NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1958745559|ref|XP_038953330|]
View 

arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 3 isoform X1 [Rattus norvegicus]

Protein Classification

SAM and PH domain-containing protein( domain architecture ID 12965999)

SAM (sterile alpha motif) and Pleckstrin homology (PH) domain-containing protein may be involved in protein-protein interactions, in developmental regulation, and/or in targeting a protein to the appropriate cellular location

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
RhoGAP_ARAP cd04385
RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
907-1082 1.51e-94

RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in ARAPs. ARAPs (also known as centaurin deltas) contain, besides the RhoGAP domain, an Arf GAP, ankyrin repeat ras-associating, and PH domains. Since their ArfGAP activity is PIP3-dependent, ARAPs are considered integration points for phosphoinositide, Arf and Rho signaling. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


:

Pssm-ID: 239850  Cd Length: 184  Bit Score: 302.69  E-value: 1.51e-94
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  907 LQEQQMSRGDIPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDARSVKLRPREHFVEDVTDTLKRFFRELD 986
Cdd:cd04385      5 LEDQQLTDNDIPVIVDKCIDFITQHGLMSEGIYRKNGKNSSVKKLLEAFRKDARSVQLREGEYTVHDVADVLKRFLRDLP 84
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  987 DPVTSARLLPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQTD- 1065
Cdd:cd04385     85 DPLLTSELHAEWIEAAELENKDERIARYKELIRRLPPINRATLKVLIGHLYRVQKHSDENQMSVHNLALVFGPTLFQTDe 164
                          170       180
                   ....*....|....*....|
gi 1958745559 1066 ---GRGEHEVRVLQELIDGY 1082
Cdd:cd04385    165 hsvGQTSHEVKVIEDLIDNY 184
ArfGap_ARAP3 cd17902
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily ...
485-600 2.69e-79

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP3 possesses a unique dual-specificity GAP activity for Arf6 and RhoA regulated by PI(3,4,5)P3 and a small GTPase Rap1-GTP. The RhoGAP activity of ARAP3 is enhanced by direct binding of Rap1-GTP to the Ras-association (RA) domain. ARAP3 is involved in regulation of cell shape and adhesion.


:

Pssm-ID: 350089 [Multi-domain]  Cd Length: 116  Bit Score: 256.37  E-value: 2.69e-79
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  485 YEVAEKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTSVWTNEIVQLFIVLGNDRAN 564
Cdd:cd17902      1 YEVAEKIWSNKANRFCADCHASSPDWASINLCVVICKQCAGQHRSLGSGISKVQSLKLDTSVWSNEIVQLFIVLGNDRAN 80
                           90       100       110
                   ....*....|....*....|....*....|....*.
gi 1958745559  565 CFWAGALPPGEGLHPDAAPGPRGEFISRKYKLGLYR 600
Cdd:cd17902     81 RFWAARLPASEALHPDATPEQRREFISRKYREGRFR 116
PH5_ARAP cd13259
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
1211-1327 8.26e-59

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 5; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the five PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270079  Cd Length: 121  Bit Score: 198.04  E-value: 8.26e-59
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559 1211 AGCLFTGVRRESPRVGLLRCREEPPRLL-GSRFQERFFLVRGRCLLLLKEKKSSKPEREWSLEGAKVYLGIRKKLKPPTL 1289
Cdd:cd13259      2 AILLYLASKVGSTKHGMLKFREEPSKLLsGNKFQDRYFILNDECLLLYKDVKSSKPEKEWPLKSLKVYLGIKKKLKPPTS 81
                           90       100       110
                   ....*....|....*....|....*....|....*...
gi 1958745559 1290 WGFTLILEKMHLCLSCTDEEEMWDWTTSILKAQHDDQQ 1327
Cdd:cd13259     82 WGFTVLLEKQQWYLCCDSQMEQREWMATILSAQHDGDI 119
Ubl1_cv_Nsp3_N-like super family cl28922
first ubiquitin-like (Ubl) domain located at the N-terminus of coronavirus SARS-CoV ...
1114-1211 3.59e-54

first ubiquitin-like (Ubl) domain located at the N-terminus of coronavirus SARS-CoV non-structural protein 3 (Nsp3) and related proteins; This ubiquitin-like (Ubl) domain (Ubl1) is found at the N-terminus of coronavirus Nsp3, a large multi-functional multi-domain protein which is an essential component of the replication/transcription complex (RTC). The functions of Ubl1 in CoVs are related to single-stranded RNA (ssRNA) binding and to interacting with the nucleocapsid (N) protein. SARS-CoV Ubl1 has been shown to bind ssRNA having AUA patterns, and since the 5'-UTR of the SARS-CoV genome has a number of AUA repeats, it may bind there. In mouse hepatitis virus (MHV), this Ubl1 domain binds the cognate N protein. Adjacent to Ubl1 is a Glu-rich acidic region (also referred to as hypervariable region, HVR); Ubl1 together with HVR has been called Nsp3a. Currently, the function of HVR in CoVs is unknown. This model corresponds to one of two Ubl domains in Nsp3; the other is located N-terminal to the papain-like protease (PLpro) and is not represented by this model.


