ATP-dependent RNA helicase DHX58 isoform X2 [Homo sapiens]
DEAD/DEAH box helicase; DEAD/DEAH box helicase family protein( domain architecture ID 13208932)
DEAD/DEAH box containing ATP-dependent helicase catalyzes the unwinding of DNA or RNA| DEAD/DEAH box containing ATP-dependent helicase family protein may catalyze the unwinding of DNA or RNA
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
DEAD-like_helicase_N super family | cl28899 | N-terminal helicase domain of the DEAD-box helicase superfamily; The DEAD-like helicase ... |
1-200 | 1.26e-133 | ||||
N-terminal helicase domain of the DEAD-box helicase superfamily; The DEAD-like helicase superfamily is a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. The N-terminal domain contains the ATP-binding region. The actual alignment was detected with superfamily member cd18075: Pssm-ID: 475120 [Multi-domain] Cd Length: 200 Bit Score: 385.75 E-value: 1.26e-133
|
||||||||
SF2_C_dicer | cd18802 | C-terminal helicase domain of the endoribonuclease Dicer; Dicer ribonucleases cleave ... |
349-483 | 2.29e-54 | ||||
C-terminal helicase domain of the endoribonuclease Dicer; Dicer ribonucleases cleave double-stranded RNA (dsRNA) precursors to generate microRNAs (miRNAs) and small interfering RNAs (siRNAs). In concert with Argonautes, these small RNAs bind complementary mRNAs to down-regulate their expression. miRNAs are processed by Dicer from small hairpins, while siRNAs are typically processed from longer dsRNA, from endogenous sources, or exogenous sources such as viral replication intermediates. Some organisms, such as Homo sapiens and Caenorhabditis elegans, encode one Dicer that generates miRNAs and siRNAs, but other organisms have multiple dicers with specialized functions. Dicer exists throughout eukaryotes, and a subset has an N-terminal helicase domain of the RIG-I-like receptor (RLR) subgroup. RLRs often function in innate immunity and Dicer helicase domains sometimes show differences in activity that correlate with roles in immunity. Dicer helicase domains are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. : Pssm-ID: 350189 [Multi-domain] Cd Length: 142 Bit Score: 179.71 E-value: 2.29e-54
|
||||||||
MDA5_ID | cd12090 | Insert domain of MDA5; MDA5 (melanoma-differentiation-associated gene 5, also known as IFIH1), ... |
227-345 | 3.55e-49 | ||||
Insert domain of MDA5; MDA5 (melanoma-differentiation-associated gene 5, also known as IFIH1), as well as RIG-I (Retinoic acid Inducible Gene I, also known as DDX58) and LPG2 (also known as DHX58), contain two N-terminal CARD domains and a C-terminal SF2 helicase domain. They are cytoplasmic DEAD box RNA helicases acting as key innate immune pattern-recognition receptor (PRRs) that play an important role in host antiviral response by sensing incoming viral RNA. Their SF2 helicase domain is comprised of 3 structural domains, the 2 generally conserved helicase domains and a helical domain inserted between the two domains. The inserted domain is involved in conformational changes upon ligand binding. : Pssm-ID: 277189 Cd Length: 120 Bit Score: 165.18 E-value: 3.55e-49
|
||||||||
Name | Accession | Description | Interval | E-value | ||||||||
DEXHc_RLR-3 | cd18075 | DEXH-box helicase domain of RLR-3; RIG-I-like receptor 3 (RLR-3, also known as laboratory of ... |
1-200 | 1.26e-133 | ||||||||
DEXH-box helicase domain of RLR-3; RIG-I-like receptor 3 (RLR-3, also known as laboratory of genetics and physiology 2 or LGP2 and DHX58) appears to positively and negatively regulate MDA5 and RIG-I signaling, respectively. RLR-3 resembles a chimera combining a MDA5-like helicase domain and RIG-I like CTD supporting both stem and end binding. RNA binding is required for RLR-3-mediated enhancement of MDA5 activation. RLR-3 end-binding may promote nucleation of MDA5 oligomerization on dsRNA. RLR-3 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350833 [Multi-domain] Cd Length: 200 Bit Score: 385.75 E-value: 1.26e-133
|
||||||||||||
SF2_C_dicer | cd18802 | C-terminal helicase domain of the endoribonuclease Dicer; Dicer ribonucleases cleave ... |
349-483 | 2.29e-54 | ||||||||
C-terminal helicase domain of the endoribonuclease Dicer; Dicer ribonucleases cleave double-stranded RNA (dsRNA) precursors to generate microRNAs (miRNAs) and small interfering RNAs (siRNAs). In concert with Argonautes, these small RNAs bind complementary mRNAs to down-regulate their expression. miRNAs are processed by Dicer from small hairpins, while siRNAs are typically processed from longer dsRNA, from endogenous sources, or exogenous sources such as viral replication intermediates. Some organisms, such as Homo sapiens and Caenorhabditis elegans, encode one Dicer that generates miRNAs and siRNAs, but other organisms have multiple dicers with specialized functions. Dicer exists throughout eukaryotes, and a subset has an N-terminal helicase domain of the RIG-I-like receptor (RLR) subgroup. RLRs often function in innate immunity and Dicer helicase domains sometimes show differences in activity that correlate with roles in immunity. Dicer helicase domains are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350189 [Multi-domain] Cd Length: 142 Bit Score: 179.71 E-value: 2.29e-54
|
||||||||||||
