ras GTPase-activating protein 4 isoform X4 [Homo sapiens]
synaptotagmin family protein; RIM/PCLO family C2 domain-containing protein( domain architecture ID 10326021)
synaptotagmin family protein is a membrane-trafficking protein characterized by an N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains; similar to synaptotagmins 4 and 11, which do not bind calcium| RIM (Rab-3-interacting molecule)/PCLO (protein piccolo) family C2 domain-containing protein
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
RasGAP_RASA4 | cd05395 | Ras-GTPase Activating Domain of RASA4; Ras GTPase activating-like 4 protein (RASAL4), also ... |
193-478 | 0e+00 | |||||
Ras-GTPase Activating Domain of RASA4; Ras GTPase activating-like 4 protein (RASAL4), also known as Ca2+ -promoted Ras inactivator (CAPRI), is a member of the GAP1 family. Members of the GAP1 family are characterized by a conserved domain structure comprising N-terminal tandem C2 domains, a highly conserved central RasGAP domain, and a C-terminal pleckstrin-homology domain that is associated with a Bruton's tyrosine kinase motif. RASAL4, like RASAL, is a cytosolic protein that undergoes a rapid translocation to the plasma membrane in response to a receptor-mediated elevation in the concentration of intracellular free Ca2+ ([Ca2+]i). However, unlike RASAL, RASAL4 does not sense oscillations in [Ca2+]i. : Pssm-ID: 213343 [Multi-domain] Cd Length: 287 Bit Score: 560.64 E-value: 0e+00
|
|||||||||
PH_CAPRI | cd13372 | Ca2+ promoted Ras inactivator pleckstrin homology (PH) domain; CAPRI (also called RASA4/RAS ... |
470-609 | 4.34e-86 | |||||
Ca2+ promoted Ras inactivator pleckstrin homology (PH) domain; CAPRI (also called RASA4/RAS p21 protein activator (GTPase activating protein) 4/GAPL/FLJ59070/KIAA0538/MGC131890) is a member of the GAP1 family of GTPase-activating proteins. CAPRI contains two fully conserved C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Its catalytic GAP domain has dual RasGAP and RapGAP activities, while its C2 domains bind phospholipids in the presence of Ca2+. Both CAPRI and RASAL are calcium-activated RasGAPs that inactivate Ras at the plasma membrane. Thereby enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS and allowing control of cellular proliferation and differentiation. CAPRI and RASAL differ in that CAPRI is an amplitude sensor while RASAL senses calcium oscillations. This difference between them resides not in their C2 domains, but in their PH domains leading to speculation that this might reflect an association with either phosphoinositides and/or proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. : Pssm-ID: 241523 Cd Length: 140 Bit Score: 267.51 E-value: 4.34e-86
|
|||||||||
C2B_RasA1_RasA4 | cd04025 | C2 domain second repeat present in RasA1 and RasA4; RasA1 and RasA4 are GAP1s (GTPase ... |
62-185 | 5.37e-76 | |||||
C2 domain second repeat present in RasA1 and RasA4; RasA1 and RasA4 are GAP1s (GTPase activating protein 1s ), Ras-specific GAP members, which suppresses Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. Both proteins contain two C2 domains, a Ras-GAP domain, a plextrin homology (PH)-like domain, and a Bruton's Tyrosine Kinase (BTK) zinc binding domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. : Pssm-ID: 175991 [Multi-domain] Cd Length: 123 Bit Score: 240.46 E-value: 5.37e-76
|
|||||||||
C2 super family | cl14603 | C2 domain; The C2 domain was first identified in PKC. C2 domains fold into an 8-standed ... |
1-54 | 1.76e-28 | |||||
C2 domain; The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. The actual alignment was detected with superfamily member cd04054: Pssm-ID: 472691 [Multi-domain] Cd Length: 121 Bit Score: 110.30 E-value: 1.76e-28
|
|||||||||
BTK | pfam00779 | BTK motif; Zinc-binding motif containing conserved cysteines and a histidine. Always found ... |
609-638 | 1.52e-10 | |||||
BTK motif; Zinc-binding motif containing conserved cysteines and a histidine. Always found C-terminal to PH domains. The crystal structure shows this motif packs against the PH domain. The PH+Btk module pair has been called the Tec homology (TH) region. : Pssm-ID: 459937 Cd Length: 30 Bit Score: 56.38 E-value: 1.52e-10
|
|||||||||
Name | Accession | Description | Interval | E-value | ||||||
RasGAP_RASA4 | cd05395 | Ras-GTPase Activating Domain of RASA4; Ras GTPase activating-like 4 protein (RASAL4), also ... |
193-478 | 0e+00 | ||||||
Ras-GTPase Activating Domain of RASA4; Ras GTPase activating-like 4 protein (RASAL4), also known as Ca2+ -promoted Ras inactivator (CAPRI), is a member of the GAP1 family. Members of the GAP1 family are characterized by a conserved domain structure comprising N-terminal tandem C2 domains, a highly conserved central RasGAP domain, and a C-terminal pleckstrin-homology domain that is associated with a Bruton's tyrosine kinase motif. RASAL4, like RASAL, is a cytosolic protein that undergoes a rapid translocation to the plasma membrane in response to a receptor-mediated elevation in the concentration of intracellular free Ca2+ ([Ca2+]i). However, unlike RASAL, RASAL4 does not sense oscillations in [Ca2+]i. Pssm-ID: 213343 [Multi-domain] Cd Length: 287 Bit Score: 560.64 E-value: 0e+00
|
||||||||||
RasGAP | smart00323 | GTPase-activator protein for Ras-like GTPases; All alpha-helical domain that accelerates the ... |
172-533 | 5.31e-119 | ||||||
GTPase-activator protein for Ras-like GTPases; All alpha-helical domain that accelerates the GTPase activity of Ras, thereby "switching" it into an "off" position. Improved domain limits from structure. Pssm-ID: 214617 Cd Length: 344 Bit Score: 360.86 E-value: 5.31e-119
|
||||||||||
PH_CAPRI | cd13372 | Ca2+ promoted Ras inactivator pleckstrin homology (PH) domain; CAPRI (also called RASA4/RAS ... |
470-609 | 4.34e-86 | ||||||
Ca2+ promoted Ras inactivator pleckstrin homology (PH) domain; CAPRI (also called RASA4/RAS p21 protein activator (GTPase activating protein) 4/GAPL/FLJ59070/KIAA0538/MGC131890) is a member of the GAP1 family of GTPase-activating proteins. CAPRI contains two fully conserved C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Its catalytic GAP domain has dual RasGAP and RapGAP activities, while its C2 domains bind phospholipids in the presence of Ca2+. Both CAPRI and RASAL are calcium-activated RasGAPs that inactivate Ras at the plasma membrane. Thereby enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS and allowing control of cellular proliferation and differentiation. CAPRI and RASAL differ in that CAPRI is an amplitude sensor while RASAL senses calcium oscillations. This difference between them resides not in their C2 domains, but in their PH domains leading to speculation that this might reflect an association with either phosphoinositides and/or proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241523 Cd Length: 140 Bit Score: 267.51 E-value: 4.34e-86
|
||||||||||
C2B_RasA1_RasA4 | cd04025 | C2 domain second repeat present in RasA1 and RasA4; RasA1 and RasA4 are GAP1s (GTPase ... |
62-185 | 5.37e-76 | ||||||
C2 domain second repeat present in RasA1 and RasA4; RasA1 and RasA4 are GAP1s (GTPase activating protein 1s ), Ras-specific GAP members, which suppresses Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. Both proteins contain two C2 domains, a Ras-GAP domain, a plextrin homology (PH)-like domain, and a Bruton's Tyrosine Kinase (BTK) zinc binding domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 175991 [Multi-domain] Cd Length: 123 Bit Score: 240.46 E-value: 5.37e-76
|
||||||||||
RasGAP | pfam00616 | GTPase-activator protein for Ras-like GTPase; All alpha-helical domain that accelerates the ... |
251-440 | 7.93e-53 | ||||||
GTPase-activator protein for Ras-like GTPase; All alpha-helical domain that accelerates the GTPase activity of Ras, thereby "switching" it into an "off" position. Pssm-ID: 459871 Cd Length: 207 Bit Score: 181.71 E-value: 7.93e-53
|
||||||||||
C2 | pfam00168 | C2 domain; |
61-162 | 2.40e-32 | ||||||
C2 domain; Pssm-ID: 425499 [Multi-domain] Cd Length: 104 Bit Score: 120.89 E-value: 2.40e-32
|
||||||||||
C2A_Rasal1_RasA4 | cd04054 | C2 domain first repeat present in RasA1 and RasA4; Rasal1 and RasA4 are both members of GAP1 ... |
1-54 | 1.76e-28 | ||||||
C2 domain first repeat present in RasA1 and RasA4; Rasal1 and RasA4 are both members of GAP1 (GTPase activating protein 1). Rasal1 responds to repetitive Ca2+ signals by associating with the plasma membrane and deactivating Ras. RasA4 suppresses Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. Both of these proteins contains two C2 domains, a Ras-GAP domain, a plextrin homology (PH)-like domain, and a Bruton's Tyrosine Kinase (BTK) zinc binding domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176018 [Multi-domain] Cd Length: 121 Bit Score: 110.30 E-value: 1.76e-28
|
||||||||||
C2 | smart00239 | Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, ... |
62-159 | 6.96e-26 | ||||||
Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, protein kinases C, and synaptotagmins (among others). Some do not appear to contain Ca2+-binding sites. Particular C2s appear to bind phospholipids, inositol polyphosphates, and intracellular proteins. Unusual occurrence in perforin. Synaptotagmin and PLC C2s are permuted in sequence with respect to N- and C-terminal beta strands. SMART detects C2 domains using one or both of two profiles. Pssm-ID: 214577 [Multi-domain] Cd Length: 101 Bit Score: 102.18 E-value: 6.96e-26
|
||||||||||
BTK | pfam00779 | BTK motif; Zinc-binding motif containing conserved cysteines and a histidine. Always found ... |
609-638 | 1.52e-10 | ||||||
BTK motif; Zinc-binding motif containing conserved cysteines and a histidine. Always found C-terminal to PH domains. The crystal structure shows this motif packs against the PH domain. The PH+Btk module pair has been called the Tec homology (TH) region. Pssm-ID: 459937 Cd Length: 30 Bit Score: 56.38 E-value: 1.52e-10
|
||||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
495-600 | 1.79e-10 | ||||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 58.33 E-value: 1.79e-10
|
||||||||||
COG5038 | COG5038 | Ca2+-dependent lipid-binding protein, contains C2 domain [General function prediction only]; |
70-157 | 3.70e-10 | ||||||
Ca2+-dependent lipid-binding protein, contains C2 domain [General function prediction only]; Pssm-ID: 227371 [Multi-domain] Cd Length: 1227 Bit Score: 63.62 E-value: 3.70e-10
|
||||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
495-600 | 9.29e-09 | ||||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 53.72 E-value: 9.29e-09
|
||||||||||
BTK | smart00107 | Bruton's tyrosine kinase Cys-rich motif; Zinc-binding motif containing conserved cysteines and ... |
603-635 | 8.41e-06 | ||||||
Bruton's tyrosine kinase Cys-rich motif; Zinc-binding motif containing conserved cysteines and a histidine. Always found C-terminal to PH domains (but not all PH domains are followed by BTK motifs). The crystal structure shows this motif packs against the PH domain. The PH+Btk module pair has been called the Tec homology (TH) region. Pssm-ID: 128417 Cd Length: 36 Bit Score: 43.14 E-value: 8.41e-06
|
||||||||||
IQG1 | COG5261 | Protein involved in regulation of cellular morphogenesis/cytokinesis [Cell division and ... |
251-496 | 8.13e-05 | ||||||
Protein involved in regulation of cellular morphogenesis/cytokinesis [Cell division and chromosome partitioning / Signal transduction mechanisms]; Pssm-ID: 227586 [Multi-domain] Cd Length: 1054 Bit Score: 46.03 E-value: 8.13e-05
|
||||||||||
PLN02952 | PLN02952 | phosphoinositide phospholipase C |
95-151 | 1.69e-04 | ||||||
phosphoinositide phospholipase C Pssm-ID: 178538 [Multi-domain] Cd Length: 599 Bit Score: 44.99 E-value: 1.69e-04
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
RasGAP_RASA4 | cd05395 | Ras-GTPase Activating Domain of RASA4; Ras GTPase activating-like 4 protein (RASAL4), also ... |
193-478 | 0e+00 | ||||||
