, while CB2 receptor is found mainly in the immune system. Pssm-ID: 341317 [Multi-domain] Cd Length: 275 Bit Score: 43.05 E-value: 1.04e-04
|
|||||||||
7tmA_Beta_AR | cd15058 | beta adrenergic receptors (adrenoceptors), member of the class A family of seven-transmembrane ... |
45-153 | 1.36e-04 | |||||
beta adrenergic receptors (adrenoceptors), member of the class A family of seven-transmembrane G protein-coupled receptors; The beta adrenergic receptor (beta adrenoceptor), also known as beta AR, is activated by hormone adrenaline (epinephrine) and plays important roles in regulating cardiac function and heart rate, as well as pulmonary physiology. The human heart contains three subtypes of the beta AR: beta-1 AR, beta-2 AR, and beta-3 AR. Beta-1 AR and beta-2 AR, which expressed at about a ratio of 70:30, are the major subtypes involved in modulating cardiac contractility and heart rate by positively stimulating the G(s) protein-adenylate cyclase-cAMP-PKA signaling pathway. In contrast, beta-3 AR produces negative inotropic effects by activating inhibitory G(i) proteins. The aberrant expression of beta-ARs can lead to cardiac dysfunction such as arrhythmias or heart failure. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320186 [Multi-domain] Cd Length: 305 Bit Score: 42.82 E-value: 1.36e-04
|
|||||||||
7tmA_Prostanoid_R | cd14981 | G protein-coupled receptors for prostanoids, member of the class A family of ... |
51-156 | 1.78e-04 | |||||
G protein-coupled receptors for prostanoids, member of the class A family of seven-transmembrane G protein-coupled receptors; Prostanoids are the cyclooxygenase (COX) metabolites of arachidonic acid, which include the prostaglandins (PGD2, PGE2, PGF2alpha), prostacyclin (PGI2), and thromboxane A2 (TxA2). These five major bioactive prostanoids acts as mediators or modulators in a wide range of physiological and pathophysiological processes within the kidney and play important roles in inflammation, platelet aggregation, and vasoconstriction/relaxation, among many others. They act locally by preferentially interacting with G protein-coupled receptors designated DP, EP. FP, IP, and TP, respectively. The phylogenetic tree suggests that the prostanoid receptors can be grouped into two major branches: G(s)-coupled (DP1, EP2, EP4, and IP) and G(i)- (EP3) or G(q)-coupled (EP1, FP, and TP), forming three clusters. Pssm-ID: 320112 [Multi-domain] Cd Length: 288 Bit Score: 42.23 E-value: 1.78e-04
|
|||||||||
7tmA_Opsins_type2_animals | cd14969 | type 2 opsins in animals, member of the class A family of seven-transmembrane G ... |
51-146 | 2.42e-04 | |||||
type 2 opsins in animals, member of the class A family of seven-transmembrane G protein-coupled receptors; This rhodopsin family represents the type 2 opsins found in vertebrates and invertebrates except sponge. Type 2 opsins primarily function as G protein coupled receptors and are responsible for vision as well as for circadian rhythm and pigment regulation. On the contrary, type 1 opsins such as bacteriorhodopsin and proteorhodopsin are found in both prokaryotic and eukaryotic microbes, functioning as light-gated ion channels, proton pumps, sensory receptors and in other unknown functions. Although these two opsin types share seven-transmembrane domain topology and a conserved lysine reside in the seventh helix, type 1 opsins do not activate G-proteins and are not evolutionarily related to type 2. Type 2 opsins can be classified into six distinct subfamilies including the vertebrate opsins/encephalopsins, the G(o) opsins, the G(s) opsins, the invertebrate G(q) opsins, the photoisomerases, and the neuropsins. Pssm-ID: 381741 [Multi-domain] Cd Length: 284 Bit Score: 41.81 E-value: 2.42e-04
|
|||||||||
7tmA_Histamine_H1R | cd15050 | histamine subtype H1 receptor, member of the class A family of seven-transmembrane G ... |
45-295 | 2.42e-04 | |||||
histamine subtype H1 receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes histamine receptor subtype H1R, a member of histamine receptor family, which belongs to the class A of GPCRs. Histamine plays a key role as chemical mediator and neurotransmitter in various physiological and pathophysiological processes in the central and peripheral nervous system. Histamine exerts its functions by binding to four different G protein-coupled receptors (H1-H4). H1R selectively interacts with the G(q)-type G protein that activates phospholipase C and the phosphatidylinositol pathway. Antihistamines, a widely used anti-allergy medication, act on the H1 subtype and produce drowsiness as a side effect. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320178 [Multi-domain] Cd Length: 263 Bit Score: 42.03 E-value: 2.42e-04
