NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|2462603618|ref|XP_054209095|]
View 

arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 3 isoform X12 [Homo sapiens]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
ArfGap_ARAP3 cd17902
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily ...
411-526 1.08e-80

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP3 possesses a unique dual-specificity GAP activity for Arf6 and RhoA regulated by PI(3,4,5)P3 and a small GTPase Rap1-GTP. The RhoGAP activity of ARAP3 is enhanced by direct binding of Rap1-GTP to the Ras-association (RA) domain. ARAP3 is involved in regulation of cell shape and adhesion.


:

Pssm-ID: 350089 [Multi-domain]  Cd Length: 116  Bit Score: 260.23  E-value: 1.08e-80
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  411 YEVAEKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTSVWSNEIVQLFIVLGNDRAN 490
Cdd:cd17902      1 YEVAEKIWSNKANRFCADCHASSPDWASINLCVVICKQCAGQHRSLGSGISKVQSLKLDTSVWSNEIVQLFIVLGNDRAN 80
                           90       100       110
                   ....*....|....*....|....*....|....*.
gi 2462603618  491 RFWAGTLPPGEGLHPDATPGPRGEFISRKYRLGLFR 526
Cdd:cd17902     81 RFWAARLPASEALHPDATPEQRREFISRKYREGRFR 116
Ubl1_cv_Nsp3_N-like super family cl28922
first ubiquitin-like (Ubl) domain located at the N-terminus of coronavirus SARS-CoV ...
967-1064 1.37e-58

first ubiquitin-like (Ubl) domain located at the N-terminus of coronavirus SARS-CoV non-structural protein 3 (Nsp3) and related proteins; This ubiquitin-like (Ubl) domain (Ubl1) is found at the N-terminus of coronavirus Nsp3, a large multi-functional multi-domain protein which is an essential component of the replication/transcription complex (RTC). The functions of Ubl1 in CoVs are related to single-stranded RNA (ssRNA) binding and to interacting with the nucleocapsid (N) protein. SARS-CoV Ubl1 has been shown to bind ssRNA having AUA patterns, and since the 5'-UTR of the SARS-CoV genome has a number of AUA repeats, it may bind there. In mouse hepatitis virus (MHV), this Ubl1 domain binds the cognate N protein. Adjacent to Ubl1 is a Glu-rich acidic region (also referred to as hypervariable region, HVR); Ubl1 together with HVR has been called Nsp3a. Currently, the function of HVR in CoVs is unknown. This model corresponds to one of two Ubl domains in Nsp3; the other is located N-terminal to the papain-like protease (PLpro) and is not represented by this model.


The actual alignment was detected with superfamily member cd17228:

Pssm-ID: 475130  Cd Length: 99  Bit Score: 196.25  E-value: 1.37e-58
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  967 AGDLIMEVYIEQQLPDNCVTLKVSPTLTAEELTNQVLEMRGTAAG-MDLWVTFEIREHGELERPLHPKEKVLEQALQWCQ 1045
Cdd:cd17228      1 AGDLIIEVYLEQKLPDCCVTLKVSPTMTAEELTNQVLDMRNIAAAsKDVWLTFEVIENGELERPLHPKEKVLEQALQWCK 80
                           90
                   ....*....|....*....
gi 2462603618 1046 LPEPCSASLLLKKVPLAQA 1064
Cdd:cd17228     81 LPEPSSAYLLVKKVPIGEG 99
PH5_ARAP cd13259
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
1063-1182 4.82e-57

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 5; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the five PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270079  Cd Length: 121  Bit Score: 193.03  E-value: 4.82e-57
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618 1063 QAGCLFTGIRRESPRVGLLRCREEPPRLL-GSRFQERFFLLRGRCLLLLKEKKSSKPEREWPLEGAKVYLGIRKKLKPPT 1141
Cdd:cd13259      1 EAILLYLASKVGSTKHGMLKFREEPSKLLsGNKFQDRYFILNDECLLLYKDVKSSKPEKEWPLKSLKVYLGIKKKLKPPT 80
                           90       100       110       120
                   ....*....|....*....|....*....|....*....|.
gi 2462603618 1142 PWGFTLILEKMHLYLSCTDEDEMWDWTTSILKAQHDDQQPV 1182
Cdd:cd13259     81 SWGFTVLLEKQQWYLCCDSQMEQREWMATILSAQHDGDIWP 121
PH3_ARAP cd13256
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
598-708 3.33e-52

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 3; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the third PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270076  Cd Length: 110  Bit Score: 178.42  E-value: 3.33e-52
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  598 RATYSGFLYCSPVSNKAGPspPRRGRDAPPRLWCVL-GAALEMFASENSPEPLSLIQPQDIVCLGVSPPPTDPGDRFPFS 676
Cdd:cd13256      1 SVFHSGFLYKSPSAAKPTL--ERRAREEFSRRWCVLeDGFLSYYESERSPEPNGEIDVSEIVCLAVSPPDTHPGDGFPFT 78
                           90       100       110
                   ....*....|....*....|....*....|..
gi 2462603618  677 FELILAGGRIQHFGTDGADSLEAWTSAVGKWF 708
Cdd:cd13256     79 FELYLESERLYLFGLETAEALHEWVKAIAKAF 110
PH1_ARAP cd13253
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
211-303 4.66e-47

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270073  Cd Length: 94  Bit Score: 163.33  E-value: 4.66e-47
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  211 LLSGWLDKLSPQGN-YVFQRRFVQFNGRSLMYFGSDKDPFPKGVIPLTAIEMTRSSKDNKFQVITGQRVFVFRTESEAQR 289
Cdd:cd13253      1 IKSGYLDKQGGQGNnKGFQKRWVVFDGLSLRYFDSEKDAYSKRIIPLSAISTVRAVGDNKFELVTTNRTFVFRAESDDER 80
                           90
                   ....*....|....
gi 2462603618  290 DMWCSTLQSCLKEQ 303
Cdd:cd13253     81 NLWCSTLQAAISEY 94
PH2_ARAP cd13254
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
320-401 3.20e-44

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 2; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the second PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270074  Cd Length: 90  Bit Score: 154.88  E-value: 3.20e-44
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  320 TGMLELRGHKAKVFAALSPGELALYKSEQAFSLGIGICFIELQGCSVRETKSRSFDLLTPHRCFSFTAESGGARQSWAAA 399
Cdd:cd13254      9 CGYLELRGYKAKVYAALMGDEVWLYKNEQDFRLGIGITVIEMNGANVKDVDRRSFDLTTPYRSFSFTAESEHEKQEWIEA 88

                   ..
gi 2462603618  400 LQ 401
Cdd:cd13254     89 VQ 90
RhoGAP super family cl02570
RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like ...
831-935 1.33e-43

RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like small GTPases. Small GTPases (G proteins) cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when bound to GDP. The Rho family of small G proteins, which includes Cdc42Hs, activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. The RhoGAPs are one of the major classes of regulators of Rho G proteins.


The actual alignment was detected with superfamily member cd04385:

Pssm-ID: 470621  Cd Length: 184  Bit Score: 156.70  E-value: 1.33e-43
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  831 LQEQQMSRGDIPIIVDACISFVTQH------------------------------------------------------- 855
Cdd:cd04385      5 LEDQQLTDNDIPVIVDKCIDFITQHglmsegiyrkngknssvkklleafrkdarsvqlregeytvhdvadvlkrflrdlp 84
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  856 ----------------ELPQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQTD- 918
Cdd:cd04385     85 dplltselhaewieaaELENKDERIARYKELIRRLPPINRATLKVLIGHLYRVQKHSDENQMSVHNLALVFGPTLFQTDe 164
                          170       180
                   ....*....|....*....|
gi 2462603618  919 ---GRGEHEVRVLQELIDGY 935
Cdd:cd04385    165 hsvGQTSHEVKVIEDLIDNY 184
PH-like super family cl17171
Pleckstrin homology-like domain; The PH-like family includes the PH domain, both the Shc-like ...
768-816 2.77e-10

Pleckstrin homology-like domain; The PH-like family includes the PH domain, both the Shc-like and IRS-like PTB domains, the ran-binding domain, the EVH1 domain, a domain in neurobeachin and the third domain of FERM. All of these domains have a PH fold, but lack significant sequence similarity. They are generally involved in targeting to protein to the appropriate cellular location or interacting with a binding partner. This domain family possesses multiple functions including the ability to bind inositol phosphates and to other proteins.


The actual alignment was detected with superfamily member cd13257:

Pssm-ID: 473070  Cd Length: 91  Bit Score: 58.32  E-value: 2.77e-10
                           10        20        30        40
                   ....*....|....*....|....*....|....*....|....*....
gi 2462603618  768 EDMVHLRRLQEISVvsaaDTPDKKEHLVLVETGRTLYLQGEGRLDFTAW 816
Cdd:cd13257     40 EERMHLRKLQELSI----QGDVQLDVLVLVERRRTLYIQGERKLDFTGW 84
 
Name Accession Description Interval E-value
ArfGap_ARAP3 cd17902
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily ...
411-526 1.08e-80

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP3 possesses a unique dual-specificity GAP activity for Arf6 and RhoA regulated by PI(3,4,5)P3 and a small GTPase Rap1-GTP. The RhoGAP activity of ARAP3 is enhanced by direct binding of Rap1-GTP to the Ras-association (RA) domain. ARAP3 is involved in regulation of cell shape and adhesion.


Pssm-ID: 350089 [Multi-domain]  Cd Length: 116  Bit Score: 260.23  E-value: 1.08e-80
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  411 YEVAEKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTSVWSNEIVQLFIVLGNDRAN 490
Cdd:cd17902      1 YEVAEKIWSNKANRFCADCHASSPDWASINLCVVICKQCAGQHRSLGSGISKVQSLKLDTSVWSNEIVQLFIVLGNDRAN 80
                           90       100       110
                   ....*....|....*....|....*....|....*.
gi 2462603618  491 RFWAGTLPPGEGLHPDATPGPRGEFISRKYRLGLFR 526
Cdd:cd17902     81 RFWAARLPASEALHPDATPEQRREFISRKYREGRFR 116
RA_ARAP3 cd17228
Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH ...
967-1064 1.37e-58

Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 3 (ARAP3); ARAP3, also termed Centaurin-delta-3 (Cnt-d3), is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating protein (GAP) that modulates actin cytoskeleton remodeling by regulating ARF and RHO family members, ADP-ribosylation factor 6 (Arf6) and Ras homolog gene family member A (RhoA). It is regulated by phosphatidylinositol 3,4,5-trisphosphate and a small GTPase Rap1-GTP, and has been implicated in the regulation of cell shape and adhesion. ARAP3 contains multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes.


Pssm-ID: 340748  Cd Length: 99  Bit Score: 196.25  E-value: 1.37e-58
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  967 AGDLIMEVYIEQQLPDNCVTLKVSPTLTAEELTNQVLEMRGTAAG-MDLWVTFEIREHGELERPLHPKEKVLEQALQWCQ 1045
Cdd:cd17228      1 AGDLIIEVYLEQKLPDCCVTLKVSPTMTAEELTNQVLDMRNIAAAsKDVWLTFEVIENGELERPLHPKEKVLEQALQWCK 80
                           90
                   ....*....|....*....
gi 2462603618 1046 LPEPCSASLLLKKVPLAQA 1064
Cdd:cd17228     81 LPEPSSAYLLVKKVPIGEG 99
PH5_ARAP cd13259
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
1063-1182 4.82e-57

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 5; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the five PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270079  Cd Length: 121  Bit Score: 193.03  E-value: 4.82e-57
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618 1063 QAGCLFTGIRRESPRVGLLRCREEPPRLL-GSRFQERFFLLRGRCLLLLKEKKSSKPEREWPLEGAKVYLGIRKKLKPPT 1141
Cdd:cd13259      1 EAILLYLASKVGSTKHGMLKFREEPSKLLsGNKFQDRYFILNDECLLLYKDVKSSKPEKEWPLKSLKVYLGIKKKLKPPT 80
                           90       100       110       120
                   ....*....|....*....|....*....|....*....|.
gi 2462603618 1142 PWGFTLILEKMHLYLSCTDEDEMWDWTTSILKAQHDDQQPV 1182
Cdd:cd13259     81 SWGFTVLLEKQQWYLCCDSQMEQREWMATILSAQHDGDIWP 121
PH3_ARAP cd13256
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
598-708 3.33e-52

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 3; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the third PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270076  Cd Length: 110  Bit Score: 178.42  E-value: 3.33e-52
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  598 RATYSGFLYCSPVSNKAGPspPRRGRDAPPRLWCVL-GAALEMFASENSPEPLSLIQPQDIVCLGVSPPPTDPGDRFPFS 676
Cdd:cd13256      1 SVFHSGFLYKSPSAAKPTL--ERRAREEFSRRWCVLeDGFLSYYESERSPEPNGEIDVSEIVCLAVSPPDTHPGDGFPFT 78
                           90       100       110
                   ....*....|....*....|....*....|..
gi 2462603618  677 FELILAGGRIQHFGTDGADSLEAWTSAVGKWF 708
Cdd:cd13256     79 FELYLESERLYLFGLETAEALHEWVKAIAKAF 110
PH1_ARAP cd13253
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
211-303 4.66e-47

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270073  Cd Length: 94  Bit Score: 163.33  E-value: 4.66e-47
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  211 LLSGWLDKLSPQGN-YVFQRRFVQFNGRSLMYFGSDKDPFPKGVIPLTAIEMTRSSKDNKFQVITGQRVFVFRTESEAQR 289
Cdd:cd13253      1 IKSGYLDKQGGQGNnKGFQKRWVVFDGLSLRYFDSEKDAYSKRIIPLSAISTVRAVGDNKFELVTTNRTFVFRAESDDER 80
                           90
                   ....*....|....
gi 2462603618  290 DMWCSTLQSCLKEQ 303
Cdd:cd13253     81 NLWCSTLQAAISEY 94
PH2_ARAP cd13254
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
320-401 3.20e-44

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 2; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the second PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270074  Cd Length: 90  Bit Score: 154.88  E-value: 3.20e-44
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  320 TGMLELRGHKAKVFAALSPGELALYKSEQAFSLGIGICFIELQGCSVRETKSRSFDLLTPHRCFSFTAESGGARQSWAAA 399
Cdd:cd13254      9 CGYLELRGYKAKVYAALMGDEVWLYKNEQDFRLGIGITVIEMNGANVKDVDRRSFDLTTPYRSFSFTAESEHEKQEWIEA 88

                   ..
gi 2462603618  400 LQ 401
Cdd:cd13254     89 VQ 90
RhoGAP_ARAP cd04385
RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
831-935 1.33e-43

RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in ARAPs. ARAPs (also known as centaurin deltas) contain, besides the RhoGAP domain, an Arf GAP, ankyrin repeat ras-associating, and PH domains. Since their ArfGAP activity is PIP3-dependent, ARAPs are considered integration points for phosphoinositide, Arf and Rho signaling. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239850  Cd Length: 184  Bit Score: 156.70  E-value: 1.33e-43
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  831 LQEQQMSRGDIPIIVDACISFVTQH------------------------------------------------------- 855
Cdd:cd04385      5 LEDQQLTDNDIPVIVDKCIDFITQHglmsegiyrkngknssvkklleafrkdarsvqlregeytvhdvadvlkrflrdlp 84
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  856 ----------------ELPQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQTD- 918
Cdd:cd04385     85 dplltselhaewieaaELENKDERIARYKELIRRLPPINRATLKVLIGHLYRVQKHSDENQMSVHNLALVFGPTLFQTDe 164
                          170       180
                   ....*....|....*....|
gi 2462603618  919 ---GRGEHEVRVLQELIDGY 935
Cdd:cd04385    165 hsvGQTSHEVKVIEDLIDNY 184
ArfGap pfam01412
Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating ...
412-529 4.13e-42

Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 460200 [Multi-domain]  Cd Length: 117  Bit Score: 150.07  E-value: 4.13e-42
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  412 EVAEKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANR 491
Cdd:pfam01412    2 RVLRELLKLPGNKVCADCGAPNPTWASVNLGIFICIDCSGVHRSLGVHISKVRSLTLDT--WTDEQLELMKAGGNDRANE 79
                           90       100       110
                   ....*....|....*....|....*....|....*...
gi 2462603618  492 FWAGTLPPGEGLHPDATPGPRGEFISRKYRLGLFRKPH 529
Cdd:pfam01412   80 FWEANLPPSYKPPPSSDREKRESFIRAKYVEKKFAKPG 117
ArfGap smart00105
Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with ...
415-525 4.70e-29

Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 214518 [Multi-domain]  Cd Length: 119  Bit Score: 112.82  E-value: 4.70e-29
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618   415 EKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANRFWA 494
Cdd:smart00105    2 KLLRSIPGNKKCFDCGAPNPTWASVNLGVFLCIECSGIHRSLGVHISKVRSLTLDT--WTEEELRLLQKGGNENANSIWE 79
                            90       100       110
                    ....*....|....*....|....*....|..
gi 2462603618   495 GTLPPGEGLHPDATPGP-RGEFISRKYRLGLF 525
Cdd:smart00105   80 SNLDDFSLKPPDDDDQQkYESFIAAKYEEKLF 111
COG5347 COG5347
GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ...
412-550 3.96e-26

GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ARF-mediated vesicular transport [Intracellular trafficking and secretion];


Pssm-ID: 227651 [Multi-domain]  Cd Length: 319  Bit Score: 110.64  E-value: 3.96e-26
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  412 EVAEKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANR 491
Cdd:COG5347      9 KLLKLLKSDSSNKKCADCGAPNPTWASVNLGVFLCIDCAGVHRSLGVHISKVKSLTLDN--WTEEELRRMEVGGNSNANR 86
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2462603618  492 FWAGTLPPGEGLHPDATPGP--RGEFISRKYRLGLFRKPHPQYPDHSQLLQALCAAVARPN 550
Cdd:COG5347     87 FYEKNLLDQLLLPIKAKYDSsvAKKYIRKKYELKKFIDDSSSPSDFSSFSASSTRTVDSVD 147
RhoGAP pfam00620
RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.
842-918 2.49e-18

RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.