Ras-GTPase Activating Domain of RASA4; Ras GTPase activating-like 4 protein (RASAL4), also known as Ca2+ -promoted Ras inactivator (CAPRI), is a member of the GAP1 family. Members of the GAP1 family are characterized by a conserved domain structure comprising N-terminal tandem C2 domains, a highly conserved central RasGAP domain, and a C-terminal pleckstrin-homology domain that is associated with a Bruton's tyrosine kinase motif. RASAL4, like RASAL, is a cytosolic protein that undergoes a rapid translocation to the plasma membrane in response to a receptor-mediated elevation in the concentration of intracellular free Ca2+ ([Ca2+]i). However, unlike RASAL, RASAL4 does not sense oscillations in [Ca2+]i. Pssm-ID: 213343 [Multi-domain] Cd Length: 287 Bit Score: 560.64 E-value: 0e+00
|
||||||||||
RasGAP_RASAL | cd05135 | Ras-GTPase Activating Domain of RASAL1 and similar proteins; Ras GTPase activating-like ... |
193-478 | 2.49e-119 | ||||||
Ras-GTPase Activating Domain of RASAL1 and similar proteins; Ras GTPase activating-like protein (RASAL) or RASAL1 is a member of the GAP1 family, and a Ca2+ sensor responding in-phase to repetitive Ca2+ signals by associating with the plasma membrane and deactivating Ras. It contains a conserved domain structure comprising N-terminal tandem C2 domains, a highly conserved central RasGAP domain, and a C-terminal pleckstrin-homology domain that is associated with a Bruton's tyrosine kinase motif. RASAL, like Ca2+ -promoted Ras inactivator (CAPRI, or RASAL4), is a cytosolic protein that undergoes a rapid translocation to the plasma membrane in response to receptor-mediated elevation in the concentration of intracellular free Ca2+, a translocation that activates its ability to function as a RasGAP. However, unlike RASAL4, RASAL undergoes an oscillatory translocation to the plasma membrane that occurs in synchrony with repetitive Ca2+ spikes. Pssm-ID: 213337 Cd Length: 287 Bit Score: 359.51 E-value: 2.49e-119
|
||||||||||
RasGAP | smart00323 | GTPase-activator protein for Ras-like GTPases; All alpha-helical domain that accelerates the ... |
172-533 | 5.31e-119 | ||||||
GTPase-activator protein for Ras-like GTPases; All alpha-helical domain that accelerates the GTPase activity of Ras, thereby "switching" it into an "off" position. Improved domain limits from structure. Pssm-ID: 214617 Cd Length: 344 Bit Score: 360.86 E-value: 5.31e-119
|
||||||||||
RasGAP_GAP1_like | cd05128 | Ras-GTPase Activating Domain of GAP1 and similar proteins; The GAP1 family of Ras ... |
195-477 | 2.20e-108 | ||||||
Ras-GTPase Activating Domain of GAP1 and similar proteins; The GAP1 family of Ras GTPase-activating proteins includes GAP1(m) (or RASA2), GAP1_IP4BP (or RASA3), Ca2+ -promoted Ras inactivator (CAPRI, or RASAL4), and Ras GTPase activating-like proteins (RASAL) or RASAL1. The members are characterized by a conserved domain structure comprising N-terminal tandem C2 domains, a highly conserved central RasGAP domain, and a C-terminal pleckstrin homology domain that is associated with a Bruton's tyrosine kinase motif. While this domain structure is conserved, a small change in the function of each individual domain and the interaction between domains has a marked effect on the regulation of each protein. Pssm-ID: 213330 Cd Length: 269 Bit Score: 330.37 E-value: 2.20e-108
|
||||||||||
PH_CAPRI | cd13372 | Ca2+ promoted Ras inactivator pleckstrin homology (PH) domain; CAPRI (also called RASA4/RAS ... |
470-609 | 4.34e-86 | ||||||
Ca2+ promoted Ras inactivator pleckstrin homology (PH) domain; CAPRI (also called RASA4/RAS p21 protein activator (GTPase activating protein) 4/GAPL/FLJ59070/KIAA0538/MGC131890) is a member of the GAP1 family of GTPase-activating proteins. CAPRI contains two fully conserved C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Its catalytic GAP domain has dual RasGAP and RapGAP activities, while its C2 domains bind phospholipids in the presence of Ca2+. Both CAPRI and RASAL are calcium-activated RasGAPs that inactivate Ras at the plasma membrane. Thereby enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS and allowing control of cellular proliferation and differentiation. CAPRI and RASAL differ in that CAPRI is an amplitude sensor while RASAL senses calcium oscillations. This difference between them resides not in their C2 domains, but in their PH domains leading to speculation that this might reflect an association with either phosphoinositides and/or proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241523 Cd Length: 140 Bit Score: 267.51 E-value: 4.34e-86
|
||||||||||
C2B_RasA1_RasA4 | cd04025 | C2 domain second repeat present in RasA1 and RasA4; RasA1 and RasA4 are GAP1s (GTPase ... |
62-185 | 5.37e-76 | ||||||
C2 domain second repeat present in RasA1 and RasA4; RasA1 and RasA4 are GAP1s (GTPase activating protein 1s ), Ras-specific GAP members, which suppresses Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. Both proteins contain two C2 domains, a Ras-GAP domain, a plextrin homology (PH)-like domain, and a Bruton's Tyrosine Kinase (BTK) zinc binding domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 175991 [Multi-domain] Cd Length: 123 Bit Score: 240.46 E-value: 5.37e-76
|
||||||||||
RasGAP | cd04519 | Ras GTPase Activating Domain; RasGAP functions as an enhancer of the hydrolysis of GTP that is ... |
212-476 | 1.82e-53 | ||||||
Ras GTPase Activating Domain; RasGAP functions as an enhancer of the hydrolysis of GTP that is bound to Ras-GTPases. Proteins having a RasGAP domain include p120GAP, IQGAP, Rab5-activating protein 6, and Neurofibromin, among others. Although the Rho (Ras homolog) GTPases are most closely related to members of the Ras family, RhoGAP and RasGAP exhibit no similarity at their amino acid sequence level. RasGTPases function as molecular switches in a large number of signaling pathways. They are in the on state when bound to GTP, and in the off state when bound to GDP. The RasGAP domain speeds up the hydrolysis of GTP in Ras-like proteins acting as a negative regulator. Pssm-ID: 213328 Cd Length: 256 Bit Score: 185.00 E-value: 1.82e-53
|
||||||||||
RasGAP | pfam00616 | GTPase-activator protein for Ras-like GTPase; All alpha-helical domain that accelerates the ... |
251-440 | 7.93e-53 | ||||||
GTPase-activator protein for Ras-like GTPase; All alpha-helical domain that accelerates the GTPase activity of Ras, thereby "switching" it into an "off" position. Pssm-ID: 459871 Cd Length: 207 Bit Score: 181.71 E-value: 7.93e-53
|
||||||||||
RasGAP_RASA3 | cd05134 | Ras-GTPase Activating Domain of RASA3; RASA3 (or GAP1_IP4BP) is a member of the GAP1 family ... |
194-453 | 1.21e-47 | ||||||
Ras-GTPase Activating Domain of RASA3; RASA3 (or GAP1_IP4BP) is a member of the GAP1 family and has been shown to specifically bind 1,3,4,5-tetrakisphosphate (IP4). Thus, RASA3 may function as an IP4 receptor. The members of GAP1 family are characterized by a conserved domain structure comprising N-terminal tandem C2 domains, a highly conserved central RasGAP domain, and a C-terminal pleckstrin-homology domain that is associated with a Bruton's tyrosine kinase motif. Purified RASA3 stimulates GAP activity on Ras with about a five-fold lower potency than p120RasGAP, but shows no GAP-stimulating activity at all against Rac or Rab3A. Pssm-ID: 213336 Cd Length: 269 Bit Score: 169.82 E-value: 1.21e-47
|
||||||||||
C2B_RasGAP | cd08675 | C2 domain second repeat of Ras GTPase activating proteins (GAPs); RasGAPs suppress Ras ... |
63-180 | 2.12e-46 | ||||||
C2 domain second repeat of Ras GTPase activating proteins (GAPs); RasGAPs suppress Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. The proteins here all contain two tandem C2 domains, a Ras-GAP domain, and a pleckstrin homology (PH)-like domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology. Pssm-ID: 176057 [Multi-domain] Cd Length: 137 Bit Score: 161.39 E-value: 2.12e-46
|
||||||||||
PH_GAP1-like | cd01244 | RAS p21 protein activator (GTPase activating protein) family pleckstrin homology (PH) domain; ... |
497-607 | 3.94e-46 | ||||||
RAS p21 protein activator (GTPase activating protein) family pleckstrin homology (PH) domain; RASAL1, GAP1(m), GAP1(IP4BP), and CAPRI are all members of the GAP1 family of GTPase-activating proteins. They contain N-terminal SH2-SH3-SH2 domains, followed by two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. They act as a suppressor of RAS enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. PH domains share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269950 Cd Length: 107 Bit Score: 159.38 E-value: 3.94e-46
|
||||||||||
RasGAP_CLA2_BUD2 | cd05137 | Ras-GTPase Activating Domain of CLA2/BUD2; CLA2/BUD2 functions as a GTPase-activating protein ... |
184-473 | 4.34e-45 | ||||||
Ras-GTPase Activating Domain of CLA2/BUD2; CLA2/BUD2 functions as a GTPase-activating protein (GAP) for BUD1/RSR1 and is necessary for proper bud-site selection in yeast. BUD2 has sequence similarity to the catalytic domain of RasGAPs, and stimulates the hydrolysis of BUD1-GTP to BUD1-GDP. Elimination of Bud2p activity by mutation causes a random budding pattern with no growth defect. Overproduction of Bud2p also alters the budding pattern. Pssm-ID: 213339 [Multi-domain] Cd Length: 356 Bit Score: 165.04 E-value: 4.34e-45
|
||||||||||
RasGAP_DAB2IP | cd05136 | Ras-GTPase Activating Domain of DAB2IP and similar proteins; The DAB2IP family of Ras ... |
191-471 | 1.79e-39 | ||||||
Ras-GTPase Activating Domain of DAB2IP and similar proteins; The DAB2IP family of Ras GTPase-activating proteins includes DAB2IP, nGAP, and Syn GAP. Disabled 2 interactive protein, (DAB2IP; also known as ASK-interacting protein 1 (AIP1)), is a member of the GTPase-activating proteins, down-regulates Ras-mediated signal pathways, and mediates TNF-induced activation of ASK1-JNK signaling pathways. The mechanism by which TNF signaling is coupled to DAB2IP is not known. Pssm-ID: 213338 Cd Length: 324 Bit Score: 148.50 E-value: 1.79e-39
|
||||||||||
PH_RASAL1 | cd13369 | Ras-GTPase-activating-like protein pleckstrin homology (PH) domain; RASAL1 is a member of the ... |
486-617 | 1.03e-38 | ||||||
Ras-GTPase-activating-like protein pleckstrin homology (PH) domain; RASAL1 is a member of the GAP1 family of GTPase-activating proteins, along with GAP1(m), GAP1(IP4BP) and CAPRI. RASAL1 contains two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. RASAL1 contains two fully conserved C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Its catalytic GAP domain has dual RasGAP and RapGAP activities, while its C2 domains bind phospholipids in the presence of Ca2+. Both CAPRI and RASAL1 are calcium-activated RasGAPs that inactivate Ras at the plasma membrane. Thereby enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS and allowing control of cellular proliferation and differentiation. CAPRI and RASAL1 differ in that CAPRI is an amplitude sensor while RASAL1 senses calcium oscillations. This difference between them resides not in their C2 domains, but in their PH domains leading to speculation that this might reflect an association with either phosphoinositides and/or proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270175 Cd Length: 138 Bit Score: 140.00 E-value: 1.03e-38
|
||||||||||
RasGAP_RASA2 | cd05394 | Ras-GTPase Activating Domain of RASA2; RASA2 (or GAP1(m)) is a member of the GAP1 family of ... |
194-453 | 1.77e-38 | ||||||
Ras-GTPase Activating Domain of RASA2; RASA2 (or GAP1(m)) is a member of the GAP1 family of Ras GTPase-activating proteins that includes GAP1_IP4BP (or RASA3), CAPRI, and RASAL. In vitro, RASA2 has been shown to bind inositol 1,3,4,5-tetrakisphosphate (IP4), the water soluble inositol head group of the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3). In vivo studies also demonstrated that RASA2 binds PIP3, and it is recruited to the plasma membrane following agonist stimulation of PI 3-kinase. Furthermore, the membrane translocation is a consequence of the ability of its pleckstrin homology (PH) domain to bind PIP3. Pssm-ID: 213342 Cd Length: 272 Bit Score: 143.88 E-value: 1.77e-38
|
||||||||||