|
|||||||||
7tmA_TAAR1 | cd15314 | trace amine-associated receptor 1 and similar receptors, member of the class A family of ... |
112-287 | 3.33e-04 | |||||
trace amine-associated receptor 1 and similar receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; The trace amine-associated receptor 1 (TAAR1) is one of the 15 identified trace amine-associated receptor subtypes, which form a distinct subfamily within the class A G protein-coupled receptor family. Trace amines are endogenous amines of unknown function that have strong structural and metabolic similarity to classical monoamine neurotransmitters (serotonin, noradrenaline, adrenaline, dopamine, and histamine), which play critical roles in human and animal physiological activities such as cognition, consciousness, mood, motivation, perception, and autonomic responses. However, trace amines are found in the mammalian brain at very low concentrations compared to classical monoamines. TAAR1 is coupled to the Gs protein, which leads to activation of adenylate cyclase, and is thought to play functional role in the regulation of brain monoamines. TAAR1 is also shown to be activated by psychoactive compounds such as Ecstasy (MDMA), amphetamine and LSD. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320438 [Multi-domain] Cd Length: 282 Bit Score: 41.46 E-value: 3.33e-04
|
|||||||||
7tmA_Adenosine_R_A2B | cd15069 | adenosine receptor subtype 2AB, member of the class A family of seven-transmembrane G ... |
45-155 | 3.80e-04 | |||||
adenosine receptor subtype 2AB, member of the class A family of seven-transmembrane G protein-coupled receptors; The A2B receptor, a member of the adenosine receptor family of G protein-coupled receptors, binds adenosine as its endogenous ligand and is involved in regulating myocardial oxygen consumption and coronary blood flow. High-affinity A2A and low-affinity A2B receptors are preferentially coupled to G proteins of the stimulatory (Gs) family, which lead to activation of adenylate cyclase and thereby increasing the intracellular cAMP levels. The A2A receptor activation protects against tissue injury and acts as anti-inflammatory agent. In human skin endothelial cells, activation of A2B receptor, but not the A2A receptor, promotes angiogenesis. Alternatively, activated A2A receptor, but not the A2B receptor, promotes angiogenesis in human umbilical vein and lung microvascular endothelial cells. The A2A receptor alters cardiac contractility indirectly by modulating the anti-adrenergic effect of A1 receptor, while the A2B receptor exerts direct effects on cardiac contractile function, but does not modulate beta-adrenergic or A1 anti-adrenergic effects. Pssm-ID: 320197 [Multi-domain] Cd Length: 294 Bit Score: 41.46 E-value: 3.80e-04
|
|||||||||
7tmA_MC5R | cd15354 | melanocortin receptor subtype 5, member of the class A family of seven-transmembrane G ... |
27-146 | 4.01e-04 | |||||
melanocortin receptor subtype 5, member of the class A family of seven-transmembrane G protein-coupled receptors; The melanocortin receptor (MCR) subfamily is a member of the class A family of seven-transmembrane G-protein coupled receptors. MCRs bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. There are five known subtypes of the MCR subfamily. MC1R is involved in regulating skin pigmentation and hair color. ACTH (adrenocorticotropic hormone) is the only endogenous ligand for MC2R, which shows low sequence similarity with other melanocortin receptors. Mutations in MC2R cause familial glucocorticoid deficiency type 1, in which patients have elevated plasma ACTH and low cortisol levels. MC3R is expressed in many parts of the brain and peripheral tissues and involved in the regulation of energy homeostasis. MC4R is expressed primarily in the central nervous system and involved in both eating behavior and sexual function. MC5R is widely expressed in peripheral tissues and is mainly involved in the regulation of exocrine gland function. Pssm-ID: 320476 [Multi-domain] Cd Length: 270 Bit Score: 41.46 E-value: 4.01e-04
|
|||||||||
7tmA_Adenosine_R | cd14968 | adenosine receptor subfamily, member of the class A family of seven-transmembrane G ... |
45-155 | 4.03e-04 | |||||