MPH1 | COG1111 | ERCC4-related helicase [Replication, recombination and repair]; |
1-522 | 3.58e-50 | ||||||||
ERCC4-related helicase [Replication, recombination and repair]; Pssm-ID: 440728 [Multi-domain] Cd Length: 718 Bit Score: 183.39 E-value: 3.58e-50
|
||||||||||||
MDA5_ID | cd12090 | Insert domain of MDA5; MDA5 (melanoma-differentiation-associated gene 5, also known as IFIH1), ... |
227-345 | 3.55e-49 | ||||||||
Insert domain of MDA5; MDA5 (melanoma-differentiation-associated gene 5, also known as IFIH1), as well as RIG-I (Retinoic acid Inducible Gene I, also known as DDX58) and LPG2 (also known as DHX58), contain two N-terminal CARD domains and a C-terminal SF2 helicase domain. They are cytoplasmic DEAD box RNA helicases acting as key innate immune pattern-recognition receptor (PRRs) that play an important role in host antiviral response by sensing incoming viral RNA. Their SF2 helicase domain is comprised of 3 structural domains, the 2 generally conserved helicase domains and a helical domain inserted between the two domains. The inserted domain is involved in conformational changes upon ligand binding. Pssm-ID: 277189 Cd Length: 120 Bit Score: 165.18 E-value: 3.55e-49
|
||||||||||||
PRK13766 | PRK13766 | Hef nuclease; Provisional |
1-472 | 3.25e-41 | ||||||||
Hef nuclease; Provisional Pssm-ID: 237496 [Multi-domain] Cd Length: 773 Bit Score: 158.11 E-value: 3.25e-41
|
||||||||||||
RIG-I_C | pfam18119 | RIG-I receptor C-terminal domain; This is the C-terminal domain of Innate Immune ... |
216-343 | 8.80e-34 | ||||||||
RIG-I receptor C-terminal domain; This is the C-terminal domain of Innate Immune Pattern-Recognition Receptor RIG-I present in homo sapiens. RIG-I is a key cytosolic pattern-recognition receptors of the vertebrate innate immune system that form the first line of defense against RNA viral infection. RNA binding to RIG-I is mediated both by the C-terminal domain and by the helicase domain. The C-terminal domain specifically binds the 5'triphosphate end with a 10-fold higher affinity compared to 5'OH-dsRNA. Pssm-ID: 465656 Cd Length: 139 Bit Score: 124.76 E-value: 8.80e-34
|
||||||||||||
DEXDc | smart00487 | DEAD-like helicases superfamily; |
2-170 | 1.82e-22 | ||||||||
DEAD-like helicases superfamily; Pssm-ID: 214692 [Multi-domain] Cd Length: 201 Bit Score: 95.25 E-value: 1.82e-22
|
||||||||||||
Helicase_C | pfam00271 | Helicase conserved C-terminal domain; The Prosite family is restricted to DEAD/H helicases, ... |
350-472 | 5.63e-20 | ||||||||
Helicase conserved C-terminal domain; The Prosite family is restricted to DEAD/H helicases, whereas this domain family is found in a wide variety of helicases and helicase related proteins. It may be that this is not an autonomously folding unit, but an integral part of the helicase. Pssm-ID: 459740 [Multi-domain] Cd Length: 109 Bit Score: 84.95 E-value: 5.63e-20
|
||||||||||||
ResIII | pfam04851 | Type III restriction enzyme, res subunit; |
1-170 | 1.44e-18 | ||||||||
Type III restriction enzyme, res subunit; Pssm-ID: 398492 [Multi-domain] Cd Length: 162 Bit Score: 82.72 E-value: 1.44e-18
|
||||||||||||
HELICc | smart00490 | helicase superfamily c-terminal domain; |
415-472 | 2.83e-15 | ||||||||
helicase superfamily c-terminal domain; Pssm-ID: 197757 [Multi-domain] Cd Length: 82 Bit Score: 70.70 E-value: 2.83e-15
|
||||||||||||
SrmB | COG0513 | Superfamily II DNA and RNA helicase [Replication, recombination and repair]; |
350-505 | 2.72e-11 | ||||||||
Superfamily II DNA and RNA helicase [Replication, recombination and repair]; Pssm-ID: 440279 [Multi-domain] Cd Length: 420 Bit Score: 65.55 E-value: 2.72e-11
|
||||||||||||
PRK11192 | PRK11192 | ATP-dependent RNA helicase SrmB; Provisional |
350-448 | 4.49e-07 | ||||||||
ATP-dependent RNA helicase SrmB; Provisional Pssm-ID: 236877 [Multi-domain] Cd Length: 434 Bit Score: 52.25 E-value: 4.49e-07
|
||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||
DEXHc_RLR-3 | cd18075 | DEXH-box helicase domain of RLR-3; RIG-I-like receptor 3 (RLR-3, also known as laboratory of ... |
1-200 | 1.26e-133 | ||||||||
DEXH-box helicase domain of RLR-3; RIG-I-like receptor 3 (RLR-3, also known as laboratory of genetics and physiology 2 or LGP2 and DHX58) appears to positively and negatively regulate MDA5 and RIG-I signaling, respectively. RLR-3 resembles a chimera combining a MDA5-like helicase domain and RIG-I like CTD supporting both stem and end binding. RNA binding is required for RLR-3-mediated enhancement of MDA5 activation. RLR-3 end-binding may promote nucleation of MDA5 oligomerization on dsRNA. RLR-3 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350833 [Multi-domain] Cd Length: 200 Bit Score: 385.75 E-value: 1.26e-133
|
||||||||||||
DEXHc_RLR | cd18036 | DEXH-box helicase domain of RIG-I-like receptors; RIG-I-like receptors (RLRs) sense ... |
1-199 | 2.58e-76 | ||||||||
DEXH-box helicase domain of RIG-I-like receptors; RIG-I-like receptors (RLRs) sense cytoplasmic viral RNA and comprise RIG-I, RLR-2/MDA5 (melanoma differentiation-associated protein 5) and RLR-3/LGP2 (laboratory of genetics and physiology 2). RIG-I-like receptors (RLRs) are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350794 [Multi-domain] Cd Length: 204 Bit Score: 239.30 E-value: 2.58e-76
|
||||||||||||