Pssm-ID: 459875  Cd Length: 148  Bit Score: 82.98  E-value: 2.49e-18
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2462603618  842 PII-VDACISFVTQHELPQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQTD 918
Cdd:pfam00620   70 PLLtFELYEEFIEAAKLPDEEERLEALRELLRKLPPANRDTLRYLLAHLNRVAQNSDVNKMNAHNLAIVFGPTLLRPP 147
RA pfam00788
Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); ...
968-1060 8.54e-16

Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); putative RasGTP effectors in other cases. Recent evidence (not yet in MEDLINE) shows that some RA domains do NOT bind RasGTP. Predicted structure similar to that determined, and that of the RasGTP-binding domain of Raf kinase.


Pssm-ID: 425871  Cd Length: 93  Bit Score: 73.91  E-value: 8.54e-16
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  968 GDLIMEVYIEQQLPDN-CVTLKVSPTLTAEELTNQVLEMRGTAAGMDLWVTFEIREHGELERPLHPKEKVLEQALQWCql 1046
Cdd:pfam00788    1 DDGVLKVYTEDGKPGTtYKTILVSSSTTAEEVIEALLEKFGLEDDPRDYVLVEVLERGGGERRLPDDECPLQIQLQWP-- 78
                           90
                   ....*....|....
gi 2462603618 1047 PEPCSASLLLKKVP 1060
Cdd:pfam00788   79 RDASDSRFLLRKRD 92
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
210-301 8.50e-14

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 68.73  E-value: 8.50e-14
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618   210 PLLSGWLDKLSPQGNYVFQRRFVQFNGRSLMYFGSDK---DPFPKGVIPLTAIEMTRS------SKDNKFQVITGQR-VF 279
Cdd:smart00233    1 VIKEGWLYKKSGGGKKSWKKRYFVLFNSTLLYYKSKKdkkSYKPKGSIDLSGCTVREApdpdssKKPHCFEIKTSDRkTL 80
                            90       100
                    ....*....|....*....|..
gi 2462603618   280 VFRTESEAQRDMWCSTLQSCLK 301
Cdd:smart00233   81 LLQAESEEEREKWVEALRKAIA 102
RhoGAP smart00324
GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac ...
856-916 8.65e-13

GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. etter domain limits and outliers.


Pssm-ID: 214618  Cd Length: 174  Bit Score: 68.06  E-value: 8.65e-13
                            10        20        30        40        50        60
                    ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2462603618   856 ELPQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQ 916
Cdd:smart00324   88 KLEDETERLRALRELLSLLPPANRATLRYLLAHLNRVAEHSEENKMTARNLAIVFGPTLLR 148
PLN03114 PLN03114
ADP-ribosylation factor GTPase-activating protein AGD10; Provisional
405-493 1.02e-12

ADP-ribosylation factor GTPase-activating protein AGD10; Provisional


Pssm-ID: 178661 [Multi-domain]  Cd Length: 395  Bit Score: 71.81  E-value: 1.02e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  405 TETLSD-YEVAEKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIV 483
Cdd:PLN03114     3 SENLNDkISVFKKLKAKSDNKICFDCNAKNPTWASVTYGIFLCIDCSAVHRSLGVHISFVRSTNLDS--WSSEQLKMMIY 80
                           90
                   ....*....|
gi 2462603618  484 LGNDRANRFW 493
Cdd:PLN03114    81 GGNNRAQVFF 90
PH pfam00169
PH domain; PH stands for pleckstrin homology.
210-301 3.28e-12

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 64.12  E-value: 3.28e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  210 PLLSGWLDKLSPQGNYVFQRRFVQFNGRSLMYFGSD---KDPFPKGVIPLTAIEMTR------SSKDNKFQVITGQ---- 276
Cdd:pfam00169    1 VVKEGWLLKKGGGKKKSWKKRYFVLFDGSLLYYKDDksgKSKEPKGSISLSGCEVVEvvasdsPKRKFCFELRTGErtgk 80
                           90       100
                   ....*....|....*....|....*
gi 2462603618  277 RVFVFRTESEAQRDMWCSTLQSCLK 301
Cdd:pfam00169   81 RTYLLQAESEEERKDWIKAIQSAIR 105
PH4_ARAP cd13257
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
768-816 2.77e-10

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 4; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the fourth PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270077  Cd Length: 91  Bit Score: 58.32  E-value: 2.77e-10
                           10        20        30        40
                   ....*....|....*....|....*....|....*....|....*....
gi 2462603618  768 EDMVHLRRLQEISVvsaaDTPDKKEHLVLVETGRTLYLQGEGRLDFTAW 816
Cdd:cd13257     40 EERMHLRKLQELSI----QGDVQLDVLVLVERRRTLYIQGERKLDFTGW 84
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
321-404 2.99e-06

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 47.16  E-value: 2.99e-06
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618   321 GMLELRGHKA-----KVFAALSPGELALYKSEQAFSLGIGICFIELQGCSVRETKSRS-------FDLLTPHR-CFSFTA 387
Cdd:smart00233    5 GWLYKKSGGGkkswkKRYFVLFNSTLLYYKSKKDKKSYKPKGSIDLSGCTVREAPDPDsskkphcFEIKTSDRkTLLLQA 84
                            90
                    ....*....|....*..
gi 2462603618   388 ESGGARQSWAAALQEAV 404
Cdd:smart00233   85 ESEEEREKWVEALRKAI 101
PH pfam00169
PH domain; PH stands for pleckstrin homology.
321-404 8.97e-04

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 40.24  E-value: 8.97e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  321 GMLELRGHKA-----KVFAALSPGELALYKSEQAFSLGIGICFIELQGCSVRET-------KSRSFDLLTPH----RCFS 384
Cdd:pfam00169    5 GWLLKKGGGKkkswkKRYFVLFDGSLLYYKDDKSGKSKEPKGSISLSGCEVVEVvasdspkRKFCFELRTGErtgkRTYL 84
                           90       100
                   ....*....|....*....|
gi 2462603618  385 FTAESGGARQSWAAALQEAV 404
Cdd:pfam00169   85 LQAESEEERKDWIKAIQSAI 104
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
1079-1176 1.79e-03

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 39.07  E-value: 1.79e-03
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  1079 GLLRCREEPPRllgSRFQERFFLLRGRC---LLLLKEKKSSKPEREWPLEGAKVYLgIRKKLKPPTPWGFTLIL-EKMHL 1154
Cdd:smart00233    5 GWLYKKSGGGK---KSWKKRYFVLFNSTllyYKSKKDKKSYKPKGSIDLSGCTVRE-APDPDSSKKPHCFEIKTsDRKTL 80
                            90       100
                    ....*....|....*....|..
gi 2462603618  1155 YLSCTDEDEMWDWTTSILKAQH 1176
Cdd:smart00233   81 LLQAESEEEREKWVEALRKAIA 102
PH pfam00169
PH domain; PH stands for pleckstrin homology.
1092-1176 5.10e-03

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 37.93  E-value: 5.10e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618 1092 GSRFQERFFLLRGRCLLLLKEK---KSSKPEREWPLEGAKVYLgIRKKLKPPTPWGFTLILEKMH----LYLSCTDEDEM 1164
Cdd:pfam00169   15 KKSWKKRYFVLFDGSLLYYKDDksgKSKEPKGSISLSGCEVVE-VVASDSPKRKFCFELRTGERTgkrtYLLQAESEEER 93
                           90
                   ....*....|..
gi 2462603618 1165 WDWTTSILKAQH 1176
Cdd:pfam00169   94 KDWIKAIQSAIR 105
 
Name Accession Description Interval E-value
ArfGap_ARAP3 cd17902
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily ...
411-526 1.08e-80

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP3 possesses a unique dual-specificity GAP activity for Arf6 and RhoA regulated by PI(3,4,5)P3 and a small GTPase Rap1-GTP. The RhoGAP activity of ARAP3 is enhanced by direct binding of Rap1-GTP to the Ras-association (RA) domain. ARAP3 is involved in regulation of cell shape and adhesion.


Pssm-ID: 350089 [Multi-domain]  Cd Length: 116  Bit Score: 260.23  E-value: 1.08e-80
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  411 YEVAEKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTSVWSNEIVQLFIVLGNDRAN 490
Cdd:cd17902      1 YEVAEKIWSNKANRFCADCHASSPDWASINLCVVICKQCAGQHRSLGSGISKVQSLKLDTSVWSNEIVQLFIVLGNDRAN 80
                           90       100       110
                   ....*....|....*....|....*....|....*.
gi 2462603618  491 RFWAGTLPPGEGLHPDATPGPRGEFISRKYRLGLFR 526
Cdd:cd17902     81 RFWAARLPASEALHPDATPEQRREFISRKYREGRFR 116
ArfGap_ARAP cd08837
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing proteins; The ARAP subfamily ...
411-526 3.50e-75

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing proteins; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics.


Pssm-ID: 350066 [Multi-domain]  Cd Length: 116  Bit Score: 244.59  E-value: 3.50e-75
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  411 YEVAEKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTSVWSNEIVQLFIVLGNDRAN 490
Cdd:cd08837      1 YEVAEKIWSNPANRFCADCGAPDPDWASINLCVVICKQCAGEHRSLGSNISKVRSLKMDTKVWTEELVELFLKLGNDRAN 80
                           90       100       110
                   ....*....|....*....|....*....|....*.
gi 2462603618  491 RFWAGTLPPGEGLHPDATPGPRGEFISRKYRLGLFR 526
Cdd:cd08837     81 RFWAANLPPSEALHPDADSEQRREFITAKYREGKYR 116
RA_ARAP3 cd17228
Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH ...
967-1064 1.37e-58

Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 3 (ARAP3); ARAP3, also termed Centaurin-delta-3 (Cnt-d3), is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating protein (GAP) that modulates actin cytoskeleton remodeling by regulating ARF and RHO family members, ADP-ribosylation factor 6 (Arf6) and Ras homolog gene family member A (RhoA). It is regulated by phosphatidylinositol 3,4,5-trisphosphate and a small GTPase Rap1-GTP, and has been implicated in the regulation of cell shape and adhesion. ARAP3 contains multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes.


Pssm-ID: 340748  Cd Length: 99  Bit Score: 196.25  E-value: 1.37e-58
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  967 AGDLIMEVYIEQQLPDNCVTLKVSPTLTAEELTNQVLEMRGTAAG-MDLWVTFEIREHGELERPLHPKEKVLEQALQWCQ 1045
Cdd:cd17228      1 AGDLIIEVYLEQKLPDCCVTLKVSPTMTAEELTNQVLDMRNIAAAsKDVWLTFEVIENGELERPLHPKEKVLEQALQWCK 80
                           90
                   ....*....|....*....
gi 2462603618 1046 LPEPCSASLLLKKVPLAQA 1064
Cdd:cd17228     81 LPEPSSAYLLVKKVPIGEG 99
ArfGap_ARAP2 cd08856
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 2; The ARAP subfamily ...
406-526 2.25e-58

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 2; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP2 localizes to the cell periphery and on focal adhesions composed of paxillin and vinculin, and functions downstream of RhoA to regulate focal adhesion dynamics. ARAP2 is a PI(3,4,5)P3-dependent Arf6 GAP that binds RhoA-GTP, but it lacks the predicted catalytic arginine in the RhoGAP domain and does not have RhoGAP activity. ARAP2 reduces Rac1oGTP levels by reducing Arf6oGTP levels through GAP activity. AGAP2 also binds to and regulates focal adhesion kinase (FAK). Thus, ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology.


Pssm-ID: 350081 [Multi-domain]  Cd Length: 121  Bit Score: 196.67  E-value: 2.25e-58
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  406 ETLSDYEVAEKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTSVWSNEIVQLFIVLG 485
Cdd:cd08856      1 ETLSDYEVAEKIWFNESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDASIWSNELIELFIVVG 80
                           90       100       110       120
                   ....*....|....*....|....*....|....*....|.
gi 2462603618  486 NDRANRFWAGTLPPGEGLHPDATPGPRGEFISRKYRLGLFR 526
Cdd:cd08856     81 NKPANLFWAANLFSEEDLHMDSDVEQRTPFITQKYKEGKFR 121
PH5_ARAP cd13259
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
1063-1182 4.82e-57

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 5; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the five PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270079  Cd Length: 121  Bit Score: 193.03  E-value: 4.82e-57
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618 1063 QAGCLFTGIRRESPRVGLLRCREEPPRLL-GSRFQERFFLLRGRCLLLLKEKKSSKPEREWPLEGAKVYLGIRKKLKPPT 1141
Cdd:cd13259      1 EAILLYLASKVGSTKHGMLKFREEPSKLLsGNKFQDRYFILNDECLLLYKDVKSSKPEKEWPLKSLKVYLGIKKKLKPPT 80
                           90       100       110       120
                   ....*....|....*....|....*....|....*....|.
gi 2462603618 1142 PWGFTLILEKMHLYLSCTDEDEMWDWTTSILKAQHDDQQPV 1182
Cdd:cd13259     81 SWGFTVLLEKQQWYLCCDSQMEQREWMATILSAQHDGDIWP 121
PH3_ARAP cd13256
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
598-708 3.33e-52

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 3; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the third PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270076  Cd Length: 110  Bit Score: 178.42  E-value: 3.33e-52
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  598 RATYSGFLYCSPVSNKAGPspPRRGRDAPPRLWCVL-GAALEMFASENSPEPLSLIQPQDIVCLGVSPPPTDPGDRFPFS 676
Cdd:cd13256      1 SVFHSGFLYKSPSAAKPTL--ERRAREEFSRRWCVLeDGFLSYYESERSPEPNGEIDVSEIVCLAVSPPDTHPGDGFPFT 78
                           90       100       110
                   ....*....|....*....|....*....|..
gi 2462603618  677 FELILAGGRIQHFGTDGADSLEAWTSAVGKWF 708
Cdd:cd13256     79 FELYLESERLYLFGLETAEALHEWVKAIAKAF 110
ArfGap_ARAP1 cd17901
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 1; The ARAP subfamily ...
412-526 2.75e-50

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 1; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP1 localizes to the plasma membrane, the Golgi complex, and endosomal compartments. It displays PI(3,4,5)P3-dependent ArfGAP activity that regulates Arf-, RhoA-, and Cdc42-dependent cellular events. For example, ARAP1 inhibits the trafficking of epidermal growth factor receptor (EGFR) to the early endosome.