adenosine receptor subfamily, member of the class A family of seven-transmembrane G protein-coupled receptors; The adenosine receptors (or P1 receptors), a family of G protein-coupled purinergic receptors, bind adenosine as their endogenous ligand. There are four types of adenosine receptors in human, designated as A1, A2A, A2B, and A3. Each type is encoded by a different gene and has distinct functions with some overlap. For example, both A1 and A2A receptors are involved in regulating myocardial oxygen consumption and coronary blood flow in the heart, while the A2A receptor also has a broad spectrum of anti-inflammatory effects in the body. These two receptors also expressed in the brain, where they have important roles in the release of other neurotransmitters such as dopamine and glutamate, while the A2B and A3 receptors found primarily in the periphery and play important roles in inflammation and immune responses. The A1 and A3 receptors preferentially interact with G proteins of the G(i/o) family, thereby lowering the intracellular cAMP levels, whereas the A2A and A2B receptors interact with G proteins of the G(s) family, activating adenylate cyclase to elevate cAMP levels. Pssm-ID: 341316 [Multi-domain] Cd Length: 285 Bit Score: 41.47 E-value: 4.03e-04
|
|||||||||
7tmA_TAAR5 | cd15318 | trace amine-associated receptor 5, member of the class A family of seven-transmembrane G ... |
52-148 | 4.91e-04 | |||||
trace amine-associated receptor 5, member of the class A family of seven-transmembrane G protein-coupled receptors; The trace amine-associated receptor 5 is one of the 15 identified amine-activated G protein-coupled receptors (TAARs), a distinct subfamily within the class A G protein-coupled receptors. Trace amines are endogenous amines of unknown function that have strong structural and metabolic similarity to classical monoamine neurotransmitters (serotonin, noradrenaline, adrenaline, dopamine, and histamine), which play critical roles in human and animal physiological activities such as cognition, consciousness, mood, motivation, perception, and autonomic responses. However, trace amines are found in the mammalian brain at very low concentrations compared to classical monoamines. Trace amines, including p-tyramine, beta-phenylethylamine, and tryptamine, are also thought to act as chemical messengers to exert their biological effects in vertebrates. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320441 [Multi-domain] Cd Length: 282 Bit Score: 41.00 E-value: 4.91e-04
|
|||||||||
7tmA_MCR | cd15103 | melanocortin receptors, member of the class A family of seven-transmembrane G protein-coupled ... |
45-146 | 5.49e-04 | |||||
melanocortin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; The melanocortin receptor (MCR) subfamily is a member of the class A family of seven-transmembrane G-protein coupled receptors. MCRs bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. There are five known subtypes of the MCR subfamily. MC1R is involved in regulating skin pigmentation and hair color. ACTH (adrenocorticotropic hormone) is the only endogenous ligand for MC2R, which shows low sequence similarity with other melanocortin receptors. Mutations in MC2R cause familial glucocorticoid deficiency type 1, in which patients have elevated plasma ACTH and low cortisol levels. MC3R is expressed in many parts of the brain and peripheral tissues and involved in the regulation of energy homeostasis. MC4R is expressed primarily in the central nervous system and involved in both eating behavior and sexual function. MC5R is widely expressed in peripheral tissues and is mainly involved in the regulation of exocrine gland function. Pssm-ID: 320231 [Multi-domain] Cd Length: 270 Bit Score: 40.94 E-value: 5.49e-04
|
|||||||||
7tmA_Beta3_AR | cd15959 | beta-3 adrenergic receptors (adrenoceptors), member of the class A family of ... |
45-154 | 8.65e-04 | |||||
beta-3 adrenergic receptors (adrenoceptors), member of the class A family of seven-transmembrane G protein-coupled receptors; The beta-3 adrenergic receptor (beta-3 adrenoceptor), also known as beta-3 AR, is activated by adrenaline and plays important roles in regulating cardiac function and heart rate. The human heart contains three subtypes of the beta AR: beta-1 AR, beta-2 AR, and beta-3 AR. Beta-1 AR and beta-2 AR, which expressed at about a ratio of 70:30, are the major subtypes involved in modulating cardiac contractility and heart rate by positively stimulating the G(s) protein-adenylate cyclase-cAMP-PKA signaling pathway. In contrast, beta-3 AR produces negative inotropic effects by activating inhibitory G(i) proteins. The aberrant expression of betrayers can lead to cardiac dysfunction such as arrhythmias or heart failure. Pssm-ID: 320625 [Multi-domain] Cd Length: 302 Bit Score: 40.28 E-value: 8.65e-04
