kinesin-like protein KIF22 [Neomonachus schauinslandi]
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
KISc_KID_like | cd01376 | Kinesin motor domain, KIF22/Kid-like subgroup; Kinesin motor domain, KIF22/Kid-like subgroup. ... |
39-362 | 0e+00 | ||||||
Kinesin motor domain, KIF22/Kid-like subgroup; Kinesin motor domain, KIF22/Kid-like subgroup. Members of this group might play a role in regulating chromosomal movement along microtubules in mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. : Pssm-ID: 276827 [Multi-domain] Cd Length: 319 Bit Score: 572.14 E-value: 0e+00
|
||||||||||
ComEA super family | cl43451 | DNA uptake protein ComE or related DNA-binding protein [Replication, recombination and repair]; ... |
595-635 | 9.18e-06 | ||||||
DNA uptake protein ComE or related DNA-binding protein [Replication, recombination and repair]; The actual alignment was detected with superfamily member COG1555: Pssm-ID: 441164 [Multi-domain] Cd Length: 72 Bit Score: 44.47 E-value: 9.18e-06
|
||||||||||
zf-H2C2_2 | pfam13465 | Zinc-finger double domain; |
910-935 | 3.28e-05 | ||||||
Zinc-finger double domain; : Pssm-ID: 463886 [Multi-domain] Cd Length: 26 Bit Score: 41.59 E-value: 3.28e-05
|
||||||||||
COG5048 | COG5048 | FOG: Zn-finger [General function prediction only]; |
894-947 | 1.12e-04 | ||||||
FOG: Zn-finger [General function prediction only]; : Pssm-ID: 227381 [Multi-domain] Cd Length: 467 Bit Score: 46.23 E-value: 1.12e-04
|
||||||||||
SFP1 super family | cl25788 | Putative transcriptional repressor regulating G2/M transition [Transcription / Cell division ... |
920-977 | 1.44e-04 | ||||||
Putative transcriptional repressor regulating G2/M transition [Transcription / Cell division and chromosome partitioning]; The actual alignment was detected with superfamily member COG5189: Pssm-ID: 227516 [Multi-domain] Cd Length: 423 Bit Score: 45.48 E-value: 1.44e-04
|
||||||||||
COG5236 super family | cl28715 | Uncharacterized conserved protein, contains RING Zn-finger [General function prediction only]; |
924-1081 | 2.32e-03 | ||||||
Uncharacterized conserved protein, contains RING Zn-finger [General function prediction only]; The actual alignment was detected with superfamily member COG5236: Pssm-ID: 227561 [Multi-domain] Cd Length: 493 Bit Score: 41.93 E-value: 2.32e-03
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
KISc_KID_like | cd01376 | Kinesin motor domain, KIF22/Kid-like subgroup; Kinesin motor domain, KIF22/Kid-like subgroup. ... |
39-362 | 0e+00 | ||||||
Kinesin motor domain, KIF22/Kid-like subgroup; Kinesin motor domain, KIF22/Kid-like subgroup. Members of this group might play a role in regulating chromosomal movement along microtubules in mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276827 [Multi-domain] Cd Length: 319 Bit Score: 572.14 E-value: 0e+00
|
||||||||||
KISc | smart00129 | Kinesin motor, catalytic domain. ATPase; Microtubule-dependent molecular motors that play ... |
39-371 | 4.16e-144 | ||||||
Kinesin motor, catalytic domain. ATPase; Microtubule-dependent molecular motors that play important roles in intracellular transport of organelles and in cell division. Pssm-ID: 214526 [Multi-domain] Cd Length: 335 Bit Score: 435.85 E-value: 4.16e-144
|
||||||||||
Kinesin | pfam00225 | Kinesin motor domain; |
45-364 | 6.37e-120 | ||||||
Kinesin motor domain; Pssm-ID: 459720 [Multi-domain] Cd Length: 326 Bit Score: 371.91 E-value: 6.37e-120
|
||||||||||
KIP1 | COG5059 | Kinesin-like protein [Cytoskeleton]; |
75-376 | 5.79e-79 | ||||||
Kinesin-like protein [Cytoskeleton]; Pssm-ID: 227392 [Multi-domain] Cd Length: 568 Bit Score: 270.07 E-value: 5.79e-79
|
||||||||||
PLN03188 | PLN03188 | kinesin-12 family protein; Provisional |
40-375 | 1.90e-52 | ||||||
kinesin-12 family protein; Provisional Pssm-ID: 215621 [Multi-domain] Cd Length: 1320 Bit Score: 201.70 E-value: 1.90e-52
|
||||||||||
ComEA | COG1555 | DNA uptake protein ComE or related DNA-binding protein [Replication, recombination and repair]; ... |
595-635 | 9.18e-06 | ||||||
DNA uptake protein ComE or related DNA-binding protein [Replication, recombination and repair]; Pssm-ID: 441164 [Multi-domain] Cd Length: 72 Bit Score: 44.47 E-value: 9.18e-06
|
||||||||||
zf-H2C2_2 | pfam13465 | Zinc-finger double domain; |
910-935 | 3.28e-05 | ||||||
Zinc-finger double domain; Pssm-ID: 463886 [Multi-domain] Cd Length: 26 Bit Score: 41.59 E-value: 3.28e-05
|
||||||||||
COG5048 | COG5048 | FOG: Zn-finger [General function prediction only]; |
894-947 | 1.12e-04 | ||||||
FOG: Zn-finger [General function prediction only]; Pssm-ID: 227381 [Multi-domain] Cd Length: 467 Bit Score: 46.23 E-value: 1.12e-04
|
||||||||||
SFP1 | COG5189 | Putative transcriptional repressor regulating G2/M transition [Transcription / Cell division ... |
920-977 | 1.44e-04 | ||||||
Putative transcriptional repressor regulating G2/M transition [Transcription / Cell division and chromosome partitioning]; Pssm-ID: 227516 [Multi-domain] Cd Length: 423 Bit Score: 45.48 E-value: 1.44e-04
|
||||||||||
zf-C2H2 | pfam00096 | Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ... |
954-977 | 4.26e-04 | ||||||
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter. Pssm-ID: 395048 [Multi-domain] Cd Length: 23 Bit Score: 38.44 E-value: 4.26e-04
|
||||||||||
COG5236 | COG5236 | Uncharacterized conserved protein, contains RING Zn-finger [General function prediction only]; |
924-1081 | 2.32e-03 | ||||||
Uncharacterized conserved protein, contains RING Zn-finger [General function prediction only]; Pssm-ID: 227561 [Multi-domain] Cd Length: 493 Bit Score: 41.93 E-value: 2.32e-03
|
||||||||||
zf-C2H2 | pfam00096 | Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ... |
896-918 | 2.35e-03 | ||||||
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter. Pssm-ID: 395048 [Multi-domain] Cd Length: 23 Bit Score: 36.51 E-value: 2.35e-03
|
||||||||||
HHH_3 | pfam12836 | Helix-hairpin-helix motif; The HhH domain is a short DNA-binding domain. |
595-627 | 2.38e-03 | ||||||
Helix-hairpin-helix motif; The HhH domain is a short DNA-binding domain. Pssm-ID: 463723 [Multi-domain] Cd Length: 62 Bit Score: 37.46 E-value: 2.38e-03
|
||||||||||
TIGR00426 | TIGR00426 | competence protein ComEA helix-hairpin-helix repeat region; Members of the subfamily ... |
595-627 | 5.39e-03 | ||||||
competence protein ComEA helix-hairpin-helix repeat region; Members of the subfamily recognized by this model include competence protein ComEA and closely related proteins from a number of species that exhibit competence for transformation by exongenous DNA, including Streptococcus pneumoniae, Bacillus subtilis, Neisseria meningitidis, and Haemophilus influenzae. This model represents a region of two tandem copies of a helix-hairpin-helix domain (pfam00633), each about 30 residues in length. Limited sequence similarity can be found among some members of this family N-terminal to the region covered by this model. [Cellular processes, DNA transformation] Pssm-ID: 129520 [Multi-domain] Cd Length: 69 Bit Score: 36.83 E-value: 5.39e-03
|
||||||||||
KREPA2 | cd23959 | Kinetoplastid RNA Editing Protein A2 (KREPA2); The KREPA2 (TbMP63) protein is a component of ... |
1017-1068 | 5.41e-03 | ||||||
Kinetoplastid RNA Editing Protein A2 (KREPA2); The KREPA2 (TbMP63) protein is a component of the parasitic protozoan's KREPA RNA editing catalytic complex (RECC). Kinetoplastid RNA editing (KRE) proteins occur as pairs or sets of related proteins in multiple complexes. KREPA complex is composed of six components (KREPA1-6), which share a conserved C-terminal region containing an oligonucleotide-binding (OB)-fold-like domain. KREPAs are responsible for the site-specific insertion and deletion of U nucleotides in the kinetoplastid mitochondria pre-messenger RNA. Apart from the conserved C-terminal OB-fold domain, KREPA1, KREPA2, and KREPA3 contain two conserved C2H2 zinc-finger domains. KREPA2 and kinetoplastid RNA editing ligase 1 (KREL1) are specific for ligation post-U-deletion and are paralogous to KREL2 and KREPA1 that are specific for ligation post-U-insertion. KREPA2, is critical for RECC stability and KREL1 integration into the complex. Pssm-ID: 467780 [Multi-domain] Cd Length: 424 Bit Score: 40.62 E-value: 5.41e-03
|
||||||||||
ZnF_C2H2 | smart00355 | zinc finger; |
924-946 | 5.87e-03 | ||||||
zinc finger; Pssm-ID: 197676 Cd Length: 23 Bit Score: 35.13 E-value: 5.87e-03
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
KISc_KID_like | cd01376 | Kinesin motor domain, KIF22/Kid-like subgroup; Kinesin motor domain, KIF22/Kid-like subgroup. ... |
39-362 | 0e+00 | ||||||
Kinesin motor domain, KIF22/Kid-like subgroup; Kinesin motor domain, KIF22/Kid-like subgroup. Members of this group might play a role in regulating chromosomal movement along microtubules in mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276827 [Multi-domain] Cd Length: 319 Bit Score: 572.14 E-value: 0e+00
|
||||||||||
KISc | smart00129 | Kinesin motor, catalytic domain. ATPase; Microtubule-dependent molecular motors that play ... |
39-371 | 4.16e-144 | ||||||
Kinesin motor, catalytic domain. ATPase; Microtubule-dependent molecular motors that play important roles in intracellular transport of organelles and in cell division. Pssm-ID: 214526 [Multi-domain] Cd Length: 335 Bit Score: 435.85 E-value: 4.16e-144
|
||||||||||
KISc | cd00106 | Kinesin motor domain; Kinesin motor domain. This catalytic (head) domain has ATPase activity ... |
39-362 | 1.48e-134 | ||||||
Kinesin motor domain; Kinesin motor domain. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type), in some its is found in the middle (M-type), or C-terminal (C-type). N-type and M-type kinesins are (+) end-directed motors, while C-type kinesins are (-) end-directed motors, i.e. they transport cargo towards the (-) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276812 [Multi-domain] Cd Length: 326 Bit Score: 410.49 E-value: 1.48e-134
|
||||||||||
Kinesin | pfam00225 | Kinesin motor domain; |
45-364 | 6.37e-120 | ||||||
Kinesin motor domain; Pssm-ID: 459720 [Multi-domain] Cd Length: 326 Bit Score: 371.91 E-value: 6.37e-120
|
||||||||||
KISc_KIP3_like | cd01370 | Kinesin motor domain, KIP3-like subgroup; Kinesin motor domain, KIP3-like subgroup. The yeast ... |
39-364 | 7.07e-98 | ||||||
Kinesin motor domain, KIP3-like subgroup; Kinesin motor domain, KIP3-like subgroup. The yeast kinesin KIP3 plays a role in positioning the mitotic spindle. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276821 [Multi-domain] Cd Length: 345 Bit Score: 314.28 E-value: 7.07e-98
|
||||||||||
KISc_KIF4 | cd01372 | Kinesin motor domain, KIF4-like subfamily; Kinesin motor domain, KIF4-like subfamily. Members ... |
40-360 | 3.58e-87 | ||||||
Kinesin motor domain, KIF4-like subfamily; Kinesin motor domain, KIF4-like subfamily. Members of this group seem to perform a variety of functions, and have been implicated in neuronal organelle transport and chromosome segregation during mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276823 [Multi-domain] Cd Length: 341 Bit Score: 284.99 E-value: 3.58e-87
|
||||||||||
KISc_CENP_E | cd01374 | Kinesin motor domain, CENP-E/KIP2-like subgroup; Kinesin motor domain, CENP-E/KIP2-like ... |
40-364 | 1.65e-85 | ||||||
Kinesin motor domain, CENP-E/KIP2-like subgroup; Kinesin motor domain, CENP-E/KIP2-like subgroup, involved in chromosome movement and/or spindle elongation during mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276825 [Multi-domain] Cd Length: 321 Bit Score: 279.60 E-value: 1.65e-85
|
||||||||||
KISc_C_terminal | cd01366 | Kinesin motor domain, KIFC2/KIFC3/ncd-like carboxy-terminal kinesins; Kinesin motor domain, ... |
40-360 | 1.12e-83 | ||||||
Kinesin motor domain, KIFC2/KIFC3/ncd-like carboxy-terminal kinesins; Kinesin motor domain, KIFC2/KIFC3/ncd-like carboxy-terminal kinesins. Ncd is a spindle motor protein necessary for chromosome segregation in meiosis. KIFC2/KIFC3-like kinesins have been implicated in motility of the Golgi apparatus as well as dentritic and axonal transport in neurons. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In this subgroup the motor domain is found at the C-terminus (C-type). C-type kinesins are (-) end-directed motors, i.e. they transport cargo towards the (-) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276817 [Multi-domain] Cd Length: 329 Bit Score: 274.86 E-value: 1.12e-83
|
||||||||||
KISc_KLP2_like | cd01373 | Kinesin motor domain, KIF15-like subgroup; Kinesin motor domain, KIF15-like subgroup. Members ... |
40-372 | 1.71e-81 | ||||||
Kinesin motor domain, KIF15-like subgroup; Kinesin motor domain, KIF15-like subgroup. Members of this subgroup seem to play a role in mitosis and meiosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276824 [Multi-domain] Cd Length: 347 Bit Score: 269.76 E-value: 1.71e-81
|
||||||||||
KIP1 | COG5059 | Kinesin-like protein [Cytoskeleton]; |
75-376 | 5.79e-79 | ||||||
Kinesin-like protein [Cytoskeleton]; Pssm-ID: 227392 [Multi-domain] Cd Length: 568 Bit Score: 270.07 E-value: 5.79e-79
|
||||||||||
KISc_BimC_Eg5 | cd01364 | Kinesin motor domain, BimC/Eg5 spindle pole proteins; Kinesin motor domain, BimC/Eg5 spindle ... |
40-373 | 3.66e-77 | ||||||
Kinesin motor domain, BimC/Eg5 spindle pole proteins; Kinesin motor domain, BimC/Eg5 spindle pole proteins, participate in spindle assembly and chromosome segregation during cell division. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type), N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276815 [Multi-domain] Cd Length: 353 Bit Score: 258.02 E-value: 3.66e-77
|
||||||||||
KISc_KIF3 | cd01371 | Kinesin motor domain, kinesins II or KIF3_like proteins; Kinesin motor domain, kinesins II or ... |
40-364 | 1.11e-76 | ||||||
Kinesin motor domain, kinesins II or KIF3_like proteins; Kinesin motor domain, kinesins II or KIF3_like proteins. Subgroup of kinesins, which form heterotrimers composed of 2 kinesins and one non-motor accessory subunit. Kinesins II play important roles in ciliary transport, and have been implicated in neuronal transport, melanosome transport, the secretory pathway, and mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In this group the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276822 [Multi-domain] Cd Length: 334 Bit Score: 255.85 E-value: 1.11e-76
|
||||||||||
KISc_KHC_KIF5 | cd01369 | Kinesin motor domain, kinesin heavy chain (KHC) or KIF5-like subgroup; Kinesin motor domain, ... |
40-364 | 3.80e-76 | ||||||
Kinesin motor domain, kinesin heavy chain (KHC) or KIF5-like subgroup; Kinesin motor domain, kinesin heavy chain (KHC) or KIF5-like subgroup. Members of this group have been associated with organelle transport. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276820 [Multi-domain] Cd Length: 325 Bit Score: 254.18 E-value: 3.80e-76
|
||||||||||
KISc_KIF23_like | cd01368 | Kinesin motor domain, KIF23-like subgroup; Kinesin motor domain, KIF23-like subgroup. Members ... |
40-362 | 3.69e-72 | ||||||
Kinesin motor domain, KIF23-like subgroup; Kinesin motor domain, KIF23-like subgroup. Members of this group may play a role in mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276819 [Multi-domain] Cd Length: 345 Bit Score: 243.84 E-value: 3.69e-72
|
||||||||||
KISc_KIF1A_KIF1B | cd01365 | Kinesin motor domain, KIF1_like proteins; Kinesin motor domain, KIF1_like proteins. KIF1A ... |
38-371 | 1.52e-71 | ||||||
Kinesin motor domain, KIF1_like proteins; Kinesin motor domain, KIF1_like proteins. KIF1A (Unc104) transports synaptic vesicles to the nerve terminal, KIF1B has been implicated in transport of mitochondria. Both proteins are expressed in neurons. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. In contrast to the majority of dimeric kinesins, most KIF1A/Unc104 kinesins are monomeric motors. A lysine-rich loop in KIF1A binds to the negatively charged C-terminus of tubulin and compensates for the lack of a second motor domain, allowing KIF1A to move processively. Pssm-ID: 276816 [Multi-domain] Cd Length: 361 Bit Score: 242.64 E-value: 1.52e-71
|
||||||||||
KISc_KIF9_like | cd01375 | Kinesin motor domain, KIF9-like subgroup; Kinesin motor domain, KIF9-like subgroup; might play ... |
39-362 | 5.78e-59 | ||||||
Kinesin motor domain, KIF9-like subgroup; Kinesin motor domain, KIF9-like subgroup; might play a role in cell shape remodeling. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276826 [Multi-domain] Cd Length: 334 Bit Score: 206.28 E-value: 5.78e-59
|
||||||||||
KISc_KIF2_like | cd01367 | Kinesin motor domain, KIF2-like group; Kinesin motor domain, KIF2-like group. KIF2 is a ... |
39-343 | 6.60e-59 | ||||||
Kinesin motor domain, KIF2-like group; Kinesin motor domain, KIF2-like group. KIF2 is a protein expressed in neurons, which has been associated with axonal transport and neuron development; alternative splice forms have been implicated in lysosomal translocation. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In this subgroup the motor domain is found in the middle (M-type) of the protein chain. M-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second (KIF2 may be slower). To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Pssm-ID: 276818 [Multi-domain] Cd Length: 328 Bit Score: 205.61 E-value: 6.60e-59
|
||||||||||
PLN03188 | PLN03188 | kinesin-12 family protein; Provisional |
40-375 | 1.90e-52 | ||||||
kinesin-12 family protein; Provisional Pssm-ID: 215621 [Multi-domain] Cd Length: 1320 Bit Score: 201.70 E-value: 1.90e-52
|
||||||||||
Motor_domain | cd01363 | Myosin and Kinesin motor domain; Myosin and Kinesin motor domain. These ATPases belong to the ... |
87-306 | 2.86e-11 | ||||||
Myosin and Kinesin motor domain; Myosin and Kinesin motor domain. These ATPases belong to the P-loop NTPase family and provide the driving force in myosin and kinesin mediated processes. Some of the names do not match with what is given in the sequence list. This is because they are based on the current nomenclature by Kollmar/Sebe-Pedros. Pssm-ID: 276814 [Multi-domain] Cd Length: 170 Bit Score: 63.13 E-value: 2.86e-11
|
||||||||||
Microtub_bd | pfam16796 | Microtubule binding; This motor homology domain binds microtubules and lacks an ATP-binding ... |
40-184 | 5.20e-08 | ||||||
Microtubule binding; This motor homology domain binds microtubules and lacks an ATP-binding site. Pssm-ID: 465274 [Multi-domain] Cd Length: 144 Bit Score: 52.99 E-value: 5.20e-08
|
||||||||||
ComEA | COG1555 | DNA uptake protein ComE or related DNA-binding protein [Replication, recombination and repair]; ... |
595-635 | 9.18e-06 | ||||||
DNA uptake protein ComE or related DNA-binding protein [Replication, recombination and repair]; Pssm-ID: 441164 [Multi-domain] Cd Length: 72 Bit Score: 44.47 E-value: 9.18e-06
|
||||||||||
zf-H2C2_2 | pfam13465 | Zinc-finger double domain; |
910-935 | 3.28e-05 | ||||||
Zinc-finger double domain; Pssm-ID: 463886 [Multi-domain] Cd Length: 26 Bit Score: 41.59 E-value: 3.28e-05
|
||||||||||
COG5048 | COG5048 | FOG: Zn-finger [General function prediction only]; |
894-947 | 1.12e-04 | ||||||
FOG: Zn-finger [General function prediction only]; Pssm-ID: 227381 [Multi-domain] Cd Length: 467 Bit Score: 46.23 E-value: 1.12e-04
|
||||||||||
SFP1 | COG5189 | Putative transcriptional repressor regulating G2/M transition [Transcription / Cell division ... |
920-977 | 1.44e-04 | ||||||
Putative transcriptional repressor regulating G2/M transition [Transcription / Cell division and chromosome partitioning]; Pssm-ID: 227516 [Multi-domain] Cd Length: 423 Bit Score: 45.48 E-value: 1.44e-04
|
||||||||||
zf-C2H2 | pfam00096 | Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ... |
954-977 | 4.26e-04 | ||||||
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter. Pssm-ID: 395048 [Multi-domain] Cd Length: 23 Bit Score: 38.44 E-value: 4.26e-04
|
||||||||||
zf-C2H2_4 | pfam13894 | C2H2-type zinc finger; This family contains a number of divergent C2H2 type zinc fingers. |
954-977 | 1.23e-03 | ||||||
C2H2-type zinc finger; This family contains a number of divergent C2H2 type zinc fingers. Pssm-ID: 464025 Cd Length: 24 Bit Score: 37.24 E-value: 1.23e-03
|
||||||||||
COG5048 | COG5048 | FOG: Zn-finger [General function prediction only]; |
914-982 | 1.91e-03 | ||||||
FOG: Zn-finger [General function prediction only]; Pssm-ID: 227381 [Multi-domain] Cd Length: 467 Bit Score: 41.99 E-value: 1.91e-03
|
||||||||||
COG5236 | COG5236 | Uncharacterized conserved protein, contains RING Zn-finger [General function prediction only]; |
924-1081 | 2.32e-03 | ||||||
Uncharacterized conserved protein, contains RING Zn-finger [General function prediction only]; Pssm-ID: 227561 [Multi-domain] Cd Length: 493 Bit Score: 41.93 E-value: 2.32e-03
|
||||||||||
zf-C2H2 | pfam00096 | Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ... |
896-918 | 2.35e-03 | ||||||
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter. Pssm-ID: 395048 [Multi-domain] Cd Length: 23 Bit Score: 36.51 E-value: 2.35e-03
|
||||||||||
HHH_3 | pfam12836 | Helix-hairpin-helix motif; The HhH domain is a short DNA-binding domain. |
595-627 | 2.38e-03 | ||||||
Helix-hairpin-helix motif; The HhH domain is a short DNA-binding domain. Pssm-ID: 463723 [Multi-domain] Cd Length: 62 Bit Score: 37.46 E-value: 2.38e-03
|
||||||||||
TIGR00426 | TIGR00426 | competence protein ComEA helix-hairpin-helix repeat region; Members of the subfamily ... |
595-627 | 5.39e-03 | ||||||
competence protein ComEA helix-hairpin-helix repeat region; Members of the subfamily recognized by this model include competence protein ComEA and closely related proteins from a number of species that exhibit competence for transformation by exongenous DNA, including Streptococcus pneumoniae, Bacillus subtilis, Neisseria meningitidis, and Haemophilus influenzae. This model represents a region of two tandem copies of a helix-hairpin-helix domain (pfam00633), each about 30 residues in length. Limited sequence similarity can be found among some members of this family N-terminal to the region covered by this model. [Cellular processes, DNA transformation] Pssm-ID: 129520 [Multi-domain] Cd Length: 69 Bit Score: 36.83 E-value: 5.39e-03
|
||||||||||
KREPA2 | cd23959 | Kinetoplastid RNA Editing Protein A2 (KREPA2); The KREPA2 (TbMP63) protein is a component of ... |
1017-1068 | 5.41e-03 | ||||||
Kinetoplastid RNA Editing Protein A2 (KREPA2); The KREPA2 (TbMP63) protein is a component of the parasitic protozoan's KREPA RNA editing catalytic complex (RECC). Kinetoplastid RNA editing (KRE) proteins occur as pairs or sets of related proteins in multiple complexes. KREPA complex is composed of six components (KREPA1-6), which share a conserved C-terminal region containing an oligonucleotide-binding (OB)-fold-like domain. KREPAs are responsible for the site-specific insertion and deletion of U nucleotides in the kinetoplastid mitochondria pre-messenger RNA. Apart from the conserved C-terminal OB-fold domain, KREPA1, KREPA2, and KREPA3 contain two conserved C2H2 zinc-finger domains. KREPA2 and kinetoplastid RNA editing ligase 1 (KREL1) are specific for ligation post-U-deletion and are paralogous to KREL2 and KREPA1 that are specific for ligation post-U-insertion. KREPA2, is critical for RECC stability and KREL1 integration into the complex. Pssm-ID: 467780 [Multi-domain] Cd Length: 424 Bit Score: 40.62 E-value: 5.41e-03
|
||||||||||
ZnF_C2H2 | smart00355 | zinc finger; |
924-946 | 5.87e-03 | ||||||
zinc finger; Pssm-ID: 197676 Cd Length: 23 Bit Score: 35.13 E-value: 5.87e-03
|
||||||||||
zf-C2H2_4 | pfam13894 | C2H2-type zinc finger; This family contains a number of divergent C2H2 type zinc fingers. |
924-946 | 9.46e-03 | ||||||
C2H2-type zinc finger; This family contains a number of divergent C2H2 type zinc fingers. Pssm-ID: 464025 Cd Length: 24 Bit Score: 34.54 E-value: 9.46e-03
|
||||||||||
Blast search parameters | ||||
|