Pssm-ID: 350088 [Multi-domain]  Cd Length: 116  Bit Score: 173.46  E-value: 2.75e-50
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  412 EVAEKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTSVWSNEIVQLFIVLGNDRANR 491
Cdd:cd17901      2 EVAEKIWSVESNRFCADCGSPKPDWASVNLCVVICKRCAGEHRGLGPSVSKVRSLKMDRKVWTEELIELFLLLGNGKANQ 81
                           90       100       110
                   ....*....|....*....|....*....|....*
gi 2462603618  492 FWAGTLPPGEGLHPDATPGPRGEFISRKYRLGLFR 526
Cdd:cd17901     82 FWAANVPPSEALCPSSSSEERRHFITAKYKEGKYR 116
PH1_ARAP cd13253
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
211-303 4.66e-47

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270073  Cd Length: 94  Bit Score: 163.33  E-value: 4.66e-47
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  211 LLSGWLDKLSPQGN-YVFQRRFVQFNGRSLMYFGSDKDPFPKGVIPLTAIEMTRSSKDNKFQVITGQRVFVFRTESEAQR 289
Cdd:cd13253      1 IKSGYLDKQGGQGNnKGFQKRWVVFDGLSLRYFDSEKDAYSKRIIPLSAISTVRAVGDNKFELVTTNRTFVFRAESDDER 80
                           90
                   ....*....|....
gi 2462603618  290 DMWCSTLQSCLKEQ 303
Cdd:cd13253     81 NLWCSTLQAAISEY 94
PH2_ARAP cd13254
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
320-401 3.20e-44

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 2; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the second PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270074  Cd Length: 90  Bit Score: 154.88  E-value: 3.20e-44
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  320 TGMLELRGHKAKVFAALSPGELALYKSEQAFSLGIGICFIELQGCSVRETKSRSFDLLTPHRCFSFTAESGGARQSWAAA 399
Cdd:cd13254      9 CGYLELRGYKAKVYAALMGDEVWLYKNEQDFRLGIGITVIEMNGANVKDVDRRSFDLTTPYRSFSFTAESEHEKQEWIEA 88

                   ..
gi 2462603618  400 LQ 401
Cdd:cd13254     89 VQ 90
RhoGAP_ARAP cd04385
RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
831-935 1.33e-43

RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in ARAPs. ARAPs (also known as centaurin deltas) contain, besides the RhoGAP domain, an Arf GAP, ankyrin repeat ras-associating, and PH domains. Since their ArfGAP activity is PIP3-dependent, ARAPs are considered integration points for phosphoinositide, Arf and Rho signaling. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239850  Cd Length: 184  Bit Score: 156.70  E-value: 1.33e-43
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  831 LQEQQMSRGDIPIIVDACISFVTQH------------------------------------------------------- 855
Cdd:cd04385      5 LEDQQLTDNDIPVIVDKCIDFITQHglmsegiyrkngknssvkklleafrkdarsvqlregeytvhdvadvlkrflrdlp 84
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  856 ----------------ELPQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQTD- 918
Cdd:cd04385     85 dplltselhaewieaaELENKDERIARYKELIRRLPPINRATLKVLIGHLYRVQKHSDENQMSVHNLALVFGPTLFQTDe 164
                          170       180
                   ....*....|....*....|
gi 2462603618  919 ---GRGEHEVRVLQELIDGY 935
Cdd:cd04385    165 hsvGQTSHEVKVIEDLIDNY 184
ArfGap pfam01412
Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating ...
412-529 4.13e-42

Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 460200 [Multi-domain]  Cd Length: 117  Bit Score: 150.07  E-value: 4.13e-42
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  412 EVAEKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANR 491
Cdd:pfam01412    2 RVLRELLKLPGNKVCADCGAPNPTWASVNLGIFICIDCSGVHRSLGVHISKVRSLTLDT--WTDEQLELMKAGGNDRANE 79
                           90       100       110
                   ....*....|....*....|....*....|....*...
gi 2462603618  492 FWAGTLPPGEGLHPDATPGPRGEFISRKYRLGLFRKPH 529
Cdd:pfam01412   80 FWEANLPPSYKPPPSSDREKRESFIRAKYVEKKFAKPG 117
ArfGap cd08204
GTPase-activating protein (GAP) for the ADP ribosylation factors (ARFs); ArfGAPs are a family ...
415-520 9.99e-39

GTPase-activating protein (GAP) for the ADP ribosylation factors (ARFs); ArfGAPs are a family of proteins containing an ArfGAP catalytic domain that induces the hydrolysis of GTP bound to the small guanine nucleotide-binding protein Arf, a member of the Ras superfamily of GTPases. Like all GTP-binding proteins, Arf proteins function as molecular switches, cycling between GTP (active-membrane bound) and GDP (inactive-cytosolic) form. Conversion to the GTP-bound form requires a guanine nucleotide exchange factor (GEF), whereas conversion to the GDP-bound form is catalyzed by a GTPase activating protein (GAP). In that sense, ArfGAPs were originally proposed to function as terminators of Arf signaling, which is mediated by regulating Arf family GTP-binding proteins. However, recent studies suggest that ArfGAPs can also function as Arf effectors, independently of their GAP enzymatic activity to transduce signals in cells. The ArfGAP domain contains a C4-type zinc finger motif and a conserved arginine that is required for activity, within a specific spacing (CX2CX16CX2CX4R). ArfGAPs, which have multiple functional domains, regulate the membrane trafficking and actin cytoskeleton remodeling via specific interactions with signaling lipids such as phosphoinositides and trafficking proteins, which consequently affect cellular events such as cell growth, migration, and cancer invasion. The ArfGAP family, which includes 31 human ArfGAP-domain containing proteins, is divided into 10 subfamilies based on domain structure and sequence similarity. The ArfGAP nomenclature is mainly based on the protein domain structure. For example, ASAP1 contains ArfGAP, SH3, ANK repeat and PH domains; ARAPs contain ArfGAP, Rho GAP, ANK repeat and PH domains; ACAPs contain ArfGAP, BAR (coiled coil), ANK repeat and PH domains; and AGAPs contain Arf GAP, GTP-binding protein-like, ANK repeat and PH domains. Furthermore, the ArfGAPs can be classified into two major types of subfamilies, according to the overall domain structure: the ArfGAP1 type includes 6 subfamilies (ArfGAP1, ArfGAP2/3, ADAP, SMAP, AGFG, and GIT), which contain the ArfGAP domain at the N-terminus of the protein; and the AZAP type includes 4 subfamilies (ASAP, ACAP, AGAP, and ARAP), which contain an ArfGAP domain between the PH and ANK repeat domains.


Pssm-ID: 350058 [Multi-domain]  Cd Length: 106  Bit Score: 139.94  E-value: 9.99e-39
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  415 EKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANRFWA 494
Cdd:cd08204      2 EELLKLPGNKVCADCGAPDPRWASINLGVFICIRCSGIHRSLGVHISKVRSLTLDS--WTPEQVELMKAIGNARANAYYE 79
                           90       100
                   ....*....|....*....|....*..
gi 2462603618  495 GTLPPGEGL-HPDATPGPRGEFISRKY 520
Cdd:cd08204     80 ANLPPGFKKpTPDSSDEEREQFIRAKY 106
RA_ARAP2 cd17227
Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH ...
967-1058 3.24e-34

Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 2 (ARAP2); ARAP2, also termed Centaurin-delta-1 (Cnt-d1), or Protein PARX, is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating protein (GAP), which promotes GLUT1-mediated basal glucose uptake by modifying sphingolipid metabolism through glucosylceramide synthase (GCS). ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology. ARAP2 contains multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes.


Pssm-ID: 340747  Cd Length: 98  Bit Score: 126.54  E-value: 3.24e-34
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  967 AGDLIMEVYIEQQLPDNCVTLKVSPTLTAEELTNQVLEMRGTAAGM-DLWVTFEIREHGELERPLHPKEKVLEQALQWCQ 1045
Cdd:cd17227      1 AGDLLIEVYLEKKEPDCSIIIRVSPTMEAEELTNDVLEIKNIIPDKkDIWATFEVIENGELERPLHYKENVLEQVLQWSS 80
                           90
                   ....*....|...
gi 2462603618 1046 LPEPCSASLLLKK 1058
Cdd:cd17227     81 LSEPGSAYLIVKR 93
RA_ARAPs cd17113
Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH ...
967-1062 2.86e-30

Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing proteins ARAP1, ARAP2, ARAP3, and similar proteins; ARAPs are phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating proteins (GAPs). They contain multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes.


Pssm-ID: 340633  Cd Length: 95  Bit Score: 115.42  E-value: 2.86e-30
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  967 AGDLIMEVYIEQQlPDNCVTLKVSPTLTAEELTNQVLEMRGTAAGMDLWVTFEIREHGELERPLHPKEKVLEQALQWCQL 1046
Cdd:cd17113      1 SGDFLIPVYIEEK-EGTSVNIKVTPTMTAEEVVEQALNKKNLGGPEGNWALFEVIEDGGLERPLHESEKVLDVVLRWSQW 79
                           90
                   ....*....|....*.
gi 2462603618 1047 PePCSASLLLKKVPLA 1062
Cdd:cd17113     80 P-RKSNYLCVKKNPLL 94
ArfGap smart00105
Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with ...
415-525 4.70e-29

Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 214518 [Multi-domain]  Cd Length: 119  Bit Score: 112.82  E-value: 4.70e-29
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618   415 EKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANRFWA 494
Cdd:smart00105    2 KLLRSIPGNKKCFDCGAPNPTWASVNLGVFLCIECSGIHRSLGVHISKVRSLTLDT--WTEEELRLLQKGGNENANSIWE 79
                            90       100       110
                    ....*....|....*....|....*....|..
gi 2462603618   495 GTLPPGEGLHPDATPGP-RGEFISRKYRLGLF 525
Cdd:smart00105   80 SNLDDFSLKPPDDDDQQkYESFIAAKYEEKLF 111
ArfGap_AGAP cd08836
ArfGAP with GTPase domain, ANK repeat and PH domains; The AGAP subfamily of ADP-ribosylation ...
412-520 2.48e-28

ArfGAP with GTPase domain, ANK repeat and PH domains; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking.


Pssm-ID: 350065 [Multi-domain]  Cd Length: 108  Bit Score: 110.46  E-value: 2.48e-28
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  412 EVAEKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANR 491
Cdd:cd08836      1 AALQAIRNVRGNDHCVDCGAPNPDWASLNLGALMCIECSGIHRNLGTHISRVRSLDLDD--WPVELLKVMSAIGNDLANS 78
                           90       100
                   ....*....|....*....|....*....
gi 2462603618  492 FWAGTLPPGEGLHPDATPGPRGEFISRKY 520
Cdd:cd08836     79 VWEGNTQGRTKPTPDSSREEKERWIRAKY 107
ArfGap_ACAP cd08835
ArfGAP domain of ACAP (ArfGAP with Coiled-coil, ANK repeat and PH domains) proteins; ArfGAP ...
413-520 3.62e-27

ArfGAP domain of ACAP (ArfGAP with Coiled-coil, ANK repeat and PH domains) proteins; ArfGAP domain is an essential part of ACAP proteins that play important role in endocytosis, actin remodeling and receptor tyrosine kinase-dependent cell movement. ACAP subfamily of ArfGAPs are composed of coiled coils (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. In addition, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


Pssm-ID: 350064 [Multi-domain]  Cd Length: 116  Bit Score: 107.34  E-value: 3.62e-27
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  413 VAEKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANRF 492
Cdd:cd08835      3 ALEQVLSVPGNAQCCDCGSPDPRWASINLGVTLCIECSGIHRSLGVHVSKVRSLTLDS--WEPELLKVMLELGNDVVNRI 80
                           90       100       110
                   ....*....|....*....|....*....|..
gi 2462603618  493 WAGTLPpgEGLHPDATPG-PRGE---FISRKY 520
Cdd:cd08835     81 YEANVP--DDGSVKPTPDsSRQEreaWIRAKY 110
ArfGap_ADAP cd08832
ArfGap with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) ...
423-500 6.09e-27

ArfGap with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


Pssm-ID: 350061 [Multi-domain]  Cd Length: 113  Bit Score: 106.58  E-value: 6.09e-27
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2462603618  423 NRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANRFWAGTLPPG 500
Cdd:cd08832     17 NNTCADCGAPDPEWASYNLGVFICLDCSGIHRSLGTHISKVKSLRLDN--WDDSQVEFMEENGNEKAKAKYEAHVPAF 92
ArfGap_ASAP cd08834
ArfGAP domain of ASAP (Arf GAP, SH3, ANK repeat and PH domains) subfamily of ADP-ribosylation ...
415-521 2.31e-26

ArfGAP domain of ASAP (Arf GAP, SH3, ANK repeat and PH domains) subfamily of ADP-ribosylation factor GTPase-activating proteins; The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. Both ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma.


Pssm-ID: 350063 [Multi-domain]  Cd Length: 117  Bit Score: 105.00  E-value: 2.31e-26
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  415 EKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDtsVWSNEIVQLFIVLGNDRANRFWA 494
Cdd:cd08834      7 AEVKRLPGNDVCCDCGSPDPTWLSTNLGILTCIECSGVHRELGVHVSRIQSLTLD--NLGTSELLLARNLGNEGFNEIME 84
                           90       100
                   ....*....|....*....|....*..
gi 2462603618  495 GTLPPGEGLHPDATPGPRGEFISRKYR 521
Cdd:cd08834     85 ANLPPGYKPTPNSDMEERKDFIRAKYV 111
COG5347 COG5347
GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ...
412-550 3.96e-26

GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ARF-mediated vesicular transport [Intracellular trafficking and secretion];


Pssm-ID: 227651 [Multi-domain]  Cd Length: 319  Bit Score: 110.64  E-value: 3.96e-26
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  412 EVAEKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANR 491
Cdd:COG5347      9 KLLKLLKSDSSNKKCADCGAPNPTWASVNLGVFLCIDCAGVHRSLGVHISKVKSLTLDN--WTEEELRRMEVGGNSNANR 86
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2462603618  492 FWAGTLPPGEGLHPDATPGP--RGEFISRKYRLGLFRKPHPQYPDHSQLLQALCAAVARPN 550
Cdd:COG5347     87 FYEKNLLDQLLLPIKAKYDSsvAKKYIRKKYELKKFIDDSSSPSDFSSFSASSTRTVDSVD 147
ArfGap_SMAP cd08839
Stromal membrane-associated proteins; a subfamily of the ArfGAP family; The SMAP subfamily of ...
422-520 4.30e-25

Stromal membrane-associated proteins; a subfamily of the ArfGAP family; The SMAP subfamily of Arf GTPase-activating proteins consists of the two structurally-related members, SMAP1 and SMAP2. Each SMAP member exhibits common and distinct functions in vesicle trafficking. They both bind to clathrin heavy chain molecules and are involved in the trafficking of clathrin-coated vesicles. SMAP1 preferentially exhibits GAP toward Arf6, while SMAP2 prefers Arf1 as a substrate. SMAP1 is involved in Arf6-dependent vesicle trafficking, but not Arf6-mediated actin cytoskeleton reorganization, and regulates clathrin-dependent endocytosis of the transferrin receptors and E-cadherin. SMAP2 regulates Arf1-dependent retrograde transport of TGN38/46 from the early endosome to the trans-Golgi network (TGN). SMAP2 has the Clathrin Assembly Lymphoid Myeloid (CALM)-binding domain, but SMAP1 does not.