RasGAP_Neurofibromin_like | cd05392 | Ras-GTPase Activating Domain of proteins similar to neurofibromin; Neurofibromin-like proteins ... |
209-527 | 1.70e-33 | ||||||
Ras-GTPase Activating Domain of proteins similar to neurofibromin; Neurofibromin-like proteins include the Saccharomyces cerevisiae RasGAP proteins Ira1 and Ira2, the closest homolog of neurofibromin, which is responsible for the human autosomal dominant disease neurofibromatosis type I (NF1). The RasGAP Ira1/2 proteins are negative regulators of the Ras-cAMP signaling pathway and conserved from yeast to human. In yeast Ras proteins are activated by GEFs, and inhibited by two GAPs, Ira1 and Ira2. Ras proteins activate the cAMP/protein kinase A (PKA) pathway, which controls metabolism, stress resistance, growth, and meiosis. Recent studies showed that the kelch proteins Gpb1 and Gpb2 inhibit Ras activity via association with Ira1 and Ira2. Gpb1/2 bind to a conserved C-terminal domain of Ira1/2, and loss of Gpb1/2 results in a destabilization of Ira1 and Ira2, leading to elevated levels of Ras2-GTP and uninhibited cAMP-PKA signaling. Since the Gpb1/2 binding domain on Ira1/2 is conserved in the human neurofibromin protein, the studies suggest that an analogous signaling mechanism may contribute to the neoplastic development of NF1. Pssm-ID: 213341 Cd Length: 317 Bit Score: 131.25 E-value: 1.70e-33
|
||||||||||
RasGAP_p120GAP | cd05391 | Ras-GTPase Activating Domain of p120; p120GAP is a negative regulator of Ras that stimulates ... |
188-479 | 2.80e-33 | ||||||
Ras-GTPase Activating Domain of p120; p120GAP is a negative regulator of Ras that stimulates hydrolysis of bound GTP to GDP. Once the Ras regulator p120GAP, a member of the GAP protein family, is recruited to the membrane, it is transiently immobilized to interact with Ras-GTP. The down-regulation of Ras by p120GAP is a critical step in the regulation of many cellular processes, which is disrupted in approximately 30% of human cancers. p120GAP contains SH2, SH3, PH, calcium- and lipid-binding domains, suggesting its involvement in a complex network of cellular interactions in vivo. Pssm-ID: 213340 Cd Length: 328 Bit Score: 130.68 E-value: 2.80e-33
|
||||||||||
C2 | pfam00168 | C2 domain; |
61-162 | 2.40e-32 | ||||||
C2 domain; Pssm-ID: 425499 [Multi-domain] Cd Length: 104 Bit Score: 120.89 E-value: 2.40e-32
|
||||||||||
C2 | cd00030 | C2 domain; The C2 domain was first identified in PKC. C2 domains fold into an 8-standed ... |
63-162 | 4.40e-29 | ||||||
C2 domain; The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 175973 [Multi-domain] Cd Length: 102 Bit Score: 111.39 E-value: 4.40e-29
|
||||||||||
C2A_Rasal1_RasA4 | cd04054 | C2 domain first repeat present in RasA1 and RasA4; Rasal1 and RasA4 are both members of GAP1 ... |
1-54 | 1.76e-28 | ||||||
C2 domain first repeat present in RasA1 and RasA4; Rasal1 and RasA4 are both members of GAP1 (GTPase activating protein 1). Rasal1 responds to repetitive Ca2+ signals by associating with the plasma membrane and deactivating Ras. RasA4 suppresses Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. Both of these proteins contains two C2 domains, a Ras-GAP domain, a plextrin homology (PH)-like domain, and a Bruton's Tyrosine Kinase (BTK) zinc binding domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176018 [Multi-domain] Cd Length: 121 Bit Score: 110.30 E-value: 1.76e-28
|
||||||||||
PH_Btk | cd01238 | Bruton's tyrosine kinase pleckstrin homology (PH) domain; Btk is a member of the Tec family of ... |
497-636 | 2.29e-26 | ||||||
Bruton's tyrosine kinase pleckstrin homology (PH) domain; Btk is a member of the Tec family of cytoplasmic protein tyrosine kinases that includes BMX, IL2-inducible T-cell kinase (Itk) and Tec. Btk plays a role in the maturation of B cells. Tec proteins general have an N-terminal PH domain, followed by a Tek homology (TH) domain, a SH3 domain, a SH2 domain and a kinase domain. The Btk PH domain binds phosphatidylinositol 3,4,5-trisphosphate and responds to signalling via phosphatidylinositol 3-kinase. The PH domain is also involved in membrane anchoring which is confirmed by the discovery of a mutation of a critical arginine residue in the BTK PH domain. This results in severe human immunodeficiency known as X-linked agammaglobulinemia (XLA) in humans and a related disorder is mice.PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269944 [Multi-domain] Cd Length: 140 Bit Score: 105.00 E-value: 2.29e-26
|
||||||||||
C2_PKC_alpha_gamma | cd04026 | C2 domain in Protein Kinase C (PKC) alpha and gamma; A single C2 domain is found in PKC alpha ... |
46-162 | 4.17e-26 | ||||||
C2 domain in Protein Kinase C (PKC) alpha and gamma; A single C2 domain is found in PKC alpha and gamma. The PKC family of serine/threonine kinases regulates apoptosis, proliferation, migration, motility, chemo-resistance, and differentiation. There are 3 groups: group 1(alpha, betaI, beta II, gamma) which require phospholipids and calcium, group 2 (delta, epsilon, theta, eta) which do not require calcium for activation, and group 3 (xi, iota/lambda) which are atypical and can be activated in the absence of diacylglycerol and calcium. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology. Pssm-ID: 175992 [Multi-domain] Cd Length: 131 Bit Score: 103.88 E-value: 4.17e-26
|
||||||||||
C2 | smart00239 | Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, ... |
62-159 | 6.96e-26 | ||||||
Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, protein kinases C, and synaptotagmins (among others). Some do not appear to contain Ca2+-binding sites. Particular C2s appear to bind phospholipids, inositol polyphosphates, and intracellular proteins. Unusual occurrence in perforin. Synaptotagmin and PLC C2s are permuted in sequence with respect to N- and C-terminal beta strands. SMART detects C2 domains using one or both of two profiles. Pssm-ID: 214577 [Multi-domain] Cd Length: 101 Bit Score: 102.18 E-value: 6.96e-26
|
||||||||||
RasGAP_GAPA | cd05132 | Ras-GTPase Activating Domain of GAPA; GAPA is an IQGAP-related protein and is predicted to ... |
238-491 | 4.11e-25 | ||||||
Ras-GTPase Activating Domain of GAPA; GAPA is an IQGAP-related protein and is predicted to bind to small GTPases, which are yet to be identified. IQGAP proteins are integral components of cytoskeletal regulation. Results from truncated GAPAs indicated that almost the entire region of GAPA homologous to IQGAP is required for cytokinesis in Dictyostelium. More members of the IQGAP family are emerging, and evidence suggests that there are both similarities and differences in their function. Pssm-ID: 213334 Cd Length: 352 Bit Score: 107.44 E-value: 4.11e-25
|
||||||||||
C2A_RIM1alpha | cd04031 | C2 domain first repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are ... |
49-163 | 5.87e-20 | ||||||
C2 domain first repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are believed to organize specialized sites of the plasma membrane called active zones. They also play a role in controlling neurotransmitter release, plasticity processes, as well as memory and learning. RIM contains an N-terminal zinc finger domain, a PDZ domain, and two C-terminal C2 domains (C2A, C2B). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology and do not bind Ca2+. Pssm-ID: 175997 [Multi-domain] Cd Length: 125 Bit Score: 86.15 E-value: 5.87e-20
|
||||||||||
C2D_Tricalbin-like | cd04040 | C2 domain fourth repeat present in Tricalbin-like proteins; 5 to 6 copies of the C2 domain are ... |
63-157 | 6.84e-20 | ||||||
C2 domain fourth repeat present in Tricalbin-like proteins; 5 to 6 copies of the C2 domain are present in Tricalbin, a yeast homolog of Synaptotagmin, which is involved in membrane trafficking and sorting. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the fifth C2 repeat, C2E, and has a type-II topology. Pssm-ID: 176005 [Multi-domain] Cd Length: 115 Bit Score: 85.70 E-value: 6.84e-20
|
||||||||||
C2A_Munc13-like | cd08676 | C2 domain first repeat in Munc13 (mammalian uncoordinated)-like proteins; C2-like domains are ... |
60-162 | 1.31e-17 | ||||||
C2 domain first repeat in Munc13 (mammalian uncoordinated)-like proteins; C2-like domains are thought to be involved in phospholipid binding in a Ca2+ independent manner in both Unc13 and Munc13. Caenorabditis elegans Unc13 has a central domain with sequence similarity to PKC, which includes C1 and C2-related domains. Unc13 binds phorbol esters and DAG with high affinity in a phospholipid manner. Mutations in Unc13 results in abnormal neuronal connections and impairment in cholinergic neurotransmission in the nematode. Munc13 is the mammalian homolog which are expressed in the brain. There are 3 isoforms (Munc13-1, -2, -3) and are thought to play a role in neurotransmitter release and are hypothesized to be high-affinity receptors for phorbol esters. Unc13 and Munc13 contain both C1 and C2 domains. There are two C2 related domains present, one central and one at the carboxyl end. Munc13-1 contains a third C2-like domain. Munc13 interacts with syntaxin, synaptobrevin, and synaptotagmin suggesting a role for these as scaffolding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. Pssm-ID: 176058 [Multi-domain] Cd Length: 153 Bit Score: 80.49 E-value: 1.31e-17
|
||||||||||
C2A_Synaptotagmin-like | cd04024 | C2 domain first repeat present in Synaptotagmin-like proteins; Synaptotagmin is a ... |
63-168 | 1.41e-17 | ||||||
C2 domain first repeat present in Synaptotagmin-like proteins; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 175990 [Multi-domain] Cd Length: 128 Bit Score: 79.39 E-value: 1.41e-17
|
||||||||||
C2B_Munc13-like | cd04009 | C2 domain second repeat in Munc13 (mammalian uncoordinated)-like proteins; C2-like domains are ... |
58-158 | 2.57e-17 | ||||||
C2 domain second repeat in Munc13 (mammalian uncoordinated)-like proteins; C2-like domains are thought to be involved in phospholipid binding in a Ca2+ independent manner in both Unc13 and Munc13. Caenorabditis elegans Unc13 has a central domain with sequence similarity to PKC, which includes C1 and C2-related domains. Unc13 binds phorbol esters and DAG with high affinity in a phospholipid manner. Mutations in Unc13 results in abnormal neuronal connections and impairment in cholinergic neurotransmission in the nematode. Munc13 is the mammalian homolog which are expressed in the brain. There are 3 isoforms (Munc13-1, -2, -3) and are thought to play a role in neurotransmitter release and are hypothesized to be high-affinity receptors for phorbol esters. Unc13 and Munc13 contain both C1 and C2 domains. There are two C2 related domains present, one central and one at the carboxyl end. Munc13-1 contains a third C2-like domain. Munc13 interacts with syntaxin, synaptobrevin, and synaptotagmin suggesting a role for these as scaffolding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. Pssm-ID: 175976 [Multi-domain] Cd Length: 133 Bit Score: 78.82 E-value: 2.57e-17
|
||||||||||
RasGAP_Neurofibromin | cd05130 | Ras-GTPase Activating Domain of neurofibromin; Neurofibromin is the product of the ... |
227-471 | 4.81e-17 | ||||||
Ras-GTPase Activating Domain of neurofibromin; Neurofibromin is the product of the neurofibromatosis type 1 gene (NF1) and shares a region of similarity with catalytic domain of the mammalian p120RasGAP protein and an extended similarity with the Saccharomyces cerevisiae RasGAP proteins Ira1 and Ira2. Neurofibromin has been shown to function as a GAP (GTPase-activating protein) which inhibits low molecular weight G proteins such as Ras by stimulating their intrinsic GTPase activity. NF1 is a common genetic disorder characterized by various symptoms ranging from predisposition for the development of tumors to learning disability or mental retardation. Loss of neurofibromin activity can be correlated to the increase in Ras-GTP concentration in neurofibromas of NF1 of patients, supporting the notion that unregulated Ras signaling may contribute to their development. Pssm-ID: 213332 [Multi-domain] Cd Length: 332 Bit Score: 83.14 E-value: 4.81e-17