DEXHc_RIG-I | cd17927 | DEXH-box helicase domain of DEAD-like helicase RIG-I family proteins; Members of the RIG-I ... |
2-199 | 1.44e-70 | ||||||||
DEXH-box helicase domain of DEAD-like helicase RIG-I family proteins; Members of the RIG-I family include FANCM, dicer, Hef, and the RIG-I-like receptors. Fanconi anemia group M (FANCM) protein is a DNA-dependent ATPase component of the Fanconi anemia (FA) core complex required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage. Dicer ribonucleases cleave double-stranded RNA (dsRNA) precursors to generate microRNAs (miRNAs) and small interfering RNAs (siRNAs). Hef (helicase-associated endonuclease fork-structure) is involved in stalled replication fork repair. RIG-I-like receptors (RLRs) sense cytoplasmic viral RNA and comprises RIG-I, RLR-2/MDA5 (melanoma differentiation-associated protein 5) and RLR-3/LGP2 (laboratory of genetics and physiology 2). The RIG-I family is part of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350685 [Multi-domain] Cd Length: 201 Bit Score: 224.23 E-value: 1.44e-70
|
||||||||||||
DEXHc_RLR-2 | cd18074 | DEXH-box helicase domain of RLR-2; RIG-I-like receptor 2 (RLR-2, also known as melanoma ... |
1-199 | 1.47e-64 | ||||||||
DEXH-box helicase domain of RLR-2; RIG-I-like receptor 2 (RLR-2, also known as melanoma differentiation-associated protein 5 or Mda5 and IFIH1) is a viral double-stranded RNA (dsRNA) receptor that shares sequence similarity and signaling pathways with RIG-I, yet plays essential functions in antiviral immunity through distinct specificity for viral RNA. RLR-2 recognizes the internal duplex structure, whereas RIG-I recognizes the terminus of dsRNA. RLR-2 uses direct protein-protein contacts to stack along dsRNA in a head-to-tail arrangement. The signaling domain (tandem CARD), which decorates the outside of the core RLR-2 filament, also has an intrinsic propensity to oligomerize into an elongated structure that activates the signaling adaptor, MAVS. RLR-2 uses long dsRNA as a signaling platform to cooperatively assemble the core filament, which in turn promotes stochastic assembly of the tandem CARD oligomers for signaling. LGP2 appears to positively and negatively regulate RLR-2 and RIG-I signaling, respectively. RLR-2 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350832 [Multi-domain] Cd Length: 216 Bit Score: 208.95 E-value: 1.47e-64
|
||||||||||||
SF2_C_dicer | cd18802 | C-terminal helicase domain of the endoribonuclease Dicer; Dicer ribonucleases cleave ... |
349-483 | 2.29e-54 | ||||||||
C-terminal helicase domain of the endoribonuclease Dicer; Dicer ribonucleases cleave double-stranded RNA (dsRNA) precursors to generate microRNAs (miRNAs) and small interfering RNAs (siRNAs). In concert with Argonautes, these small RNAs bind complementary mRNAs to down-regulate their expression. miRNAs are processed by Dicer from small hairpins, while siRNAs are typically processed from longer dsRNA, from endogenous sources, or exogenous sources such as viral replication intermediates. Some organisms, such as Homo sapiens and Caenorhabditis elegans, encode one Dicer that generates miRNAs and siRNAs, but other organisms have multiple dicers with specialized functions. Dicer exists throughout eukaryotes, and a subset has an N-terminal helicase domain of the RIG-I-like receptor (RLR) subgroup. RLRs often function in innate immunity and Dicer helicase domains sometimes show differences in activity that correlate with roles in immunity. Dicer helicase domains are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350189 [Multi-domain] Cd Length: 142 Bit Score: 179.71 E-value: 2.29e-54
|
||||||||||||
MPH1 | COG1111 | ERCC4-related helicase [Replication, recombination and repair]; |
1-522 | 3.58e-50 | ||||||||
ERCC4-related helicase [Replication, recombination and repair]; Pssm-ID: 440728 [Multi-domain] Cd Length: 718 Bit Score: 183.39 E-value: 3.58e-50
|
||||||||||||
MDA5_ID | cd12090 | Insert domain of MDA5; MDA5 (melanoma-differentiation-associated gene 5, also known as IFIH1), ... |
227-345 | 3.55e-49 | ||||||||
Insert domain of MDA5; MDA5 (melanoma-differentiation-associated gene 5, also known as IFIH1), as well as RIG-I (Retinoic acid Inducible Gene I, also known as DDX58) and LPG2 (also known as DHX58), contain two N-terminal CARD domains and a C-terminal SF2 helicase domain. They are cytoplasmic DEAD box RNA helicases acting as key innate immune pattern-recognition receptor (PRRs) that play an important role in host antiviral response by sensing incoming viral RNA. Their SF2 helicase domain is comprised of 3 structural domains, the 2 generally conserved helicase domains and a helical domain inserted between the two domains. The inserted domain is involved in conformational changes upon ligand binding. Pssm-ID: 277189 Cd Length: 120 Bit Score: 165.18 E-value: 3.55e-49
|
||||||||||||
DEXHc_RIG-I_DDX58 | cd18073 | DEXH-box helicase domain of RIG-I; RIG-I (Retinoic acid-inducible gene I protein), also called ... |
2-197 | 6.82e-47 | ||||||||