Pssm-ID: 350068 [Multi-domain]  Cd Length: 103  Bit Score: 100.81  E-value: 4.30e-25
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  422 ANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANRFWAGTLPPGe 501
Cdd:cd08839      9 DNKYCADCGAKGPRWASWNLGVFICIRCAGIHRNLGVHISKVKSVNLDS--WTPEQVQSMQEMGNARANAYYEANLPDG- 85
                           90       100
                   ....*....|....*....|
gi 2462603618  502 glHPDATPGPRGE-FISRKY 520
Cdd:cd08839     86 --FRRPQTDSALEnFIRDKY 103
ArfGap_AGAP1 cd08854
ArfGAP with GTPase domain, ANK repeat and PH domain 1; The AGAP subfamily of ADP-ribosylation ...
415-520 2.68e-22

ArfGAP with GTPase domain, ANK repeat and PH domain 1; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking.


Pssm-ID: 350079 [Multi-domain]  Cd Length: 109  Bit Score: 93.15  E-value: 2.68e-22
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  415 EKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDtsVWSNEIVQLFIVLGNDRANRFWA 494
Cdd:cd08854      5 QAIRNAKGNSLCVDCGAPNPTWASLNLGALICIECSGIHRNLGTHLSRVRSLDLD--DWPRELTLVLTAIGNHMANSIWE 82
                           90       100
                   ....*....|....*....|....*.
gi 2462603618  495 GTLPPGEGLHPDATPGPRGEFISRKY 520
Cdd:cd08854     83 SCTQGRTKPAPDSSREERESWIRAKY 108
ArfGap_GIT cd08833
The GIT subfamily of ADP-ribosylation factor GTPase-activating proteins; The GIT (G-protein ...
421-520 3.25e-22

The GIT subfamily of ADP-ribosylation factor GTPase-activating proteins; The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration.


Pssm-ID: 350062 [Multi-domain]  Cd Length: 109  Bit Score: 92.75  E-value: 3.25e-22
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  421 RANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANRFWAGTLPPG 500
Cdd:cd08833      6 SNARVCADCSAPDPEWASINRGVLICDECCSIHRSLGRHISQVKSLRKDQ--WPPSLLEMVQTLGNNGANSIWEHSLLDP 83
                           90       100
                   ....*....|....*....|....*.
gi 2462603618  501 EG------LHPDATPGPRGEFISRKY 520
Cdd:cd08833     84 SQsgkrkpIPPDPVHPTKEEFIKAKY 109
ArfGap_AGAP3 cd08855
ArfGAP with GTPase domain, ANK repeat and PH domain 3; The AGAP subfamily of ADP-ribosylation ...
421-520 2.08e-21

ArfGAP with GTPase domain, ANK repeat and PH domain 3; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion.


Pssm-ID: 350080 [Multi-domain]  Cd Length: 110  Bit Score: 90.50  E-value: 2.08e-21
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  421 RANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANRFWAGTL--- 497
Cdd:cd08855     12 RGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRNLGTHLSRVRSLDLDD--WPVELSMVMTAIGNAMANSVWEGALdgy 89
                           90       100
                   ....*....|....*....|....
gi 2462603618  498 -PPGeglhPDATPGPRGEFISRKY 520
Cdd:cd08855     90 sKPG----PDSTREEKERWIRAKY 109
ArfGap_ACAP1 cd08852
ArfGAP domain of ACAP1 (ArfGAP with Coiled-coil, ANK repeat and PH domains 1); ACAP1 belongs ...
412-493 3.68e-21

ArfGAP domain of ACAP1 (ArfGAP with Coiled-coil, ANK repeat and PH domains 1); ACAP1 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


Pssm-ID: 350077 [Multi-domain]  Cd Length: 120  Bit Score: 90.40  E-value: 3.68e-21
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  412 EVAEKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANR 491
Cdd:cd08852      2 HAVAQVQSVDGNAQCCDCREPAPEWASINLGVTLCIQCSGIHRSLGVHFSKVRSLTLDS--WEPELVKLMCELGNVIINQ 79

                   ..
gi 2462603618  492 FW 493
Cdd:cd08852     80 IY 81
ArfGap_ArfGap1 cd08830
Arf1 GTPase-activating protein 1; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) ...
423-521 4.81e-21

Arf1 GTPase-activating protein 1; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350059 [Multi-domain]  Cd Length: 115  Bit Score: 89.86  E-value: 4.81e-21
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  423 NRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANRFWAGTlppgeG 502
Cdd:cd08830     14 NNRCFDCGAPNPQWASVSYGIFICLECSGVHRGLGVHISFVRSITMDS--WSEKQLKKMELGGNAKLREFFESY-----G 86
                           90
                   ....*....|....*....
gi 2462603618  503 LHPDATpgprgefISRKYR 521
Cdd:cd08830     87 ISPDLP-------IREKYN 98
ArfGap_AGAP2 cd08853
ArfGAP with GTPase domain, ANK repeat and PH domain 2; The AGAP subfamily of ADP-ribosylation ...
415-520 8.61e-21

ArfGAP with GTPase domain, ANK repeat and PH domain 2; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking.


Pssm-ID: 350078 [Multi-domain]  Cd Length: 109  Bit Score: 88.91  E-value: 8.61e-21
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  415 EKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANRFWA 494
Cdd:cd08853      5 QSIRNMRGNSHCVDCETQNPKWASLNLGVLMCIECSGIHRNLGTHLSRVRSLDLDD--WPVELRKVMSSIGNELANSIWE 82
                           90       100
                   ....*....|....*....|....*....
gi 2462603618  495 GTlppGEGLHPDATPGPRGE---FISRKY 520
Cdd:cd08853     83 GS---SQGQTKPSSDSTREEkerWIRAKY 108
ArfGap_ACAP2 cd08851
ArfGAP domain of ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domains 2); ACAP2 belongs ...
423-520 1.66e-20

ArfGAP domain of ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domains 2); ACAP2 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


Pssm-ID: 350076 [Multi-domain]  Cd Length: 116  Bit Score: 88.12  E-value: 1.66e-20
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  423 NRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANRFWAGTLPPgEG 502
Cdd:cd08851     13 NASCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDT--WEPELLKLMCELGNDVINRIYEARVEK-MG 89
                           90       100
                   ....*....|....*....|.
gi 2462603618  503 LHPDATPGPRGE---FISRKY 520
Cdd:cd08851     90 AKKPQPGGQRQEkeaYIRAKY 110
ArfGap_SMAP2 cd08859
Stromal membrane-associated protein 2; a subfamily of the ArfGAP family; The SMAP subfamily of ...
423-520 6.23e-20

Stromal membrane-associated protein 2; a subfamily of the ArfGAP family; The SMAP subfamily of Arf GTPase-activating proteins consists of the two structurally-related members, SMAP1 and SMAP2. Each SMAP member exhibits common and distinct functions in vesicle trafficking. They both bind to clathrin heavy chain molecules and are involved in the trafficking of clathrin-coated vesicles. SMAP1 preferentially exhibits GAP toward Arf6, while SMAP2 prefers Arf1 as a substrate. SMAP1 is involved in Arf6-dependent vesicle trafficking, but not Arf6-mediated actin cytoskeleton reorganization, and regulates clathrin-dependent endocytosis of the transferrin receptors and E-cadherin. SMAP2 regulates Arf1-dependent retrograde transport of TGN38/46 from the early endosome to the trans-Golgi network (TGN). SMAP2 has the Clathrin Assembly Lymphoid Myeloid (CALM)-binding domain, but SMAP1 does not.


Pssm-ID: 350083 [Multi-domain]  Cd Length: 107  Bit Score: 86.19  E-value: 6.23e-20
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  423 NRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANRFWAGTLPPgEG 502
Cdd:cd08859     10 NKFCADCQSKGPRWASWNIGVFICIRCAGIHRNLGVHISRVKSVNLDQ--WTQEQIQCMQEMGNGKANRLYEAFLPE-NF 86
                           90
                   ....*....|....*...
gi 2462603618  503 LHPDATPGPRGeFISRKY 520
Cdd:cd08859     87 RRPQTDQAVEG-FIRDKY 103
ArfGap_ACAP3 cd08850
ArfGAP domain of ACAP3 (ArfGAP with Coiled-coil, ANK repeat and PH domains 3); ACAP3 belongs ...
413-495 1.20e-19

ArfGAP domain of ACAP3 (ArfGAP with Coiled-coil, ANK repeat and PH domains 3); ACAP3 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. It has been shown that ACAP3 positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) also have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages.


Pssm-ID: 350075 [Multi-domain]  Cd Length: 116  Bit Score: 85.77  E-value: 1.20e-19
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  413 VAEKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANRF 492
Cdd:cd08850      3 ILQRVQSIAGNDQCCDCGQPDPRWASINLGILLCIECSGIHRSLGVHCSKVRSLTLDS--WEPELLKLMCELGNSTVNQI 80

                   ...
gi 2462603618  493 WAG 495
Cdd:cd08850     81 YEA 83
ArfGap_ASAP3 cd17900
ArfGAP domain of ASAP3 (ArfGAP with ANK repeat and PH domain-containing protein 3); The ...
423-520 8.94e-19

ArfGAP domain of ASAP3 (ArfGAP with ANK repeat and PH domain-containing protein 3); The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP1 and ASAP2, ASAP3 do not have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma.


Pssm-ID: 350087 [Multi-domain]  Cd Length: 124  Bit Score: 83.74  E-value: 8.94e-19
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  423 NRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDtsVWSNEIVQLFIVLGNDRANRFWAGTLPPGEG 502
Cdd:cd17900     15 NSQCCDCGAPDPTWLSTNLGILTCIECSGIHRELGVRYSRIQSLTLD--LLSTSELLLAVSMGNTRFNEVMEATLPAHGG 92
                           90       100
                   ....*....|....*....|
gi 2462603618  503 LHPDATP--GPRGEFISRKY 520
Cdd:cd17900     93 PKPSAESdmGTRKDYIMAKY 112
ArfGap_ArfGap2_3_like cd08831
Arf1 GTPase-activating protein 2/3-like; ArfGAP (ADP Ribosylation Factor GTPase Activating ...
419-493 9.43e-19

Arf1 GTPase-activating protein 2/3-like; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350060 [Multi-domain]  Cd Length: 116  Bit Score: 83.36  E-value: 9.43e-19
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2462603618  419 SNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANRFW 493
Cdd:cd08831     11 SKPENKVCFDCGAKNPTWASVTFGVFLCLDCSGVHRSLGVHISFVRSTNLDS--WTPEQLRRMKVGGNAKAREFF 83
RhoGAP pfam00620
RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.
842-918 2.49e-18

RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.


Pssm-ID: 459875  Cd Length: 148  Bit Score: 82.98  E-value: 2.49e-18
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2462603618  842 PII-VDACISFVTQHELPQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQTD 918
Cdd:pfam00620   70 PLLtFELYEEFIEAAKLPDEEERLEALRELLRKLPPANRDTLRYLLAHLNRVAQNSDVNKMNAHNLAIVFGPTLLRPP 147
ArfGap_ADAP2 cd08844
ADAP2 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs ...
423-499 2.93e-18

ADAP2 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


Pssm-ID: 350070 [Multi-domain]  Cd Length: 112  Bit Score: 81.74  E-value: 2.93e-18
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2462603618  423 NRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALgSGISKVQSLKLDtsVWSNEIVQLFIVLGNDRANRFWAGTLPP 499
Cdd:cd08844     17 NSVCADCGAPDPDWASYTLGIFICLNCSGVHRNL-PDISRVKSIRLD--FWEDELVEFMKENGNLKAKAKFEAFVPP 90
ArfGap_GIT2 cd08847
GIT2 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting ...
421-520 9.89e-18

GIT2 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration.


Pssm-ID: 350072 [Multi-domain]  Cd Length: 111  Bit Score: 80.06  E-value: 9.89e-18
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  421 RANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKldTSVWSNEIVQLFIVLGNDRANRFWAGTL--- 497
Cdd:cd08847      6 RSSEVCADCSTSDPRWASVNRGVLICDECCSVHRSLGRHISQVRHLK--HTSWPPTLLQMVQTLYNNGANSIWEHSLldp 83
                           90       100       110
                   ....*....|....*....|....*....|...
gi 2462603618  498 ----------PPGEGLHPDatpgpRGEFISRKY 520
Cdd:cd08847     84 asimsgkrkaNPQDKVHPN-----KAEFIRAKY 111
ArfGap_ASAP1 cd08848
ArfGAP domain of ASAP1 (ArfGAP with SH3 domain, ANK repeat and PH domain-containing protein 1); ...
423-520 1.47e-17

ArfGAP domain of ASAP1 (ArfGAP with SH3 domain, ANK repeat and PH domain-containing protein 1); The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma.


Pssm-ID: 350073 [Multi-domain]  Cd Length: 122  Bit Score: 80.08  E-value: 1.47e-17
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  423 NRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDtSVWSNEIVqLFIVLGNDRANRFWAGTLPPgeg 502
Cdd:cd08848     15 NEVCCDCGSPDPTWLSTNLGILTCIECSGIHREMGVHISRIQSLELD-KLGTSELL-LAKNVGNNSFNDIMEGNLPS--- 89
                           90       100
                   ....*....|....*....|....
gi 2462603618  503 lhPDATPGP------RGEFISRKY 520
Cdd:cd08848     90 --PSPKPSPssdmtaRKEYITAKY 111
ArfGap_ArfGap1_like cd08959
ARF1 GTPase-activating protein 1-like; ArfGAP (ADP Ribosylation Factor GTPase Activating ...
419-493 3.76e-17

ARF1 GTPase-activating protein 1-like; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350084 [Multi-domain]  Cd Length: 115  Bit Score: 78.71  E-value: 3.76e-17
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2462603618  419 SNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIVLGNDRANRFW 493
Cdd:cd08959     10 SKPENKVCFDCGAKNPQWASVTYGIFICLDCSGVHRGLGVHISFVRSTTMDK--WTEEQLRKMKVGGNANAREFF 82
RA cd17043
Ras-associating (RA) domain, structurally similar to a beta-grasp ubiquitin-like fold; RA ...
971-1058 1.13e-16

Ras-associating (RA) domain, structurally similar to a beta-grasp ubiquitin-like fold; RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and are involved in various functions ranging from tumor suppression to being oncoproteins. Ras proteins are small GTPases that are involved in cellular signal transduction. The RA domain has the beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. RA-containing proteins include RalGDS, AF6, RIN, RASSF1, SNX27, CYR1, STE50, and phospholipase C epsilon.


Pssm-ID: 340563  Cd Length: 87  Bit Score: 76.20  E-value: 1.13e-16
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  971 IMEVYIEQQLP-DNCVTLKVSPTLTAEELTNQVLEMRGTAAGMDLWVTFEIREHGELERPLHPKEKVLEQALQWcqLPEP 1049
Cdd:cd17043      1 VLKVYDDDLAPgSAYKSILVSSTTTAREVVQLLLEKYGLEEDPEDYSLYEVSEKQETERVLHDDECPLLIQLEW--GPQG 78

                   ....*....
gi 2462603618 1050 CSASLLLKK 1058
Cdd:cd17043     79 TEFRFVLKR 87
RA pfam00788
Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); ...
968-1060 8.54e-16

Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); putative RasGTP effectors in other cases. Recent evidence (not yet in MEDLINE) shows that some RA domains do NOT bind RasGTP. Predicted structure similar to that determined, and that of the RasGTP-binding domain of Raf kinase.


