coiled-coil domain-containing protein 138 isoform X4 [Rattus norvegicus]
List of domain hits
Name | Accession | Description | Interval | E-value | |||
SMC_N super family | cl47134 | RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The ... |
44-187 | 6.73e-05 | |||
RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The SMC (structural maintenance of chromosomes) superfamily proteins have ATP-binding domains at the N- and C-termini, and two extended coiled-coil domains separated by a hinge in the middle. The eukaryotic SMC proteins form two kind of heterodimers: the SMC1/SMC3 and the SMC2/SMC4 types. These heterodimers constitute an essential part of higher order complexes, which are involved in chromatin and DNA dynamics. This family also includes the RecF and RecN proteins that are involved in DNA metabolism and recombination. The actual alignment was detected with superfamily member TIGR02169: Pssm-ID: 481474 [Multi-domain] Cd Length: 1164 Bit Score: 45.83 E-value: 6.73e-05
|
|||||||
Name | Accession | Description | Interval | E-value | |||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
44-187 | 6.73e-05 | |||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 45.83 E-value: 6.73e-05
|
|||||||
SCP-1 | pfam05483 | Synaptonemal complex protein 1 (SCP-1); Synaptonemal complex protein 1 (SCP-1) is the major ... |
54-192 | 4.65e-04 | |||
Synaptonemal complex protein 1 (SCP-1); Synaptonemal complex protein 1 (SCP-1) is the major component of the transverse filaments of the synaptonemal complex. Synaptonemal complexes are structures that are formed between homologous chromosomes during meiotic prophase. Pssm-ID: 114219 [Multi-domain] Cd Length: 787 Bit Score: 43.17 E-value: 4.65e-04
|
|||||||
Atg16_CCD | cd22887 | Coiled-coiled domain of autophagy-related 16 (Atg16) family proteins; The Atg16 family ... |
105-167 | 1.36e-03 | |||
Coiled-coiled domain of autophagy-related 16 (Atg16) family proteins; The Atg16 family includes Saccharomyces cerevisiae Atg16 (also called cytoplasm to vacuole targeting protein 11, CVT11, or SAP18), human autophagy-related protein 16-1 (also called APG16-like 1, ATG16L1, or APG16L) and autophagy-related protein 16-2 (also called APG16-like 2, ATG16L2, WD repeat-containing protein 80 or WDR80), and similar proteins. Atg16 stabilizes the Atg5-Atg12 conjugate and mediates the formation of the 350 kDa complex, which is necessary for autophagy. The Atg5-Atg12/Atg16 complex is required for efficient promotion of Atg8-conjugation to phosphatidylethanolamine and Atg8 localization to the pre-autophagosomal structure (PAS). Similarly, human ATG16L1 plays an essential role in autophagy and acts as a molecular scaffold which mediates protein-protein interactions essential for autophagosome formation. ATG16L2, though structurally similar to ATG16L1 and able to form a complex with the autophagy proteins Atg5 and Atg12, is not essential for autophagy. Single-nucleotide polymorphisms in ATG16L1 is associated with an increased risk of developing Crohn disease. Saccharomyces cerevisiae Atg16 contains an N-terminal domain (NTD) that interacts with the Atg5-Atg12 protein conjugate and a coiled-coil domain (CCD) that dimerizes and mediates self-assembly. Human ATG16L1 and ATG16L2 also contains an N-terminal region that binds Atg5, a CCD homologous to the yeast CCD, and a WD40 domain that represents approximately 50% of the full-length protein. This model corresponds to the CCD of Atg16 family proteins. Pssm-ID: 439196 [Multi-domain] Cd Length: 91 Bit Score: 37.93 E-value: 1.36e-03
|
|||||||
COG4372 | COG4372 | Uncharacterized protein, contains DUF3084 domain [Function unknown]; |
48-194 | 1.45e-03 | |||
Uncharacterized protein, contains DUF3084 domain [Function unknown]; Pssm-ID: 443500 [Multi-domain] Cd Length: 370 Bit Score: 41.04 E-value: 1.45e-03
|
|||||||
PRK12704 | PRK12704 | phosphodiesterase; Provisional |
49-180 | 1.91e-03 | |||
phosphodiesterase; Provisional Pssm-ID: 237177 [Multi-domain] Cd Length: 520 Bit Score: 40.92 E-value: 1.91e-03
|
|||||||
Name | Accession | Description | Interval | E-value | ||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
44-187 | 6.73e-05 | ||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 45.83 E-value: 6.73e-05
|
||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
48-193 | 1.11e-04 | ||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 45.05 E-value: 1.11e-04
|
||||||||
SCP-1 | pfam05483 | Synaptonemal complex protein 1 (SCP-1); Synaptonemal complex protein 1 (SCP-1) is the major ... |
54-192 | 4.65e-04 | ||||
Synaptonemal complex protein 1 (SCP-1); Synaptonemal complex protein 1 (SCP-1) is the major component of the transverse filaments of the synaptonemal complex. Synaptonemal complexes are structures that are formed between homologous chromosomes during meiotic prophase. Pssm-ID: 114219 [Multi-domain] Cd Length: 787 Bit Score: 43.17 E-value: 4.65e-04
|
||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
48-187 | 5.63e-04 | ||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 42.75 E-value: 5.63e-04
|
||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
67-184 | 9.66e-04 | ||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 41.97 E-value: 9.66e-04
|
||||||||
Atg16_CCD | cd22887 | Coiled-coiled domain of autophagy-related 16 (Atg16) family proteins; The Atg16 family ... |
105-167 | 1.36e-03 | ||||
Coiled-coiled domain of autophagy-related 16 (Atg16) family proteins; The Atg16 family includes Saccharomyces cerevisiae Atg16 (also called cytoplasm to vacuole targeting protein 11, CVT11, or SAP18), human autophagy-related protein 16-1 (also called APG16-like 1, ATG16L1, or APG16L) and autophagy-related protein 16-2 (also called APG16-like 2, ATG16L2, WD repeat-containing protein 80 or WDR80), and similar proteins. Atg16 stabilizes the Atg5-Atg12 conjugate and mediates the formation of the 350 kDa complex, which is necessary for autophagy. The Atg5-Atg12/Atg16 complex is required for efficient promotion of Atg8-conjugation to phosphatidylethanolamine and Atg8 localization to the pre-autophagosomal structure (PAS). Similarly, human ATG16L1 plays an essential role in autophagy and acts as a molecular scaffold which mediates protein-protein interactions essential for autophagosome formation. ATG16L2, though structurally similar to ATG16L1 and able to form a complex with the autophagy proteins Atg5 and Atg12, is not essential for autophagy. Single-nucleotide polymorphisms in ATG16L1 is associated with an increased risk of developing Crohn disease. Saccharomyces cerevisiae Atg16 contains an N-terminal domain (NTD) that interacts with the Atg5-Atg12 protein conjugate and a coiled-coil domain (CCD) that dimerizes and mediates self-assembly. Human ATG16L1 and ATG16L2 also contains an N-terminal region that binds Atg5, a CCD homologous to the yeast CCD, and a WD40 domain that represents approximately 50% of the full-length protein. This model corresponds to the CCD of Atg16 family proteins. Pssm-ID: 439196 [Multi-domain] Cd Length: 91 Bit Score: 37.93 E-value: 1.36e-03
|
||||||||
COG4372 | COG4372 | Uncharacterized protein, contains DUF3084 domain [Function unknown]; |
48-194 | 1.45e-03 | ||||
Uncharacterized protein, contains DUF3084 domain [Function unknown]; Pssm-ID: 443500 [Multi-domain] Cd Length: 370 Bit Score: 41.04 E-value: 1.45e-03
|
||||||||
PRK12704 | PRK12704 | phosphodiesterase; Provisional |
49-180 | 1.91e-03 | ||||
phosphodiesterase; Provisional Pssm-ID: 237177 [Multi-domain] Cd Length: 520 Bit Score: 40.92 E-value: 1.91e-03
|
||||||||
COG1340 | COG1340 | Uncharacterized coiled-coil protein, contains DUF342 domain [Function unknown]; |
40-185 | 2.19e-03 | ||||
Uncharacterized coiled-coil protein, contains DUF342 domain [Function unknown]; Pssm-ID: 440951 [Multi-domain] Cd Length: 297 Bit Score: 40.28 E-value: 2.19e-03
|
||||||||
COG4372 | COG4372 | Uncharacterized protein, contains DUF3084 domain [Function unknown]; |
67-187 | 2.44e-03 | ||||
Uncharacterized protein, contains DUF3084 domain [Function unknown]; Pssm-ID: 443500 [Multi-domain] Cd Length: 370 Bit Score: 40.27 E-value: 2.44e-03
|
||||||||
DUF5401 | pfam17380 | Family of unknown function (DUF5401); This is a family of unknown function found in ... |
50-187 | 2.83e-03 | ||||
Family of unknown function (DUF5401); This is a family of unknown function found in Chromadorea. Pssm-ID: 375164 [Multi-domain] Cd Length: 722 Bit Score: 40.49 E-value: 2.83e-03
|
||||||||
CALCOCO1 | pfam07888 | Calcium binding and coiled-coil domain (CALCOCO1) like; Proteins found in this family are ... |
70-225 | 3.59e-03 | ||||
Calcium binding and coiled-coil domain (CALCOCO1) like; Proteins found in this family are similar to the coiled-coil transcriptional coactivator protein coexpressed by Mus musculus (CoCoA/CALCOCO1). This protein binds to a highly conserved N-terminal domain of p160 coactivators, such as GRIP1, and thus enhances transcriptional activation by a number of nuclear receptors. CALCOCO1 has a central coiled-coil region with three leucine zipper motifs, which is required for its interaction with GRIP1 and may regulate the autonomous transcriptional activation activity of the C-terminal region. Pssm-ID: 462303 [Multi-domain] Cd Length: 488 Bit Score: 39.88 E-value: 3.59e-03
|
||||||||
DR0291 | COG1579 | Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General ... |
40-189 | 4.31e-03 | ||||
Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General function prediction only]; Pssm-ID: 441187 [Multi-domain] Cd Length: 236 Bit Score: 38.75 E-value: 4.31e-03
|
||||||||
PRK03918 | PRK03918 | DNA double-strand break repair ATPase Rad50; |
47-187 | 5.20e-03 | ||||
DNA double-strand break repair ATPase Rad50; Pssm-ID: 235175 [Multi-domain] Cd Length: 880 Bit Score: 39.66 E-value: 5.20e-03
|
||||||||
Blast search parameters | ||||
|