DEXH-box helicase domain of RIG-I; RIG-I (Retinoic acid-inducible gene I protein), also called DEAD box protein 58 (DDX58), is a pathogen-recognition receptor that recognizes viral 5'-triphosphates carrying double-stranded RNA. Upon binding to these microbe-associated molecular patterns (MAMPs), RIG-I forms oligomers and promotes downstream processes that result in type I interferon production and induction of an antiviral state. The optimal ligand for RIG-I has been found to be base-paired or double-stranded RNA (dsRNA) molecules containing a 5' triphosphate (5'-ppp-dsRNA). RIG-I contains two N-terminal caspase activation and recruitment domains (CARDs), which are required for interaction with IPS-1, a superfamily 2 helicase/translocase/ATPase (SF2) domain and a C-terminal regulatory/repressor domain (RD). RIG-I is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350831 [Multi-domain] Cd Length: 202 Bit Score: 162.30 E-value: 6.82e-47
|
||||||||||||
PRK13766 | PRK13766 | Hef nuclease; Provisional |
1-472 | 3.25e-41 | ||||||||
Hef nuclease; Provisional Pssm-ID: 237496 [Multi-domain] Cd Length: 773 Bit Score: 158.11 E-value: 3.25e-41
|
||||||||||||
RIG-I_C | pfam18119 | RIG-I receptor C-terminal domain; This is the C-terminal domain of Innate Immune ... |
216-343 | 8.80e-34 | ||||||||
RIG-I receptor C-terminal domain; This is the C-terminal domain of Innate Immune Pattern-Recognition Receptor RIG-I present in homo sapiens. RIG-I is a key cytosolic pattern-recognition receptors of the vertebrate innate immune system that form the first line of defense against RNA viral infection. RNA binding to RIG-I is mediated both by the C-terminal domain and by the helicase domain. The C-terminal domain specifically binds the 5'triphosphate end with a 10-fold higher affinity compared to 5'OH-dsRNA. Pssm-ID: 465656 Cd Length: 139 Bit Score: 124.76 E-value: 8.80e-34
|
||||||||||||
DEXHc_dicer | cd18034 | DEXH-box helicase domain of endoribonuclease Dicer; Dicer ribonucleases cleave double-stranded ... |
1-179 | 9.14e-33 | ||||||||
DEXH-box helicase domain of endoribonuclease Dicer; Dicer ribonucleases cleave double-stranded RNA (dsRNA) precursors to generate microRNAs (miRNAs) and small interfering RNAs (siRNAs). In concert with Argonautes, these small RNAs bind complementary mRNAs to down-regulate their expression. miRNAs are processed by Dicer from small hairpins, while siRNAs are typically processed from longer dsRNA, from endogenous sources, or exogenous sources such as viral replication intermediates. Some organisms, such as Homo sapiens and Caenorhabditis elegans, encode one Dicer that generates miRNAs and siRNAs, but other organisms have multiple dicers with specialized functions. Dicers exist throughout eukaryotes, and a subset have an N-terminal helicase domain of the RIG-I-like receptor (RLR) subgroup. RLRs often function in innate immunity and Dicer helicase domains sometimes show differences in activity that correlate with roles in immunity. Dicer is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350792 [Multi-domain] Cd Length: 200 Bit Score: 123.92 E-value: 9.14e-33
|
||||||||||||
SF2_C_FANCM_Hef | cd18801 | C-terminal helicase domain of Fanconi anemia group M family helicases; Fanconi anemia group M ... |
333-472 | 1.72e-25 | ||||||||
C-terminal helicase domain of Fanconi anemia group M family helicases; Fanconi anemia group M (FANCM) protein is a DNA-dependent ATPase component of the Fanconi anemia (FA) core complex. It is required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage. Hef (helicase-associated endonuclease fork-structure) belongs to the XPF/MUS81/FANCM family of endonucleases and is involved in stalled replication fork repair. FANCM and Hef are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350188 [Multi-domain] Cd Length: 143 Bit Score: 102.05 E-value: 1.72e-25
|
||||||||||||
SF2-N | cd00046 | N-terminal DEAD/H-box helicase domain of superfamily 2 helicases; The DEAD/H-like superfamily ... |
17-168 | 4.62e-23 | ||||||||
N-terminal DEAD/H-box helicase domain of superfamily 2 helicases; The DEAD/H-like superfamily 2 helicases comprise a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This N-terminal domain contains the ATP-binding region. Pssm-ID: 350668 [Multi-domain] Cd Length: 146 Bit Score: 95.16 E-value: 4.62e-23
|
||||||||||||
DEXDc | smart00487 | DEAD-like helicases superfamily; |
2-170 | 1.82e-22 | ||||||||
DEAD-like helicases superfamily; Pssm-ID: 214692 [Multi-domain] Cd Length: 201 Bit Score: 95.25 E-value: 1.82e-22
|
||||||||||||
Helicase_C | pfam00271 | Helicase conserved C-terminal domain; The Prosite family is restricted to DEAD/H helicases, ... |
350-472 | 5.63e-20 | ||||||||
Helicase conserved C-terminal domain; The Prosite family is restricted to DEAD/H helicases, whereas this domain family is found in a wide variety of helicases and helicase related proteins. It may be that this is not an autonomously folding unit, but an integral part of the helicase. Pssm-ID: 459740 [Multi-domain] Cd Length: 109 Bit Score: 84.95 E-value: 5.63e-20
|
||||||||||||
SSL2 | COG1061 | Superfamily II DNA or RNA helicase [Transcription, Replication, recombination, and repair]; |
1-501 | 7.33e-20 | ||||||||
Superfamily II DNA or RNA helicase [Transcription, Replication, recombination, and repair]; Pssm-ID: 440681 [Multi-domain] Cd Length: 566 Bit Score: 92.78 E-value: 7.33e-20
|
||||||||||||
DEXHc_Hef | cd18035 | DEXH-box helicase domain of Hef; Hef (helicase-associated endonuclease fork-structure) belongs ... |