|
||||||||||
C2_KIAA0528-like | cd08688 | C2 domain found in the Human KIAA0528 cDNA clone; The members of this CD are named after the ... |
63-160 | 7.66e-17 | ||||||
C2 domain found in the Human KIAA0528 cDNA clone; The members of this CD are named after the Human KIAA0528 cDNA clone. All members here contain a single C2 repeat. No other information on this protein is currently known. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176070 [Multi-domain] Cd Length: 110 Bit Score: 76.58 E-value: 7.66e-17
|
||||||||||
PH_GAP1m_mammal-like | cd13370 | GTPase activating protein 1 m pleckstrin homology (PH) domain; GAP1(m) (also called RASA2/RAS ... |
496-617 | 1.48e-16 | ||||||
GTPase activating protein 1 m pleckstrin homology (PH) domain; GAP1(m) (also called RASA2/RAS p21 protein activator (GTPase activating protein) 2) is a member of the GAP1 family of GTPase-activating proteins, along with RASAL1, GAP1(IP4BP), and CAPRI. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. GAP1(m) contains two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Its C2 domains, like those of GAP1IP4BP, do not contain the C2 motif that is known to be required for calcium-dependent phospholipid binding. GAP1(m) is regulated by the binding of its PH domains to phophoinositides, PIP3 (phosphatidylinositol 3,4,5-trisphosphate). It suppresses RAS, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. GAP1(m) binds inositol tetrakisphosphate (IP4). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241521 Cd Length: 133 Bit Score: 76.91 E-value: 1.48e-16
|
||||||||||
C2A_C2C_Synaptotagmin_like | cd08391 | C2 domain first and third repeat in Synaptotagmin-like proteins; Synaptotagmin is a ... |
63-167 | 1.62e-16 | ||||||
C2 domain first and third repeat in Synaptotagmin-like proteins; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains either the first or third repeat in Synaptotagmin-like proteins with a type-I topology. Pssm-ID: 176037 [Multi-domain] Cd Length: 121 Bit Score: 76.18 E-value: 1.62e-16
|
||||||||||
C2A_MCTP_PRT | cd04042 | C2 domain first repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); ... |
62-186 | 3.20e-16 | ||||||
C2 domain first repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); MCTPs are involved in Ca2+ signaling at the membrane. MCTP is composed of a variable N-terminal sequence, three C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-II topology. Pssm-ID: 176007 [Multi-domain] Cd Length: 121 Bit Score: 75.39 E-value: 3.20e-16
|
||||||||||
C2D_Ferlin | cd04017 | C2 domain fourth repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and ... |
61-145 | 1.07e-15 | ||||||
C2 domain fourth repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and other proteins, such as Synaptotagmins, are implicated in facilitating the fusion process when cell membranes fuse together. There are six known human Ferlins: Dysferlin (Fer1L1), Otoferlin (Fer1L2), Myoferlin (Fer1L3), Fer1L4, Fer1L5, and Fer1L6. Defects in these genes can lead to a wide range of diseases including muscular dystrophy (dysferlin), deafness (otoferlin), and infertility (fer-1, fertilization factor-1). Structurally they have 6 tandem C2 domains, designated as (C2A-C2F) and a single C-terminal transmembrane domain, though there is a new study that disputes this and claims that there are actually 7 tandem C2 domains with another C2 domain inserted between C2D and C2E. In a subset of them (Dysferlin, Myoferlin, and Fer1) there is an additional conserved domain called DysF. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the fourth C2 repeat, C2D, and has a type-II topology. Pssm-ID: 175984 [Multi-domain] Cd Length: 135 Bit Score: 74.12 E-value: 1.07e-15
|
||||||||||
C2C_KIAA1228 | cd04030 | C2 domain third repeat present in uncharacterized human KIAA1228-like proteins; KIAA proteins ... |
67-163 | 3.47e-15 | ||||||
C2 domain third repeat present in uncharacterized human KIAA1228-like proteins; KIAA proteins are uncharacterized human proteins. They were compiled by the Kazusa mammalian cDNA project which identified more than 2000 human genes. They are identified by 4 digit codes that precede the KIAA designation. Many KIAA genes are still functionally uncharacterized including KIAA1228. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. Pssm-ID: 175996 [Multi-domain] Cd Length: 127 Bit Score: 72.69 E-value: 3.47e-15
|
||||||||||
C2A_Synaptotagmin-7 | cd08386 | C2A domain first repeat present in Synaptotagmin 7; Synaptotagmin is a membrane-trafficking ... |
67-164 | 1.19e-14 | ||||||
C2A domain first repeat present in Synaptotagmin 7; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 7, a member of class 2 synaptotagmins, is located in presynaptic plasma membranes in neurons, dense-core vesicles in endocrine cells, and lysosomes in fibroblasts. It has been shown to play a role in regulation of Ca2+-dependent lysosomal exocytosis in fibroblasts and may also function as a vesicular Ca2+-sensor. It is distinguished from the other synaptotagmins by having over 12 splice forms. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176032 [Multi-domain] Cd Length: 125 Bit Score: 70.82 E-value: 1.19e-14
|
||||||||||
C2B_Synaptotagmin | cd00276 | C2 domain second repeat present in Synaptotagmin; Synaptotagmin is a membrane-trafficking ... |
46-145 | 1.28e-14 | ||||||
C2 domain second repeat present in Synaptotagmin; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. There are several classes of Synaptotagmins. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 175975 [Multi-domain] Cd Length: 134 Bit Score: 71.08 E-value: 1.28e-14
|
||||||||||
C2B_SLP_1-2-3-4 | cd04020 | C2 domain second repeat present in Synaptotagmin-like proteins 1-4; All Slp members basically ... |
46-159 | 1.30e-14 | ||||||
C2 domain second repeat present in Synaptotagmin-like proteins 1-4; All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. Slp1/JFC1 and Slp2/exophilin 4 promote granule docking to the plasma membrane. Additionally, their C2A domains are both Ca2+ independent, unlike the case in Slp3 and Slp4/granuphilin in which their C2A domains are Ca2+ dependent. It is thought that SHD (except for the Slp4-SHD) functions as a specific Rab27A/B-binding domain. In addition to Slps, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. It has been demonstrated that Slp3 and Slp4/granuphilin promote dense-core vesicle exocytosis. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 175987 [Multi-domain] Cd Length: 162 Bit Score: 71.97 E-value: 1.30e-14
|
||||||||||
C2B_MCTP_PRT | cd08376 | C2 domain second repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); ... |
67-150 | 6.33e-14 | ||||||
C2 domain second repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); MCTPs are involved in Ca2+ signaling at the membrane. MCTP is composed of a variable N-terminal sequence, three C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. Pssm-ID: 176022 [Multi-domain] Cd Length: 116 Bit Score: 68.44 E-value: 6.33e-14
|
||||||||||
C2E_Ferlin | cd04037 | C2 domain fifth repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and ... |
64-147 | 6.40e-14 | ||||||
C2 domain fifth repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and other proteins, such as Synaptotagmins, are implicated in facilitating the fusion process when cell membranes fuse together. There are six known human Ferlins: Dysferlin (Fer1L1), Otoferlin (Fer1L2), Myoferlin (Fer1L3), Fer1L4, Fer1L5, and Fer1L6. Defects in these genes can lead to a wide range of diseases including muscular dystrophy (dysferlin), deafness (otoferlin), and infertility (fer-1, fertilization factor-1). Structurally they have 6 tandem C2 domains, designated as (C2A-C2F) and a single C-terminal transmembrane domain, though there is a new study that disputes this and claims that there are actually 7 tandem C2 domains with another C2 domain inserted between C2D and C2E. In a subset of them (Dysferlin, Myoferlin, and Fer1) there is an additional conserved domain called DysF. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the fifth C2 repeat, C2E, and has a type-II topology. Pssm-ID: 176002 [Multi-domain] Cd Length: 124 Bit Score: 68.73 E-value: 6.40e-14
|
||||||||||
C2A_RasGAP | cd08383 | C2 domain (first repeat) of Ras GTPase activating proteins (GAPs); RasGAPs suppress Ras ... |
1-54 | 2.42e-13 | ||||||
C2 domain (first repeat) of Ras GTPase activating proteins (GAPs); RasGAPs suppress Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. The proteins here all contain either a single C2 domain or two tandem C2 domains, a Ras-GAP domain, and a pleckstrin homology (PH)-like domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology. Pssm-ID: 176029 [Multi-domain] Cd Length: 117 Bit Score: 66.90 E-value: 2.42e-13
|
||||||||||
C2B_Synaptotagmin-1 | cd08402 | C2 domain second repeat present in Synaptotagmin 1; Synaptotagmin is a membrane-trafficking ... |
46-145 | 3.09e-13 | ||||||
C2 domain second repeat present in Synaptotagmin 1; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 1, a member of the class 1 synaptotagmins, is located in the brain and endocranium and localized to the synaptic vesicles and secretory granules. It functions as a Ca2+ sensor for fast exocytosis. It, like synaptotagmin-2, has an N-glycosylated N-terminus. Synaptotagmin 4, a member of class 4 synaptotagmins, is located in the brain. It functions are unknown. It, like synaptotagmin-11, has an Asp to Ser substitution in its C2A domain. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176047 [Multi-domain] Cd Length: 136 Bit Score: 67.43 E-value: 3.09e-13
|
||||||||||
C2A_MCTP_PRT_plant | cd04022 | C2 domain first repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); ... |
62-161 | 7.93e-13 | ||||||
C2 domain first repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); plant subset; MCTPs are involved in Ca2+ signaling at the membrane. Plant-MCTPs are composed of a variable N-terminal sequence, four C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-II topology. Pssm-ID: 175989 [Multi-domain] Cd Length: 127 Bit Score: 65.82 E-value: 7.93e-13
|
||||||||||
C2B_Rabphilin_Doc2 | cd08384 | C2 domain second repeat present in Rabphilin and Double C2 domain; Rabphilin is found neurons ... |
63-143 | 1.02e-12 | ||||||
C2 domain second repeat present in Rabphilin and Double C2 domain; Rabphilin is found neurons and in neuroendrocrine cells, while Doc2 is found not only in the brain but in tissues, including mast cells, chromaffin cells, and osteoblasts. Rabphilin and Doc2s share highly homologous tandem C2 domains, although their N-terminal structures are completely different: rabphilin contains an N-terminal Rab-binding domain (RBD),7 whereas Doc2 contains an N-terminal Munc13-1-interacting domain (MID). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176030 [Multi-domain] Cd Length: 133 Bit Score: 65.83 E-value: 1.02e-12
|
||||||||||
C2B_Synaptotagmin-7 | cd08405 | C2 domain second repeat present in Synaptotagmin 7; Synaptotagmin is a membrane-trafficking ... |
62-145 | 1.28e-12 | ||||||
C2 domain second repeat present in Synaptotagmin 7; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 7, a member of class 2 synaptotagmins, is located in presynaptic plasma membranes in neurons, dense-core vesicles in endocrine cells, and lysosomes in fibroblasts. It has been shown to play a role in regulation of Ca2+-dependent lysosomal exocytosis in fibroblasts and may also function as a vesicular Ca2+-sensor. It is distinguished from the other synaptotagmins by having over 12 splice forms. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176050 [Multi-domain] Cd Length: 136 Bit Score: 65.52 E-value: 1.28e-12
|
||||||||||
C2_NEDD4_NEDD4L | cd04033 | C2 domain present in the Human neural precursor cell-expressed, developmentally down-regulated ... |
63-170 | 1.33e-12 | ||||||