Pssm-ID: 425871  Cd Length: 93  Bit Score: 73.91  E-value: 8.54e-16
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  968 GDLIMEVYIEQQLPDN-CVTLKVSPTLTAEELTNQVLEMRGTAAGMDLWVTFEIREHGELERPLHPKEKVLEQALQWCql 1046
Cdd:pfam00788    1 DDGVLKVYTEDGKPGTtYKTILVSSSTTAEEVIEALLEKFGLEDDPRDYVLVEVLERGGGERRLPDDECPLQIQLQWP-- 78
                           90
                   ....*....|....
gi 2462603618 1047 PEPCSASLLLKKVP 1060
Cdd:pfam00788   79 RDASDSRFLLRKRD 92
ArfGap_AGFG cd08838
ArfGAP domain of the AGFG subfamily (ArfGAP domain and FG repeat-containing proteins); The ...
422-520 2.23e-14

ArfGAP domain of the AGFG subfamily (ArfGAP domain and FG repeat-containing proteins); The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG1 (alias: HIV-1 Rev binding protein, HRB; Rev interacting protein, RIP; Rev/Rex activating domain-binding protein, RAB) and AGFG2 are involved in the maintenance and spread of immunodeficiency virus type 1 (HIV-1) infection. The ArfGAP domain of AGFG is related to nucleoporins, which is a class of proteins that mediate nucleocytoplasmic transport. AGFG plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs, possibly together by the nuclear export receptor CRM1. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication.


Pssm-ID: 350067 [Multi-domain]  Cd Length: 113  Bit Score: 70.69  E-value: 2.23e-14
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  422 ANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGsgiSKVQSLKLDTsvWSNEIVQLFIVLGNDRANRFWAGTLPPGE 501
Cdd:cd08838     12 ENKRCFDCGQRGPTYVNLTFGTFVCTTCSGIHREFN---HRVKSISMST--FTPEEVEFLQAGGNEVARKIWLAKWDPRT 86
                           90       100
                   ....*....|....*....|
gi 2462603618  502 GLHPDATPGPRG-EFISRKY 520
Cdd:cd08838     87 DPEPDSGDDQKIrEFIRLKY 106
ArfGap_ASAP2 cd08849
ArfGAP domain of ASAP2 (ArfGAP2 with SH3 domain, ANK repeat and PH domain-containing protein 2) ...
412-530 3.23e-14

ArfGAP domain of ASAP2 (ArfGAP2 with SH3 domain, ANK repeat and PH domain-containing protein 2); The Arf GAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf , thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport.


Pssm-ID: 350074 [Multi-domain]  Cd Length: 123  Bit Score: 70.39  E-value: 3.23e-14
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  412 EVAEKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDtsVWSNEIVQLFIVLGNDRANR 491
Cdd:cd08849      4 EIISEVQRMTGNDVCCDCGAPDPTWLSTNLGILTCIECSGIHRELGVHYSRMQSLTLD--VLGTSELLLAKNIGNAGFNE 81
                           90       100       110       120
                   ....*....|....*....|....*....|....*....|....
gi 2462603618  492 FWAGTLPPGEGLHPdaTPG----PRGEFISRKYRLGLF-RKPHP 530
Cdd:cd08849     82 IMEACLPAEDVVKP--NPGsdmnARKDYITAKYIERRYaRKKHA 123
ArfGap_ADAP1 cd08843
ADAP1 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs ...
423-499 3.97e-14

ADAP1 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


Pssm-ID: 350069 [Multi-domain]  Cd Length: 112  Bit Score: 70.03  E-value: 3.97e-14
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2462603618  423 NRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSgISKVQSLKLDTsvWSNEIVQLFIVLGNDRANRFWAGTLPP 499
Cdd:cd08843     17 NARCADCGAPDPDWASYTLGVFICLSCSGIHRNIPQ-VSKVKSVRLDA--WEEAQVEFMASHGNDAARARFESKVPS 90
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
210-301 8.50e-14

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 68.73  E-value: 8.50e-14
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618   210 PLLSGWLDKLSPQGNYVFQRRFVQFNGRSLMYFGSDK---DPFPKGVIPLTAIEMTRS------SKDNKFQVITGQR-VF 279
Cdd:smart00233    1 VIKEGWLYKKSGGGKKSWKKRYFVLFNSTLLYYKSKKdkkSYKPKGSIDLSGCTVREApdpdssKKPHCFEIKTSDRkTL 80
                            90       100
                    ....*....|....*....|..
gi 2462603618   280 VFRTESEAQRDMWCSTLQSCLK 301
Cdd:smart00233   81 LLQAESEEEREKWVEALRKAIA 102
RhoGAP smart00324
GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac ...
856-916 8.65e-13

GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. etter domain limits and outliers.


Pssm-ID: 214618  Cd Length: 174  Bit Score: 68.06  E-value: 8.65e-13
                            10        20        30        40        50        60
                    ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2462603618   856 ELPQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQ 916
Cdd:smart00324   88 KLEDETERLRALRELLSLLPPANRATLRYLLAHLNRVAEHSEENKMTARNLAIVFGPTLLR 148
ArfGap_GIT1 cd08846
GIT1 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting ...
426-520 8.84e-13

GIT1 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration.


Pssm-ID: 350071 [Multi-domain]  Cd Length: 111  Bit Score: 65.89  E-value: 8.84e-13
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  426 CADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKldTSVWSNEIVQLFIVLGNDRANRFWAGTL-------- 497
Cdd:cd08846     11 CADCSAPDPGWASINRGVLICDECCSVHRSLGRHISIVKHLR--HSAWPPTLLQMVHTLASNGANSIWEHSLldpaqvqs 88
                           90       100
                   ....*....|....*....|....*...
gi 2462603618  498 -----PPGEGLHPdatpgPRGEFISRKY 520
Cdd:cd08846     89 grrkaNPQDKVHP-----TKSEFIRAKY 111
RhoGAP cd00159
RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like ...
842-915 9.77e-13

RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like small GTPases. Small GTPases (G proteins) cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when bound to GDP. The Rho family of small G proteins, which includes Cdc42Hs, activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. The RhoGAPs are one of the major classes of regulators of Rho G proteins.


Pssm-ID: 238090 [Multi-domain]  Cd Length: 169  Bit Score: 67.71  E-value: 9.77e-13
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2462603618  842 PII-VDACISFVTQHELPQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVF 915
Cdd:cd00159     69 PLIpFELYDEFIELAKIEDEEERIEALKELLKSLPPENRDLLKYLLKLLHKISQNSEVNKMTASNLAIVFAPTLL 143
PLN03114 PLN03114
ADP-ribosylation factor GTPase-activating protein AGD10; Provisional
405-493 1.02e-12

ADP-ribosylation factor GTPase-activating protein AGD10; Provisional


Pssm-ID: 178661 [Multi-domain]  Cd Length: 395  Bit Score: 71.81  E-value: 1.02e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  405 TETLSD-YEVAEKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWSNEIVQLFIV 483
Cdd:PLN03114     3 SENLNDkISVFKKLKAKSDNKICFDCNAKNPTWASVTYGIFLCIDCSAVHRSLGVHISFVRSTNLDS--WSSEQLKMMIY 80
                           90
                   ....*....|
gi 2462603618  484 LGNDRANRFW 493
Cdd:PLN03114    81 GGNNRAQVFF 90
PH-GRAM1_AGT26 cd13215
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, ...
211-297 1.86e-12

Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1; ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275402  Cd Length: 116  Bit Score: 65.34  E-value: 1.86e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  211 LLSGWLDKLSpQGNYVFQRRFVQFNGRSLMYFGSDKDP-FPKGVIPL---TAIEMTRSSKDN--KFQVITGQRVFVFRTE 284
Cdd:cd13215     22 IKSGYLSKRS-KRTLRYTRYWFVLKGDTLSWYNSSTDLyFPAGTIDLryaTSIELSKSNGEAttSFKIVTNSRTYKFKAD 100
                           90
                   ....*....|...
gi 2462603618  285 SEAQRDMWCSTLQ 297
Cdd:cd13215    101 SETSADEWVKALK 113
RA_ARAP1 cd17226
Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH ...
967-1037 2.63e-12

Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 1 (ARAP1); ARAP1, also termed Centaurin-delta-2 (Cnt-d2), is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating protein (GAP) that inhibits the trafficking of epidermal growth factor receptor (EGFR) to the early endosome. It associates with the Cbl-interacting protein of 85 kDa (CIN85), regulates endocytic trafficking of the EGFR, and thus affects ubiquitination of EGFR. It also regulates the ring size of circular dorsal ruffles through Arf1 and Arf5. ARAP1 contains multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes.


Pssm-ID: 340746  Cd Length: 93  Bit Score: 64.10  E-value: 2.63e-12
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2462603618  967 AGDLIMEVYIEQQLPDNCVTLKVSPTLTAEELTNQVLEMRGTAA-GMDLWVTFEIREHGELERPLHPKEKVL 1037
Cdd:cd17226      1 SPDFICTVYLEEKKEGSEQHVQVPASMTAEELTFEILDRRNIHTrEKDYWSCFEVNEREEAERPLHFSEKVL 72
PH pfam00169
PH domain; PH stands for pleckstrin homology.
210-301 3.28e-12

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 64.12  E-value: 3.28e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  210 PLLSGWLDKLSPQGNYVFQRRFVQFNGRSLMYFGSD---KDPFPKGVIPLTAIEMTR------SSKDNKFQVITGQ---- 276
Cdd:pfam00169    1 VVKEGWLLKKGGGKKKSWKKRYFVLFDGSLLYYKDDksgKSKEPKGSISLSGCEVVEvvasdsPKRKFCFELRTGErtgk 80
                           90       100
                   ....*....|....*....|....*
gi 2462603618  277 RVFVFRTESEAQRDMWCSTLQSCLK 301
Cdd:pfam00169   81 RTYLLQAESEEERKDWIKAIQSAIR 105
ArfGap_ArfGap2 cd09029
Arf1 GTPase-activating protein 2; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) ...
422-493 4.08e-12

Arf1 GTPase-activating protein 2; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350086 [Multi-domain]  Cd Length: 120  Bit Score: 64.31  E-value: 4.08e-12
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2462603618  422 ANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTSvWSNEIVQLFIVLGNDRANRFW 493
Cdd:cd09029     18 TNKACFDCGAKNPSWASITYGVFLCIDCSGVHRSLGVHLSFIRSTELDSN-WNWFQLRCMQVGGNANATAFF 88
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
212-296 4.14e-12

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 63.33  E-value: 4.14e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  212 LSGWLDKLSPQGNYVFQRRFVQFNGRSLMYFGSDKDP--FPKGVIPLTAI----EMTRSSKDNKFQVIT-GQRVFVFRTE 284
Cdd:cd00821      1 KEGYLLKRGGGGLKSWKKRWFVLFEGVLLYYKSKKDSsyKPKGSIPLSGIleveEVSPKERPHCFELVTpDGRTYYLQAD 80
                           90
                   ....*....|..
gi 2462603618  285 SEAQRDMWCSTL 296
Cdd:cd00821     81 SEEERQEWLKAL 92
ArfGap_ArfGap3 cd09028
Arf1 GTPase-activating protein 3; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) ...
423-493 1.34e-11

Arf1 GTPase-activating protein 3; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350085 [Multi-domain]  Cd Length: 120  Bit Score: 63.16  E-value: 1.34e-11
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2462603618  423 NRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTSvWSNEIVQLFIVLGNDRANRFW 493
Cdd:cd09028     19 NKVCFDCGAKNPSWASITYGVFLCIDCSGIHRSLGVHLSFIRSTELDSN-WSWFQLRCMQVGGNANASAFF 88
PH2_ADAP cd01251
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called ...
214-300 1.39e-11

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241282  Cd Length: 105  Bit Score: 62.22  E-value: 1.39e-11
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  214 GWLDKLSPQGNYVFQRRFVQFNGRSLMYFGSDKDPFPKGVIPLTAIE--------MTRSSKD---NKFQVITGQRVFVFR 282
Cdd:cd01251      6 GYLEKTGPKQTDGFRKRWFTLDDRRLMYFKDPLDAFPKGEIFIGSKEegysvregLPPGIKGhwgFGFTLVTPDRTFLLS 85
                           90
                   ....*....|....*...
gi 2462603618  283 TESEAQRDMWCSTLQSCL 300
Cdd:cd01251     86 AETEEERREWITAIQKVL 103
PH1_PLEKHH1_PLEKHH2 cd13282
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ...
213-304 2.38e-10

Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241436  Cd Length: 96  Bit Score: 58.46  E-value: 2.38e-10
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  213 SGWLDKLspqGNYV--FQRR-FVQFNGRsLMYFGSDKDPF--PKGVIPL-TAIEMTRSSKDNKFQVITGQRVFVFRTESE 286
Cdd:cd13282      2 AGYLTKL---GGKVktWKRRwFVLKNGE-LFYYKSPNDVIrkPQGQIALdGSCEIARAEGAQTFEIVTEKRTYYLTADSE 77
                           90
                   ....*....|....*...
gi 2462603618  287 AQRDMWCSTLQSCLKEQR 304
Cdd:cd13282     78 NDLDEWIRVIQNVLRRQA 95
PH4_ARAP cd13257
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
768-816 2.77e-10

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 4; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the fourth PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270077  Cd Length: 91  Bit Score: 58.32  E-value: 2.77e-10
                           10        20        30        40
                   ....*....|....*....|....*....|....*....|....*....
gi 2462603618  768 EDMVHLRRLQEISVvsaaDTPDKKEHLVLVETGRTLYLQGEGRLDFTAW 816
Cdd:cd13257     40 EERMHLRKLQELSI----QGDVQLDVLVLVERRRTLYIQGERKLDFTGW 84
RhoGAP_myosin_IX cd04377
RhoGAP_myosin_IX: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
842-917 3.21e-09

RhoGAP_myosin_IX: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in class IX myosins. Class IX myosins contain a characteristic head domain, a neck domain, a tail domain which contains a C6H2-zinc binding motif and a RhoGAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239842  Cd Length: 186  Bit Score: 57.83  E-value: 3.21e-09
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2462603618  842 PIIVDACI-SFVTQHELPQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQT 917
Cdd:cd04377     84 PLMTFELYeNFLRAMELEEKQERVRALYSVLEQLPRANLNTLERLIFHLVRVALQEEVNRMSANALAIVFAPCILRC 160
PH_TBC1D2A cd01265
TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1 ...
212-298 2.44e-08

TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1/Prostate antigen recognized and identified by SEREX 1 and ARMUS) contains a PH domain and a TBC-type GTPase catalytic domain. TBC1D2A integrates signaling between Arf6, Rac1, and Rab7 during junction disassembly. Activated Rac1 recruits TBC1D2A to locally inactivate Rab7 via its C-terminal TBC/RabGAP domain and facilitate E-cadherin degradation in lysosomes. The TBC1D2A PH domain mediates localization at cell-cell contacts and coprecipitates with cadherin complexes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269966  Cd Length: 102  Bit Score: 53.10  E-value: 2.44e-08
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  212 LSGWLDKLSPQGNYV--FQRRFVQFNGRS--LMYFGSDKDPFPKGVIPLT--AIEMTRSSKDNKFQVITGQRVFVFRTES 285
Cdd:cd01265      2 LCGYLNKLETRGLGLkgWKRRWFVLDESKcqLYYYRSPQDATPLGSIDLSgaAFSYDPEAEPGQFEIHTPGRVHILKAST 81
                           90
                   ....*....|...
gi 2462603618  286 EAQRDMWCSTLQS 298
Cdd:cd01265     82 RQAMLYWLQALQS 94
RhoGAP_fRGD1 cd04398
RhoGAP_fRGD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
862-939 2.69e-08

RhoGAP_fRGD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal RGD1-like proteins. Yeast Rgd1 is a GAP protein for Rho3 and Rho4 and plays a role in low-pH response. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239863  Cd Length: 192  Bit Score: 55.49  E-value: 2.69e-08
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  862 QRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQTDGRGEHEV----RVLQELIDGYIS 937
Cdd:cd04398    111 RRRDALHGLINDLPDANYATLRALMFHLARIKEHESVNRMSVNNLAIIWGPTLMNAAPDNAADMsfqsRVIETLLDNAYQ 190