1-192 | 8.82e-19 | ||||||||
DEXH-box helicase domain of Hef; Hef (helicase-associated endonuclease fork-structure) belongs to the XPF/MUS81/FANCM family of endonucleases and is involved in stalled replication fork repair. All archaea encode a protein of the XPF/MUS81/FANCM family of endonucleases. It exists in two forms: a long form, referred as Hef which consists of an N-terminal helicase fused to a C-terminal nuclease and is specific to euryarchaea and a short form, referred as XPF which lacks the helicase domain and is specific to crenarchaea and thaumarchaea. Hef has the unique feature of having both active helicase and nuclease domains. This domain configuration is highly similar with the human FANCM, a possible ortholog of archaeal Hef proteins. Hef is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350793 [Multi-domain] Cd Length: 181 Bit Score: 84.10 E-value: 8.82e-19
|
||||||||||||
ResIII | pfam04851 | Type III restriction enzyme, res subunit; |
1-170 | 1.44e-18 | ||||||||
Type III restriction enzyme, res subunit; Pssm-ID: 398492 [Multi-domain] Cd Length: 162 Bit Score: 82.72 E-value: 1.44e-18
|
||||||||||||
DEXHc_RE_I_III_res | cd18032 | DEXH-box helicase domain of type III restriction enzyme res subunit; Members of this model ... |
3-170 | 3.02e-16 | ||||||||
DEXH-box helicase domain of type III restriction enzyme res subunit; Members of this model includes both type I and type III restriction enzymes. Both are hetero-oligomeric proteins. Type I REs are encoded by three closely linked genes: a specificity subunit (HsdS or S) for recognizing a DNA sequence, a methylation subunit (HsdM or M) for methylating the recognized target bases, and a restriction subunit (HsdR or R) for the translocation and random cleavage of non-methylated DNA. They show diverse catalytic activities, including methyltransferase (MTase), ATP hydrolase (ATPase), DNA translocation and restriction activities. These enzymes cut at a site that differs, and is a random distance (at least 1000 bp) away, from their recognition site. Cleavage at these random sites follows a process of DNA translocation, which shows that these enzymes are also molecular motors. The recognition site is asymmetrical and is composed of two specific portions: one containing 3-4 nucleotides, and another containing 4-5 nucleotides, separated by a non-specific spacer of about 6-8 nucleotides. Type III enzymes are composed of two subunits, Res and Mod. The Mod subunit recognizes the DNA sequence specific for the system and is a modification methyltransferase; as such, it is functionally equivalent to the M and S subunits of type I restriction endonucleases. Res is required for restriction, although it has no enzymatic activity on its own. Type III enzymes recognize short 5-6 bp-long asymmetric DNA sequences and cleave 25-27 bp downstream to leave short, single-stranded 5' protrusions. They require the presence of two inversely oriented unmethylated recognition sites for restriction to occur. These enzymes methylate only one strand of the DNA, at the N-6 position of adenosyl residues, so newly replicated DNA will have only one strand methylated, which is sufficient to protect against restriction. Both type I and type III REs are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350790 [Multi-domain] Cd Length: 163 Bit Score: 76.06 E-value: 3.02e-16
|
||||||||||||
DEAD | pfam00270 | DEAD/DEAH box helicase; Members of this family include the DEAD and DEAH box helicases. ... |
4-170 | 9.89e-16 | ||||||||
DEAD/DEAH box helicase; Members of this family include the DEAD and DEAH box helicases. Helicases are involved in unwinding nucleic acids. The DEAD box helicases are involved in various aspects of RNA metabolism, including nuclear transcription, pre mRNA splicing, ribosome biogenesis, nucleocytoplasmic transport, translation, RNA decay and organellar gene expression. Pssm-ID: 425570 [Multi-domain] Cd Length: 165 Bit Score: 74.97 E-value: 9.89e-16
|
||||||||||||
HELICc | smart00490 | helicase superfamily c-terminal domain; |
415-472 | 2.83e-15 | ||||||||
helicase superfamily c-terminal domain; Pssm-ID: 197757 [Multi-domain] Cd Length: 82 Bit Score: 70.70 E-value: 2.83e-15
|
||||||||||||
DEXHc_RE | cd17926 | DEXH-box helicase domain of DEAD-like helicase restriction enzyme family proteins; This family ... |
3-170 | 2.62e-13 | ||||||||
DEXH-box helicase domain of DEAD-like helicase restriction enzyme family proteins; This family is composed of helicase restriction enzymes and similar proteins such as TFIIH basal transcription factor complex helicase XPB subunit. These proteins are part of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350684 [Multi-domain] Cd Length: 146 Bit Score: 67.33 E-value: 2.62e-13
|
||||||||||||
SF2_C_DEAD | cd18787 | C-terminal helicase domain of the DEAD box helicases; DEAD-box helicases comprise a diverse ... |
349-482 | 8.46e-13 | ||||||||
C-terminal helicase domain of the DEAD box helicases; DEAD-box helicases comprise a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis, and RNA degradation. They are superfamily (SF)2 helicases that, similar to SF1, do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350174 [Multi-domain] Cd Length: 131 Bit Score: 65.22 E-value: 8.46e-13