C2 domain present in the Human neural precursor cell-expressed, developmentally down-regulated 4 (NEDD4) and NEDD4-like (NEDD4L/NEDD42); Nedd4 and Nedd4-2 are two of the nine members of the Human Nedd4 family. All vertebrates appear to have both Nedd4 and Nedd4-2 genes. They are thought to participate in the regulation of epithelial Na+ channel (ENaC) activity. They also have identical specificity for ubiquitin conjugating enzymes (E2). Nedd4 and Nedd4-2 are composed of a C2 domain, 2-4 WW domains, and a ubiquitin ligase Hect domain. Their WW domains can bind PPxY (PY) or LPSY motifs, and in vitro studies suggest that WW3 and WW4 of both proteins bind PY motifs in the key substrates, with WW3 generally exhibiting higher affinity. Most Nedd4 family members, especially Nedd4-2, also have multiple splice variants, which might play different roles in regulating their substrates. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 175999 [Multi-domain] Cd Length: 133 Bit Score: 65.45 E-value: 1.33e-12
|
||||||||||
C2_Rab11-FIP_classI | cd08682 | C2 domain found in Rab11-family interacting proteins (FIP) class I; Rab GTPases recruit ... |
64-168 | 2.09e-12 | ||||||
C2 domain found in Rab11-family interacting proteins (FIP) class I; Rab GTPases recruit various effector proteins to organelles and vesicles. Rab11-family interacting proteins (FIPs) are involved in mediating the role of Rab11. FIPs can be divided into three classes: class I FIPs (Rip11a, Rip11b, RCP, and FIP2) which contain a C2 domain after N-terminus of the protein, class II FIPs (FIP3 and FIP4) which contain two EF-hands and a proline rich region, and class III FIPs (FIP1) which exhibits no homology to known protein domains. All FIP proteins contain a highly conserved, 20-amino acid motif at the C-terminus of the protein, known as Rab11/25 binding domain (RBD). Class I FIPs are thought to bind to endocytic membranes via their C2 domain, which interacts directly with phospholipids. Class II FIPs do not have any membrane binding domains leaving much to speculate about the mechanism involving FIP3 and FIP4 interactions with endocytic membranes. The members in this CD are class I FIPs. The exact function of the Rab11 and FIP interaction is unknown, but there is speculation that it involves the role of forming a targeting complex that recruits a group of proteins involved in membrane transport to organelles. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176064 [Multi-domain] Cd Length: 126 Bit Score: 64.78 E-value: 2.09e-12
|
||||||||||
C2B_Munc13 | cd04027 | C2 domain second repeat in Munc13 (mammalian uncoordinated) proteins; C2-like domains are ... |
61-169 | 2.36e-12 | ||||||
C2 domain second repeat in Munc13 (mammalian uncoordinated) proteins; C2-like domains are thought to be involved in phospholipid binding in a Ca2+ independent manner in both Unc13 and Munc13. Caenorabditis elegans Unc13 has a central domain with sequence similarity to PKC, which includes C1 and C2-related domains. Unc13 binds phorbol esters and DAG with high affinity in a phospholipid manner. Mutations in Unc13 results in abnormal neuronal connections and impairment in cholinergic neurotransmission in the nematode. Munc13 is the mammalian homolog which are expressed in the brain. There are 3 isoforms (Munc13-1, -2, -3) and are thought to play a role in neurotransmitter release and are hypothesized to be high-affinity receptors for phorbol esters. Unc13 and Munc13 contain both C1 and C2 domains. There are two C2 related domains present, one central and one at the carboxyl end. Munc13-1 contains a third C2-like domain. Munc13 interacts with syntaxin, synaptobrevin, and synaptotagmin suggesting a role for these as scaffolding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. Pssm-ID: 175993 [Multi-domain] Cd Length: 127 Bit Score: 64.51 E-value: 2.36e-12
|
||||||||||
C2C_MCTP_PRT | cd08377 | C2 domain third repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); ... |
63-184 | 3.04e-12 | ||||||
C2 domain third repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); MCTPs are involved in Ca2+ signaling at the membrane. The cds in this family contain multiple C2 domains as well as a C-terminal PRT domain. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. Pssm-ID: 176023 [Multi-domain] Cd Length: 119 Bit Score: 63.86 E-value: 3.04e-12
|
||||||||||
C2B_Synaptotagmin-17 | cd08410 | C2 domain second repeat present in Synaptotagmin 17; Synaptotagmin is a membrane-trafficking ... |
46-145 | 6.73e-12 | ||||||
C2 domain second repeat present in Synaptotagmin 17; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 17 is located in the brain, kidney, and prostate and is thought to be a peripheral membrane protein. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176055 [Multi-domain] Cd Length: 135 Bit Score: 63.37 E-value: 6.73e-12
|
||||||||||
C2A_Synaptotagmin-8 | cd08387 | C2A domain first repeat present in Synaptotagmin 8; Synaptotagmin is a membrane-trafficking ... |
46-164 | 8.31e-12 | ||||||
C2A domain first repeat present in Synaptotagmin 8; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176033 [Multi-domain] Cd Length: 124 Bit Score: 62.81 E-value: 8.31e-12
|
||||||||||
C2A_SLP | cd08521 | C2 domain first repeat present in Synaptotagmin-like proteins; All Slp members basically share ... |
46-162 | 1.10e-11 | ||||||
C2 domain first repeat present in Synaptotagmin-like proteins; All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. Slp1/JFC1 and Slp2/exophilin 4 promote granule docking to the plasma membrane. Additionally, their C2A domains are both Ca2+ independent, unlike the case in Slp3 and Slp4/granuphilin in which their C2A domains are Ca2+ dependent. It is thought that SHD (except for the Slp4-SHD) functions as a specific Rab27A/B-binding domain. In addition to Slps, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. It has been demonstrated that Slp3 and Slp4/granuphilin promote dense-core vesicle exocytosis. Slp5 mRNA has been shown to be restricted to human placenta and liver suggesting a role in Rab27A-dependent membrane trafficking in specific tissues. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176056 [Multi-domain] Cd Length: 123 Bit Score: 62.27 E-value: 1.10e-11
|
||||||||||
C2B_RasA3 | cd04010 | C2 domain second repeat present in RAS p21 protein activator 3 (RasA3); RasA3 are members of ... |
62-184 | 1.29e-11 | ||||||
C2 domain second repeat present in RAS p21 protein activator 3 (RasA3); RasA3 are members of GTPase activating protein 1 (GAP1), a Ras-specific GAP, which suppresses Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. RasA3 contains an N-terminal C2 domain, a Ras-GAP domain, a plextrin homology (PH)-like domain, and a Bruton's Tyrosine Kinase (BTK) zinc binding domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 175977 [Multi-domain] Cd Length: 148 Bit Score: 63.19 E-value: 1.29e-11
|
||||||||||
C2A_Synaptotagmin-1-5-6-9-10 | cd08385 | C2A domain first repeat present in Synaptotagmins 1, 5, 6, 9, and 10; Synaptotagmin is a ... |
63-146 | 2.01e-11 | ||||||
C2A domain first repeat present in Synaptotagmins 1, 5, 6, 9, and 10; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 1, a member of class 1 synaptotagmins, is located in the brain and endocranium and localized to the synaptic vesicles and secretory granules. It functions as a Ca2+ sensor for fast exocytosis as do synaptotagmins 5, 6, and 10. It is distinguished from the other synaptotagmins by having an N-glycosylated N-terminus. Synaptotagmins 5, 6, and 10, members of class 3 synaptotagmins, are located primarily in the brain and localized to the active zone and plasma membrane. They is distinguished from the other synaptotagmins by having disulfide bonds at its N-terminus. Synaptotagmin 6 also regulates the acrosome reaction, a unique Ca2+-regulated exocytosis, in sperm. Synaptotagmin 9, a class 5 synaptotagmins, is located in the brain and localized to the synaptic vesicles. It is thought to be a Ca2+-sensor for dense-core vesicle exocytosis. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176031 [Multi-domain] Cd Length: 124 Bit Score: 61.90 E-value: 2.01e-11
|
||||||||||
C2_Intersectin | cd08375 | C2 domain present in Intersectin; A single instance of the C2 domain is located C terminally ... |
62-156 | 2.50e-11 | ||||||
C2 domain present in Intersectin; A single instance of the C2 domain is located C terminally in the intersectin protein. Intersectin functions as a scaffolding protein, providing a link between the actin cytoskeleton and the components of endocytosis and plays a role in signal transduction. In addition to C2, intersectin contains several additional domains including: Eps15 homology domains, SH3 domains, a RhoGEF domain, and a PH domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. The members here have topology I. Pssm-ID: 176021 [Multi-domain] Cd Length: 136 Bit Score: 61.63 E-value: 2.50e-11
|
||||||||||
C2_ArfGAP | cd04038 | C2 domain present in Arf GTPase Activating Proteins (GAP); ArfGAP is a GTPase activating ... |
63-150 | 5.95e-11 | ||||||
C2 domain present in Arf GTPase Activating Proteins (GAP); ArfGAP is a GTPase activating protein which regulates the ADP ribosylation factor Arf, a member of the Ras superfamily of GTP-binding proteins. The GTP-bound form of Arf is involved in Golgi morphology and is involved in recruiting coat proteins. ArfGAP is responsible for the GDP-bound form of Arf which is necessary for uncoating the membrane and allowing the Golgi to fuse with an acceptor compartment. These proteins contain an N-terminal ArfGAP domain containing the characteristic zinc finger motif (Cys-x2-Cys-x(16,17)-x2-Cys) and C-terminal C2 domain. C2 domains were first identified in Protein Kinase C (PKC). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176003 [Multi-domain] Cd Length: 145 Bit Score: 60.80 E-value: 5.95e-11
|
||||||||||
C2B_Synaptotagmin-4 | cd08404 | C2 domain second repeat present in Synaptotagmin 4; Synaptotagmin is a membrane-trafficking ... |
62-145 | 8.12e-11 | ||||||
C2 domain second repeat present in Synaptotagmin 4; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 4, a member of class 4 synaptotagmins, is located in the brain. It functions are unknown. It, like synaptotagmin-11, has an Asp to Ser substitution in its C2A domain. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176049 [Multi-domain] Cd Length: 136 Bit Score: 60.52 E-value: 8.12e-11
|
||||||||||
PH_GAP1_mammal-like | cd13371 | GAP1(IP4BP) pleckstrin homology (PH) domain; GAP1 (also called IP4BP, RASA3/Ras ... |
490-610 | 1.19e-10 | ||||||
GAP1(IP4BP) pleckstrin homology (PH) domain; GAP1 (also called IP4BP, RASA3/Ras GTPase-activating protein 3, and RAS p21 protein activator (GTPase activating protein) 3/GAPIII/MGC46517/MGC47588)) is a member of the GAP1 family of GTPase-activating proteins, along with RASAL1, GAP1(m), and CAPRI. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. GAP1(IP4BP) contains two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Its C2 domains, like those of GAP1M, do not contain the C2 motif that is known to be required for calcium-dependent phospholipid binding. GAP1(IP4BP) is regulated by the binding of its PH domains to phophoinositides, PIP3 (phosphatidylinositol 3,4,5-trisphosphate) and PIP2 (phosphatidylinositol 4,5-bisphosphate). It suppresses RAS, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. GAP1(IP4BP) binds tyrosine-protein kinase, HCK. Members here include humans, chickens, frogs, and fish. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241522 Cd Length: 125 Bit Score: 59.66 E-value: 1.19e-10
|
||||||||||
BTK | pfam00779 | BTK motif; Zinc-binding motif containing conserved cysteines and a histidine. Always found ... |
609-638 | 1.52e-10 | ||||||
BTK motif; Zinc-binding motif containing conserved cysteines and a histidine. Always found C-terminal to PH domains. The crystal structure shows this motif packs against the PH domain. The PH+Btk module pair has been called the Tec homology (TH) region. Pssm-ID: 459937 Cd Length: 30 Bit Score: 56.38 E-value: 1.52e-10
|
||||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