|
|||||||||
7tmA_NPSR | cd15197 | neuropeptide S receptor, member of the class A family of seven-transmembrane G protein-coupled ... |
56-154 | 8.89e-04 | |||||
neuropeptide S receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; Neuropeptide S (NPS) promotes arousal and anxiolytic-like effects by activating its cognate receptor NPSR. NPSR is widely expressed in the brain, and its activation induces an elevation of intracellular calcium and cAMP concentrations, presumably by coupling to G(s) and G(q) proteins. Mutations in NPSR have been associated with an increased susceptibility to asthma. NPSR was originally identified as an orphan receptor GPR154 and is also known as G protein receptor for asthma susceptibility (GPRA) or vasopressin receptor-related receptor 1 (VRR1). Pssm-ID: 320325 [Multi-domain] Cd Length: 294 Bit Score: 40.49 E-value: 8.89e-04
|
|||||||||
7tmA_leucokinin-like | cd15393 | leucokinin-like peptide receptor from tick and related proteins, member of the class A family ... |
112-177 | 9.85e-04 | |||||
leucokinin-like peptide receptor from tick and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This subgroup includes a leucokinin-like peptide receptor from the Southern cattle tick, Boophilus microplus, a pest of cattle world-wide. Leucokinins are invertebrate neuropeptides that exhibit myotropic and diuretic activity. This receptor is the first neuropeptide receptor known from the Acari and the second known in the subfamily of leucokinin-like peptide G-protein-coupled receptors. The other known leucokinin-like peptide receptor is a lymnokinin receptor from the mollusc Lymnaea stagnalis. Pssm-ID: 320515 [Multi-domain] Cd Length: 288 Bit Score: 40.08 E-value: 9.85e-04
|
|||||||||
7tmA_TAAR5-like | cd15317 | trace amine-associated receptor 5 and similar receptors, member of the class A family of ... |
52-148 | 1.10e-03 | |||||
trace amine-associated receptor 5 and similar receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Included in this group are mammalian TAAR5, TAAR6, TAAR8, TAAR9, and similar proteins. They are among the 15 identified trace amine-associated receptors (TAARs), a distinct subfamily within the class A G protein-coupled receptors. Trace amines are endogenous amines of unknown function that have strong structural and metabolic similarity to classical monoamine neurotransmitters (serotonin, noradrenaline, adrenaline, dopamine, and histamine), which play critical roles in human and animal physiological activities such as cognition, consciousness, mood, motivation, perception, and autonomic responses. However, trace amines are found in the mammalian brain at very low concentrations compared to classical monoamines. Trace amines, including p-tyramine, beta-phenylethylamine, and tryptamine, are also thought to act as chemical messengers to exert their biological effects in vertebrates. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320440 [Multi-domain] Cd Length: 290 Bit Score: 40.12 E-value: 1.10e-03
|
|||||||||
7tmA_Opioid_R-like | cd14970 | opioid receptors and related proteins, member of the class A family of seven-transmembrane G ... |
52-156 | 1.49e-03 | |||||
opioid receptors and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes opioid receptors, somatostatin receptors, melanin-concentrating hormone receptors (MCHRs), and neuropeptides B/W receptors. Together they constitute the opioid receptor-like family, members of the class A G-protein coupled receptors. Opioid receptors are coupled to inhibitory G proteins of the G(i/o) family and are involved in regulating a variety of physiological functions such as pain, addiction, mood, stress, epileptic seizure, and obesity, among many others. G protein-coupled somatostatin receptors (SSTRs), which display strong sequence similarity with opioid receptors, binds somatostatin (somatotropin release inhibiting factor), a polypeptide hormone that regulates a wide variety of physiological functions such as neurotransmission, cell proliferation, contractility of smooth muscle cells, and endocrine signaling as well as inhibition of the release of many secondary hormones. MCHR binds melanin concentrating hormone and is presumably involved in the neuronal regulation of food intake. Despite strong homology with somatostatin receptors, MCHR does not appear to bind somatostatin. Neuropeptides B/W receptors are primarily expressed in the CNS and stimulate the cortisol secretion by activating the adenylate cyclase- and the phospholipase C-dependent signaling pathways. Pssm-ID: 320101 [Multi-domain] Cd Length: 282 Bit Score: 39.59 E-value: 1.49e-03