|
||||||||||||
DEXHc_Ski2 | cd17921 | DEXH-box helicase domain of DEAD-like helicase Ski2 family proteins; Ski2-like RNA helicases ... |
15-168 | 4.86e-12 | ||||||||
DEXH-box helicase domain of DEAD-like helicase Ski2 family proteins; Ski2-like RNA helicases play an important role in RNA degradation, processing, and splicing pathways. They belong to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350679 [Multi-domain] Cd Length: 181 Bit Score: 64.59 E-value: 4.86e-12
|
||||||||||||
SrmB | COG0513 | Superfamily II DNA and RNA helicase [Replication, recombination and repair]; |
350-505 | 2.72e-11 | ||||||||
Superfamily II DNA and RNA helicase [Replication, recombination and repair]; Pssm-ID: 440279 [Multi-domain] Cd Length: 420 Bit Score: 65.55 E-value: 2.72e-11
|
||||||||||||
BRR2 | COG1204 | Replicative superfamily II helicase [Replication, recombination and repair]; |
2-168 | 5.41e-10 | ||||||||
Replicative superfamily II helicase [Replication, recombination and repair]; Pssm-ID: 440817 [Multi-domain] Cd Length: 529 Bit Score: 61.83 E-value: 5.41e-10
|
||||||||||||
SF2_C | cd18785 | C-terminal helicase domain of superfamily 2 DEAD/H-box helicases; Superfamily (SF)2 helicases ... |
432-472 | 3.18e-08 | ||||||||
C-terminal helicase domain of superfamily 2 DEAD/H-box helicases; Superfamily (SF)2 helicases include DEAD-box helicases, UvrB, RecG, Ski2, Sucrose Non-Fermenting (SNF) family helicases, and dicer proteins, among others. Similar to SF1 helicases, they do not form toroidal structures like SF3-6 helicases. SF2 helicases are a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Their helicase core is surrounded by C- and N-terminal domains with specific functions such as nucleases, RNA or DNA binding domains, or domains engaged in protein-protein interactions. The core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350172 [Multi-domain] Cd Length: 77 Bit Score: 50.78 E-value: 3.18e-08
|
||||||||||||
SF2_C_RecG | cd18811 | C-terminal helicase domain of DNA helicase RecG; ATP-dependent DNA helicase RecG plays a ... |
415-502 | 4.98e-08 | ||||||||
C-terminal helicase domain of DNA helicase RecG; ATP-dependent DNA helicase RecG plays a critical role in recombination and DNA repair. RecG helps process Holliday junction intermediates to mature products by catalyzing branch migration. It is a DEAD-like helicase belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350198 [Multi-domain] Cd Length: 159 Bit Score: 52.35 E-value: 4.98e-08
|
||||||||||||
DEXHc_RecQ | cd17920 | DEXH-box helicase domain of RecQ family proteins; The RecQ family of the type II DEAD box ... |
2-168 | 8.28e-08 | ||||||||
DEXH-box helicase domain of RecQ family proteins; The RecQ family of the type II DEAD box helicase superfamily is a family of highly conserved DNA repair helicases. This domain contains the ATP-binding region. Pssm-ID: 350678 [Multi-domain] Cd Length: 200 Bit Score: 52.54 E-value: 8.28e-08
|
||||||||||||
DEXDc_FANCM | cd18033 | DEAH-box helicase domain of FANCM; Fanconi anemia group M (FANCM) protein is a DNA-dependent ... |
2-193 | 8.57e-08 | ||||||||
DEAH-box helicase domain of FANCM; Fanconi anemia group M (FANCM) protein is a DNA-dependent ATPase component of the Fanconi anemia (FA) core complex. It is required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage. In complex with CENPS and CENPX, it binds double-stranded DNA (dsDNA), fork-structured DNA (fsDNA), and Holliday junction substrates. Its ATP-dependent DNA branch migration activity can process branched DNA structures such as a movable replication fork. This activity is strongly stimulated in the presence of CENPS and CENPX. In complex with FAAP24, it efficiently binds to single-strand DNA (ssDNA), splayed-arm DNA, and 3'-flap substrates. In vitro, on its own, it strongly binds ssDNA oligomers and weakly fsDNA, but does not bind to dsDNA. FANCM is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350791 [Multi-domain] Cd Length: 182 Bit Score: 52.32 E-value: 8.57e-08
|
||||||||||||
SF2_C_RecG_TRCF | cd18792 | C-terminal helicase domain of the RecG family helicases; The DEAD-like helicase RecG family ... |
415-502 | 2.69e-07 | ||||||||
C-terminal helicase domain of the RecG family helicases; The DEAD-like helicase RecG family contains recombination factor RecG and transcription-repair coupling factor TrcF. They are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350179 [Multi-domain] Cd Length: 160 Bit Score: 50.34 E-value: 2.69e-07
|
||||||||||||
PRK11192 | PRK11192 | ATP-dependent RNA helicase SrmB; Provisional |
350-448 | 4.49e-07 | ||||||||
ATP-dependent RNA helicase SrmB; Provisional Pssm-ID: 236877 [Multi-domain] Cd Length: 434 Bit Score: 52.25 E-value: 4.49e-07
|
||||||||||||
HepA | COG0553 | Superfamily II DNA or RNA helicase, SNF2 family [Transcription, Replication, recombination, ... |
27-507 | 2.76e-06 | ||||||||
Superfamily II DNA or RNA helicase, SNF2 family [Transcription, Replication, recombination, and repair]; Pssm-ID: 440319 [Multi-domain] Cd Length: 682 Bit Score: 50.22 E-value: 2.76e-06
|
||||||||||||
DEXHc_POLQ-like | cd18026 | DEXH-box helicase domain of DNA polymerase theta; DNA polymerase theta (POLQ) is important in ... |
6-169 | 8.74e-06 | ||||||||