                   ..
gi 2462603618  938 VF 939
Cdd:cd04398    191 IF 192
RhoGAP_ARHGAP27_15_12_9 cd04403
RhoGAP_ARHGAP27_15_12_9: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ...
851-916 4.27e-08

RhoGAP_ARHGAP27_15_12_9: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ARHGAP27 (also called CAMGAP1), ARHGAP15, 12 and 9-like proteins; This subgroup of ARHGAPs are multidomain proteins that contain RhoGAP, PH, SH3 and WW domains. Most members that are studied show GAP activity towards Rac1, some additionally show activity towards Cdc42. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239868 [Multi-domain]  Cd Length: 187  Bit Score: 54.70  E-value: 4.27e-08
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2462603618  851 FVTQHELPQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQ 916
Cdd:cd04403     97 FVAAIKLSDYEQRVSAVKDLIKSLPKPNHDTLKMLFRHLCRVIEHGEKNRMTTQNLAIVFGPTLLR 162
RhoGAP_MgcRacGAP cd04382
RhoGAP_MgcRacGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
860-915 2.56e-07

RhoGAP_MgcRacGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in MgcRacGAP proteins. MgcRacGAP plays an important dual role in cytokinesis: i) it is part of centralspindlin-complex, together with the mitotic kinesin MKLP1, which is critical for the structure of the central spindle by promoting microtuble bundling. ii) after phosphorylation by aurora B MgcRacGAP becomes an effective regulator of RhoA and plays an important role in the assembly of the contractile ring and the initiation of cytokinesis. MgcRacGAP-like proteins contain a N-terminal C1-like domain, and a C-terminal RhoGAP domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239847  Cd Length: 193  Bit Score: 52.68  E-value: 2.56e-07
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*.
gi 2462603618  860 KNQRLEKYKdVIGCLPRVNRRTLATLIGHLYRVQKCAAlNQMCTRNLALLFAPSVF 915
Cdd:cd04382    106 DNSRAALYQ-AISELPQPNRDTLAFLILHLQRVAQSPE-CKMDINNLARVFGPTIV 159
RhoGAP_ARHGAP21 cd04395
RhoGAP_ARHGAP21: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
849-917 4.33e-07

RhoGAP_ARHGAP21: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP21-like proteins. ArhGAP21 is a multi-domain protein, containing RhoGAP, PH and PDZ domains, and is believed to play a role in the organization of the cell-cell junction complex. It has been shown to function as a GAP of Cdc42 and RhoA, and to interact with alpha-catenin and Arf6. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239860  Cd Length: 196  Bit Score: 52.02  E-value: 4.33e-07
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2462603618  849 ISFVTQHELPQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQT 917
Cdd:cd04395     98 PDFIEANRIEDPVERLKELRRLIHSLPDHHYETLKHLIRHLKTVADNSEVNKMEPRNLAIVFGPTLVRT 166
RhoGAP_myosin_IXB cd04407
RhoGAP_myosin_IXB: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
851-916 8.90e-07

RhoGAP_myosin_IXB: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in myosins IXB. Class IX myosins contain a characteristic head domain, a neck domain and a tail domain which contains a C6H2-zinc binding motif and a Rho-GAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239872 [Multi-domain]  Cd Length: 186  Bit Score: 50.76  E-value: 8.90e-07
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2462603618  851 FVTQHELPQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQ 916
Cdd:cd04407     94 FLRAVELPEKQEQLQAIYRVLEQLPTANHNTLERLIFHLVKVALEEDVNRMSPNALAIVFAPCLLR 159
PH2_TAPP1_2 cd13271
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal ...
205-305 9.37e-07

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270090  Cd Length: 114  Bit Score: 48.89  E-value: 9.37e-07
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  205 ADRLTPLLSGWLDKlspQGNYV--FQRRFVQFNGRSLMYFGSDKDPFPKGVIPLTAIEMTRSSK-------DNKFQVITG 275
Cdd:cd13271      3 RAGRNVIKSGYCVK---QGAVRknWKRRFFILDDNTISYYKSETDKEPLRTIPLREVLKVHECLvksllmrDNLFEIITT 79
                           90       100       110
                   ....*....|....*....|....*....|
gi 2462603618  276 QRVFVFRTESEAQRDMWCSTLQSCLKEQRL 305
Cdd:cd13271     80 SRTFYIQADSPEEMHSWIKAISGAIVARRG 109
RhoGAP_DLC1 cd04375
RhoGAP_DLC1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
854-916 9.59e-07

RhoGAP_DLC1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of DLC1-like proteins. DLC1 shows in vitro GAP activity towards RhoA and CDC42. Beside its C-terminal GAP domain, DLC1 also contains a SAM (sterile alpha motif) and a START (StAR-related lipid transfer action) domain. DLC1 has tumor suppressor activity in cell culture. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239840  Cd Length: 220  Bit Score: 51.26  E-value: 9.59e-07
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2462603618  854 QHeLPqKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQ 916
Cdd:cd04375    104 QY-VP-KEQRLEAVQCAILLLPDENREVLQTLLYFLSDVAANSQENQMTATNLAVCLAPSLFH 164
RhoGAP_CdGAP cd04384
RhoGAP_CdGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
862-917 2.54e-06

RhoGAP_CdGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of CdGAP-like proteins; CdGAP contains an N-terminal RhoGAP domain and a C-terminal proline-rich region, and it is active on both Cdc42 and Rac1 but not RhoA. CdGAP is recruited to focal adhesions via the interaction with the scaffold protein actopaxin (alpha-parvin). Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239849 [Multi-domain]  Cd Length: 195  Bit Score: 49.81  E-value: 2.54e-06
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*.
gi 2462603618  862 QRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQT 917
Cdd:cd04384    110 ERLEKIHDVIQQLPPPHYRTLEFLMRHLSRLAKYCSITNMHAKNLAIVWAPNLLRS 165
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
321-404 2.99e-06

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 47.16  E-value: 2.99e-06
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618   321 GMLELRGHKA-----KVFAALSPGELALYKSEQAFSLGIGICFIELQGCSVRETKSRS-------FDLLTPHR-CFSFTA 387
Cdd:smart00233    5 GWLYKKSGGGkkswkKRYFVLFNSTLLYYKSKKDKKSYKPKGSIDLSGCTVREAPDPDsskkphcFEIKTSDRkTLLLQA 84
                            90
                    ....*....|....*..
gi 2462603618   388 ESGGARQSWAAALQEAV 404
Cdd:smart00233   85 ESEEEREKWVEALRKAI 101
RhoGAP_chimaerin cd04372
RhoGAP_chimaerin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
841-917 3.00e-06

RhoGAP_chimaerin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of chimaerins. Chimaerins are a family of phorbolester- and diacylglycerol-responsive GAPs specific for the Rho-like GTPase Rac. Chimaerins exist in two alternative splice forms that each contain a C-terminal GAP domain, and a central C1 domain which binds phorbol esters, inducing a conformational change that activates the protein; one splice form is lacking the N-terminal Src homology-2 (SH2) domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239837 [Multi-domain]  Cd Length: 194  Bit Score: 49.44  E-value: 3.00e-06
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2462603618  841 IPIIV-DACISFVTQHELPQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQT 917
Cdd:cd04372     87 IPVITyDTYPKFIDAAKISNPDERLEAVHEALMLLPPAHYETLRYLMEHLKRVTLHEKDNKMNAENLGIVFGPTLMRP 164
RhoGAP_GMIP_PARG1 cd04378
RhoGAP_GMIP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
864-913 3.40e-06

RhoGAP_GMIP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP (Gem interacting protein) and PARG1 (PTPL1-associated RhoGAP1). GMIP plays important roles in neurite growth and axonal guidance, and interacts with Gem, a member of the RGK subfamily of the Ras small GTPase superfamily, through the N-terminal half of the protein. GMIP contains a C-terminal RhoGAP domain. GMIP inhibits RhoA function, but is inactive towards Rac1 and Cdc41. PARG1 interacts with Rap2, also a member of the Ras small GTPase superfamily whose exact function is unknown, and shows strong preference for Rho. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239843  Cd Length: 203  Bit Score: 49.34  E-value: 3.40e-06
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|
gi 2462603618  864 LEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPS 913
Cdd:cd04378    122 IRKLKDLLRQLPASNYNTLQHLIAHLYRVAEQFEENKMSPNNLGIVFGPT 171
RhoGAP-p50rhoGAP cd04404
RhoGAP-p50rhoGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
842-912 3.89e-06

RhoGAP-p50rhoGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of p50RhoGAP-like proteins; p50RhoGAP, also known as RhoGAP-1, contains a C-terminal RhoGAP domain and an N-terminal Sec14 domain which binds phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3). It is ubiquitously expressed and preferentially active on Cdc42. This subgroup also contains closely related ARHGAP8. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239869 [Multi-domain]  Cd Length: 195  Bit Score: 48.87  E-value: 3.89e-06
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2462603618  842 PIIVDACISFVTQHELPQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAP 912
Cdd:cd04404     92 PLLTFDLYDDIVGFLNVDKEERVERVKQLLQTLPEENYQVLKYLIKFLVQVSAHSDQNKMTNSNLAVVFGP 162
RhoGAP_PARG1 cd04409
RhoGAP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
861-914 8.00e-06

RhoGAP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of PARG1 (PTPL1-associated RhoGAP1). PARG1 was originally cloned as an interaction partner of PTPL1, an intracellular protein-tyrosine phosphatase. PARG1 interacts with Rap2, also a member of the Ras small GTPase superfamily whose exact function is unknown, and shows strong preference for Rho. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239874  Cd Length: 211  Bit Score: 48.27  E-value: 8.00e-06
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....
gi 2462603618  861 NQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSV 914
Cdd:cd04409    127 NRILLKSKDLLRQLPAPNYNTLQFLIVHLHRVSEQAEENKMSASNLGIIFGPTL 180
RhoGAP_p190 cd04373
RhoGAP_p190: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
855-936 9.11e-06

RhoGAP_p190: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of p190-like proteins. p190, also named RhoGAP5, plays a role in neuritogenesis and axon branch stability. p190 shows a preference for Rho, over Rac and Cdc42, and consists of an N-terminal GTPase domain and a C-terminal GAP domain. The central portion of p190 contains important regulatory phosphorylation sites. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239838  Cd Length: 185  Bit Score: 47.84  E-value: 9.11e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  855 HELPQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQTD--GRGEHE-VRVLQEL 931
Cdd:cd04373     99 AKINDREQRLHALKELLKKFPPENFDVFKYVITHLNKVSQNSKVNLMTSENLSICFWPTLMRPDftSMEALSaTRIYQTI 178

                   ....*
gi 2462603618  932 IDGYI 936
Cdd:cd04373    179 IETFI 183
ArfGap_AGFG1 cd08857
ArfGAP domain of AGFG1 (ArfGAP domain and FG repeat-containing protein 1); The ArfGAP domain ...
423-520 9.77e-06

ArfGAP domain of AGFG1 (ArfGAP domain and FG repeat-containing protein 1); The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG1 (alias: HIV-1 Rev binding protein, HRB; Rev interacting protein, RIP; Rev/Rex activating domain-binding protein, RAB) and AGFG2 are involved in the maintenance and spread of immunodeficiency virus type 1 (HIV-1) infection. The ArfGAP domain of AGFG1 is related to nucleoporins, which is a class of proteins that mediate nucleocytoplasmic transport. AGFG1 plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs, possibly together by the nuclear export receptor CRM1. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG1 promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication.


Pssm-ID: 350082 [Multi-domain]  Cd Length: 116  Bit Score: 46.19  E-value: 9.77e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  423 NRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGiSKVQSLKLDTsvWSNEIVQLFIVLGNDRANRFWAGTLPPGEG 502
Cdd:cd08857     14 NRKCFDCDQRGPTYANMTVGSFVCTSCSGILRGLNPP-HRVKSISMTT--FTQQEIEFLQKHGNEVCKQIWLGLFDDRSS 90
                           90
                   ....*....|....*....
gi 2462603618  503 LHPD-ATPGPRGEFISRKY 520
Cdd:cd08857     91 AIPDfRDPQKVKEFLQEKY 109
ArfGap_AGFG2 cd17903
ArfGAP domain of AGFG2 (ArfGAP domain and FG repeat-containing protein 2); The ArfGAP domain ...
413-520 1.14e-05

ArfGAP domain of AGFG2 (ArfGAP domain and FG repeat-containing protein 2); The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG2 is a member of the HIV-1 Rev binding protein (HRB) family and contains one Arf-GAP zinc finger domain, several Phe-Gly (FG) motifs, and four Asn-Pro-Phe (NPF) motifs. AGFG2 interacts with Eps15 homology (EH) domains and plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication.


Pssm-ID: 350090 [Multi-domain]  Cd Length: 116  Bit Score: 45.75  E-value: 1.14e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  413 VAEKIWSNRANRQCADCGSSRPDWAAVNLGVVICKQCAGQHRALGSGiSKVQSLKLDTsvWSNEIVQLFIVLGNDRANRF 492
Cdd:cd17903      4 VRELGGCSAANRHCFECAQRGVTYVDITVGSFVCTTCSGLLRGLNPP-HRVKSISMTT--FTEPEVLFLQARGNEVCRKI 80
                           90       100
                   ....*....|....*....|....*....
gi 2462603618  493 WAGTLPPGEGLHPDA-TPGPRGEFISRKY 520
Cdd:cd17903     81 WLGLFDARTSLIPDSrDPQKVKEFLQEKY 109
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
321-400 2.51e-05

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 44.07  E-value: 2.51e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  321 GMLELRGHKA-----KVFAALSPGELALYKSEQAFSLGIgICFIELQG-CSVRE----TKSRSFDLLTP-HRCFSFTAES 389
Cdd:cd00821      3 GYLLKRGGGGlkswkKRWFVLFEGVLLYYKSKKDSSYKP-KGSIPLSGiLEVEEvspkERPHCFELVTPdGRTYYLQADS 81
                           90
                   ....*....|.
gi 2462603618  390 GGARQSWAAAL 400
Cdd:cd00821     82 EEERQEWLKAL 92
PH_SWAP-70 cd13273
Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called ...
321-405 5.77e-05

Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called Differentially expressed in FDCP 6/DEF-6 or IRF4-binding protein) functions in cellular signal transduction pathways (in conjunction with Rac), regulates cell motility through actin rearrangement, and contributes to the transformation and invasion activity of mouse embryo fibroblasts. Metazoan SWAP-70 is found in B lymphocytes, mast cells, and in a variety of organs. Metazoan SWAP-70 contains an N-terminal EF-hand motif, a centrally located PH domain, and a C-terminal coiled-coil domain. The PH domain of Metazoan SWAP-70 contains a phosphoinositide-binding site and a nuclear localization signal (NLS), which localize SWAP-70 to the plasma membrane and nucleus, respectively. The NLS is a sequence of four Lys residues located at the N-terminus of the C-terminal a-helix; this is a unique characteristic of the Metazoan SWAP-70 PH domain. The SWAP-70 PH domain binds PtdIns(3,4,5)P3 and PtdIns(4,5)P2 embedded in lipid bilayer vesicles. There are additional plant SWAP70 proteins, but these are not included in this hierarchy. Rice SWAP70 (OsSWAP70) exhibits GEF activity toward the its Rho GTPase, OsRac1, and regulates chitin-induced production of reactive oxygen species and defense gene expression in rice. Arabidopsis SWAP70 (AtSWAP70) plays a role in both PAMP- and effector-triggered immunity. Plant SWAP70 contains both DH and PH domains, but their arrangement is the reverse of that in typical DH-PH-type Rho GEFs, wherein the DH domain is flanked by a C-terminal PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270092  Cd Length: 110  Bit Score: 43.82  E-value: 5.77e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  321 GMLELRGHKAKVFA----ALSPGELALYKSE-QAFSLG-IGICfielQGCSV-----RETKSRSFDLLTPHRCFSFTAES 389
Cdd:cd13273     12 GYLWKKGHLLPTWTerwfVLKPNSLSYYKSEdLKEKKGeIALD----SNCCVeslpdREGKKCRFLVKTPDKTYELSASD 87
                           90
                   ....*....|....*.
gi 2462603618  390 GGARQSWAAALQEAVT 405
Cdd:cd13273     88 HKTRQEWIAAIQTAIR 103
RhoGAP-ARHGAP11A cd04394
RhoGAP-ARHGAP11A: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
855-933 5.95e-05