495-600 | 1.79e-10 | ||||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 58.33 E-value: 1.79e-10
|
||||||||||
C2A_SLP-1_2 | cd08393 | C2 domain first repeat present in Synaptotagmin-like proteins 1 and 2; All Slp members ... |
45-163 | 2.76e-10 | ||||||
C2 domain first repeat present in Synaptotagmin-like proteins 1 and 2; All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. Slp1/JFC1 and Slp2/exophilin 4 promote granule docking to the plasma membrane. Additionally, their C2A domains are both Ca2+ independent, unlike Slp3 and Slp4/granuphilin which are Ca2+ dependent. It is thought that SHD (except for the Slp4-SHD) functions as a specific Rab27A/B-binding domain. In addition to Slps, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176039 [Multi-domain] Cd Length: 125 Bit Score: 58.60 E-value: 2.76e-10
|
||||||||||
C2B_PI3K_class_II | cd08381 | C2 domain second repeat present in class II phosphatidylinositol 3-kinases (PI3Ks); There are ... |
45-162 | 3.43e-10 | ||||||
C2 domain second repeat present in class II phosphatidylinositol 3-kinases (PI3Ks); There are 3 classes of PI3Ks based on structure, regulation, and specificity. All classes contain a N-terminal C2 domain, a PIK domain, and a kinase catalytic domain. Unlike class I and class III, class II PI3Ks have additionally a PX domain and a C-terminal C2 domain containing a nuclear localization signal both of which bind phospholipids though in a slightly different fashion. PI3Ks (AKA phosphatidylinositol (PtdIns) 3-kinases) regulate cell processes such as cell growth, differentiation, proliferation, and motility. PI3Ks work on phosphorylation of phosphatidylinositol, phosphatidylinositide (4)P (PtdIns (4)P),2 or PtdIns(4,5)P2. Specifically they phosphorylate the D3 hydroxyl group of phosphoinositol lipids on the inositol ring. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176027 [Multi-domain] Cd Length: 122 Bit Score: 58.07 E-value: 3.43e-10
|
||||||||||
COG5038 | COG5038 | Ca2+-dependent lipid-binding protein, contains C2 domain [General function prediction only]; |
70-157 | 3.70e-10 | ||||||
Ca2+-dependent lipid-binding protein, contains C2 domain [General function prediction only]; Pssm-ID: 227371 [Multi-domain] Cd Length: 1227 Bit Score: 63.62 E-value: 3.70e-10
|
||||||||||
C2B_Synaptotagmin-3-5-6-9-10 | cd08403 | C2 domain second repeat present in Synaptotagmins 3, 5, 6, 9, and 10; Synaptotagmin is a ... |
46-159 | 5.47e-10 | ||||||
C2 domain second repeat present in Synaptotagmins 3, 5, 6, 9, and 10; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 3, a member of class 3 synaptotagmins, is located in the brain and localized to the active zone and plasma membrane. It functions as a Ca2+ sensor for fast exocytosis. It, along with synaptotagmins 5,6, and 10, has disulfide bonds at its N-terminus. Synaptotagmin 9, a class 5 synaptotagmins, is located in the brain and localized to the synaptic vesicles. It is thought to be a Ca2+-sensor for dense-core vesicle exocytosis. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176048 [Multi-domain] Cd Length: 134 Bit Score: 57.90 E-value: 5.47e-10
|
||||||||||
C2A_Ferlin | cd08373 | C2 domain first repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and ... |
67-150 | 1.05e-09 | ||||||
C2 domain first repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and other proteins, such as Synaptotagmins, are implicated in facilitating the fusion process when cell membranes fuse together. There are six known human Ferlins: Dysferlin (Fer1L1), Otoferlin (Fer1L2), Myoferlin (Fer1L3), Fer1L4, Fer1L5, and Fer1L6. Defects in these genes can lead to a wide range of diseases including muscular dystrophy (dysferlin), deafness (otoferlin), and infertility (fer-1, fertilization factor-1). Structurally they have 6 tandem C2 domains, designated as (C2A-C2F) and a single C-terminal transmembrane domain, though there is a new study that disputes this and claims that there are actually 7 tandem C2 domains with another C2 domain inserted between C2D and C2E. In a subset of them (Dysferlin, Myoferlin, and Fer1) there is an additional conserved domain called DysF. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-II topology. Pssm-ID: 176019 [Multi-domain] Cd Length: 127 Bit Score: 56.88 E-value: 1.05e-09
|
||||||||||
C2_Munc13_fungal | cd04043 | C2 domain in Munc13 (mammalian uncoordinated) proteins; fungal group; C2-like domains are ... |
67-142 | 1.39e-09 | ||||||
C2 domain in Munc13 (mammalian uncoordinated) proteins; fungal group; C2-like domains are thought to be involved in phospholipid binding in a Ca2+ independent manner in both Unc13 and Munc13. Caenorabditis elegans Unc13 has a central domain with sequence similarity to PKC, which includes C1 and C2-related domains. Unc13 binds phorbol esters and DAG with high affinity in a phospholipid manner. Mutations in Unc13 results in abnormal neuronal connections and impairment in cholinergic neurotransmission in the nematode. Munc13 is the mammalian homolog which are expressed in the brain. There are 3 isoforms (Munc13-1, -2, -3) and are thought to play a role in neurotransmitter release and are hypothesized to be high-affinity receptors for phorbol esters. Unc13 and Munc13 contain both C1 and C2 domains. There are two C2 related domains present, one central and one at the carboxyl end. Munc13-1 contains a third C2-like domain. Munc13 interacts with syntaxin, synaptobrevin, and synaptotagmin suggesting a role for these as scaffolding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. Pssm-ID: 176008 [Multi-domain] Cd Length: 126 Bit Score: 56.50 E-value: 1.39e-09
|
||||||||||
C2A_Synaptotagmin-15-17 | cd08390 | C2A domain first repeat present in Synaptotagmins 15 and 17; Synaptotagmin is a ... |
62-164 | 1.56e-09 | ||||||
C2A domain first repeat present in Synaptotagmins 15 and 17; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. It is thought to be involved in the trafficking and exocytosis of secretory vesicles in non-neuronal tissues and is Ca2+ independent. Human synaptotagmin 15 has 2 alternatively spliced forms that encode proteins with different C-termini. The larger, SYT15a, contains a N-terminal TM region, a putative fatty-acylation site, and 2 tandem C terminal C2 domains. The smaller, SYT15b, lacks the C-terminal portion of the second C2 domain. Unlike most other synaptotagmins it is nearly absent in the brain and rather is found in the heart, lungs, skeletal muscle, and testis. Synaptotagmin 17 is located in the brain, kidney, and prostate and is thought to be a peripheral membrane protein. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176036 [Multi-domain] Cd Length: 123 Bit Score: 56.11 E-value: 1.56e-09
|
||||||||||
C2C_Ferlin | cd04018 | C2 domain third repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and ... |
76-149 | 1.75e-09 | ||||||
C2 domain third repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and other proteins, such as Synaptotagmins, are implicated in facilitating the fusion process when cell membranes fuse together. There are six known human Ferlins: Dysferlin (Fer1L1), Otoferlin (Fer1L2), Myoferlin (Fer1L3), Fer1L4, Fer1L5, and Fer1L6. Defects in these genes can lead to a wide range of diseases including muscular dystrophy (dysferlin), deafness (otoferlin), and infertility (fer-1, fertilization factor-1). Structurally they have 6 tandem C2 domains, designated as (C2A-C2F) and a single C-terminal transmembrane domain, though there is a new study that disputes this and claims that there are actually 7 tandem C2 domains with another C2 domain inserted between C2D and C2E. In a subset of them (Dysferlin, Myoferlin, and Fer1) there is an additional conserved domain called DysF. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. Pssm-ID: 175985 [Multi-domain] Cd Length: 151 Bit Score: 56.87 E-value: 1.75e-09
|
||||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
495-600 | 9.29e-09 | ||||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 53.72 E-value: 9.29e-09
|
||||||||||
C2_putative_Elicitor-responsive_gene | cd04049 | C2 domain present in the putative elicitor-responsive gene; In plants elicitor-responsive ... |
63-164 | 1.05e-08 | ||||||
C2 domain present in the putative elicitor-responsive gene; In plants elicitor-responsive proteins are triggered in response to specific elicitor molecules such as glycolproteins, peptides, carbohydrates and lipids. A host of defensive responses are also triggered resulting in localized cell death. Antimicrobial secondary metabolites, such as phytoalexins, or defense-related proteins, including pathogenesis-related (PR) proteins are also produced. There is a single C2 domain present here. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members have a type-II topology. Pssm-ID: 176014 [Multi-domain] Cd Length: 124 Bit Score: 53.88 E-value: 1.05e-08
|
||||||||||
C2A_fungal | cd04041 | C2 domain first repeat; fungal group; C2 domains were first identified in Protein Kinase C ... |
70-164 | 2.06e-08 | ||||||
C2 domain first repeat; fungal group; C2 domains were first identified in Protein Kinase C (PKC). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176006 [Multi-domain] Cd Length: 111 Bit Score: 52.65 E-value: 2.06e-08
|
||||||||||
C2_cPLA2 | cd04036 | C2 domain present in cytosolic PhosphoLipase A2 (cPLA2); A single copy of the C2 domain is ... |
62-164 | 2.28e-08 | ||||||
C2 domain present in cytosolic PhosphoLipase A2 (cPLA2); A single copy of the C2 domain is present in cPLA2 which releases arachidonic acid from membranes initiating the biosynthesis of potent inflammatory mediators such as prostaglandins, leukotrienes, and platelet-activating factor. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members of this cd have a type-II topology. Pssm-ID: 176001 [Multi-domain] Cd Length: 119 Bit Score: 52.65 E-value: 2.28e-08
|
||||||||||
C2_fungal_Inn1p-like | cd08681 | C2 domain found in fungal Ingression 1 (Inn1) proteins; Saccharomyces cerevisiae Inn1 ... |
63-163 | 3.04e-08 | ||||||
C2 domain found in fungal Ingression 1 (Inn1) proteins; Saccharomyces cerevisiae Inn1 associates with the contractile actomyosin ring at the end of mitosis and is needed for cytokinesis. The C2 domain of Inn1, located at the N-terminus, is required for ingression of the plasma membrane. The C-terminus is relatively unstructured and contains eight PXXP motifs that are thought to mediate interaction of Inn1 with other proteins with SH3 domains in the cytokinesis proteins Hof1 (an F-BAR protein) and Cyk3 (whose overexpression can restore primary septum formation in Inn1Delta cells) as well as recruiting Inn1 to the bud-neck by binding to Cyk3. Inn1 and Cyk3 appear to cooperate in activating chitin synthase Chs2 for primary septum formation, which allows coordination of actomyosin ring contraction with ingression of the cleavage furrow. It is thought that the C2 domain of Inn1 helps to preserve the link between the actomyosin ring and the plasma membrane, contributing both to membrane ingression, as well as to stability of the contracting ring. Additionally, Inn1 might induce curvature of the plasma membrane adjacent to the contracting ring, thereby promoting ingression of the membrane. It has been shown that the C2 domain of human synaptotagmin induces curvature in target membranes and thereby contributes to fusion of these membranes with synaptic vesicles. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176063 [Multi-domain] Cd Length: 118 Bit Score: 52.25 E-value: 3.04e-08
|
||||||||||
PH | cd00821 | Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ... |
497-596 | 3.07e-08 | ||||||
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275388 [Multi-domain] Cd Length: 92 Bit Score: 51.77 E-value: 3.07e-08
|
||||||||||
RasGAP_IQGAP2 | cd05131 | Ras-GTPase Activating Domain of IQ motif containing GTPase activating protein 2; IQGAP2 is a ... |
261-482 | 3.24e-08 | ||||||