DEXH-box helicase domain of DNA polymerase theta; DNA polymerase theta (POLQ) is important in the repair of genomic double-strand breaks (DSBs). POLQ contains an N-terminal type II DEAD box helicase domain which contains the ATP-binding region. Pssm-ID: 350784 [Multi-domain] Cd Length: 202 Bit Score: 46.83 E-value: 8.74e-06
|
||||||||||||
DEXHc_UvsW | cd18031 | DEXH-box helicase domain of bacteriophage UvsW; Bacteriophage UvsW is part of the WXY system ... |
6-145 | 1.13e-05 | ||||||||
DEXH-box helicase domain of bacteriophage UvsW; Bacteriophage UvsW is part of the WXY system that repairs DNA damage by a process that involves homologous recombination. UvsW is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350789 [Multi-domain] Cd Length: 161 Bit Score: 45.50 E-value: 1.13e-05
|
||||||||||||
DEXHc_archSki2 | cd18028 | DEXH-box helicase domain of archaeal Ski2-type helicase; Archaeal Ski2-type RNA helicases play ... |
15-171 | 3.39e-05 | ||||||||
DEXH-box helicase domain of archaeal Ski2-type helicase; Archaeal Ski2-type RNA helicases play an important role in RNA degradation, processing and splicing pathways. They belong to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350786 [Multi-domain] Cd Length: 177 Bit Score: 44.63 E-value: 3.39e-05
|
||||||||||||
uvsW | PHA02558 | UvsW helicase; Provisional |
2-188 | 3.74e-05 | ||||||||
UvsW helicase; Provisional Pssm-ID: 222875 [Multi-domain] Cd Length: 501 Bit Score: 46.16 E-value: 3.74e-05
|
||||||||||||
HsdR | COG4096 | Type I site-specific restriction endonuclease, part of a restriction-modification system ... |
3-134 | 8.88e-05 | ||||||||
Type I site-specific restriction endonuclease, part of a restriction-modification system [Defense mechanisms]; Pssm-ID: 443272 [Multi-domain] Cd Length: 806 Bit Score: 45.22 E-value: 8.88e-05
|
||||||||||||
SF2_C_XPB | cd18789 | C-terminal helicase domain of XPB-like helicases; TFIIH basal transcription factor complex ... |
413-454 | 1.05e-04 | ||||||||
C-terminal helicase domain of XPB-like helicases; TFIIH basal transcription factor complex helicase XPB (xeroderma pigmentosum type B) subunit (also known as DNA excision repair protein ERCC-3 or TFIIH 89 kDa subunit) is the ATP-dependent 3'-5' DNA helicase component of the core-TFIIH basal transcription factor, involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. XPB is a DEAD-like helicase belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350176 [Multi-domain] Cd Length: 153 Bit Score: 42.62 E-value: 1.05e-04
|
||||||||||||
PRK11634 | PRK11634 | ATP-dependent RNA helicase DeaD; Provisional |
371-511 | 1.08e-04 | ||||||||
ATP-dependent RNA helicase DeaD; Provisional Pssm-ID: 236941 [Multi-domain] Cd Length: 629 Bit Score: 44.84 E-value: 1.08e-04
|
||||||||||||
DEXHc_Hrq1-like | cd17923 | DEAH-box helicase domain of Hrq1 and similar proteins; Yeast Hrq1, similar to RecQ4, plays a ... |
3-134 | 1.61e-04 | ||||||||
DEAH-box helicase domain of Hrq1 and similar proteins; Yeast Hrq1, similar to RecQ4, plays a role in DNA inter-strand crosslink (ICL) repair and in telomere maintenance. Hrq1 lacks the Sld2-like domain found in RecQ4. Hrq1 belongs to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350681 [Multi-domain] Cd Length: 182 Bit Score: 42.57 E-value: 1.61e-04
|
||||||||||||
PTZ00110 | PTZ00110 | helicase; Provisional |
347-495 | 2.55e-04 | ||||||||
helicase; Provisional Pssm-ID: 240273 [Multi-domain] Cd Length: 545 Bit Score: 43.61 E-value: 2.55e-04
|
||||||||||||
DEADc | cd00268 | DEAD-box helicase domain of DEAD box helicases; DEAD-box helicases comprise a diverse family ... |
7-133 | 2.72e-04 | ||||||||
DEAD-box helicase domain of DEAD box helicases; DEAD-box helicases comprise a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. Pssm-ID: 350669 [Multi-domain] Cd Length: 196 Bit Score: 42.04 E-value: 2.72e-04
|
||||||||||||
PRK10917 | PRK10917 | ATP-dependent DNA helicase RecG; Provisional |
413-458 | 2.90e-04 | ||||||||
ATP-dependent DNA helicase RecG; Provisional Pssm-ID: 236794 [Multi-domain] Cd Length: 681 Bit Score: 43.60 E-value: 2.90e-04
|
||||||||||||
PRK11776 | PRK11776 | ATP-dependent RNA helicase DbpA; Provisional |
400-502 | 3.63e-04 | ||||||||
ATP-dependent RNA helicase DbpA; Provisional Pssm-ID: 236977 [Multi-domain] Cd Length: 460 Bit Score: 42.87 E-value: 3.63e-04
|
||||||||||||
DEXDc_RapA | cd18011 | DEXH-box helicase domain of RapA; In bacteria, RapA is an RNA polymerase (RNAP)-associated ... |
27-170 | 4.20e-04 | ||||||||
DEXH-box helicase domain of RapA; In bacteria, RapA is an RNA polymerase (RNAP)-associated SWI2/SNF2 (switch/sucrose non-fermentable) protein that mediates RNAP recycling during transcription. The ATPase activity of RapA is stimulated by its interaction with RNAP and inhibited by its N-terminal domain. The conformational changes of RapA and its interaction with RNAP are essential for RNAP recycling. RapA is part of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350769 [Multi-domain] Cd Length: 207 Bit Score: 41.89 E-value: 4.20e-04
|
||||||||||||
SWI2_SNF2 | pfam18766 | SWI2/SNF2 ATPase; A SWi2/SNF2 ATPase found in polyvalent proteins. |
17-137 | 7.90e-04 | ||||||||
SWI2/SNF2 ATPase; A SWi2/SNF2 ATPase found in polyvalent proteins. Pssm-ID: 465860 [Multi-domain] Cd Length: 222 Bit Score: 40.88 E-value: 7.90e-04