RhoGAP-ARHGAP11A: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP11A-like proteins. The mouse homolog of human ArhGAP11A has been detected as a gene exclusively expressed in immature ganglion cells, potentially playing a role in retinal development. The exact function of ArhGAP11A is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239859 [Multi-domain]  Cd Length: 202  Bit Score: 45.54  E-value: 5.95e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  855 HELPQKNQRLEKYKD------VIGC-LPRVNRRTLATLIGHLYRV-QKCAAlNQMCTRNLALLFAPSVFQTDGRGE---- 922
Cdd:cd04394     93 HEALLKAQELPTDEErksatlLLTClLPDEHVNTLRYFFSFLYDVaQRCSE-NKMDSSNLAVIFAPNLFQSEEGGEkmss 171
                           90
                   ....*....|....*...
gi 2462603618  923 -------HEVRVLQELID 933
Cdd:cd04394    172 stekrlrLQAAVVQTLID 189
PH_RhoGap25-like cd13263
Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; ...
210-292 6.94e-05

Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; RhoGAP25 (also called ArhGap25) like other RhoGaps are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. This hierarchy contains RhoGAP22, RhoGAP24, and RhoGAP25. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270083  Cd Length: 114  Bit Score: 43.53  E-value: 6.94e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  210 PLLSGWLDKlspQGNYV--FQRRFVQFNGRSLMYFGSDKDPFPKGVIPL---TAIEMTRSSKD-NK--FQVITG------ 275
Cdd:cd13263      3 PIKSGWLKK---QGSIVknWQQRWFVLRGDQLYYYKDEDDTKPQGTIPLpgnKVKEVPFNPEEpGKflFEIIPGgggdrm 79
                           90       100
                   ....*....|....*....|
gi 2462603618  276 ---QRVFVFRTESEAQRDMW 292
Cdd:cd13263     80 tsnHDSYLLMANSQAEMEEW 99
RhoGAP_ARHGAP20 cd04402
RhoGAP_ARHGAP20: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
862-932 1.13e-04

RhoGAP_ARHGAP20: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP20-like proteins. ArhGAP20, also known as KIAA1391 and RA-RhoGAP, contains a RhoGAP, a RA, and a PH domain, and ANXL repeats. ArhGAP20 is activated by Rap1 and induces inactivation of Rho, which in turn leads to neurite outgrowth. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239867  Cd Length: 192  Bit Score: 44.60  E-value: 1.13e-04
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2462603618  862 QRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQTDGRGEHEVRVLQELI 932
Cdd:cd04402    104 EKIAELQRLLDKLPRPNVLLLKHLICVLHNISQNSETNKMDAFNLAVCIAPSLLWPPASSELQNEDLKKVT 174
PH_AtPH1 cd13276
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ...
213-300 1.27e-04

Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270095  Cd Length: 106  Bit Score: 42.69  E-value: 1.27e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  213 SGWLDKlspQGNYV--FQRR-FVQFNGRSLMYFGSDKDPF--PKGVIPLTAIEMTRS-----SKDNKFQVITGQRVFVFR 282
Cdd:cd13276      2 AGWLEK---QGEFIktWRRRwFVLKQGKLFWFKEPDVTPYskPRGVIDLSKCLTVKSaedatNKENAFELSTPEETFYFI 78
                           90
                   ....*....|....*...
gi 2462603618  283 TESEAQRDMWCSTLQSCL 300
Cdd:cd13276     79 ADNEKEKEEWIGAIGRAI 96
RhoGAP_nadrin cd04386
RhoGAP_nadrin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
851-912 2.85e-04

RhoGAP_nadrin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Nadrin-like proteins. Nadrin, also named Rich-1, has been shown to be involved in the regulation of Ca2+-dependent exocytosis in neurons and recently has been implicated in tight junction maintenance in mammalian epithelium. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239851  Cd Length: 203  Bit Score: 43.60  E-value: 2.85e-04
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2462603618  851 FVTQHELPQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAP 912
Cdd:cd04386    101 WVQAANKPDEDERLQAIWRILNKLPRENRDNLRYLIKFLSKLAQKSDENKMSPSNIAIVLAP 162
PH_Sbf1_hMTMR5 cd01235
Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a ...
228-301 7.15e-04

Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a myotubularin-related pseudo-phosphatase. Both Sbf1 and myotubularin interact with the SET domains of Hrx and other epigenetic regulatory proteins, but Sbf1 lacks phosphatase activity due to several amino acid changes in its structurally preserved catalytic pocket. It contains pleckstrin (PH), GEF, and myotubularin homology domains that are thought to be responsible for signaling and growth control. Sbf1 functions as an inhibitor of cellular growth. The N-terminal GEF homology domain serves to inhibit the transforming effects of Sbf1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269941  Cd Length: 106  Bit Score: 40.39  E-value: 7.15e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  228 QRRFVQFNGR-SLMYFGSDKDPFPKGVIPLTAIEMTRSSK---------DNK--FQVITGQRVFVFRTESEAQRDMWCST 295
Cdd:cd01235     21 QRWFVLDSTKhQLRYYESREDTKCKGFIDLAEVESVTPATpiigapkraDEGafFDLKTNKRVYNFCAFDAESAQQWIEK 100

                   ....*.
gi 2462603618  296 LQSCLK 301
Cdd:cd01235    101 IQSCLS 106
PH_TAAP2-like cd13255
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ...
321-403 7.31e-04

Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270075  Cd Length: 110  Bit Score: 40.47  E-value: 7.31e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  321 GMLELRGHKAKVFA----ALSPGELALYKSEQAFSLGIGICFIELQGCSVRETKSR--SFDLLTPHRCFSFTAESGGARQ 394
Cdd:cd13255     10 GYLEKKGERRKTWKkrwfVLRPTKLAYYKNDKEYRLLRLIDLTDIHTCTEVQLKKHdnTFGIVTPARTFYVQADSKAEME 89

                   ....*....
gi 2462603618  395 SWAAALQEA 403
Cdd:cd13255     90 SWISAINLA 98
RhoGAP_ARHGAP6 cd04376
RhoGAP_ARHGAP6: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
862-944 7.48e-04

RhoGAP_ARHGAP6: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP6-like proteins. ArhGAP6 shows GAP activity towards RhoA, but not towards Cdc42 and Rac1. ArhGAP6 is often deleted in microphthalmia with linear skin defects syndrome (MLS); MLS is a severe X-linked developmental disorder. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239841  Cd Length: 206  Bit Score: 42.43  E-value: 7.48e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  862 QRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQ-----------KCAALNQMCTRNLALLFAPSVFQTDGRGEHE------ 924
Cdd:cd04376     98 EQLEALQLLIYLLPPCNCDTLHRLLKFLHTVAehaadsidedgQEVSGNKMTSLNLATIFGPNLLHKQKSGEREfvqasl 177
                           90       100
                   ....*....|....*....|....*...
gi 2462603618  925 --------VRVLQELIDGYISVFDIDSD 944
Cdd:cd04376    178 rieestaiINVVQTMIDNYEELFMVSPE 205
PH_Osh3p_yeast cd13289
Yeast oxysterol binding protein homolog 3 Pleckstrin homology (PH) domain; Yeast Osh3p is ...
212-299 7.75e-04

Yeast oxysterol binding protein homolog 3 Pleckstrin homology (PH) domain; Yeast Osh3p is proposed to function in sterol transport and regulation of nuclear fusion during mating and of pseudohyphal growth as well as sphingolipid metabolism. Osh3 contains a N-GOLD (Golgi dynamics) domain, a PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. GOLD domains are thought to mediate protein-protein interactions, but their role in ORPs are unknown. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241443  Cd Length: 90  Bit Score: 39.93  E-value: 7.75e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  212 LSGWLDKLSPQGNYVFQRRFVQFNGRS--LMYFGSDKDPFpKGVIPLTAIEMTRSSKDNKFQVITGQRVFVFRTESEAQR 289
Cdd:cd13289      2 LEGWLLKKRRKKMQGFARRYFVLNFKYgtLSYYFNPNSPV-RGQIPLRLASISASPRRRTIHIDSGSEVWHLKALNDEDF 80
                           90
                   ....*....|
gi 2462603618  290 DMWCSTLQSC 299
Cdd:cd13289     81 QAWMKALRKF 90
RhoGAP_FAM13A1a cd04393
RhoGAP_FAM13A1a: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
855-933 8.71e-04

RhoGAP_FAM13A1a: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of FAM13A1, isoform a-like proteins. The function of FAM13A1a is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by up several orders of magnitude.


Pssm-ID: 239858 [Multi-domain]  Cd Length: 189  Bit Score: 42.06  E-value: 8.71e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  855 HELPQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQT----DGRGEHE--VRVL 928
Cdd:cd04393    104 QDYNGEDEFGRKLRDLLQQLPPVNYSLLKFLCHFLSNVASQHHENRMTAENLAAVFGPDVFHVytdvEDMKEQEicSRIM 183

                   ....*
gi 2462603618  929 QELID 933
Cdd:cd04393    184 AKLLE 188
PH pfam00169
PH domain; PH stands for pleckstrin homology.
321-404 8.97e-04

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 40.24  E-value: 8.97e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  321 GMLELRGHKA-----KVFAALSPGELALYKSEQAFSLGIGICFIELQGCSVRET-------KSRSFDLLTPH----RCFS 384
Cdd:pfam00169    5 GWLLKKGGGKkkswkKRYFVLFDGSLLYYKDDKSGKSKEPKGSISLSGCEVVEVvasdspkRKFCFELRTGErtgkRTYL 84
                           90       100
                   ....*....|....*....|
gi 2462603618  385 FTAESGGARQSWAAALQEAV 404
Cdd:pfam00169   85 LQAESEEERKDWIKAIQSAI 104
RhoGAP_ARHGAP18 cd04391
RhoGAP_ARHGAP18: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
851-930 1.16e-03

RhoGAP_ARHGAP18: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP18-like proteins. The function of ArhGAP18 is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239856  Cd Length: 216  Bit Score: 41.95  E-value: 1.16e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  851 FVTQHELPQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQTDGRGEHEVRVLQE 930
Cdd:cd04391    103 FYSVQGLPSKKDQLQALNLLVLLLPEANRDTLKALLEFLQKVVDHEEKNKMNLWNVAMIMAPNLFPPRGKHSKDNESLQE 182
RhoGAP_SYD1 cd04379
RhoGAP_SYD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
870-921 1.30e-03

RhoGAP_SYD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in SYD-1_like proteins. Syd-1, first identified and best studied in C.elegans, has been shown to play an important role in neuronal development by specifying axonal properties. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239844  Cd Length: 207  Bit Score: 41.68  E-value: 1.30e-03
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*
gi 2462603618  870 VIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVF---QTDGRG 921
Cdd:cd04379    122 IIDCLPLSAKATLLLLLDHLSLVLSNSERNKMTPQNLAVCFGPVLMfcsQEFSRY 176
PH1_PH_fungal cd13298
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ...
211-296 1.35e-03

Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270110  Cd Length: 106  Bit Score: 39.53  E-value: 1.35e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  211 LLSGWLDKLS-PQGNYvfQRRFVQFNGRSLMYFGSDKDPFPKGVIPLTAI------EMTRssKDNKFQVITGQRVFVFRT 283
Cdd:cd13298      7 LKSGYLLKRSrKTKNW--KKRWVVLRPCQLSYYKDEKEYKLRRVINLSELlavaplKDKK--RKNVFGIYTPSKNLHFRA 82
                           90
                   ....*....|...
gi 2462603618  284 ESEAQRDMWCSTL 296
Cdd:cd13298     83 TSEKDANEWVEAL 95
PH_APBB1IP cd01259
Amyloid beta (A4) Precursor protein-Binding, family B, member 1 Interacting Protein pleckstrin ...
1124-1171 1.68e-03

Amyloid beta (A4) Precursor protein-Binding, family B, member 1 Interacting Protein pleckstrin homology (PH) domain; APBB1IP consists of a Ras-associated (RA) domain, a PH domain, a family-specific BPS region, and a C-terminal SH2 domain. Grb7, Grb10 and Grb14 are paralogs that are also present in this hierarchy. These adapter proteins bind a variety of receptor tyrosine kinases, including the insulin and insulin-like growth factor-1 (IGF1) receptors. Grb10 and Grb14 are important tissue-specific negative regulators of insulin and IGF1 signaling based and may contribute to type 2 (non-insulin-dependent) diabetes in humans. RA-PH function as a single structural unit and is dimerized via a helical extension of the PH domain. The PH domain here are proposed to bind phosphoinositides non-cannonically ahd are unlikely to bind an activated GTPase. The tandem RA-PH domains are present in a second adapter-protein family, MRL proteins, Caenorhabditis elegans protein MIG-1012, the mammalian proteins RIAM and lamellipodin and the Drosophila melanogaster protein Pico12, all of which are Ena/VASP-binding proteins involved in actin-cytoskeleton rearrangement. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269961  Cd Length: 124  Bit Score: 39.91  E-value: 1.68e-03
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*..
gi 2462603618 1124 LEGAKVYLGI--RKKLKPPTPWGFTL----ILEKMH---LYLSCTDEDEMWDWTTSI 1171
Cdd:cd01259     54 FDDYNVYTGLngKKKYKAPTDFGFCLkpnkQQEKGSkdiKYLCAEDEQSRTCWLTAI 110
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
1079-1176 1.79e-03

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 39.07  E-value: 1.79e-03
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  1079 GLLRCREEPPRllgSRFQERFFLLRGRC---LLLLKEKKSSKPEREWPLEGAKVYLgIRKKLKPPTPWGFTLIL-EKMHL 1154
Cdd:smart00233    5 GWLYKKSGGGK---KSWKKRYFVLFNSTllyYKSKKDKKSYKPKGSIDLSGCTVRE-APDPDSSKKPHCFEIKTsDRKTL 80
                            90       100
                    ....*....|....*....|..
gi 2462603618  1155 YLSCTDEDEMWDWTTSILKAQH 1176
Cdd:smart00233   81 LLQAESEEEREKWVEALRKAIA 102
PH_DOCK-D cd13267
Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also ...
213-304 1.79e-03

Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also called Zizimin subfamily) consists of Dock9/Zizimin1, Dock10/Zizimin3, and Dock11/Zizimin2. DOCK-D has a N-terminal DUF3398 domain, a PH-like domain, a Dock Homology Region 1, DHR1 (also called CZH1), a C2 domain, and a C-terminal DHR2 domain (also called CZH2). Zizimin1 is enriched in the brain, lung, and kidney; zizimin2 is found in B and T lymphocytes, and zizimin3 is enriched in brain, lung, spleen and thymus. Zizimin1 functions in autoinhibition and membrane targeting. Zizimin2 is an immune-related and age-regulated guanine nucleotide exchange factor, which facilitates filopodial formation through activation of Cdc42, which results in activation of cell migration. No function has been determined for Zizimin3 to date. The N-terminal half of zizimin1 binds to the GEF domain through three distinct areas, including CZH1, to inhibit the interaction with Cdc42. In addition its PH domain binds phosphoinositides and mediates zizimin1 membrane targeting. DOCK is a family of proteins involved in intracellular signalling networks. They act as guanine nucleotide exchange factors for small G proteins of the Rho family, such as Rac and Cdc42. There are 4 subfamilies of DOCK family proteins based on their sequence homology: A-D. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270087  Cd Length: 126  Bit Score: 40.00  E-value: 1.79e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  213 SGWLDK--------LSPQGNYVFQRRFVQF-----NGRSLMYFGSDKDPFPKGVIPLTA-IEMTRSSKDNK--FQV-ITG 275
Cdd:cd13267      9 EGYLYKgpenssdsFISLAMKSFKRRFFHLkqlvdGSYILEFYKDEKKKEAKGTIFLDScTGVVQNSKRRKfcFELrMQD 88
                           90       100
                   ....*....|....*....|....*....
gi 2462603618  276 QRVFVFRTESEAQRDMWCSTLQSCLKEQR 304
Cdd:cd13267     89 KKSYVLAAESEAEMDEWISKLNKILQSSK 117
PH_GPBP cd13283
Goodpasture antigen binding protein Pleckstrin homology (PH) domain; The GPBP (also called ...
224-298 3.12e-03