Ras-GTPase Activating Domain of IQ motif containing GTPase activating protein 2; IQGAP2 is a member of the IQGAP family that contains a calponin-homology (CH) domain which binds F-actin, IQGAP-specific repeat, a single WW domain, four IQ motifs which mediate interactions with calmodulin, and a Ras-GTPase-activating protein (GAP)-related domain that binds Rho family GTPases. IQGAP2 and IQGAP3 play important roles in the regulation of the cytoskeleton for axon outgrowth in hippocampal neurons and are thought to stay in a common regulatory pathway. The results of RNA interference studies indicated that IQGAP3 partially compensates functions of IQGAP2, but has lesser ability than IQGAP2 to promote axon outgrowth in hippocampal neuron. Moreover, IQGAP2 is required for the cadherin-mediated cell-to-cell adhesion in Xenopus laevis embryos. Pssm-ID: 213333 [Multi-domain] Cd Length: 359 Bit Score: 56.16 E-value: 3.24e-08
|
||||||||||
RasGAP_IQGAP_like | cd05127 | Ras-GTPase Activating Domain of IQ motif containing GTPase activating proteins; This family ... |
250-482 | 3.63e-08 | ||||||
Ras-GTPase Activating Domain of IQ motif containing GTPase activating proteins; This family represents IQ motif containing GTPase activating protein (IQGAP) which associated with the Ras GTP-binding protein. A primary function of IQGAP proteins is to modulate cytoskeletal architecture. There are three known IQGAP family members: IQGAP1, IQGAP2 and IQGAP3. Human IQGAP1 and IQGAP2 share 62% identity. IQGAPs are multi-domain molecules having a calponin-homology (CH) domain which binds F-actin, IQGAP-specific repeats, a single WW domain, four IQ motifs that mediate interactions with calmodulin, and a RasGAP related domain that binds active Rho family GTPases. IQGAP is an essential regulator of cytoskeletal function. IQGAP1 negatively regulates Ras family GTPases by stimulating their intrinsic GTPase activity, the protein actually lacks GAP activity. Both IQGAP1 and IQGAP2 specifically bind to Cdc42 and Rac1, but not to RhoA. Despite of their similarities to part of the sequence of RasGAP, neither IQGAP1 nor IQGAP2 interacts with Ras. IQGAP3, only present in mammals, regulates the organization of the cytoskeleton under the regulation of Rac1 and Cdc42 in neuronal cells. The depletion of IQGAP3 is shown to impair neurite or axon outgrowth in neuronal cells with disorganized cytoskeleton. Pssm-ID: 213329 [Multi-domain] Cd Length: 331 Bit Score: 56.06 E-value: 3.63e-08
|
||||||||||
C2_Perforin | cd04032 | C2 domain of Perforin; Perforin contains a single copy of a C2 domain in its C-terminus and ... |
62-145 | 3.70e-08 | ||||||
C2 domain of Perforin; Perforin contains a single copy of a C2 domain in its C-terminus and plays a role in lymphocyte-mediated cytotoxicity. Mutations in perforin leads to familial hemophagocytic lymphohistiocytosis type 2. The function of perforin is calcium dependent and the C2 domain is thought to confer this binding to target cell membranes. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 175998 [Multi-domain] Cd Length: 127 Bit Score: 52.26 E-value: 3.70e-08
|
||||||||||
C2A_Rabphilin_Doc2 | cd04035 | C2 domain first repeat present in Rabphilin and Double C2 domain; Rabphilin is found neurons ... |
62-150 | 1.24e-07 | ||||||
C2 domain first repeat present in Rabphilin and Double C2 domain; Rabphilin is found neurons and in neuroendrocrine cells, while Doc2 is found not only in the brain but in tissues, including mast cells, chromaffin cells, and osteoblasts. Rabphilin and Doc2s share highly homologous tandem C2 domains, although their N-terminal structures are completely different: rabphilin contains an N-terminal Rab-binding domain (RBD),7 whereas Doc2 contains an N-terminal Munc13-1-interacting domain (MID). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176000 [Multi-domain] Cd Length: 123 Bit Score: 50.74 E-value: 1.24e-07
|
||||||||||
C2B_MCTP_PRT_plant | cd08378 | C2 domain second repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); ... |
67-165 | 1.63e-07 | ||||||
C2 domain second repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); plant subset; MCTPs are involved in Ca2+ signaling at the membrane. Plant-MCTPs are composed of a variable N-terminal sequence, four C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. Pssm-ID: 176024 [Multi-domain] Cd Length: 121 Bit Score: 50.39 E-value: 1.63e-07
|
||||||||||
C2A_RasA2_RasA3 | cd08401 | C2 domain first repeat present in RasA2 and RasA3; RasA2 and RasA3 are GAP1s (GTPase ... |
63-186 | 2.23e-07 | ||||||
C2 domain first repeat present in RasA2 and RasA3; RasA2 and RasA3 are GAP1s (GTPase activating protein 1s ), Ras-specific GAP members, which suppresses Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. RasA2 and RasA3 are both inositol 1,3,4,5-tetrakisphosphate-binding proteins and contain an N-terminal C2 domain, a Ras-GAP domain, a pleckstrin-homology (PH) domain which localizes it to the plasma membrane, and Bruton's Tyrosine Kinase (BTK) a zinc binding domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176046 [Multi-domain] Cd Length: 121 Bit Score: 50.13 E-value: 2.23e-07
|
||||||||||
C2_PLC_like | cd00275 | C2 domain present in Phosphoinositide-specific phospholipases C (PLC); PLCs are involved in ... |
60-151 | 2.90e-07 | ||||||
C2 domain present in Phosphoinositide-specific phospholipases C (PLC); PLCs are involved in the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2) to d-myo-inositol-1,4,5-trisphosphate (1,4,5-IP3) and sn-1,2-diacylglycerol (DAG). 1,4,5-IP3 and DAG are second messengers in eukaryotic signal transduction cascades. PLC is composed of a N-terminal PH domain followed by a series of EF hands, a catalytic TIM barrel and a C-terminal C2 domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-II topology. Pssm-ID: 175974 [Multi-domain] Cd Length: 128 Bit Score: 49.85 E-value: 2.90e-07
|
||||||||||
C2_Smurf-like | cd08382 | C2 domain present in Smad ubiquitination-related factor (Smurf)-like proteins; A single C2 ... |
62-175 | 2.95e-07 | ||||||
C2 domain present in Smad ubiquitination-related factor (Smurf)-like proteins; A single C2 domain is found in Smurf proteins, C2-WW-HECT-domain E3s, which play an important role in the downregulation of the TGF-beta signaling pathway. Smurf proteins also regulate cell shape, motility, and polarity by degrading small guanosine triphosphatases (GTPases). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have type-II topology. Pssm-ID: 176028 [Multi-domain] Cd Length: 123 Bit Score: 49.61 E-value: 2.95e-07
|
||||||||||
C2A_Rasal1_RasA4 | cd04054 | C2 domain first repeat present in RasA1 and RasA4; Rasal1 and RasA4 are both members of GAP1 ... |
63-186 | 4.95e-07 | ||||||
C2 domain first repeat present in RasA1 and RasA4; Rasal1 and RasA4 are both members of GAP1 (GTPase activating protein 1). Rasal1 responds to repetitive Ca2+ signals by associating with the plasma membrane and deactivating Ras. RasA4 suppresses Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. Both of these proteins contains two C2 domains, a Ras-GAP domain, a plextrin homology (PH)-like domain, and a Bruton's Tyrosine Kinase (BTK) zinc binding domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176018 [Multi-domain] Cd Length: 121 Bit Score: 49.05 E-value: 4.95e-07
|
||||||||||
C2B_Copine | cd04047 | C2 domain second repeat in Copine; There are 2 copies of the C2 domain present in copine, a ... |
68-157 | 6.62e-07 | ||||||
C2 domain second repeat in Copine; There are 2 copies of the C2 domain present in copine, a protein involved in membrane trafficking, protein-protein interactions, and perhaps even cell division and growth. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176012 [Multi-domain] Cd Length: 110 Bit Score: 48.33 E-value: 6.62e-07
|
||||||||||
C2B_Ferlin | cd04011 | C2 domain second repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and ... |
67-122 | 9.44e-07 | ||||||
C2 domain second repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and other proteins, such as Synaptotagmins, are implicated in facilitating the fusion process when cell membranes fuse together. There are six known human Ferlins: Dysferlin (Fer1L1), Otoferlin (Fer1L2), Myoferlin (Fer1L3), Fer1L4, Fer1L5, and Fer1L6. Defects in these genes can lead to a wide range of diseases including muscular dystrophy (dysferlin), deafness (otoferlin), and infertility (fer-1, fertilization factor-1). Structurally they have 6 tandem C2 domains, designated as (C2A-C2F) and a single C-terminal transmembrane domain, though there is a new study that disputes this and claims that there are actually 7 tandem C2 domains with another C2 domain inserted between C2D and C2E. In a subset of them (Dysferlin, Myoferlin, and Fer1) there is an additional conserved domain called DysF. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. Pssm-ID: 175978 [Multi-domain] Cd Length: 111 Bit Score: 47.96 E-value: 9.44e-07
|
||||||||||
C2_PSD | cd04039 | C2 domain present in Phosphatidylserine decarboxylase (PSD); PSD is involved in the ... |
67-150 | 1.05e-06 | ||||||
C2 domain present in Phosphatidylserine decarboxylase (PSD); PSD is involved in the biosynthesis of aminophospholipid by converting phosphatidylserine (PtdSer) to phosphatidylethanolamine (PtdEtn). There is a single C2 domain present and it is thought to confer PtdSer binding motif that is common to PKC and synaptotagmin. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176004 [Multi-domain] Cd Length: 108 Bit Score: 47.63 E-value: 1.05e-06
|
||||||||||
C2B_Synaptotagmin-15 | cd08409 | C2 domain second repeat present in Synaptotagmin 15; Synaptotagmin is a membrane-trafficking ... |
46-145 | 1.69e-06 | ||||||
C2 domain second repeat present in Synaptotagmin 15; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. It is thought to be involved in the trafficking and exocytosis of secretory vesicles in non-neuronal tissues and is Ca2+ independent. Human synaptotagmin 15 has 2 alternatively spliced forms that encode proteins with different C-termini. The larger, SYT15a, contains a N-terminal TM region, a putative fatty-acylation site, and 2 tandem C terminal C2 domains. The smaller, SYT15b, lacks the C-terminal portion of the second C2 domain. Unlike most other synaptotagmins it is nearly absent in the brain and rather is found in the heart, lungs, skeletal muscle, and testis. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176054 [Multi-domain] Cd Length: 137 Bit Score: 48.10 E-value: 1.69e-06
|
||||||||||
COG5038 | COG5038 | Ca2+-dependent lipid-binding protein, contains C2 domain [General function prediction only]; |
67-185 | 2.37e-06 | ||||||
Ca2+-dependent lipid-binding protein, contains C2 domain [General function prediction only]; Pssm-ID: 227371 [Multi-domain] Cd Length: 1227 Bit Score: 51.30 E-value: 2.37e-06
|
||||||||||
C2C_MCTP_PRT_plant | cd04019 | C2 domain third repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); ... |
63-199 | 2.53e-06 | ||||||
C2 domain third repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); plant subset; MCTPs are involved in Ca2+ signaling at the membrane. Plant-MCTPs are composed of a variable N-terminal sequence, four C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. Pssm-ID: 175986 [Multi-domain] Cd Length: 150 Bit Score: 47.66 E-value: 2.53e-06
|
||||||||||
C2A_SLP-4_5 | cd04029 | C2 domain first repeat present in Synaptotagmin-like proteins 4 and 5; All Slp members ... |
67-163 | 4.25e-06 | ||||||
C2 domain first repeat present in Synaptotagmin-like proteins 4 and 5; All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. SHD of Slp (except for the Slp4-SHD) function as a specific Rab27A/B-binding domain. In addition to Slp, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. It has been demonstrated that Slp4/granuphilin promotes dense-core vesicle exocytosis. The C2A domain of Slp4 is Ca2+ dependent. Slp5 mRNA has been shown to be restricted to human placenta and liver suggesting a role in Rab27A-dependent membrane trafficking in specific tissues. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 175995 [Multi-domain] Cd Length: 125 Bit Score: 46.66 E-value: 4.25e-06