|
||||||||||||
PRK10689 | PRK10689 | transcription-repair coupling factor; Provisional |
400-484 | 9.48e-04 | ||||||||
transcription-repair coupling factor; Provisional Pssm-ID: 182649 [Multi-domain] Cd Length: 1147 Bit Score: 42.04 E-value: 9.48e-04
|
||||||||||||
SF2_C_SNF | cd18793 | C-terminal helicase domain of the SNF family helicases; The Sucrose Non-Fermenting (SNF) ... |
349-472 | 1.28e-03 | ||||||||
C-terminal helicase domain of the SNF family helicases; The Sucrose Non-Fermenting (SNF) family includes chromatin-remodeling factors, such as CHD proteins and SMARCA proteins, recombination proteins Rad54, and many others. They are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350180 [Multi-domain] Cd Length: 135 Bit Score: 39.00 E-value: 1.28e-03
|
||||||||||||
DEXHc_RecQ4-like | cd18018 | DEAH-box helicase domain of RecQ4 and similar proteins; ATP-dependent DNA helicase Q4 (RecQ4) ... |
2-168 | 1.55e-03 | ||||||||
DEAH-box helicase domain of RecQ4 and similar proteins; ATP-dependent DNA helicase Q4 (RecQ4) is part of the RecQ family of highly conserved DNA repair helicases that is part of the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Mutations cause Rothmund-Thomson/RAPADILINO/Baller-Gerold syndrome. Pssm-ID: 350776 [Multi-domain] Cd Length: 201 Bit Score: 39.93 E-value: 1.55e-03
|
||||||||||||
DEXHc_ASCC3_2 | cd18022 | C-terminal DEXH-box helicase domain of Activating signal cointegrator 1 complex subunit 3; ... |
18-168 | 2.01e-03 | ||||||||
C-terminal DEXH-box helicase domain of Activating signal cointegrator 1 complex subunit 3; Activating signal cointegrator 1 complex subunit 3 (ASCC3) is a type II DEAD box helicase that plays a role in the repair of N-alkylated nucleotides. ASCC3 belongs to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350780 [Multi-domain] Cd Length: 189 Bit Score: 39.28 E-value: 2.01e-03
|
||||||||||||
RecG | COG1200 | RecG-like helicase [Replication, recombination and repair]; |
415-458 | 2.97e-03 | ||||||||
RecG-like helicase [Replication, recombination and repair]; Pssm-ID: 440813 [Multi-domain] Cd Length: 684 Bit Score: 40.42 E-value: 2.97e-03
|
||||||||||||
DEXHc_Brr2_2 | cd18021 | C-terminal D[D/E]X[H/Q]-box helicase domain of spliceosomal Brr2 RNA helicase; Brr2 is a type ... |
19-169 | 2.98e-03 | ||||||||
C-terminal D[D/E]X[H/Q]-box helicase domain of spliceosomal Brr2 RNA helicase; Brr2 is a type II DEAD box helicase that mediates spliceosome catalytic activation. It is a stable subunit of the spliceosome, required during splicing catalysis and spliceosome disassembly. Brr2 belongs to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350779 [Multi-domain] Cd Length: 191 Bit Score: 38.78 E-value: 2.98e-03
|
||||||||||||
DEXHc_RecG | cd17918 | DEXH/Q-box helicase domain of DEAD-like helicase RecG family proteins; The DEAD-like helicase ... |
27-166 | 3.29e-03 | ||||||||
DEXH/Q-box helicase domain of DEAD-like helicase RecG family proteins; The DEAD-like helicase RecG family is part of the DEAD-like helicases superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350676 [Multi-domain] Cd Length: 180 Bit Score: 38.55 E-value: 3.29e-03
|
||||||||||||
PRK04537 | PRK04537 | ATP-dependent RNA helicase RhlB; Provisional |
412-471 | 3.71e-03 | ||||||||
ATP-dependent RNA helicase RhlB; Provisional Pssm-ID: 235307 [Multi-domain] Cd Length: 572 Bit Score: 39.93 E-value: 3.71e-03
|
||||||||||||
Dob10 | COG4581 | Superfamily II RNA helicase [Replication, recombination and repair]; |
2-134 | 4.44e-03 | ||||||||
Superfamily II RNA helicase [Replication, recombination and repair]; Pssm-ID: 443638 [Multi-domain] Cd Length: 751 Bit Score: 39.92 E-value: 4.44e-03
|
||||||||||||
DEXHc_LHR-like | cd17922 | DEXH-box helicase domain of LHR; Large helicase-related protein (LHR) is a DNA ... |
17-134 | 5.08e-03 | ||||||||
DEXH-box helicase domain of LHR; Large helicase-related protein (LHR) is a DNA damage-inducible helicase that uses ATP hydrolysis to drive unidirectional 3'-to-5' translocation along single-stranded DNA (ssDNA) and to unwind RNA:DNA duplexes. This group also includes related bacterial and archaeal helicases from the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350680 [Multi-domain] Cd Length: 166 Bit Score: 37.95 E-value: 5.08e-03
|
||||||||||||
SF2_C_RecQ | cd18794 | C-terminal helicase domain of the RecQ family helicases; The RecQ helicase family is an ... |
349-472 | 6.24e-03 | ||||||||
C-terminal helicase domain of the RecQ family helicases; The RecQ helicase family is an evolutionarily conserved class of enzymes, dedicated to preserving genomic integrity by operating in telomere maintenance, DNA repair, and replication. They are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350181 [Multi-domain] Cd Length: 134 Bit Score: 37.19 E-value: 6.24e-03
|
||||||||||||
COG0610 | COG0610 | Type I site-specific restriction-modification system, R (restriction) subunit and related ... |
3-134 | 6.59e-03 | ||||||||
Type I site-specific restriction-modification system, R (restriction) subunit and related helicases ... [Defense mechanisms]; Pssm-ID: 440375 [Multi-domain] Cd Length: 936 Bit Score: 39.47 E-value: 6.59e-03
|
||||||||||||
Blast search parameters | ||||
|