|
|||||||||
7tmA_OXR | cd15208 | orexin receptors, member of the class A family of seven-transmembrane G protein-coupled ... |
51-154 | 1.53e-03 | |||||
orexin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Orexins (OXs, also referred to as hypocretins) are neuropeptide hormones that regulate the sleep-wake cycle and potently influence homeostatic systems regulating appetite and feeding behavior or modulating emotional responses such as anxiety or panic. OXs are synthesized as prepro-orexin (PPO) in the hypothalamus and then proteolytically cleaved into two forms of isoforms: orexin-A (OX-A) and orexin-B (OX-B). OXA is a 33 amino-acid peptide with N-terminal pyroglutamyl residue and two intramolecular disulfide bonds, whereas OXB is a 28 amino-acid linear peptide with no disulfide bonds. OX-A binds orexin receptor 1 (OX1R) with high-affinity, but also binds with somewhat low-affinity to OX2R, and signals primarily to Gq coupling, whereas OX-B shows a strong preference for the orexin receptor 2 (OX2R) and signals through Gq or Gi/o coupling. Thus, activation of OX1R or OX2R will activate phospholipase activity and the phosphatidylinositol and calcium signaling pathways. Additionally, OX2R activation can also lead to inhibition of adenylate cyclase. Pssm-ID: 320336 [Multi-domain] Cd Length: 303 Bit Score: 39.68 E-value: 1.53e-03
|
|||||||||
7tmA_ETH-R | cd14997 | ecdysis-triggering hormone receptors, member of the class A family of seven-transmembrane G ... |
45-149 | 1.54e-03 | |||||
ecdysis-triggering hormone receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; This subgroup represents the ecdysis-triggering hormone receptors found in insects, which are members of the class A family of seven-transmembrane G-protein coupled receptors. Ecdysis-triggering hormones are vital regulatory signals that govern the stereotypic physiological sequence leading to cuticle shedding in insects. Thus, the ETH signaling system has been a target for the design of more sophisticated insect-selective pest control strategies. Two subtypes of ecdysis-triggering hormone receptor were identified in Drosophila melanogaster. Blood-borne ecdysis-triggering hormone (ETH) activates the behavioral sequence through direct actions on the central nervous system. In insects, ecdysis is thought to be controlled by the interaction between peptide hormones; in particular between ecdysis-triggering hormone (ETH) from the periphery and eclosion hormone (EH) and crustacean cardioactive peptide (CCAP) from the central nervous system. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320128 [Multi-domain] Cd Length: 294 Bit Score: 39.58 E-value: 1.54e-03
|
|||||||||
7tmA_Gal2_Gal3_R | cd15097 | galanin receptor subtypes 2 and 3, member of the class A family of seven-transmembrane G ... |
53-149 | 1.55e-03 | |||||
galanin receptor subtypes 2 and 3, member of the class A family of seven-transmembrane G protein-coupled receptors; The G protein-coupled galanin receptors bind galanin, a neuropeptide that is widely expressed in the brain, peripheral tissues, and endocrine glands. Three receptors subtypes have been so far identified: GAL1, GAL2, and GAL3. The specific functions of each subtype remains mostly unknown, although galanin is thought to be involved in a variety of neuronal functions such as hormone release and food intake. Galanin is implicated in numerous neurological and psychiatric diseases including Alzheimer's disease, depression, eating disorders, epilepsy and stroke, among many others. Pssm-ID: 320225 [Multi-domain] Cd Length: 279 Bit Score: 39.42 E-value: 1.55e-03
|
|||||||||
7tmA_D1-like_dopamine_R | cd15057 | D1-like family of dopamine receptors, member of the class A family of seven-transmembrane G ... |
110-154 | 1.98e-03 | |||||
D1-like family of dopamine receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Dopamine receptors are members of the class A G protein-coupled receptors that are involved in many neurological processes in the central nervous system (CNS). The neurotransmitter dopamine is the primary endogenous agonist for dopamine receptors. Dopamine receptors consist of at least five subtypes: D1, D2, D3, D4, and D5. The D1 and D5 subtypes are members of the D1-like family of dopamine receptors, whereas the D2, D3 and D4 subtypes are members of the D2-like family. The D1-like family receptors are coupled to G proteins of the G(s) family, which activate adenylate cyclase, causing cAMP formation and activation of protein kinase A. In contrast, activation of D2-like family receptors is linked to G proteins of the G(i) family, which inhibit adenylate cyclase. Dopamine receptors are major therapeutic targets for neurological and psychiatric disorders such as drug abuse, depression, schizophrenia, or Parkinson's disease. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320185 [Multi-domain] Cd Length: 299 Bit Score: 39.34 E-value: 1.98e-03