Goodpasture antigen binding protein Pleckstrin homology (PH) domain; The GPBP (also called Collagen type IV alpha-3-binding protein/hCERT; START domain-containing protein 11/StARD11; StAR-related lipid transfer protein 11) is a kinase that phosphorylates an N-terminal region of the alpha 3 chain of type IV collagen, which is commonly known as the goodpasture antigen. Its splice variant the ceramide transporter (CERT) mediates the cytosolic transport of ceramide. There have been additional splice variants identified, but all of them function as ceramide transport proteins. GPBP and CERT both contain an N-terminal PH domain, followed by a serine rich domain, and a C-terminal START domain. However, GPBP has an additional serine rich domain just upstream of its START domain. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270100 [Multi-domain]  Cd Length: 100  Bit Score: 38.42  E-value: 3.12e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  224 NYV--FQRRFVQFNGRSLMYFGS--DKDPFPKGVIPLTAIEMTRSSKD-NKFQVITGQRVFVFRTESEAQRDMWCSTLQS 298
Cdd:cd13283     10 NYIhgWQDRYFVLKDGTLSYYKSesEKEYGCRGSISLSKAVIKPHEFDeCRFDVSVNDSVWYLRAESPEERQRWIDALES 89
RhoGAP_ARHGAP19 cd04392
RhoGAP_ARHGAP19: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
858-914 3.57e-03

RhoGAP_ARHGAP19: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP19-like proteins. The function of ArhGAP19 is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239857  Cd Length: 208  Bit Score: 40.52  E-value: 3.57e-03
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*..
gi 2462603618  858 PQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSV 914
Cdd:cd04392    107 PDKERLLEALQLLLLLLPEENRNLLKLILDLLYQTAKHEDKNKMSADNLALLFTPHL 163
RhoGAP_GMIP cd04408
RhoGAP_GMIP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP ...
868-916 3.58e-03

RhoGAP_GMIP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP (Gem interacting protein). GMIP plays important roles in neurite growth and axonal guidance, and interacts with Gem, a member of the RGK subfamily of the Ras small GTPase superfamily, through the N-terminal half of the protein. GMIP contains a C-terminal RhoGAP domain. GMIP inhibits RhoA function, but is inactive towards Rac1 and Cdc41. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239873  Cd Length: 200  Bit Score: 40.18  E-value: 3.58e-03
                           10        20        30        40
                   ....*....|....*....|....*....|....*....|....*....
gi 2462603618  868 KDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQ 916
Cdd:cd04408    124 KELLGRLPVSNYNTLRHLMAHLYRVAERFEDNKMSPNNLGIVFGPTLLR 172
RhoGAP_Bcr cd04387
RhoGAP_Bcr: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Bcr ...
874-916 4.01e-03

RhoGAP_Bcr: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Bcr (breakpoint cluster region protein)-like proteins. Bcr is a multidomain protein with a variety of enzymatic functions. It contains a RhoGAP and a Rho GEF domain, a Ser/Thr kinase domain, an N-terminal oligomerization domain, and a C-terminal PDZ binding domain, in addition to PH and C2 domains. Bcr is a negative regulator of: i) RacGTPase, via the Rho GAP domain, ii) the Ras-Raf-MEK-ERK pathway, via phosphorylation of the Ras binding protein AF-6, and iii) the Wnt signaling pathway through binding beta-catenin. Bcr can form a complex with beta-catenin and Tcf1. The Wnt signaling pathway is involved in cell proliferation, differentiation, and cell renewal. Bcr was discovered as a fusion partner of Abl. The Bcr-Abl fusion is characteristic for a large majority of chronic myelogenous leukemias (CML). Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239852 [Multi-domain]  Cd Length: 196  Bit Score: 40.30  E-value: 4.01e-03
                           10        20        30        40
                   ....*....|....*....|....*....|....*....|...
gi 2462603618  874 LPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQ 916
Cdd:cd04387    120 LPDPNLVTFLFLLHHLKRVAEREEVNKMSLHNLATVFGPTLLR 162
PH_8 pfam15409
Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.
214-296 4.41e-03

Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.


Pssm-ID: 405984  Cd Length: 89  Bit Score: 37.73  E-value: 4.41e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  214 GWLDKLSPQGNYVFQRRFVQFN--GRSLMYFGSDKDPFPKGVIPLTAIEMTRSSKDNKFQVITGQRVFVFRTESEAQRDM 291
Cdd:pfam15409    1 GILLKKRRKKLQGYAKRFFVLNfkSGTLSYYRDDNSSALRGKIPLSLAAISANAKTREIIIDSGMEVWHLKALNEKDFQA 80

                   ....*
gi 2462603618  292 WCSTL 296
Cdd:pfam15409   81 WVDAL 85
PH_Skap1 cd13380
Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 ...
214-302 4.42e-03

Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 (also called Skap55/Src kinase-associated phosphoprotein of 55 kDa) and its partner, ADAP (adhesion and degranulation promoting adapter protein) help reorganize the cytoskeleton and/or promote integrin-mediated adhesion upon immunoreceptor activation. Skap1 is also involved in T Cell Receptor (TCR)-induced RapL-Rap1 complex formation and LFA-1 activation. Skap1 has an N-terminal coiled-coil conformation which is proposed to be involved in homodimer formation, a central PH domain and a C-terminal SH3 domain that associates with ADAP. The Skap1 PH domain plays a role in controlling integrin function via recruitment of ADAP-SKAP complexes to integrins as well as in controlling the ability of ADAP to interact with the CBM signalosome and regulate NF-kappaB. SKAP1 is necessary for RapL binding to membranes in a PH domain-dependent manner and the PI3K pathway. Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Skap55/Skap1, Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270180  Cd Length: 106  Bit Score: 38.30  E-value: 4.42e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  214 GWLDKLSPQGNYV---FQRRFVQFNGRSLMYFGSDKDPFPKG--VIPLTAIEMT-----RSSKDNKFQVIT-GQRVFVFR 282
Cdd:cd13380      5 GYLEKRSKDHSFFgseWQKRWCVLTNRAFYYYASEKSKQPKGgfLIKGYSAQMAphlrkDSRRDSCFELTTpGRRTYQFT 84
                           90       100
                   ....*....|....*....|
gi 2462603618  283 TESEAQRDMWCSTLQSCLKE 302
Cdd:cd13380     85 AASPSEARDWVDQIQFLLKD 104
PH pfam00169
PH domain; PH stands for pleckstrin homology.
1092-1176 5.10e-03

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 37.93  E-value: 5.10e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618 1092 GSRFQERFFLLRGRCLLLLKEK---KSSKPEREWPLEGAKVYLgIRKKLKPPTPWGFTLILEKMH----LYLSCTDEDEM 1164
Cdd:pfam00169   15 KKSWKKRYFVLFDGSLLYYKDDksgKSKEPKGSISLSGCEVVE-VVASDSPKRKFCFELRTGERTgkrtYLLQAESEEER 93
                           90
                   ....*....|..
gi 2462603618 1165 WDWTTSILKAQH 1176
Cdd:pfam00169   94 KDWIKAIQSAIR 105
RhoGAP_fBEM3 cd04400
RhoGAP_fBEM3: RhoGAP (GTPase-activator [GAP] protein for Rho-like small GTPases) domain of ...
856-942 5.70e-03

RhoGAP_fBEM3: RhoGAP (GTPase-activator [GAP] protein for Rho-like small GTPases) domain of fungal BEM3-like proteins. Bem3 is a GAP protein of Cdc42, and is specifically involved in the control of the initial assembly of the septin ring in yeast bud formation. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239865 [Multi-domain]  Cd Length: 190  Bit Score: 39.65  E-value: 5.70e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  856 ELPQKNQRLEKYKDVIGCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQTDGrgehevrVLQELIDGY 935
Cdd:cd04400    111 ENHDRSQRALELKDLVSQLPQANYDLLYVLFSFLRKIIEHSDVNKMNLRNVCIVFSPTLNIPAG-------IFVLFLTDF 183

                   ....*..
gi 2462603618  936 ISVFDID 942
Cdd:cd04400    184 DCIFGGI 190
PH_Boi cd13316
Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally ...
213-296 5.76e-03

Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally redundant and important for cell growth with Boi mutants displaying defects in bud formation and in the maintenance of cell polarity.They appear to be linked to Rho-type GTPase, Cdc42 and Rho3. Boi1 and Boi2 display two-hybrid interactions with the GTP-bound ("active") form of Cdc42, while Rho3 can suppress of the lethality caused by deletion of Boi1 and Boi2. These findings suggest that Boi1 and Boi2 are targets of Cdc42 that promote cell growth in a manner that is regulated by Rho3. Boi proteins contain a N-terminal SH3 domain, followed by a SAM (sterile alpha motif) domain, a proline-rich region, which mediates binding to the second SH3 domain of Bem1, and C-terminal PH domain. The PH domain is essential for its function in cell growth and is important for localization to the bud, while the SH3 domain is needed for localization to the neck. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270126  Cd Length: 97  Bit Score: 37.74  E-value: 5.76e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  213 SGWLDKLSpQGNYVFQRRFVQFNGRSLMYFGSDKDPFPKGVIPLTAIEMTRSSKDNK------FQVI--TGQRVFVFRTE 284
Cdd:cd13316      3 SGWMKKRG-ERYGTWKTRYFVLKGTRLYYLKSENDDKEKGLIDLTGHRVVPDDSNSPfrgsygFKLVppAVPKVHYFAVD 81
                           90
                   ....*....|..
gi 2462603618  285 SEAQRDMWCSTL 296
Cdd:cd13316     82 EKEELREWMKAL 93
PH_ORP_plant cd13294
Plant Oxysterol binding protein related protein Pleckstrin homology (PH) domain; Plant ORPs ...
229-299 6.43e-03

Plant Oxysterol binding protein related protein Pleckstrin homology (PH) domain; Plant ORPs contain a N-terminal PH domain and a C-terminal OSBP-related domain. Not much is known about its specific function in plants to date. Members here include: Arabidopsis, spruce, and petunia. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241448  Cd Length: 100  Bit Score: 37.47  E-value: 6.43e-03
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2462603618  229 RRFVQFNGrSLMYF---GSDKDPfPKGVIPLTAIEMTRS-SKDNKFQVITGQRVFVFRTESEAQRDMWCSTLQSC 299
Cdd:cd13294     18 RWFVLQDG-VLSYYkvhGPDKVK-PSGEVHLKVSSIRESrSDDKKFYIFTGTKTLHLRAESREDRAAWLEALQAA 90
PH_KIFIA_KIFIB cd01233
KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA ...
213-296 6.43e-03

KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA (Caenorhabditis elegans homolog unc-104) and KIFIB transport synaptic vesicle precursors that contain synaptic vesicle proteins, such as synaptophysin, synaptotagmin and the small GTPase RAB3A, but they do not transport organelles that contain plasma membrane proteins. They have a N-terminal motor domain, followed by a coiled-coil domain, and a C-terminal PH domain. KIF1A adopts a monomeric form in vitro, but acts as a processive dimer in vivo. KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein; this results in their different motor activities. KIF1A and KIF1B bind to RAB3 proteins through the adaptor protein mitogen-activated protein kinase (MAPK) -activating death domain (MADD; also calledDENN), which was first identified as a RAB3 guanine nucleotide exchange factor (GEF). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269939  Cd Length: 103  Bit Score: 37.57  E-value: 6.43e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  213 SGWLDKLSPQGNyVFQRRFVQFNgRSLMY-FGSDKDPFPKGVIPLTAIEMTRS-------SKDNKFQVITGQRVFVFRTE 284
Cdd:cd01233      9 RGYLLFLEDATD-GWVRRWVVLR-RPYLHiYSSEKDGDERGVINLSTARVEYSpdqeallGRPNVFAVYTPTNSYLLQAR 86
                           90
                   ....*....|..
gi 2462603618  285 SEAQRDMWCSTL 296
Cdd:cd01233     87 SEKEMQDWLYAI 98
PH_TAAP2-like cd13255
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ...
229-296 6.99e-03

Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270075  Cd Length: 110  Bit Score: 37.78  E-value: 6.99e-03
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2462603618  229 RRFVqFNGRSLMYFGSDKDPFPKGVIPLTAI----EMTRSSKDNKFQVITGQRVFVFRTESEAQRDMWCSTL 296
Cdd:cd13255     25 RWFV-LRPTKLAYYKNDKEYRLLRLIDLTDIhtctEVQLKKHDNTFGIVTPARTFYVQADSKAEMESWISAI 95
PH_PEPP1_2_3 cd13248
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ...
210-292 9.01e-03

Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270068  Cd Length: 104  Bit Score: 37.25  E-value: 9.01e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2462603618  210 PLLSGWLDKLSPQGNYVFQRRFVQFNGRSLMYFGSDKDPFPKGVIPLTA--IEMTRSSKD--NKFQ---VITGQRVFVFR 282
Cdd:cd13248      7 VVMSGWLHKQGGSGLKNWRKRWFVLKDNCLYYYKDPEEEKALGSILLPSytISPAPPSDEisRKFAfkaEHANMRTYYFA 86
                           90
                   ....*....|
gi 2462603618  283 TESEAQRDMW 292
Cdd:cd13248     87 ADTAEEMEQW 96
PH_SWAP-70 cd13273
Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called ...
237-303 9.95e-03

Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called Differentially expressed in FDCP 6/DEF-6 or IRF4-binding protein) functions in cellular signal transduction pathways (in conjunction with Rac), regulates cell motility through actin rearrangement, and contributes to the transformation and invasion activity of mouse embryo fibroblasts. Metazoan SWAP-70 is found in B lymphocytes, mast cells, and in a variety of organs. Metazoan SWAP-70 contains an N-terminal EF-hand motif, a centrally located PH domain, and a C-terminal coiled-coil domain. The PH domain of Metazoan SWAP-70 contains a phosphoinositide-binding site and a nuclear localization signal (NLS), which localize SWAP-70 to the plasma membrane and nucleus, respectively. The NLS is a sequence of four Lys residues located at the N-terminus of the C-terminal a-helix; this is a unique characteristic of the Metazoan SWAP-70 PH domain. The SWAP-70 PH domain binds PtdIns(3,4,5)P3 and PtdIns(4,5)P2 embedded in lipid bilayer vesicles. There are additional plant SWAP70 proteins, but these are not included in this hierarchy. Rice SWAP70 (OsSWAP70) exhibits GEF activity toward the its Rho GTPase, OsRac1, and regulates chitin-induced production of reactive oxygen species and defense gene expression in rice. Arabidopsis SWAP70 (AtSWAP70) plays a role in both PAMP- and effector-triggered immunity. Plant SWAP70 contains both DH and PH domains, but their arrangement is the reverse of that in typical DH-PH-type Rho GEFs, wherein the DH domain is flanked by a C-terminal PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270092  Cd Length: 110  Bit Score: 37.27  E-value: 9.95e-03
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2462603618  237 RSLMYFGSDKDPFPKGVIPLTA---IEMT--RSSKDNKFQVITGQRVFVFRTESEAQRDMWCSTLQSCLKEQ 303
Cdd:cd13273     34 NSLSYYKSEDLKEKKGEIALDSnccVESLpdREGKKCRFLVKTPDKTYELSASDHKTRQEWIAAIQTAIRLS 105
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH