endoribonuclease Dicer isoform X1 [Rattus norvegicus]
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
DEXHc_dicer | cd18034 | DEXH-box helicase domain of endoribonuclease Dicer; Dicer ribonucleases cleave double-stranded ... |
42-239 | 7.03e-97 | ||||
DEXH-box helicase domain of endoribonuclease Dicer; Dicer ribonucleases cleave double-stranded RNA (dsRNA) precursors to generate microRNAs (miRNAs) and small interfering RNAs (siRNAs). In concert with Argonautes, these small RNAs bind complementary mRNAs to down-regulate their expression. miRNAs are processed by Dicer from small hairpins, while siRNAs are typically processed from longer dsRNA, from endogenous sources, or exogenous sources such as viral replication intermediates. Some organisms, such as Homo sapiens and Caenorhabditis elegans, encode one Dicer that generates miRNAs and siRNAs, but other organisms have multiple dicers with specialized functions. Dicers exist throughout eukaryotes, and a subset have an N-terminal helicase domain of the RIG-I-like receptor (RLR) subgroup. RLRs often function in innate immunity and Dicer helicase domains sometimes show differences in activity that correlate with roles in immunity. Dicer is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. : Pssm-ID: 350792 [Multi-domain] Cd Length: 200 Bit Score: 310.74 E-value: 7.03e-97
|
||||||||
PAZ_dicer_like | cd02843 | PAZ domain, dicer_like subfamily. Dicer is an RNAse involved in cleaving dsRNA in the RNA ... |
886-1008 | 2.07e-69 | ||||
PAZ domain, dicer_like subfamily. Dicer is an RNAse involved in cleaving dsRNA in the RNA interference pathway. It generates dsRNAs which are approximately 20 bp long (siRNAs), which in turn target hydrolysis of homologous RNAs. PAZ domains are named after the proteins Piwi Argonaut and Zwille. PAZ is found in two families of proteins that are essential components of RNA-mediated gene-silencing pathways, including RNA interference, the piwi and Dicer families. PAZ functions as a nucleic-acid binding domain, with a strong preference for single-stranded nucleic acids (RNA or DNA) or RNA duplexes with single-stranded 3' overhangs. It has been suggested that the PAZ domain provides a unique mode for the recognition of the two 3'-terminal nucleotides in single-stranded nucleic acids and buries the 3' OH group, and that it might recognize characteristic 3' overhangs in siRNAs within RISC (RNA-induced silencing) and other complexes. : Pssm-ID: 239209 Cd Length: 122 Bit Score: 228.87 E-value: 2.07e-69
|
||||||||
SF2_C_dicer | cd18802 | C-terminal helicase domain of the endoribonuclease Dicer; Dicer ribonucleases cleave ... |
372-564 | 2.90e-57 | ||||
C-terminal helicase domain of the endoribonuclease Dicer; Dicer ribonucleases cleave double-stranded RNA (dsRNA) precursors to generate microRNAs (miRNAs) and small interfering RNAs (siRNAs). In concert with Argonautes, these small RNAs bind complementary mRNAs to down-regulate their expression. miRNAs are processed by Dicer from small hairpins, while siRNAs are typically processed from longer dsRNA, from endogenous sources, or exogenous sources such as viral replication intermediates. Some organisms, such as Homo sapiens and Caenorhabditis elegans, encode one Dicer that generates miRNAs and siRNAs, but other organisms have multiple dicers with specialized functions. Dicer exists throughout eukaryotes, and a subset has an N-terminal helicase domain of the RIG-I-like receptor (RLR) subgroup. RLRs often function in innate immunity and Dicer helicase domains sometimes show differences in activity that correlate with roles in immunity. Dicer helicase domains are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. : Pssm-ID: 350189 [Multi-domain] Cd Length: 142 Bit Score: 194.73 E-value: 2.90e-57
|
||||||||
RIBOc | cd00593 | RIBOc. Ribonuclease III C terminal domain. This group consists of eukaryotic, bacterial and ... |
1678-1842 | 5.81e-40 | ||||
RIBOc. Ribonuclease III C terminal domain. This group consists of eukaryotic, bacterial and archeal ribonuclease III (RNAse III) proteins. RNAse III is a double stranded RNA-specific endonuclease. Prokaryotic RNAse III is important in post-transcriptional control of mRNA stability and translational efficiency. It is involved in the processing of ribosomal RNA precursors. Prokaryotic RNAse III also plays a role in the maturation of tRNA precursors and in the processing of phage and plasmid transcripts. Eukaryotic RNase III's participate (through direct cleavage) in rRNA processing, in processing of small nucleolar RNAs (snoRNAs) and snRNA's (components of the spliceosome). In eukaryotes RNase III or RNaseIII like enzymes such as Dicer are involved in RNAi (RNA interference) and miRNA (micro-RNA) gene silencing. : Pssm-ID: 238333 Cd Length: 133 Bit Score: 145.06 E-value: 5.81e-40
|
||||||||
DSRM_DICER | cd10843 | double-stranded RNA binding motif of endoribonuclease Dicer and similar proteins; Dicer (also ... |
1847-1909 | 2.66e-39 | ||||
double-stranded RNA binding motif of endoribonuclease Dicer and similar proteins; Dicer (also known as helicase with RNase motif (HERNA), or helicase MOI) is a double-stranded RNA (dsRNA) endoribonuclease playing a central role in short dsRNA-mediated post-transcriptional gene silencing. It cleaves naturally occurring long dsRNAs and short hairpin pre-microRNAs (miRNA) into fragments of twenty-one to twenty-three nucleotides with 3' overhang of two nucleotides, producing respectively short interfering RNAs (siRNA) and mature microRNAs. Dicer contains a double-stranded RNA binding motif (DSRM) at the C-terminus. DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. : Pssm-ID: 380680 Cd Length: 63 Bit Score: 140.25 E-value: 2.66e-39
|
||||||||
Dicer_dimer | pfam03368 | Dicer dimerization domain; This domain is found in members of the Dicer protein family which ... |
630-718 | 2.53e-31 | ||||
Dicer dimerization domain; This domain is found in members of the Dicer protein family which function in RNA interference, an evolutionarily conserved mechanism for gene silencing using double-stranded RNA (dsRNA) molecules. It is essential for the activity of Dicer. It is a divergent double stranded RNA-binding domain. The N-terminal alpha helix of this domain is in a different orientation to that found in canonical dsRNA-binding domains. This results in a change of charge distribution at the potential dsRNA-binding surface and in the N- and C-termini of the domain being in close proximity. This domain has weak dsRNA-binding activity. It mediates heterodimerization of Dicer proteins with their respective protein partners. : Pssm-ID: 460900 Cd Length: 89 Bit Score: 118.37 E-value: 2.53e-31
|
||||||||
RIBOc | smart00535 | Ribonuclease III family; |
1296-1387 | 3.37e-25 | ||||
Ribonuclease III family; : Pssm-ID: 197778 Cd Length: 129 Bit Score: 102.68 E-value: 3.37e-25
|
||||||||
Dicer_PBD | cd15903 | Partner-binding domain of the endoribonuclease Dicer; The endoribonuclease Dicer plays a ... |
271-365 | 1.01e-24 | ||||
Partner-binding domain of the endoribonuclease Dicer; The endoribonuclease Dicer plays a central role in RNA interference by breaking down RNA molecules into fragments of about 22 nucleotides (miRNAs and siRNAs). Loading of RNA onto Dicer and the enzymatic cleavage are supported by dsRNA-binding proteins, including trans-activation response (TAR) RNA-binding protein (TRBP) or protein activator of PKR (PACT). Together with Argonaute, this constitutes the RNA-induced silencing complex (RISC) which functions to load the small RNA fragments onto Argonaute. The Partner-binding domain of Dicer is responsible for interactions with the dsRNA-binding proteins. This helical domain can be found inserted in a subset of SF2-type DEAD-box related helicases. : Pssm-ID: 277191 Cd Length: 104 Bit Score: 100.05 E-value: 1.01e-24
|
||||||||
Name | Accession | Description | Interval | E-value | |||||||||
DEXHc_dicer | cd18034 | DEXH-box helicase domain of endoribonuclease Dicer; Dicer ribonucleases cleave double-stranded ... |
42-239 | 7.03e-97 | |||||||||
DEXH-box helicase domain of endoribonuclease Dicer; Dicer ribonucleases cleave double-stranded RNA (dsRNA) precursors to generate microRNAs (miRNAs) and small interfering RNAs (siRNAs). In concert with Argonautes, these small RNAs bind complementary mRNAs to down-regulate their expression. miRNAs are processed by Dicer from small hairpins, while siRNAs are typically processed from longer dsRNA, from endogenous sources, or exogenous sources such as viral replication intermediates. Some organisms, such as Homo sapiens and Caenorhabditis elegans, encode one Dicer that generates miRNAs and siRNAs, but other organisms have multiple dicers with specialized functions. Dicers exist throughout eukaryotes, and a subset have an N-terminal helicase domain of the RIG-I-like receptor (RLR) subgroup. RLRs often function in innate immunity and Dicer helicase domains sometimes show differences in activity that correlate with roles in immunity. Dicer is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350792 [Multi-domain] Cd Length: 200 Bit Score: 310.74 E-value: 7.03e-97
|
|||||||||||||
PAZ_dicer_like | cd02843 | PAZ domain, dicer_like subfamily. Dicer is an RNAse involved in cleaving dsRNA in the RNA ... |
886-1008 | 2.07e-69 | |||||||||
PAZ domain, dicer_like subfamily. Dicer is an RNAse involved in cleaving dsRNA in the RNA interference pathway. It generates dsRNAs which are approximately 20 bp long (siRNAs), which in turn target hydrolysis of homologous RNAs. PAZ domains are named after the proteins Piwi Argonaut and Zwille. PAZ is found in two families of proteins that are essential components of RNA-mediated gene-silencing pathways, including RNA interference, the piwi and Dicer families. PAZ functions as a nucleic-acid binding domain, with a strong preference for single-stranded nucleic acids (RNA or DNA) or RNA duplexes with single-stranded 3' overhangs. It has been suggested that the PAZ domain provides a unique mode for the recognition of the two 3'-terminal nucleotides in single-stranded nucleic acids and buries the 3' OH group, and that it might recognize characteristic 3' overhangs in siRNAs within RISC (RNA-induced silencing) and other complexes. Pssm-ID: 239209 Cd Length: 122 Bit Score: 228.87 E-value: 2.07e-69
|
|||||||||||||
SF2_C_dicer | cd18802 | C-terminal helicase domain of the endoribonuclease Dicer; Dicer ribonucleases cleave ... |
372-564 | 2.90e-57 | |||||||||
C-terminal helicase domain of the endoribonuclease Dicer; Dicer ribonucleases cleave double-stranded RNA (dsRNA) precursors to generate microRNAs (miRNAs) and small interfering RNAs (siRNAs). In concert with Argonautes, these small RNAs bind complementary mRNAs to down-regulate their expression. miRNAs are processed by Dicer from small hairpins, while siRNAs are typically processed from longer dsRNA, from endogenous sources, or exogenous sources such as viral replication intermediates. Some organisms, such as Homo sapiens and Caenorhabditis elegans, encode one Dicer that generates miRNAs and siRNAs, but other organisms have multiple dicers with specialized functions. Dicer exists throughout eukaryotes, and a subset has an N-terminal helicase domain of the RIG-I-like receptor (RLR) subgroup. RLRs often function in innate immunity and Dicer helicase domains sometimes show differences in activity that correlate with roles in immunity. Dicer helicase domains are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350189 [Multi-domain] Cd Length: 142 Bit Score: 194.73 E-value: 2.90e-57
|
|||||||||||||
RIBOc | cd00593 | RIBOc. Ribonuclease III C terminal domain. This group consists of eukaryotic, bacterial and ... |
1678-1842 | 5.81e-40 | |||||||||
RIBOc. Ribonuclease III C terminal domain. This group consists of eukaryotic, bacterial and archeal ribonuclease III (RNAse III) proteins. RNAse III is a double stranded RNA-specific endonuclease. Prokaryotic RNAse III is important in post-transcriptional control of mRNA stability and translational efficiency. It is involved in the processing of ribosomal RNA precursors. Prokaryotic RNAse III also plays a role in the maturation of tRNA precursors and in the processing of phage and plasmid transcripts. Eukaryotic RNase III's participate (through direct cleavage) in rRNA processing, in processing of small nucleolar RNAs (snoRNAs) and snRNA's (components of the spliceosome). In eukaryotes RNase III or RNaseIII like enzymes such as Dicer are involved in RNAi (RNA interference) and miRNA (micro-RNA) gene silencing. Pssm-ID: 238333 Cd Length: 133 Bit Score: 145.06 E-value: 5.81e-40
|
|||||||||||||
DSRM_DICER | cd10843 | double-stranded RNA binding motif of endoribonuclease Dicer and similar proteins; Dicer (also ... |
1847-1909 | 2.66e-39 | |||||||||
double-stranded RNA binding motif of endoribonuclease Dicer and similar proteins; Dicer (also known as helicase with RNase motif (HERNA), or helicase MOI) is a double-stranded RNA (dsRNA) endoribonuclease playing a central role in short dsRNA-mediated post-transcriptional gene silencing. It cleaves naturally occurring long dsRNAs and short hairpin pre-microRNAs (miRNA) into fragments of twenty-one to twenty-three nucleotides with 3' overhang of two nucleotides, producing respectively short interfering RNAs (siRNA) and mature microRNAs. Dicer contains a double-stranded RNA binding motif (DSRM) at the C-terminus. DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. Pssm-ID: 380680 Cd Length: 63 Bit Score: 140.25 E-value: 2.66e-39
|
|||||||||||||
RIBOc | smart00535 | Ribonuclease III family; |
1678-1841 | 4.10e-37 | |||||||||
Ribonuclease III family; Pssm-ID: 197778 Cd Length: 129 Bit Score: 136.58 E-value: 4.10e-37
|
|||||||||||||
RNaseIII | TIGR02191 | ribonuclease III, bacterial; This family consists of bacterial examples of ribonuclease III. ... |
1665-1908 | 7.01e-36 | |||||||||
ribonuclease III, bacterial; This family consists of bacterial examples of ribonuclease III. This enzyme cleaves double-stranded rRNA. It is involved in processing ribosomal RNA precursors. It is found even in minimal genones such as Mycoplasma genitalium and Buchnera aphidicola, and in some cases has been shown to be an essential gene. These bacterial proteins contain a double-stranded RNA binding motif (pfam00035) and a ribonuclease III domain (pfam00636). Eukaryotic homologs tend to be much longer proteins with additional domains, localized to the nucleus, and not included in this family. [Transcription, RNA processing] Pssm-ID: 274024 [Multi-domain] Cd Length: 220 Bit Score: 136.56 E-value: 7.01e-36
|
|||||||||||||
Rnc | COG0571 | dsRNA-specific ribonuclease [Transcription]; |
1662-1912 | 2.31e-35 | |||||||||
dsRNA-specific ribonuclease [Transcription]; Pssm-ID: 440336 [Multi-domain] Cd Length: 229 Bit Score: 135.23 E-value: 2.31e-35
|
|||||||||||||
MPH1 | COG1111 | ERCC4-related helicase [Replication, recombination and repair]; |
44-552 | 1.41e-34 | |||||||||
ERCC4-related helicase [Replication, recombination and repair]; Pssm-ID: 440728 [Multi-domain] Cd Length: 718 Bit Score: 143.33 E-value: 1.41e-34
|
|||||||||||||
Dicer_dimer | pfam03368 | Dicer dimerization domain; This domain is found in members of the Dicer protein family which ... |
630-718 | 2.53e-31 | |||||||||
Dicer dimerization domain; This domain is found in members of the Dicer protein family which function in RNA interference, an evolutionarily conserved mechanism for gene silencing using double-stranded RNA (dsRNA) molecules. It is essential for the activity of Dicer. It is a divergent double stranded RNA-binding domain. The N-terminal alpha helix of this domain is in a different orientation to that found in canonical dsRNA-binding domains. This results in a change of charge distribution at the potential dsRNA-binding surface and in the N- and C-termini of the domain being in close proximity. This domain has weak dsRNA-binding activity. It mediates heterodimerization of Dicer proteins with their respective protein partners. Pssm-ID: 460900 Cd Length: 89 Bit Score: 118.37 E-value: 2.53e-31
|
|||||||||||||
PAZ | smart00949 | This domain is named PAZ after the proteins Piwi Argonaut and Zwille; This domain is found in ... |
891-1065 | 1.87e-28 | |||||||||
This domain is named PAZ after the proteins Piwi Argonaut and Zwille; This domain is found in two families of proteins that are involved in post-transcriptional gene silencing. These are the Piwi family and the Dicer family, that includes the Carpel factory protein. The function of the domains is unknown but has been suggested to mediate complex formation between proteins of the Piwi and Dicer families by hetero-dimerisation. The three-dimensional structure of this domain has been solved. The PAZ domain is composed of two subdomains. One subdomain is similar to the OB fold, albeit with a different topology. The OB-fold is well known as a single-stranded nucleic acid binding fold. The second subdomain is composed of a beta-hairpin followed by an alpha-helix. The PAZ domains shows low-affinity nucleic acid binding and appears to interact with the 3' ends of single-stranded regions of RNA in the cleft between the two subdomains. PAZ can bind the characteristic two-base 3' overhangs of siRNAs, indicating that although PAZ may not be a primary nucleic acid binding site in Dicer or RISC, it may contribute to the specific and productive incorporation of siRNAs and miRNAs into the RNAi pathway. Pssm-ID: 198017 Cd Length: 138 Bit Score: 112.00 E-value: 1.87e-28
|
|||||||||||||
RIBOc | smart00535 | Ribonuclease III family; |
1296-1387 | 3.37e-25 | |||||||||
Ribonuclease III family; Pssm-ID: 197778 Cd Length: 129 Bit Score: 102.68 E-value: 3.37e-25
|
|||||||||||||
PRK13766 | PRK13766 | Hef nuclease; Provisional |
37-553 | 9.46e-25 | |||||||||
Hef nuclease; Provisional Pssm-ID: 237496 [Multi-domain] Cd Length: 773 Bit Score: 112.66 E-value: 9.46e-25
|
|||||||||||||
Dicer_PBD | cd15903 | Partner-binding domain of the endoribonuclease Dicer; The endoribonuclease Dicer plays a ... |
271-365 | 1.01e-24 | |||||||||
Partner-binding domain of the endoribonuclease Dicer; The endoribonuclease Dicer plays a central role in RNA interference by breaking down RNA molecules into fragments of about 22 nucleotides (miRNAs and siRNAs). Loading of RNA onto Dicer and the enzymatic cleavage are supported by dsRNA-binding proteins, including trans-activation response (TAR) RNA-binding protein (TRBP) or protein activator of PKR (PACT). Together with Argonaute, this constitutes the RNA-induced silencing complex (RISC) which functions to load the small RNA fragments onto Argonaute. The Partner-binding domain of Dicer is responsible for interactions with the dsRNA-binding proteins. This helical domain can be found inserted in a subset of SF2-type DEAD-box related helicases. Pssm-ID: 277191 Cd Length: 104 Bit Score: 100.05 E-value: 1.01e-24
|
|||||||||||||
RIBOc | cd00593 | RIBOc. Ribonuclease III C terminal domain. This group consists of eukaryotic, bacterial and ... |
1296-1376 | 1.30e-24 | |||||||||
RIBOc. Ribonuclease III C terminal domain. This group consists of eukaryotic, bacterial and archeal ribonuclease III (RNAse III) proteins. RNAse III is a double stranded RNA-specific endonuclease. Prokaryotic RNAse III is important in post-transcriptional control of mRNA stability and translational efficiency. It is involved in the processing of ribosomal RNA precursors. Prokaryotic RNAse III also plays a role in the maturation of tRNA precursors and in the processing of phage and plasmid transcripts. Eukaryotic RNase III's participate (through direct cleavage) in rRNA processing, in processing of small nucleolar RNAs (snoRNAs) and snRNA's (components of the spliceosome). In eukaryotes RNase III or RNaseIII like enzymes such as Dicer are involved in RNAi (RNA interference) and miRNA (micro-RNA) gene silencing. Pssm-ID: 238333 Cd Length: 133 Bit Score: 101.15 E-value: 1.30e-24
|
|||||||||||||
DEXDc | smart00487 | DEAD-like helicases superfamily; |
40-242 | 2.62e-23 | |||||||||
DEAD-like helicases superfamily; Pssm-ID: 214692 [Multi-domain] Cd Length: 201 Bit Score: 99.49 E-value: 2.62e-23
|
|||||||||||||
Ribonuclease_3 | pfam00636 | Ribonuclease III domain; |
1698-1820 | 1.03e-21 | |||||||||
Ribonuclease III domain; Pssm-ID: 459883 Cd Length: 101 Bit Score: 91.57 E-value: 1.03e-21
|
|||||||||||||
PAZ | pfam02170 | PAZ domain; This domain is named PAZ after the proteins Piwi Argonaut and Zwille. This domain ... |
914-1064 | 2.17e-20 | |||||||||
PAZ domain; This domain is named PAZ after the proteins Piwi Argonaut and Zwille. This domain is found in two families of proteins that are involved in post-transcriptional gene silencing. These are the Piwi family and the Dicer family, that includes the Carpel factory protein. The function of the domains is unknown but has been suggested to mediate complex formation between proteins of the Piwi and Dicer families by hetero-dimerization. The three-dimensional structure of this domain has been solved. The PAZ domain is composed of two subdomains. One subdomain is similar to the OB fold, albeit with a different topology. The OB-fold is well known as a single-stranded nucleic acid binding fold. The second subdomain is composed of a beta-hairpin followed by an alpha-helix. The PAZ domains shows low-affinity nucleic acid binding and appears to interact with the 3' ends of single-stranded regions of RNA in the cleft between the two subdomains. PAZ can bind the characteriztic two-base 3' overhangs of siRNAs, indicating that although PAZ may not be a primary nucleic acid binding site in Dicer or RISC, it may contribute to the specific and productive incorporation of siRNAs and miRNAs into the RNAi pathway. Pssm-ID: 460472 Cd Length: 123 Bit Score: 88.40 E-value: 2.17e-20
|
|||||||||||||
Ribonuclease_3 | pfam00636 | Ribonuclease III domain; |
1313-1376 | 6.41e-15 | |||||||||
Ribonuclease III domain; Pssm-ID: 459883 Cd Length: 101 Bit Score: 72.31 E-value: 6.41e-15
|
|||||||||||||
Helicase_C | pfam00271 | Helicase conserved C-terminal domain; The Prosite family is restricted to DEAD/H helicases, ... |
501-553 | 1.10e-14 | |||||||||
Helicase conserved C-terminal domain; The Prosite family is restricted to DEAD/H helicases, whereas this domain family is found in a wide variety of helicases and helicase related proteins. It may be that this is not an autonomously folding unit, but an integral part of the helicase. Pssm-ID: 459740 [Multi-domain] Cd Length: 109 Bit Score: 71.86 E-value: 1.10e-14
|
|||||||||||||
ResIII | pfam04851 | Type III restriction enzyme, res subunit; |
41-207 | 4.11e-14 | |||||||||
Type III restriction enzyme, res subunit; Pssm-ID: 398492 [Multi-domain] Cd Length: 162 Bit Score: 71.93 E-value: 4.11e-14
|
|||||||||||||
HELICc | smart00490 | helicase superfamily c-terminal domain; |
499-553 | 8.89e-13 | |||||||||
helicase superfamily c-terminal domain; Pssm-ID: 197757 [Multi-domain] Cd Length: 82 Bit Score: 65.31 E-value: 8.89e-13
|
|||||||||||||
Rnc | COG0571 | dsRNA-specific ribonuclease [Transcription]; |
1293-1365 | 4.80e-11 | |||||||||
dsRNA-specific ribonuclease [Transcription]; Pssm-ID: 440336 [Multi-domain] Cd Length: 229 Bit Score: 64.73 E-value: 4.80e-11
|
|||||||||||||
RNaseIII | TIGR02191 | ribonuclease III, bacterial; This family consists of bacterial examples of ribonuclease III. ... |
1292-1367 | 4.91e-11 | |||||||||
ribonuclease III, bacterial; This family consists of bacterial examples of ribonuclease III. This enzyme cleaves double-stranded rRNA. It is involved in processing ribosomal RNA precursors. It is found even in minimal genones such as Mycoplasma genitalium and Buchnera aphidicola, and in some cases has been shown to be an essential gene. These bacterial proteins contain a double-stranded RNA binding motif (pfam00035) and a ribonuclease III domain (pfam00636). Eukaryotic homologs tend to be much longer proteins with additional domains, localized to the nucleus, and not included in this family. [Transcription, RNA processing] Pssm-ID: 274024 [Multi-domain] Cd Length: 220 Bit Score: 64.53 E-value: 4.91e-11
|
|||||||||||||
DSRM | smart00358 | Double-stranded RNA binding motif; |
1846-1909 | 5.39e-08 | |||||||||
Double-stranded RNA binding motif; Pssm-ID: 214634 [Multi-domain] Cd Length: 67 Bit Score: 51.49 E-value: 5.39e-08
|
|||||||||||||
SrmB | COG0513 | Superfamily II DNA and RNA helicase [Replication, recombination and repair]; |
444-589 | 7.77e-08 | |||||||||
Superfamily II DNA and RNA helicase [Replication, recombination and repair]; Pssm-ID: 440279 [Multi-domain] Cd Length: 420 Bit Score: 57.08 E-value: 7.77e-08
|
|||||||||||||
PRK10917 | PRK10917 | ATP-dependent DNA helicase RecG; Provisional |
502-539 | 5.10e-06 | |||||||||
ATP-dependent DNA helicase RecG; Provisional Pssm-ID: 236794 [Multi-domain] Cd Length: 681 Bit Score: 51.69 E-value: 5.10e-06
|
|||||||||||||
Name | Accession | Description | Interval | E-value | |||||||||
DEXHc_dicer | cd18034 | DEXH-box helicase domain of endoribonuclease Dicer; Dicer ribonucleases cleave double-stranded ... |
42-239 | 7.03e-97 | |||||||||
DEXH-box helicase domain of endoribonuclease Dicer; Dicer ribonucleases cleave double-stranded RNA (dsRNA) precursors to generate microRNAs (miRNAs) and small interfering RNAs (siRNAs). In concert with Argonautes, these small RNAs bind complementary mRNAs to down-regulate their expression. miRNAs are processed by Dicer from small hairpins, while siRNAs are typically processed from longer dsRNA, from endogenous sources, or exogenous sources such as viral replication intermediates. Some organisms, such as Homo sapiens and Caenorhabditis elegans, encode one Dicer that generates miRNAs and siRNAs, but other organisms have multiple dicers with specialized functions. Dicers exist throughout eukaryotes, and a subset have an N-terminal helicase domain of the RIG-I-like receptor (RLR) subgroup. RLRs often function in innate immunity and Dicer helicase domains sometimes show differences in activity that correlate with roles in immunity. Dicer is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350792 [Multi-domain] Cd Length: 200 Bit Score: 310.74 E-value: 7.03e-97
|
|||||||||||||
PAZ_dicer_like | cd02843 | PAZ domain, dicer_like subfamily. Dicer is an RNAse involved in cleaving dsRNA in the RNA ... |
886-1008 | 2.07e-69 | |||||||||
PAZ domain, dicer_like subfamily. Dicer is an RNAse involved in cleaving dsRNA in the RNA interference pathway. It generates dsRNAs which are approximately 20 bp long (siRNAs), which in turn target hydrolysis of homologous RNAs. PAZ domains are named after the proteins Piwi Argonaut and Zwille. PAZ is found in two families of proteins that are essential components of RNA-mediated gene-silencing pathways, including RNA interference, the piwi and Dicer families. PAZ functions as a nucleic-acid binding domain, with a strong preference for single-stranded nucleic acids (RNA or DNA) or RNA duplexes with single-stranded 3' overhangs. It has been suggested that the PAZ domain provides a unique mode for the recognition of the two 3'-terminal nucleotides in single-stranded nucleic acids and buries the 3' OH group, and that it might recognize characteristic 3' overhangs in siRNAs within RISC (RNA-induced silencing) and other complexes. Pssm-ID: 239209 Cd Length: 122 Bit Score: 228.87 E-value: 2.07e-69
|
|||||||||||||
DEXHc_RIG-I | cd17927 | DEXH-box helicase domain of DEAD-like helicase RIG-I family proteins; Members of the RIG-I ... |
42-238 | 3.09e-62 | |||||||||
DEXH-box helicase domain of DEAD-like helicase RIG-I family proteins; Members of the RIG-I family include FANCM, dicer, Hef, and the RIG-I-like receptors. Fanconi anemia group M (FANCM) protein is a DNA-dependent ATPase component of the Fanconi anemia (FA) core complex required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage. Dicer ribonucleases cleave double-stranded RNA (dsRNA) precursors to generate microRNAs (miRNAs) and small interfering RNAs (siRNAs). Hef (helicase-associated endonuclease fork-structure) is involved in stalled replication fork repair. RIG-I-like receptors (RLRs) sense cytoplasmic viral RNA and comprises RIG-I, RLR-2/MDA5 (melanoma differentiation-associated protein 5) and RLR-3/LGP2 (laboratory of genetics and physiology 2). The RIG-I family is part of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350685 [Multi-domain] Cd Length: 201 Bit Score: 211.52 E-value: 3.09e-62
|
|||||||||||||
SF2_C_dicer | cd18802 | C-terminal helicase domain of the endoribonuclease Dicer; Dicer ribonucleases cleave ... |
372-564 | 2.90e-57 | |||||||||
C-terminal helicase domain of the endoribonuclease Dicer; Dicer ribonucleases cleave double-stranded RNA (dsRNA) precursors to generate microRNAs (miRNAs) and small interfering RNAs (siRNAs). In concert with Argonautes, these small RNAs bind complementary mRNAs to down-regulate their expression. miRNAs are processed by Dicer from small hairpins, while siRNAs are typically processed from longer dsRNA, from endogenous sources, or exogenous sources such as viral replication intermediates. Some organisms, such as Homo sapiens and Caenorhabditis elegans, encode one Dicer that generates miRNAs and siRNAs, but other organisms have multiple dicers with specialized functions. Dicer exists throughout eukaryotes, and a subset has an N-terminal helicase domain of the RIG-I-like receptor (RLR) subgroup. RLRs often function in innate immunity and Dicer helicase domains sometimes show differences in activity that correlate with roles in immunity. Dicer helicase domains are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350189 [Multi-domain] Cd Length: 142 Bit Score: 194.73 E-value: 2.90e-57
|
|||||||||||||
RIBOc | cd00593 | RIBOc. Ribonuclease III C terminal domain. This group consists of eukaryotic, bacterial and ... |
1678-1842 | 5.81e-40 | |||||||||
RIBOc. Ribonuclease III C terminal domain. This group consists of eukaryotic, bacterial and archeal ribonuclease III (RNAse III) proteins. RNAse III is a double stranded RNA-specific endonuclease. Prokaryotic RNAse III is important in post-transcriptional control of mRNA stability and translational efficiency. It is involved in the processing of ribosomal RNA precursors. Prokaryotic RNAse III also plays a role in the maturation of tRNA precursors and in the processing of phage and plasmid transcripts. Eukaryotic RNase III's participate (through direct cleavage) in rRNA processing, in processing of small nucleolar RNAs (snoRNAs) and snRNA's (components of the spliceosome). In eukaryotes RNase III or RNaseIII like enzymes such as Dicer are involved in RNAi (RNA interference) and miRNA (micro-RNA) gene silencing. Pssm-ID: 238333 Cd Length: 133 Bit Score: 145.06 E-value: 5.81e-40
|
|||||||||||||
DSRM_DICER | cd10843 | double-stranded RNA binding motif of endoribonuclease Dicer and similar proteins; Dicer (also ... |
1847-1909 | 2.66e-39 | |||||||||
double-stranded RNA binding motif of endoribonuclease Dicer and similar proteins; Dicer (also known as helicase with RNase motif (HERNA), or helicase MOI) is a double-stranded RNA (dsRNA) endoribonuclease playing a central role in short dsRNA-mediated post-transcriptional gene silencing. It cleaves naturally occurring long dsRNAs and short hairpin pre-microRNAs (miRNA) into fragments of twenty-one to twenty-three nucleotides with 3' overhang of two nucleotides, producing respectively short interfering RNAs (siRNA) and mature microRNAs. Dicer contains a double-stranded RNA binding motif (DSRM) at the C-terminus. DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. Pssm-ID: 380680 Cd Length: 63 Bit Score: 140.25 E-value: 2.66e-39
|
|||||||||||||
RIBOc | smart00535 | Ribonuclease III family; |
1678-1841 | 4.10e-37 | |||||||||
Ribonuclease III family; Pssm-ID: 197778 Cd Length: 129 Bit Score: 136.58 E-value: 4.10e-37
|
|||||||||||||
RNaseIII | TIGR02191 | ribonuclease III, bacterial; This family consists of bacterial examples of ribonuclease III. ... |
1665-1908 | 7.01e-36 | |||||||||
ribonuclease III, bacterial; This family consists of bacterial examples of ribonuclease III. This enzyme cleaves double-stranded rRNA. It is involved in processing ribosomal RNA precursors. It is found even in minimal genones such as Mycoplasma genitalium and Buchnera aphidicola, and in some cases has been shown to be an essential gene. These bacterial proteins contain a double-stranded RNA binding motif (pfam00035) and a ribonuclease III domain (pfam00636). Eukaryotic homologs tend to be much longer proteins with additional domains, localized to the nucleus, and not included in this family. [Transcription, RNA processing] Pssm-ID: 274024 [Multi-domain] Cd Length: 220 Bit Score: 136.56 E-value: 7.01e-36
|
|||||||||||||
Rnc | COG0571 | dsRNA-specific ribonuclease [Transcription]; |
1662-1912 | 2.31e-35 | |||||||||
dsRNA-specific ribonuclease [Transcription]; Pssm-ID: 440336 [Multi-domain] Cd Length: 229 Bit Score: 135.23 E-value: 2.31e-35
|
|||||||||||||
MPH1 | COG1111 | ERCC4-related helicase [Replication, recombination and repair]; |
44-552 | 1.41e-34 | |||||||||
ERCC4-related helicase [Replication, recombination and repair]; Pssm-ID: 440728 [Multi-domain] Cd Length: 718 Bit Score: 143.33 E-value: 1.41e-34
|
|||||||||||||
Dicer_dimer | pfam03368 | Dicer dimerization domain; This domain is found in members of the Dicer protein family which ... |
630-718 | 2.53e-31 | |||||||||
Dicer dimerization domain; This domain is found in members of the Dicer protein family which function in RNA interference, an evolutionarily conserved mechanism for gene silencing using double-stranded RNA (dsRNA) molecules. It is essential for the activity of Dicer. It is a divergent double stranded RNA-binding domain. The N-terminal alpha helix of this domain is in a different orientation to that found in canonical dsRNA-binding domains. This results in a change of charge distribution at the potential dsRNA-binding surface and in the N- and C-termini of the domain being in close proximity. This domain has weak dsRNA-binding activity. It mediates heterodimerization of Dicer proteins with their respective protein partners. Pssm-ID: 460900 Cd Length: 89 Bit Score: 118.37 E-value: 2.53e-31
|
|||||||||||||
PAZ | cd02825 | PAZ domain, named PAZ after the proteins Piwi Argonaut and Zwille. PAZ is found in two ... |
886-1008 | 3.56e-31 | |||||||||
PAZ domain, named PAZ after the proteins Piwi Argonaut and Zwille. PAZ is found in two families of proteins that are essential components of RNA-mediated gene-silencing pathways, including RNA interference, the piwi and Dicer families. PAZ functions as a nucleic-acid binding domain, with a strong preference for single-stranded nucleic acids (RNA or DNA) or RNA duplexes with single-stranded 3' overhangs. It has been suggested that the PAZ domain provides a unique mode for the recognition of the two 3'-terminal nucleotides in single-stranded nucleic acids and buries the 3' OH group, and that it might recognize characteristic 3' overhangs in siRNAs within RISC (RNA-induced silencing) and other complexes. This parent model also contains structures of an archaeal PAZ domain. Pssm-ID: 239207 Cd Length: 115 Bit Score: 119.10 E-value: 3.56e-31
|
|||||||||||||
PAZ | smart00949 | This domain is named PAZ after the proteins Piwi Argonaut and Zwille; This domain is found in ... |
891-1065 | 1.87e-28 | |||||||||
This domain is named PAZ after the proteins Piwi Argonaut and Zwille; This domain is found in two families of proteins that are involved in post-transcriptional gene silencing. These are the Piwi family and the Dicer family, that includes the Carpel factory protein. The function of the domains is unknown but has been suggested to mediate complex formation between proteins of the Piwi and Dicer families by hetero-dimerisation. The three-dimensional structure of this domain has been solved. The PAZ domain is composed of two subdomains. One subdomain is similar to the OB fold, albeit with a different topology. The OB-fold is well known as a single-stranded nucleic acid binding fold. The second subdomain is composed of a beta-hairpin followed by an alpha-helix. The PAZ domains shows low-affinity nucleic acid binding and appears to interact with the 3' ends of single-stranded regions of RNA in the cleft between the two subdomains. PAZ can bind the characteristic two-base 3' overhangs of siRNAs, indicating that although PAZ may not be a primary nucleic acid binding site in Dicer or RISC, it may contribute to the specific and productive incorporation of siRNAs and miRNAs into the RNAi pathway. Pssm-ID: 198017 Cd Length: 138 Bit Score: 112.00 E-value: 1.87e-28
|
|||||||||||||
DEXHc_RLR | cd18036 | DEXH-box helicase domain of RIG-I-like receptors; RIG-I-like receptors (RLRs) sense ... |
43-226 | 5.43e-26 | |||||||||
DEXH-box helicase domain of RIG-I-like receptors; RIG-I-like receptors (RLRs) sense cytoplasmic viral RNA and comprise RIG-I, RLR-2/MDA5 (melanoma differentiation-associated protein 5) and RLR-3/LGP2 (laboratory of genetics and physiology 2). RIG-I-like receptors (RLRs) are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350794 [Multi-domain] Cd Length: 204 Bit Score: 107.56 E-value: 5.43e-26
|
|||||||||||||
RIBOc | smart00535 | Ribonuclease III family; |
1296-1387 | 3.37e-25 | |||||||||
Ribonuclease III family; Pssm-ID: 197778 Cd Length: 129 Bit Score: 102.68 E-value: 3.37e-25
|
|||||||||||||
PRK13766 | PRK13766 | Hef nuclease; Provisional |
37-553 | 9.46e-25 | |||||||||
Hef nuclease; Provisional Pssm-ID: 237496 [Multi-domain] Cd Length: 773 Bit Score: 112.66 E-value: 9.46e-25
|
|||||||||||||
Dicer_PBD | cd15903 | Partner-binding domain of the endoribonuclease Dicer; The endoribonuclease Dicer plays a ... |
271-365 | 1.01e-24 | |||||||||
Partner-binding domain of the endoribonuclease Dicer; The endoribonuclease Dicer plays a central role in RNA interference by breaking down RNA molecules into fragments of about 22 nucleotides (miRNAs and siRNAs). Loading of RNA onto Dicer and the enzymatic cleavage are supported by dsRNA-binding proteins, including trans-activation response (TAR) RNA-binding protein (TRBP) or protein activator of PKR (PACT). Together with Argonaute, this constitutes the RNA-induced silencing complex (RISC) which functions to load the small RNA fragments onto Argonaute. The Partner-binding domain of Dicer is responsible for interactions with the dsRNA-binding proteins. This helical domain can be found inserted in a subset of SF2-type DEAD-box related helicases. Pssm-ID: 277191 Cd Length: 104 Bit Score: 100.05 E-value: 1.01e-24
|
|||||||||||||
RIBOc | cd00593 | RIBOc. Ribonuclease III C terminal domain. This group consists of eukaryotic, bacterial and ... |
1296-1376 | 1.30e-24 | |||||||||
RIBOc. Ribonuclease III C terminal domain. This group consists of eukaryotic, bacterial and archeal ribonuclease III (RNAse III) proteins. RNAse III is a double stranded RNA-specific endonuclease. Prokaryotic RNAse III is important in post-transcriptional control of mRNA stability and translational efficiency. It is involved in the processing of ribosomal RNA precursors. Prokaryotic RNAse III also plays a role in the maturation of tRNA precursors and in the processing of phage and plasmid transcripts. Eukaryotic RNase III's participate (through direct cleavage) in rRNA processing, in processing of small nucleolar RNAs (snoRNAs) and snRNA's (components of the spliceosome). In eukaryotes RNase III or RNaseIII like enzymes such as Dicer are involved in RNAi (RNA interference) and miRNA (micro-RNA) gene silencing. Pssm-ID: 238333 Cd Length: 133 Bit Score: 101.15 E-value: 1.30e-24
|
|||||||||||||
DEXDc | smart00487 | DEAD-like helicases superfamily; |
40-242 | 2.62e-23 | |||||||||
DEAD-like helicases superfamily; Pssm-ID: 214692 [Multi-domain] Cd Length: 201 Bit Score: 99.49 E-value: 2.62e-23
|
|||||||||||||
DEXHc_RIG-I_DDX58 | cd18073 | DEXH-box helicase domain of RIG-I; RIG-I (Retinoic acid-inducible gene I protein), also called ... |
44-226 | 6.28e-23 | |||||||||
DEXH-box helicase domain of RIG-I; RIG-I (Retinoic acid-inducible gene I protein), also called DEAD box protein 58 (DDX58), is a pathogen-recognition receptor that recognizes viral 5'-triphosphates carrying double-stranded RNA. Upon binding to these microbe-associated molecular patterns (MAMPs), RIG-I forms oligomers and promotes downstream processes that result in type I interferon production and induction of an antiviral state. The optimal ligand for RIG-I has been found to be base-paired or double-stranded RNA (dsRNA) molecules containing a 5' triphosphate (5'-ppp-dsRNA). RIG-I contains two N-terminal caspase activation and recruitment domains (CARDs), which are required for interaction with IPS-1, a superfamily 2 helicase/translocase/ATPase (SF2) domain and a C-terminal regulatory/repressor domain (RD). RIG-I is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350831 [Multi-domain] Cd Length: 202 Bit Score: 98.74 E-value: 6.28e-23
|
|||||||||||||
Ribonuclease_3 | pfam00636 | Ribonuclease III domain; |
1698-1820 | 1.03e-21 | |||||||||
Ribonuclease III domain; Pssm-ID: 459883 Cd Length: 101 Bit Score: 91.57 E-value: 1.03e-21
|
|||||||||||||
helicase_insert_domain | cd12088 | helicase_insert_domain; helicase_insert_domain; This helical domain can be found inserted in a ... |
271-362 | 5.55e-21 | |||||||||
helicase_insert_domain; helicase_insert_domain; This helical domain can be found inserted in a subset of SF2-type DEAD-box related helicases, like archaeal Hef helicase, MDA5-like helicases and FancM-like helicases. The exact function of this domain is unknown, but seems to play a role in interaction with nucleotides and/or the stabilization of the nucleotide complex. Pssm-ID: 277187 Cd Length: 82 Bit Score: 88.68 E-value: 5.55e-21
|
|||||||||||||
DEXDc_FANCM | cd18033 | DEAH-box helicase domain of FANCM; Fanconi anemia group M (FANCM) protein is a DNA-dependent ... |
45-208 | 6.40e-21 | |||||||||
DEAH-box helicase domain of FANCM; Fanconi anemia group M (FANCM) protein is a DNA-dependent ATPase component of the Fanconi anemia (FA) core complex. It is required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage. In complex with CENPS and CENPX, it binds double-stranded DNA (dsDNA), fork-structured DNA (fsDNA), and Holliday junction substrates. Its ATP-dependent DNA branch migration activity can process branched DNA structures such as a movable replication fork. This activity is strongly stimulated in the presence of CENPS and CENPX. In complex with FAAP24, it efficiently binds to single-strand DNA (ssDNA), splayed-arm DNA, and 3'-flap substrates. In vitro, on its own, it strongly binds ssDNA oligomers and weakly fsDNA, but does not bind to dsDNA. FANCM is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350791 [Multi-domain] Cd Length: 182 Bit Score: 92.00 E-value: 6.40e-21
|
|||||||||||||
PAZ | pfam02170 | PAZ domain; This domain is named PAZ after the proteins Piwi Argonaut and Zwille. This domain ... |
914-1064 | 2.17e-20 | |||||||||
PAZ domain; This domain is named PAZ after the proteins Piwi Argonaut and Zwille. This domain is found in two families of proteins that are involved in post-transcriptional gene silencing. These are the Piwi family and the Dicer family, that includes the Carpel factory protein. The function of the domains is unknown but has been suggested to mediate complex formation between proteins of the Piwi and Dicer families by hetero-dimerization. The three-dimensional structure of this domain has been solved. The PAZ domain is composed of two subdomains. One subdomain is similar to the OB fold, albeit with a different topology. The OB-fold is well known as a single-stranded nucleic acid binding fold. The second subdomain is composed of a beta-hairpin followed by an alpha-helix. The PAZ domains shows low-affinity nucleic acid binding and appears to interact with the 3' ends of single-stranded regions of RNA in the cleft between the two subdomains. PAZ can bind the characteriztic two-base 3' overhangs of siRNAs, indicating that although PAZ may not be a primary nucleic acid binding site in Dicer or RISC, it may contribute to the specific and productive incorporation of siRNAs and miRNAs into the RNAi pathway. Pssm-ID: 460472 Cd Length: 123 Bit Score: 88.40 E-value: 2.17e-20
|
|||||||||||||
Ribonucleas_3_3 | pfam14622 | Ribonuclease-III-like; Members of this family are involved in rDNA transcription and rRNA ... |
1679-1821 | 1.57e-16 | |||||||||
Ribonuclease-III-like; Members of this family are involved in rDNA transcription and rRNA processing. They probably also cleave a stem-loop structure at the 3' end of U2 snRNA to ensure formation of the correct U2 3' end; they are involved in polyadenylation-independent transcription termination. Some members may be mitochondrial ribosomal protein subunit L15, others may be 60S ribosomal protein L3. Pssm-ID: 434075 Cd Length: 127 Bit Score: 77.60 E-value: 1.57e-16
|
|||||||||||||
PAZ_CAF_like | cd02844 | PAZ domain, CAF_like subfamily. CAF (for carpel factory) is a plant homolog of Dicer. CAF has ... |
922-1044 | 5.94e-15 | |||||||||
PAZ domain, CAF_like subfamily. CAF (for carpel factory) is a plant homolog of Dicer. CAF has been implicated in flower morphogenesis and in early Arabidopsis development and might function through posttranscriptional regulation of specific mRNA molecules. PAZ domains are named after the proteins Piwi, Argonaut, and Zwille. PAZ is found in two families of proteins that are essential components of RNA-mediated gene-silencing pathways, including RNA interference, the Piwi and Dicer families. PAZ functions as a nucleic-acid binding domain, with a strong preference for single-stranded nucleic acids (RNA or DNA) or RNA duplexes with single-stranded 3' overhangs. It has been suggested that the PAZ domain provides a unique mode for the recognition of the two 3'-terminal nucleotides in single-stranded nucleic acids and buries the 3' OH group, and that it might recognize characteristic 3' overhangs in siRNAs within RISC (RNA-induced silencing) and other complexes. Pssm-ID: 239210 Cd Length: 135 Bit Score: 73.61 E-value: 5.94e-15
|
|||||||||||||
Ribonuclease_3 | pfam00636 | Ribonuclease III domain; |
1313-1376 | 6.41e-15 | |||||||||
Ribonuclease III domain; Pssm-ID: 459883 Cd Length: 101 Bit Score: 72.31 E-value: 6.41e-15
|
|||||||||||||
Helicase_C | pfam00271 | Helicase conserved C-terminal domain; The Prosite family is restricted to DEAD/H helicases, ... |
501-553 | 1.10e-14 | |||||||||
Helicase conserved C-terminal domain; The Prosite family is restricted to DEAD/H helicases, whereas this domain family is found in a wide variety of helicases and helicase related proteins. It may be that this is not an autonomously folding unit, but an integral part of the helicase. Pssm-ID: 459740 [Multi-domain] Cd Length: 109 Bit Score: 71.86 E-value: 1.10e-14
|
|||||||||||||
ResIII | pfam04851 | Type III restriction enzyme, res subunit; |
41-207 | 4.11e-14 | |||||||||
Type III restriction enzyme, res subunit; Pssm-ID: 398492 [Multi-domain] Cd Length: 162 Bit Score: 71.93 E-value: 4.11e-14
|
|||||||||||||
DEXHc_RLR-3 | cd18075 | DEXH-box helicase domain of RLR-3; RIG-I-like receptor 3 (RLR-3, also known as laboratory of ... |
45-208 | 1.36e-13 | |||||||||
DEXH-box helicase domain of RLR-3; RIG-I-like receptor 3 (RLR-3, also known as laboratory of genetics and physiology 2 or LGP2 and DHX58) appears to positively and negatively regulate MDA5 and RIG-I signaling, respectively. RLR-3 resembles a chimera combining a MDA5-like helicase domain and RIG-I like CTD supporting both stem and end binding. RNA binding is required for RLR-3-mediated enhancement of MDA5 activation. RLR-3 end-binding may promote nucleation of MDA5 oligomerization on dsRNA. RLR-3 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350833 [Multi-domain] Cd Length: 200 Bit Score: 71.43 E-value: 1.36e-13
|
|||||||||||||
DEXHc_Ski2 | cd17921 | DEXH-box helicase domain of DEAD-like helicase Ski2 family proteins; Ski2-like RNA helicases ... |
46-211 | 2.12e-13 | |||||||||
DEXH-box helicase domain of DEAD-like helicase Ski2 family proteins; Ski2-like RNA helicases play an important role in RNA degradation, processing, and splicing pathways. They belong to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350679 [Multi-domain] Cd Length: 181 Bit Score: 70.37 E-value: 2.12e-13
|
|||||||||||||
DEXHc_Hef | cd18035 | DEXH-box helicase domain of Hef; Hef (helicase-associated endonuclease fork-structure) belongs ... |
44-226 | 5.16e-13 | |||||||||
DEXH-box helicase domain of Hef; Hef (helicase-associated endonuclease fork-structure) belongs to the XPF/MUS81/FANCM family of endonucleases and is involved in stalled replication fork repair. All archaea encode a protein of the XPF/MUS81/FANCM family of endonucleases. It exists in two forms: a long form, referred as Hef which consists of an N-terminal helicase fused to a C-terminal nuclease and is specific to euryarchaea and a short form, referred as XPF which lacks the helicase domain and is specific to crenarchaea and thaumarchaea. Hef has the unique feature of having both active helicase and nuclease domains. This domain configuration is highly similar with the human FANCM, a possible ortholog of archaeal Hef proteins. Hef is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350793 [Multi-domain] Cd Length: 181 Bit Score: 69.47 E-value: 5.16e-13
|
|||||||||||||
HELICc | smart00490 | helicase superfamily c-terminal domain; |
499-553 | 8.89e-13 | |||||||||
helicase superfamily c-terminal domain; Pssm-ID: 197757 [Multi-domain] Cd Length: 82 Bit Score: 65.31 E-value: 8.89e-13
|
|||||||||||||
DEAD | pfam00270 | DEAD/DEAH box helicase; Members of this family include the DEAD and DEAH box helicases. ... |
45-221 | 2.56e-12 | |||||||||
DEAD/DEAH box helicase; Members of this family include the DEAD and DEAH box helicases. Helicases are involved in unwinding nucleic acids. The DEAD box helicases are involved in various aspects of RNA metabolism, including nuclear transcription, pre mRNA splicing, ribosome biogenesis, nucleocytoplasmic transport, translation, RNA decay and organellar gene expression. Pssm-ID: 425570 [Multi-domain] Cd Length: 165 Bit Score: 66.88 E-value: 2.56e-12
|
|||||||||||||
SF2_C_DEAD | cd18787 | C-terminal helicase domain of the DEAD box helicases; DEAD-box helicases comprise a diverse ... |
445-555 | 8.85e-12 | |||||||||
C-terminal helicase domain of the DEAD box helicases; DEAD-box helicases comprise a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis, and RNA degradation. They are superfamily (SF)2 helicases that, similar to SF1, do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350174 [Multi-domain] Cd Length: 131 Bit Score: 64.07 E-value: 8.85e-12
|
|||||||||||||
SF2_C_FANCM_Hef | cd18801 | C-terminal helicase domain of Fanconi anemia group M family helicases; Fanconi anemia group M ... |
445-553 | 1.37e-11 | |||||||||
C-terminal helicase domain of Fanconi anemia group M family helicases; Fanconi anemia group M (FANCM) protein is a DNA-dependent ATPase component of the Fanconi anemia (FA) core complex. It is required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage. Hef (helicase-associated endonuclease fork-structure) belongs to the XPF/MUS81/FANCM family of endonucleases and is involved in stalled replication fork repair. FANCM and Hef are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350188 [Multi-domain] Cd Length: 143 Bit Score: 63.91 E-value: 1.37e-11
|
|||||||||||||
SSL2 | COG1061 | Superfamily II DNA or RNA helicase [Transcription, Replication, recombination, and repair]; |
42-207 | 2.58e-11 | |||||||||
Superfamily II DNA or RNA helicase [Transcription, Replication, recombination, and repair]; Pssm-ID: 440681 [Multi-domain] Cd Length: 566 Bit Score: 68.51 E-value: 2.58e-11
|
|||||||||||||
DEXHc_RE | cd17926 | DEXH-box helicase domain of DEAD-like helicase restriction enzyme family proteins; This family ... |
44-208 | 4.54e-11 | |||||||||
DEXH-box helicase domain of DEAD-like helicase restriction enzyme family proteins; This family is composed of helicase restriction enzymes and similar proteins such as TFIIH basal transcription factor complex helicase XPB subunit. These proteins are part of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350684 [Multi-domain] Cd Length: 146 Bit Score: 62.71 E-value: 4.54e-11
|
|||||||||||||
Rnc | COG0571 | dsRNA-specific ribonuclease [Transcription]; |
1293-1365 | 4.80e-11 | |||||||||
dsRNA-specific ribonuclease [Transcription]; Pssm-ID: 440336 [Multi-domain] Cd Length: 229 Bit Score: 64.73 E-value: 4.80e-11
|
|||||||||||||
RNaseIII | TIGR02191 | ribonuclease III, bacterial; This family consists of bacterial examples of ribonuclease III. ... |
1292-1367 | 4.91e-11 | |||||||||
ribonuclease III, bacterial; This family consists of bacterial examples of ribonuclease III. This enzyme cleaves double-stranded rRNA. It is involved in processing ribosomal RNA precursors. It is found even in minimal genones such as Mycoplasma genitalium and Buchnera aphidicola, and in some cases has been shown to be an essential gene. These bacterial proteins contain a double-stranded RNA binding motif (pfam00035) and a ribonuclease III domain (pfam00636). Eukaryotic homologs tend to be much longer proteins with additional domains, localized to the nucleus, and not included in this family. [Transcription, RNA processing] Pssm-ID: 274024 [Multi-domain] Cd Length: 220 Bit Score: 64.53 E-value: 4.91e-11
|
|||||||||||||
DEXHc_RLR-2 | cd18074 | DEXH-box helicase domain of RLR-2; RIG-I-like receptor 2 (RLR-2, also known as melanoma ... |
43-208 | 2.32e-10 | |||||||||
DEXH-box helicase domain of RLR-2; RIG-I-like receptor 2 (RLR-2, also known as melanoma differentiation-associated protein 5 or Mda5 and IFIH1) is a viral double-stranded RNA (dsRNA) receptor that shares sequence similarity and signaling pathways with RIG-I, yet plays essential functions in antiviral immunity through distinct specificity for viral RNA. RLR-2 recognizes the internal duplex structure, whereas RIG-I recognizes the terminus of dsRNA. RLR-2 uses direct protein-protein contacts to stack along dsRNA in a head-to-tail arrangement. The signaling domain (tandem CARD), which decorates the outside of the core RLR-2 filament, also has an intrinsic propensity to oligomerize into an elongated structure that activates the signaling adaptor, MAVS. RLR-2 uses long dsRNA as a signaling platform to cooperatively assemble the core filament, which in turn promotes stochastic assembly of the tandem CARD oligomers for signaling. LGP2 appears to positively and negatively regulate RLR-2 and RIG-I signaling, respectively. RLR-2 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350832 [Multi-domain] Cd Length: 216 Bit Score: 62.57 E-value: 2.32e-10
|
|||||||||||||
BRR2 | COG1204 | Replicative superfamily II helicase [Replication, recombination and repair]; |
48-221 | 1.12e-09 | |||||||||
Replicative superfamily II helicase [Replication, recombination and repair]; Pssm-ID: 440817 [Multi-domain] Cd Length: 529 Bit Score: 63.38 E-value: 1.12e-09
|
|||||||||||||
PAZ_piwi_like | cd02845 | PAZ domain, Piwi_like subfamily. In multi-cellular organisms, the Piwi protein appears to be ... |
928-1038 | 5.28e-09 | |||||||||
PAZ domain, Piwi_like subfamily. In multi-cellular organisms, the Piwi protein appears to be essential for the maintenance of germline stem cells. In the Drosophila male germline, Piwi was shown to be involved in the silencing of retrotransposons in the male gametes. The Piwi proteins share their domain architecture with other members of the argonaute family. The PAZ domain has been named after the proteins Piwi, Argonaut, and Zwille. PAZ is found in two families of proteins that are essential components of RNA-mediated gene-silencing pathways, including RNA interference, the Piwi and Dicer families. PAZ functions as a nucleic acid binding domain, with a strong preference for single-stranded nucleic acids (RNA or DNA) or RNA duplexes with single-stranded 3' overhangs. It has been suggested that the PAZ domain provides a unique mode for the recognition of the two 3'-terminal nucleotides in single-stranded nucleic acids and buries the 3' OH group, and that it might recognize characteristic 3' overhangs in siRNAs within RISC (RNA-induced silencing) and other complexes. Pssm-ID: 239211 Cd Length: 117 Bit Score: 55.73 E-value: 5.28e-09
|
|||||||||||||
DEXHc_RE_I_III_res | cd18032 | DEXH-box helicase domain of type III restriction enzyme res subunit; Members of this model ... |
44-207 | 7.18e-09 | |||||||||
DEXH-box helicase domain of type III restriction enzyme res subunit; Members of this model includes both type I and type III restriction enzymes. Both are hetero-oligomeric proteins. Type I REs are encoded by three closely linked genes: a specificity subunit (HsdS or S) for recognizing a DNA sequence, a methylation subunit (HsdM or M) for methylating the recognized target bases, and a restriction subunit (HsdR or R) for the translocation and random cleavage of non-methylated DNA. They show diverse catalytic activities, including methyltransferase (MTase), ATP hydrolase (ATPase), DNA translocation and restriction activities. These enzymes cut at a site that differs, and is a random distance (at least 1000 bp) away, from their recognition site. Cleavage at these random sites follows a process of DNA translocation, which shows that these enzymes are also molecular motors. The recognition site is asymmetrical and is composed of two specific portions: one containing 3-4 nucleotides, and another containing 4-5 nucleotides, separated by a non-specific spacer of about 6-8 nucleotides. Type III enzymes are composed of two subunits, Res and Mod. The Mod subunit recognizes the DNA sequence specific for the system and is a modification methyltransferase; as such, it is functionally equivalent to the M and S subunits of type I restriction endonucleases. Res is required for restriction, although it has no enzymatic activity on its own. Type III enzymes recognize short 5-6 bp-long asymmetric DNA sequences and cleave 25-27 bp downstream to leave short, single-stranded 5' protrusions. They require the presence of two inversely oriented unmethylated recognition sites for restriction to occur. These enzymes methylate only one strand of the DNA, at the N-6 position of adenosyl residues, so newly replicated DNA will have only one strand methylated, which is sufficient to protect against restriction. Both type I and type III REs are members of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350790 [Multi-domain] Cd Length: 163 Bit Score: 56.80 E-value: 7.18e-09
|
|||||||||||||
SF2-N | cd00046 | N-terminal DEAD/H-box helicase domain of superfamily 2 helicases; The DEAD/H-like superfamily ... |
58-207 | 1.57e-08 | |||||||||
N-terminal DEAD/H-box helicase domain of superfamily 2 helicases; The DEAD/H-like superfamily 2 helicases comprise a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This N-terminal domain contains the ATP-binding region. Pssm-ID: 350668 [Multi-domain] Cd Length: 146 Bit Score: 55.49 E-value: 1.57e-08
|
|||||||||||||
SF2_C | cd18785 | C-terminal helicase domain of superfamily 2 DEAD/H-box helicases; Superfamily (SF)2 helicases ... |
512-553 | 3.78e-08 | |||||||||
C-terminal helicase domain of superfamily 2 DEAD/H-box helicases; Superfamily (SF)2 helicases include DEAD-box helicases, UvrB, RecG, Ski2, Sucrose Non-Fermenting (SNF) family helicases, and dicer proteins, among others. Similar to SF1 helicases, they do not form toroidal structures like SF3-6 helicases. SF2 helicases are a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Their helicase core is surrounded by C- and N-terminal domains with specific functions such as nucleases, RNA or DNA binding domains, or domains engaged in protein-protein interactions. The core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350172 [Multi-domain] Cd Length: 77 Bit Score: 51.94 E-value: 3.78e-08
|
|||||||||||||
DSRM | smart00358 | Double-stranded RNA binding motif; |
1846-1909 | 5.39e-08 | |||||||||
Double-stranded RNA binding motif; Pssm-ID: 214634 [Multi-domain] Cd Length: 67 Bit Score: 51.49 E-value: 5.39e-08
|
|||||||||||||
SrmB | COG0513 | Superfamily II DNA and RNA helicase [Replication, recombination and repair]; |
444-589 | 7.77e-08 | |||||||||
Superfamily II DNA and RNA helicase [Replication, recombination and repair]; Pssm-ID: 440279 [Multi-domain] Cd Length: 420 Bit Score: 57.08 E-value: 7.77e-08
|
|||||||||||||
Ribonucleas_3_3 | pfam14622 | Ribonuclease-III-like; Members of this family are involved in rDNA transcription and rRNA ... |
1294-1369 | 1.23e-07 | |||||||||
Ribonuclease-III-like; Members of this family are involved in rDNA transcription and rRNA processing. They probably also cleave a stem-loop structure at the 3' end of U2 snRNA to ensure formation of the correct U2 3' end; they are involved in polyadenylation-independent transcription termination. Some members may be mitochondrial ribosomal protein subunit L15, others may be 60S ribosomal protein L3. Pssm-ID: 434075 Cd Length: 127 Bit Score: 52.18 E-value: 1.23e-07
|
|||||||||||||
SF2_C_RecG_TRCF | cd18792 | C-terminal helicase domain of the RecG family helicases; The DEAD-like helicase RecG family ... |
493-584 | 8.14e-07 | |||||||||
C-terminal helicase domain of the RecG family helicases; The DEAD-like helicase RecG family contains recombination factor RecG and transcription-repair coupling factor TrcF. They are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350179 [Multi-domain] Cd Length: 160 Bit Score: 50.73 E-value: 8.14e-07
|
|||||||||||||
SF2_C_RecG | cd18811 | C-terminal helicase domain of DNA helicase RecG; ATP-dependent DNA helicase RecG plays a ... |
460-571 | 4.91e-06 | |||||||||
C-terminal helicase domain of DNA helicase RecG; ATP-dependent DNA helicase RecG plays a critical role in recombination and DNA repair. RecG helps process Holliday junction intermediates to mature products by catalyzing branch migration. It is a DEAD-like helicase belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350198 [Multi-domain] Cd Length: 159 Bit Score: 48.49 E-value: 4.91e-06
|
|||||||||||||
PRK10917 | PRK10917 | ATP-dependent DNA helicase RecG; Provisional |
502-539 | 5.10e-06 | |||||||||
ATP-dependent DNA helicase RecG; Provisional Pssm-ID: 236794 [Multi-domain] Cd Length: 681 Bit Score: 51.69 E-value: 5.10e-06
|
|||||||||||||
PRK11192 | PRK11192 | ATP-dependent RNA helicase SrmB; Provisional |
444-594 | 1.20e-05 | |||||||||
ATP-dependent RNA helicase SrmB; Provisional Pssm-ID: 236877 [Multi-domain] Cd Length: 434 Bit Score: 49.94 E-value: 1.20e-05
|
|||||||||||||
PTZ00424 | PTZ00424 | helicase 45; Provisional |
499-578 | 2.41e-05 | |||||||||
helicase 45; Provisional Pssm-ID: 185609 [Multi-domain] Cd Length: 401 Bit Score: 49.05 E-value: 2.41e-05
|
|||||||||||||
RecG | COG1200 | RecG-like helicase [Replication, recombination and repair]; |
502-529 | 3.49e-05 | |||||||||
RecG-like helicase [Replication, recombination and repair]; Pssm-ID: 440813 [Multi-domain] Cd Length: 684 Bit Score: 48.89 E-value: 3.49e-05
|
|||||||||||||
DEADc | cd00268 | DEAD-box helicase domain of DEAD box helicases; DEAD-box helicases comprise a diverse family ... |
34-228 | 3.53e-05 | |||||||||
DEAD-box helicase domain of DEAD box helicases; DEAD-box helicases comprise a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. Pssm-ID: 350669 [Multi-domain] Cd Length: 196 Bit Score: 46.67 E-value: 3.53e-05
|
|||||||||||||
SF2_C_EcoAI-like | cd18799 | C-terminal helicase domain of EcoAI HsdR-like restriction enzyme family helicases; This family ... |
444-553 | 4.47e-05 | |||||||||
C-terminal helicase domain of EcoAI HsdR-like restriction enzyme family helicases; This family is composed of helicase restriction enzymes, including the HsdR subunit of restriction-modification enzymes such as Escherichia coli type I restriction enzyme EcoAI R protein (R.EcoAI). The EcoAI enzyme recognizes 5'-GAGN(7)GTCA-3'. The HsdR or R subunit is required for both nuclease and ATPase activities, but not for modification. These proteins are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350186 [Multi-domain] Cd Length: 116 Bit Score: 44.47 E-value: 4.47e-05
|
|||||||||||||
PTZ00110 | PTZ00110 | helicase; Provisional |
499-577 | 1.16e-04 | |||||||||
helicase; Provisional Pssm-ID: 240273 [Multi-domain] Cd Length: 545 Bit Score: 47.08 E-value: 1.16e-04
|
|||||||||||||
PRK11634 | PRK11634 | ATP-dependent RNA helicase DeaD; Provisional |
501-552 | 3.80e-04 | |||||||||
ATP-dependent RNA helicase DeaD; Provisional Pssm-ID: 236941 [Multi-domain] Cd Length: 629 Bit Score: 45.22 E-value: 3.80e-04
|
|||||||||||||
SF2_C_UvrB | cd18790 | C-terminal helicase domain of the UvrB family helicases; Excinuclease ABC subunit B (or UvrB) ... |
478-583 | 6.13e-04 | |||||||||
C-terminal helicase domain of the UvrB family helicases; Excinuclease ABC subunit B (or UvrB) plays a central role in nucleotide excision repair (NER). Together with other components of the NER system, like UvrA, UvrC, UvrD (helicase II), and DNA polymerase I, it recognizes and cleaves damaged DNA in a multistep ATP-dependent reaction. UvrB is critical for the second phase of damage recognition by verifying the nature of the damage and forming the pre-incision complex. Its ATPase site becomes activated in the presence of UvrA and damaged DNA. Its activity is strand destabilization via distortion of the DNA at lesion site, with very limited DNA unwinding. UvrB is a DEAD-like helicase belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350177 [Multi-domain] Cd Length: 171 Bit Score: 42.62 E-value: 6.13e-04
|
|||||||||||||
Cas3 | COG1203 | CRISPR-Cas type I system-associated endonuclease/helicase Cas3 [Defense mechanisms]; ... |
455-589 | 9.32e-04 | |||||||||
CRISPR-Cas type I system-associated endonuclease/helicase Cas3 [Defense mechanisms]; CRISPR-Cas type I system-associated endonuclease/helicase Cas3 is part of the Pathway/BioSystem: CRISPR-Cas system Pssm-ID: 440816 [Multi-domain] Cd Length: 535 Bit Score: 43.92 E-value: 9.32e-04
|
|||||||||||||
DSRM_STRBP_RED-like_rpt1 | cd19865 | first double-stranded RNA binding motif of STRBP, ILF3, RED1, RED2 and similar proteins; This ... |
1876-1908 | 1.05e-03 | |||||||||
first double-stranded RNA binding motif of STRBP, ILF3, RED1, RED2 and similar proteins; This family includes spermatid perinuclear RNA-binding protein (STRBP) and interleukin enhancer-binding factor 3 (ILF3), as well as two RNA-editing deaminases, RED1 and RED2. STRBP is a double-stranded DNA and RNA binding protein that is involved in spermatogenesis and sperm function. It plays a role in regulation of cell growth. ILF3 (also known as double-stranded RNA-binding protein 76 (DRBP76), M-phase phosphoprotein 4 (MPP4), nuclear factor associated with dsRNA (NFAR), nuclear factor of activated T-cells 90 kDa (NF-AT-90), or translational control protein 80 (TCP80)) is an RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. RED1 (EC 3.5.4.37; also called double-stranded RNA-specific editase 1, RNA-editing enzyme 1, dsRNA adenosine deaminase, ADARB1, ADAR2, or DRADA2) catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA), referred to as A-to-I RNA editing. RED2 (also called double-stranded RNA-specific editase B2, RNA-dependent adenosine deaminase 3, RNA-editing enzyme 2, dsRNA adenosine deaminase B2, ADAR3, or ADARB2) prevents the binding of other ADAR enzymes to targets in vitro, and decreases the efficiency of these enzymes. It is capable of binding to dsRNA, but also to ssRNA. RED2 lacks editing activity for currently known substrate RNAs. Members of this group contain two double-stranded RNA binding motifs (DSRMs). This model describes the first motif. DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. Pssm-ID: 380694 Cd Length: 63 Bit Score: 39.25 E-value: 1.05e-03
|
|||||||||||||
PLN00206 | PLN00206 | DEAD-box ATP-dependent RNA helicase; Provisional |
488-553 | 1.43e-03 | |||||||||
DEAD-box ATP-dependent RNA helicase; Provisional Pssm-ID: 215103 [Multi-domain] Cd Length: 518 Bit Score: 43.24 E-value: 1.43e-03
|
|||||||||||||
DSRM_EIF2AK2-like | cd19875 | double-stranded RNA binding motif of eukaryotic translation initiation factor 2-alpha kinase 2 ... |
1847-1908 | 1.78e-03 | |||||||||
double-stranded RNA binding motif of eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) and similar proteins; The family includes EIF2AK2 and adenosine deaminase domain-containing proteins, ADAD1 and ADAD2. EIF2AK2 (EC 2.7.11.1/EC 2.7.10.2; also known as interferon-induced, double-stranded RNA-activated protein kinase, eIF-2A protein kinase 2, interferon-inducible RNA-dependent protein kinase, P1/eIF-2A protein kinase, protein kinase RNA-activated (PKR), protein kinase R, tyrosine-protein kinase EIF2AK2, or p68 kinase) acts as an IFN-induced dsRNA-dependent serine/threonine-protein kinase which plays a key role in the innate immune response to viral infection and is also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation. ADAD1 (also called testis nuclear RNA-binding protein (TENR)) and ADAD2 (also called testis nuclear RNA-binding protein-like (TENRL)) are phylogenetically related to a family of adenosine deaminases involved in RNA editing. ADAD1 plays an essential function in spermatid morphogenesis. It may be involved in testis-specific nuclear post-transcriptional processes such as heterogeneous nuclear RNA (hnRNA) packaging, alternative splicing, or nuclear/cytoplasmic transport of mRNAs. ADAD2 is a double-stranded RNA binding protein with unclear biological function. Members of this group contains varying numbers of double-stranded RNA binding motifs (DSRMs). DSRM is not sequence specific, but highly specific for dsRNAs of various origin and structure. Pssm-ID: 380704 Cd Length: 67 Bit Score: 38.40 E-value: 1.78e-03
|
|||||||||||||
DEXHc_DDX60 | cd18025 | DEXH-box helicase domain of DEAD box protein 60; DEAD box protein 60 (DDX60) is an ... |
44-235 | 2.23e-03 | |||||||||
DEXH-box helicase domain of DEAD box protein 60; DEAD box protein 60 (DDX60) is an IFN-inducible cytoplasmic helicase that plays a role in RIG-I-mediated type I interferon (IFN) nuclease-mediated viral RNA degradation. DDX60 belongs to the type II DEAD box helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region. Pssm-ID: 350783 [Multi-domain] Cd Length: 192 Bit Score: 41.20 E-value: 2.23e-03
|
|||||||||||||
DEADc_DDX52 | cd17957 | DEAD-box helicase domain of DEAD box protein 52; DDX52 (also called ROK1 and HUSSY19) is ... |
58-176 | 2.62e-03 | |||||||||
DEAD-box helicase domain of DEAD box protein 52; DDX52 (also called ROK1 and HUSSY19) is ubiquitously expressed in testis, endometrium, and other tissues in humans. DDX52 is a member of the DEAD-box helicases, a diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. The name derives from the sequence of the Walker B motif (motif II). This domain contains the ATP-binding region. Pssm-ID: 350715 [Multi-domain] Cd Length: 198 Bit Score: 41.04 E-value: 2.62e-03
|
|||||||||||||
HsdR | COG4096 | Type I site-specific restriction endonuclease, part of a restriction-modification system ... |
33-108 | 2.84e-03 | |||||||||
Type I site-specific restriction endonuclease, part of a restriction-modification system [Defense mechanisms]; Pssm-ID: 443272 [Multi-domain] Cd Length: 806 Bit Score: 42.52 E-value: 2.84e-03
|
|||||||||||||
SF2_C_TRCF | cd18810 | C-terminal helicase domain of the transcription-repair coupling factor; Transcription-repair ... |
493-584 | 3.64e-03 | |||||||||
C-terminal helicase domain of the transcription-repair coupling factor; Transcription-repair coupling factor (TrcF) dissociates transcription elongation complexes blocked at nonpairing lesions and mediates recruitment of DNA repair proteins. TrcF is a DEAD-like helicase belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350197 [Multi-domain] Cd Length: 151 Bit Score: 40.02 E-value: 3.64e-03
|
|||||||||||||
SF2_C_RecQ | cd18794 | C-terminal helicase domain of the RecQ family helicases; The RecQ helicase family is an ... |
443-553 | 6.84e-03 | |||||||||
C-terminal helicase domain of the RecQ family helicases; The RecQ helicase family is an evolutionarily conserved class of enzymes, dedicated to preserving genomic integrity by operating in telomere maintenance, DNA repair, and replication. They are DEAD-like helicases belonging to superfamily (SF)2, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Similar to SF1 helicases, SF2 helicases do not form toroidal structures like SF3-6 helicases. Their helicase core consists of two similar protein domains that resemble the fold of the recombination protein RecA. This model describes the C-terminal domain, also called HelicC. Pssm-ID: 350181 [Multi-domain] Cd Length: 134 Bit Score: 38.73 E-value: 6.84e-03
|
|||||||||||||
Blast search parameters | ||||
|