|
|||||||||
7tmA_MC4R | cd15353 | melanocortin receptor subtype 4, member of the class A family of seven-transmembrane G ... |
27-146 | 2.42e-03 | |||||
melanocortin receptor subtype 4, member of the class A family of seven-transmembrane G protein-coupled receptors; The melanocortin receptor (MCR) subfamily is a member of the class A family of seven-transmembrane G-protein coupled receptors. MCRs bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. There are five known subtypes of the MCR subfamily. MC1R is involved in regulating skin pigmentation and hair color. ACTH (adrenocorticotropic hormone) is the only endogenous ligand for MC2R, which shows low sequence similarity with other melanocortin receptors. Mutations in MC2R cause familial glucocorticoid deficiency type 1, in which patients have elevated plasma ACTH and low cortisol levels. MC3R is expressed in many parts of the brain and peripheral tissues and involved in the regulation of energy homeostasis. MC4R is expressed primarily in the central nervous system and involved in both eating behavior and sexual function. MC5R is widely expressed in peripheral tissues and is mainly involved in the regulation of exocrine gland function. Pssm-ID: 320475 [Multi-domain] Cd Length: 269 Bit Score: 38.74 E-value: 2.42e-03
|
|||||||||
7tmA_5-HT6 | cd15054 | serotonin receptor subtype 6, member of the class A family of seven-transmembrane G ... |
52-149 | 2.51e-03 | |||||
serotonin receptor subtype 6, member of the class A family of seven-transmembrane G protein-coupled receptors; The 5-HT6 receptors are a subfamily of serotonin receptors that bind the neurotransmitter serotonin (5HT; 5-hydroxytryptamine) in the mammalian central nervous system (CNS). 5-HT6 receptors are selectively linked to G proteins of the G(s) family, which positively stimulate adenylate cyclase, causing cAMP formation and activation of protein kinase A. The 5-HT6 receptors mediates excitatory neurotransmission and are involved in learning and memory; thus they are promising targets for the treatment of cognitive impairment. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320182 [Multi-domain] Cd Length: 267 Bit Score: 38.63 E-value: 2.51e-03
|
|||||||||
7tmA_Angiotensin_R-like | cd14985 | angiotesin receptor family and its related G protein-coupled receptors, member of the class A ... |
59-231 | 2.58e-03 | |||||
angiotesin receptor family and its related G protein-coupled receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes the angiotensin receptors, the bradykinin receptors, apelin receptor as well as putative G-protein coupled receptors (GPR15 and GPR25). Angiotensin II (Ang II), the main effector in the renin-angiotensin system, plays a crucial role in the regulation of cardiovascular homeostasis through its type 1 (AT1) and type 2 (AT2) receptors. Ang II contributes to cardiovascular diseases such as hypertension and atherosclerosis via AT1R activation. Ang II increases blood pressure through Gq-mediated activation of phospholipase C, resulting in phosphoinositide (PI) hydrolysis and increased intracellular calcium levels. Through the AT2 receptor, Ang II counteracts the vasoconstrictor action of AT1R and thereby induces vasodilation, sodium excretion, and reduction of blood pressure. Bradykinins (BK) are pro-inflammatory peptides that mediate various vascular and pain responses to tissue injury through its B1 and B2 receptors. Apelin (APJ) receptor binds the endogenous peptide ligands, apelin and Toddler/Elabela. APJ is an adipocyte-derived hormone that is ubiquitously expressed throughout the human body, and Toddler/Elabela is a short secretory peptide that is required for normal cardiac development in zebrafish. Activation of APJ receptor plays key roles in diverse physiological processes including vasoconstriction and vasodilation, cardiac muscle contractility, angiogenesis, and regulation of water balance and food intake. Orphan receptors, GPR15 and GPR25, share strong sequence homology to the angiotensin II type AT1 and AT2 receptors. Pssm-ID: 341320 [Multi-domain] Cd Length: 284 Bit Score: 38.90 E-value: 2.58e-03