|
||||||||||
C2A_RasA2_RasA3 | cd08401 | C2 domain first repeat present in RasA2 and RasA3; RasA2 and RasA3 are GAP1s (GTPase ... |
2-52 | 5.49e-06 | ||||||
C2 domain first repeat present in RasA2 and RasA3; RasA2 and RasA3 are GAP1s (GTPase activating protein 1s ), Ras-specific GAP members, which suppresses Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. RasA2 and RasA3 are both inositol 1,3,4,5-tetrakisphosphate-binding proteins and contain an N-terminal C2 domain, a Ras-GAP domain, a pleckstrin-homology (PH) domain which localizes it to the plasma membrane, and Bruton's Tyrosine Kinase (BTK) a zinc binding domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176046 [Multi-domain] Cd Length: 121 Bit Score: 46.27 E-value: 5.49e-06
|
||||||||||
RasGAP_IQGAP1 | cd05133 | Ras-GTPase Activating Domain of IQ motif containing GTPase activating protein 1; IQGAP1 is a ... |
261-494 | 8.24e-06 | ||||||
Ras-GTPase Activating Domain of IQ motif containing GTPase activating protein 1; IQGAP1 is a homodimeric protein that is widely expressed among vertebrate cell types from early embryogenesis. Mammalian IQGAP1 protein is the best characterized member of the IQGAP family, and contains several protein-interacting domains. Human IQGAP1 is most similar to mouse Iqgap1 (94% identity) and has 62% identity to human IQGAP2. IQGAP1 binds and cross-links actin filaments in vitro and has been implicated in Ca2+/calmodulin signaling, E-cadherin-dependent cell adhesion, cell motility, and invasion. Yeast IQGAP homologs have a role in the recruitment of actin filaments, are components of the spindle pole body, and are required for actomyosin ring assembly and cytokinesis. Furthermore, IQGAP1 over-expression has also been detected in gastric and colorectal carcinomas and gastric cancer cell lines. Pssm-ID: 213335 Cd Length: 380 Bit Score: 48.89 E-value: 8.24e-06
|
||||||||||
BTK | smart00107 | Bruton's tyrosine kinase Cys-rich motif; Zinc-binding motif containing conserved cysteines and ... |
603-635 | 8.41e-06 | ||||||
Bruton's tyrosine kinase Cys-rich motif; Zinc-binding motif containing conserved cysteines and a histidine. Always found C-terminal to PH domains (but not all PH domains are followed by BTK motifs). The crystal structure shows this motif packs against the PH domain. The PH+Btk module pair has been called the Tec homology (TH) region. Pssm-ID: 128417 Cd Length: 36 Bit Score: 43.14 E-value: 8.41e-06
|
||||||||||
C2_SynGAP_like | cd04013 | C2 domain present in Ras GTPase activating protein (GAP) family; SynGAP, GAP1, RasGAP, and ... |
56-193 | 7.15e-05 | ||||||
C2 domain present in Ras GTPase activating protein (GAP) family; SynGAP, GAP1, RasGAP, and neurofibromin are all members of the Ras-specific GAP (GTPase-activating protein) family. SynGAP regulates the MAP kinase signaling pathway and is critical for cognition and synapse function. Mutations in this gene causes mental retardation in humans. SynGAP contains a PH-like domain, a C2 domain, and a Ras-GAP domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 175980 [Multi-domain] Cd Length: 146 Bit Score: 43.45 E-value: 7.15e-05
|
||||||||||
IQG1 | COG5261 | Protein involved in regulation of cellular morphogenesis/cytokinesis [Cell division and ... |
251-496 | 8.13e-05 | ||||||
Protein involved in regulation of cellular morphogenesis/cytokinesis [Cell division and chromosome partitioning / Signal transduction mechanisms]; Pssm-ID: 227586 [Multi-domain] Cd Length: 1054 Bit Score: 46.03 E-value: 8.13e-05
|
||||||||||
PLN02952 | PLN02952 | phosphoinositide phospholipase C |
95-151 | 1.69e-04 | ||||||
phosphoinositide phospholipase C Pssm-ID: 178538 [Multi-domain] Cd Length: 599 Bit Score: 44.99 E-value: 1.69e-04
|
||||||||||
C2A_Synaptotagmin-14_16 | cd08389 | C2A domain first repeat present in Synaptotagmins 14 and 16; Synaptotagmin 14 and 16 are ... |
46-164 | 1.82e-04 | ||||||
C2A domain first repeat present in Synaptotagmins 14 and 16; Synaptotagmin 14 and 16 are membrane-trafficking proteins in specific tissues outside the brain. Both of these contain C-terminal tandem C2 repeats, but only Synaptotagmin 14 has an N-terminal transmembrane domain and a putative fatty-acylation site. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium and this is indeed the case here. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176035 [Multi-domain] Cd Length: 124 Bit Score: 41.84 E-value: 1.82e-04
|
||||||||||
C2D_MCTP_PRT_plant | cd08379 | C2 domain fourth repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); ... |
62-159 | 2.65e-04 | ||||||
C2 domain fourth repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); plant subset; MCTPs are involved in Ca2+ signaling at the membrane. Plant-MCTPs are composed of a variable N-terminal sequence, four C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the fourth C2 repeat, C2D, and has a type-II topology. Pssm-ID: 176025 [Multi-domain] Cd Length: 126 Bit Score: 41.24 E-value: 2.65e-04
|
||||||||||
RasGAP_RAP6 | cd05129 | Ras-GTPase Activating Domain of Rab5-activating protein 6; Rab5-activating protein 6 (RAP6) is ... |
255-413 | 2.79e-04 | ||||||
Ras-GTPase Activating Domain of Rab5-activating protein 6; Rab5-activating protein 6 (RAP6) is an endosomal protein with a role in the regulation of receptor-mediated endocytosis. RAP6 contains a Vps9 domain, which is involved in the activation of Rab5, and a Ras GAP domain (RGD). Rab5 is a small GTPase required for the control of the endocytic route, and its activity is regulated by guanine nucleotide exchange factor, such as Rabex5, and GAPs, such as RN-tre. Human Rap6 protein is localized on the plasma membrane and on the endosome. RAP6 binds to Rab5 and Ras through the Vps9 and RGD domains, respectively. Pssm-ID: 213331 Cd Length: 365 Bit Score: 43.87 E-value: 2.79e-04
|
||||||||||
RasGAP_IQGAP3 | cd12207 | Ras-GTPase Activating Domain of IQ motif containing GTPase activating protein 3; This family ... |
257-437 | 6.74e-04 | ||||||
Ras-GTPase Activating Domain of IQ motif containing GTPase activating protein 3; This family represents the IQ motif containing GTPase activating protein 3 (IQGAP3), which associates with Ras GTP-binding proteins. A primary function of IQGAP proteins is to modulate cytoskeletal architecture. There are three known IQGAP family members: IQGAP1, IQGAP2 and IQGAP3. Human IQGAP1 and IQGAP2 share 62% identity. IQGAPs are multi-domain molecules having a calponin-homology (CH) domain which binds F-actin, IQGAP-specific repeats, a single WW domain, four IQ motifs that mediate interactions with calmodulin, and a RasGAP related domain that binds active Rho family GTPases. IQGAP is an essential regulator of cytoskeletal function. IQGAP1 negatively regulates Ras family GTPases by stimulating their intrinsic GTPase activity, the protein actually lacks GAP activity. Both IQGAP1 and IQGAP2 specifically bind to Cdc42 and Rac1, but not to RhoA. Despite of their similarities to part of the sequence of RasGAP, neither IQGAP1 nor IQGAP2 interacts with Ras. IQGAP3, only present in mammals, regulates the organization of the cytoskeleton under the regulation of Rac1 and Cdc42 in neuronal cells. The depletion of IQGAP3 is shown to impair neurite or axon outgrowth in neuronal cells with disorganized cytoskeleton. Pssm-ID: 213346 [Multi-domain] Cd Length: 350 Bit Score: 42.51 E-value: 6.74e-04
|
||||||||||
PH_PLEKHJ1 | cd13258 | Pleckstrin homology domain containing, family J member 1 Pleckstrin homology (PH) domain; ... |
488-603 | 1.23e-03 | ||||||
Pleckstrin homology domain containing, family J member 1 Pleckstrin homology (PH) domain; PLEKHJ1 (also called GNRPX2/Guanine nucleotide-releasing protein x ). It contains a single PH domain. Very little information is known about PLEKHJ1. PLEKHJ1 has been shown to interact with IKBKG (inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma) and KRT33B (keratin 33B). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270078 Cd Length: 123 Bit Score: 39.23 E-value: 1.23e-03
|
||||||||||
PLN02228 | PLN02228 | Phosphoinositide phospholipase C |
77-151 | 1.36e-03 | ||||||
Phosphoinositide phospholipase C Pssm-ID: 177873 [Multi-domain] Cd Length: 567 Bit Score: 41.95 E-value: 1.36e-03
|
||||||||||
C2_Calpain | cd04046 | C2 domain present in Calpain proteins; A single C2 domain is found in calpains (EC 3.4.22.52, ... |
67-184 | 1.53e-03 | ||||||
C2 domain present in Calpain proteins; A single C2 domain is found in calpains (EC 3.4.22.52, EC 3.4.22.53), calcium-dependent, non-lysosomal cysteine proteases. Caplains are classified as belonging to Clan CA by MEROPS and include six families: C1, C2, C10, C12, C28, and C47. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176011 [Multi-domain] Cd Length: 126 Bit Score: 39.18 E-value: 1.53e-03
|
||||||||||
C2B_Synaptotagmin-like | cd04050 | C2 domain second repeat present in Synaptotagmin-like proteins; Synaptotagmin is a ... |
70-167 | 2.94e-03 | ||||||
C2 domain second repeat present in Synaptotagmin-like proteins; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176015 [Multi-domain] Cd Length: 105 Bit Score: 37.93 E-value: 2.94e-03
|
||||||||||
C2_C21orf25-like | cd08678 | C2 domain found in the Human chromosome 21 open reading frame 25 (C21orf25) protein; The ... |
80-184 | 3.17e-03 | ||||||
C2 domain found in the Human chromosome 21 open reading frame 25 (C21orf25) protein; The members in this cd are named after the Human C21orf25 which contains a single C2 domain. Several other members contain a C1 domain downstream of the C2 domain. No other information on this protein is currently known. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176060 [Multi-domain] Cd Length: 126 Bit Score: 38.12 E-value: 3.17e-03
|
||||||||||
C2_RGS-like | cd08685 | C2 domain of the Regulator Of G-Protein Signaling (RGS) family; This CD contains members of ... |
50-162 | 3.34e-03 | ||||||
C2 domain of the Regulator Of G-Protein Signaling (RGS) family; This CD contains members of the regulator of G-protein signaling (RGS) family. RGS is a GTPase activating protein which inhibits G-protein mediated signal transduction. The protein is largely cytosolic, but G-protein activation leads to translocation of this protein to the plasma membrane. A nuclear form of this protein has also been described, but its sequence has not been identified. There are multiple alternatively spliced transcript variants in this family with some members having additional domains (ex. PDZ and RGS) downstream of the C2 domain. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176067 [Multi-domain] Cd Length: 119 Bit Score: 38.20 E-value: 3.34e-03
|
||||||||||
C2_PKC_epsilon | cd04014 | C2 domain in Protein Kinase C (PKC) epsilon; A single C2 domain is found in PKC epsilon. The ... |
63-164 | 6.54e-03 | ||||||
C2 domain in Protein Kinase C (PKC) epsilon; A single C2 domain is found in PKC epsilon. The PKC family of serine/threonine kinases regulates apoptosis, proliferation, migration, motility, chemo-resistance, and differentiation. There are 3 groups: group 1 (alpha, betaI, beta II, gamma) which require phospholipids and calcium, group 2 (delta, epsilon, theta, eta) which do not require calcium for activation, and group 3 (xi, iota/lambda) which are atypical and can be activated in the absence of diacylglycerol and calcium. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-II topology. Pssm-ID: 175981 [Multi-domain] Cd Length: 132 Bit Score: 37.64 E-value: 6.54e-03
|
||||||||||
C2A_Tricalbin-like | cd04044 | C2 domain first repeat present in Tricalbin-like proteins; 5 to 6 copies of the C2 domain are ... |
67-114 | 7.86e-03 | ||||||
C2 domain first repeat present in Tricalbin-like proteins; 5 to 6 copies of the C2 domain are present in Tricalbin, a yeast homolog of Synaptotagmin, which is involved in membrane trafficking and sorting. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-II topology. Pssm-ID: 176009 [Multi-domain] Cd Length: 124 Bit Score: 37.15 E-value: 7.86e-03
|
||||||||||
Blast search parameters | ||||
|