|
|||||||||
7tmA_5-HT1_5_7 | cd15064 | serotonin receptor subtypes 1, 5 and 7, member of the class A family of seven-transmembrane G ... |
110-154 | 3.07e-03 | |||||
serotonin receptor subtypes 1, 5 and 7, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes serotonin receptor subtypes 1, 5, and 7 that are activated by the neurotransmitter serotonin. The 5-HT1 and 5-HT5 receptors mediate inhibitory neurotransmission by coupling to G proteins of the G(i/o) family. The 5-HT1 receptor subfamily includes 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F. There is no 5-HT1C receptor subtype, as it has been reclassified as 5-HT2C receptor. The 5-HT5A and 5-HT5B receptors have been cloned from rat and mouse, but only the 5-HT5A isoform has been identified in human because of the presence of premature stop codons in the human 5-HT5B gene, which prevents a functional receptor from being expressed. The 5-HT7 receptor is coupled to Gs, which positively stimulates adenylate cyclase activity, leading to increased intracellular cAMP formation and calcium influx. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression. Pssm-ID: 320192 [Multi-domain] Cd Length: 258 Bit Score: 38.46 E-value: 3.07e-03
|
|||||||||
7tmA_alpha1D_AR | cd15327 | alpha-1 adrenergic receptors subtype D, member of the class A family of seven-transmembrane G ... |
45-154 | 4.49e-03 | |||||
alpha-1 adrenergic receptors subtype D, member of the class A family of seven-transmembrane G protein-coupled receptors; The alpha-1 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that primarily mediate smooth muscle contraction: alpha-1A, alpha-1B, and alpha-1D. Activation of alpha-1 receptors by catecholamines such as norepinephrine and epinephrine couples to the G(q) protein, which then activates the phospholipase C pathway, leading to an increase in IP3 and calcium. Consequently, the elevation of intracellular calcium concentration leads to vasoconstriction in smooth muscle of blood vessels. In addition, activation of alpha-1 receptors by phenylpropanolamine (PPA) produces anorexia and may induce appetite suppression in rats. Pssm-ID: 320450 [Multi-domain] Cd Length: 261 Bit Score: 37.97 E-value: 4.49e-03
|
|||||||||
7tmA_MC3R | cd15352 | melanocortin receptor subtype 3, member of the class A family of seven-transmembrane G ... |
27-146 | 5.92e-03 | |||||
melanocortin receptor subtype 3, member of the class A family of seven-transmembrane G protein-coupled receptors; The melanocortin receptor (MCR) subfamily is a member of the class A family of seven-transmembrane G-protein coupled receptors. MCRs bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. There are five known subtypes of the MCR subfamily. MC1R is involved in regulating skin pigmentation and hair color. ACTH (adrenocorticotropic hormone) is the only endogenous ligand for MC2R, which shows low sequence similarity with other melanocortin receptors. Mutations in MC2R cause familial glucocorticoid deficiency type 1, in which patients have elevated plasma ACTH and low cortisol levels. MC3R is expressed in many parts of the brain and peripheral tissues and involved in the regulation of energy homeostasis. MC4R is expressed primarily in the central nervous system and involved in both eating behavior and sexual function. MC5R is widely expressed in peripheral tissues and is mainly involved in the regulation of exocrine gland function. Pssm-ID: 320474 [Multi-domain] Cd Length: 272 Bit Score: 37.56 E-value: 5.92e-03
|
|||||||||
7tmA_CCKR-like | cd14993 | cholecystokinin receptors and related proteins, member of the class A family of ... |
112-149 | 6.28e-03 | |||||
cholecystokinin receptors and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group represents four G-protein coupled receptors that are members of the RFamide receptor family, including cholecystokinin receptors (CCK-AR and CCK-BR), orexin receptors (OXR), neuropeptide FF receptors (NPFFR), and pyroglutamylated RFamide peptide receptor (QRFPR). These RFamide receptors are activated by their endogenous peptide ligands that share a common C-terminal arginine (R) and an amidated phenylanine (F) motif. CCK-AR (type A, alimentary; also known as CCK1R) is found abundantly on pancreatic acinar cells and binds only sulfated CCK-peptides with very high affinity, whereas CCK-BR (type B, brain; also known as CCK2R), the predominant form in the brain and stomach, binds CCK or gastrin and discriminates poorly between sulfated and non-sulfated peptides. CCK is implicated in regulation of digestion, appetite control, and body weight, and is involved in neurogenesis via CCK-AR. There is some evidence to support that CCK and gastrin, via their receptors, are involved in promoting cancer development and progression, acting as growth and invasion factors. Orexins (OXs; also referred to as hypocretins) are neuropeptide hormones that regulate the sleep-wake cycle and potently influence homeostatic systems regulating appetite and feeding behavior or modulating emotional responses such as anxiety or panic. OXs are synthesized as prepro-orexin (PPO) in the hypothalamus and then proteolytically cleaved into two forms of isoforms: orexin-A (OX-A) and orexin-B (OX-B). OXA is a 33 amino-acid peptide with N-terminal pyroglutamyl residue and two intramolecular disulfide bonds, whereas OXB is a 28 amino-acid linear peptide with no disulfide bonds. OX-A binds orexin receptor 1 (OX1R) with high-affinity, but also binds with somewhat low-affinity to OX2R, and signals primarily to Gq coupling, whereas OX-B shows a strong preference for the orexin receptor 2 (OX2R) and signals through Gq or Gi/o coupling. The 26RFa, also known as QRFP (Pyroglutamylated RFamide peptide), is a 26-amino acid residue peptide that exerts similar orexigenic activity including the regulation of feeding behavior in mammals. It is the ligand for G-protein coupled receptor 103 (GPR103), which is predominantly expressed in paraventricular (PVN) and ventromedial (VMH) nuclei of the hypothalamus. GPR103 shares significant protein sequence homology with orexin receptors (OX1R and OX2R), which have recently shown to produce a neuroprotective effect in Alzheimer's disease by forming a functional heterodimer with GPR103. Neuropeptide FF (NPFF) is a mammalian octapeptide that has been implicated in a wide range of physiological functions in the brain including pain sensitivity, insulin release, food intake, memory, blood pressure, and opioid-induced tolerance and hyperalgesia. The effects of NPFF are mediated through neuropeptide FF1 and FF2 receptors (NPFF1-R and NPFF2-R) which are predominantly expressed in the brain. NPFF induces pro-nociceptive effects, mainly through the NPFF1-R, and anti-nociceptive effects, mainly through the NPFF2-R. Pssm-ID: 320124 [Multi-domain] Cd Length: 296 Bit Score: 37.58 E-value: 6.28e-03
|
|||||||||
7tmA_Histamine_H2R | cd15051 | histamine subtype H2 receptor, member of the class A family of seven-transmembrane G ... |
110-293 | 6.47e-03 | |||||
histamine subtype H2 receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes histamine receptor subtype H2R, a member of histamine receptor family, which belongs to the class A of GPCRs. Histamine plays a key role as chemical mediator and neurotransmitter in various physiological and pathophysiological processes in the central and peripheral nervous system. Histamine exerts its functions by binding to four different G protein-coupled receptors (H1-H4). The H2R subtype selectively interacts with the G(s)-type G protein that activates adenylate cyclase, leading to increased cAMP production and activation of Protein Kinase A. H2R is found in various tissues such as the brain, stomach, and heart. Its most prominent role is in histamine-induced gastric acid secretion. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320179 [Multi-domain] Cd Length: 287 Bit Score: 37.70 E-value: 6.47e-03
|
|||||||||
7tmA_Beta1_AR | cd15958 | beta-1 adrenergic receptors (adrenoceptors), member of the class A family of ... |
45-154 | 8.76e-03 | |||||
beta-1 adrenergic receptors (adrenoceptors), member of the class A family of seven-transmembrane G protein-coupled receptors; The beta-1 adrenergic receptor (beta-1 adrenoceptor), also known as beta-1 AR, is activated by adrenaline (epinephrine) and plays important roles in regulating cardiac function and heart rate. The human heart contains three subtypes of the beta AR: beta-1 AR, beta-2 AR, and beta-3 AR. Beta-1 AR and beta-2 AR, which expressed at about a ratio of 70:30, are the major subtypes involved in modulating cardiac contractility and heart rate by positively stimulating the G(s) protein-adenylate cyclase-cAMP-PKA signaling pathway. In contrast, beta-3 AR produces negative inotropic effects by activating inhibitory G(i) proteins. The aberrant expression of betrayers can lead to cardiac dysfunction such as arrhythmias or heart failure. Pssm-ID: 320624 [Multi-domain] Cd Length: 298 Bit Score: 37.19 E-value: 8.76e-03
|
|||||||||
Blast search parameters | ||||
|