The actual alignment was detected with superfamily member cd17228:

Pssm-ID: 475130  Cd Length: 99  Bit Score: 183.93  E-value: 3.59e-54
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559 1114 AGDLIMEVYIEQQLPDNCVTLKVSPTLTAEELTNQVLEMRG-AASGTDLWVTFEILDHGELERPLHPKEKVLEQALQWCQ 1192
Cdd:cd17228      1 AGDLIIEVYLEQKLPDCCVTLKVSPTMTAEELTNQVLDMRNiAAASKDVWLTFEVIENGELERPLHPKEKVLEQALQWCK 80
                           90
                   ....*....|....*....
gi 1958745559 1193 LPEPCSASLLLRKVSMAHA 1211
Cdd:cd17228     81 LPEPSSAYLLVKKVPIGEG 99
PH1_ARAP cd13253
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
285-377 1.91e-46

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270073  Cd Length: 94  Bit Score: 161.79  E-value: 1.91e-46
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  285 LLSGWLDKLSPQGN-YVFQRRFVQFNGRSLMYFGSDKDPFPKGVIPLTAIEMTRSSKDNKFQVITGQRVFVFRTESEAQR 363
Cdd:cd13253      1 IKSGYLDKQGGQGNnKGFQKRWVVFDGLSLRYFDSEKDAYSKRIIPLSAISTVRAVGDNKFELVTTNRTFVFRAESDDER 80
                           90
                   ....*....|....
gi 1958745559  364 DIWCSTLQSCLKEQ 377
Cdd:cd13253     81 NLWCSTLQAAISEY 94
PH2_ARAP cd13254
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
392-475 2.67e-44

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 2; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the second PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270074  Cd Length: 90  Bit Score: 155.27  E-value: 2.67e-44
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  392 LRTGMLELRGHKAKVFAALIPGELALYKSEQAFSLGIGICFIELQGCSVRETKSRSFDLLTPHRCFSFTAESGGARQSWA 471
Cdd:cd13254      7 DKCGYLELRGYKAKVYAALMGDEVWLYKNEQDFRLGIGITVIEMNGANVKDVDRRSFDLTTPYRSFSFTAESEHEKQEWI 86

                   ....
gi 1958745559  472 VALQ 475
Cdd:cd13254     87 EAVQ 90
PH-like super family cl17171
Pleckstrin homology-like domain; The PH-like family includes the PH domain, both the Shc-like ...
672-784 5.37e-36

Pleckstrin homology-like domain; The PH-like family includes the PH domain, both the Shc-like and IRS-like PTB domains, the ran-binding domain, the EVH1 domain, a domain in neurobeachin and the third domain of FERM. All of these domains have a PH fold, but lack significant sequence similarity. They are generally involved in targeting to protein to the appropriate cellular location or interacting with a binding partner. This domain family possesses multiple functions including the ability to bind inositol phosphates and to other proteins.


The actual alignment was detected with superfamily member cd13256:

Pssm-ID: 473070  Cd Length: 110  Bit Score: 132.58  E-value: 5.37e-36
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  672 PATYRGFLYCGPISNKAGAPplRRGRDAPPRLWCVL-GAALEMFASESSSEPLSLLQPQDVVCLGISPPPADSGDldRFP 750
Cdd:cd13256      1 SVFHSGFLYKSPSAAKPTLE--RRAREEFSRRWCVLeDGFLSYYESERSPEPNGEIDVSEIVCLAVSPPDTHPGD--GFP 76
                           90       100       110
                   ....*....|....*....|....*....|....
gi 1958745559  751 FSFELILTGGRIQHFATDGADSLEAWISAVGKWF 784
Cdd:cd13256     77 FTFELYLESERLYLFGLETAEALHEWVKAIAKAF 110
SAM_Arap1,2,3 cd09490
SAM domain of Arap1,2,3 (angiotensin receptor-associated protein); SAM (sterile alpha motif) ...
4-66 3.21e-26

SAM domain of Arap1,2,3 (angiotensin receptor-associated protein); SAM (sterile alpha motif) domain of Arap1,2,3 subfamily proteins (angiotensin receptor-associated) is a protein-protein interaction domain. Arap1,2,3 proteins are phosphatidylinositol-3,4,5-trisphosphate-dependent GTPase-activating proteins. They are involved in phosphatidylinositol-3 kinase (PI3K) signaling pathways. In addition to SAM domain, Arap1,2,3 proteins contain ArfGap, PH-like, RhoGAP and UBQ domains. SAM domain of Arap3 protein was shown to interact with SAM domain of Ship2 phosphatidylinositol-trisphosphate phosphatase proteins. Such interaction apparently plays a role in inhibition of PI3K regulated pathways since Ship2 converts PI(3,4,5)P3 into PI(3,4)P2. Proteins of this subfamily participate in regulation of signaling and trafficking associated with a number of different receptors (including EGFR, TRAIL-R1/DR4, TRAIL-R2/DR5) in normal and cancer cells; they are involved in regulation of actin cytoskeleton remodeling, cell spreading and formation of lamellipodia.


:

Pssm-ID: 188889  Cd Length: 63  Bit Score: 102.76  E-value: 3.21e-26
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1958745559    4 PQDLDIAVWLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQSGS 66
Cdd:cd09490      1 EADLDIAEWLASIHLEQYLDLFREHGYVTATDCQGINDSRLKQIGISPTGHRRRILKQLPIIT 63
PH-like super family cl17171
Pleckstrin homology-like domain; The PH-like family includes the PH domain, both the Shc-like ...
799-892 3.48e-11

Pleckstrin homology-like domain; The PH-like family includes the PH domain, both the Shc-like and IRS-like PTB domains, the ran-binding domain, the EVH1 domain, a domain in neurobeachin and the third domain of FERM. All of these domains have a PH fold, but lack significant sequence similarity. They are generally involved in targeting to protein to the appropriate cellular location or interacting with a binding partner. This domain family possesses multiple functions including the ability to bind inositol phosphates and to other proteins.


The actual alignment was detected with superfamily member cd13257:

Pssm-ID: 473070  Cd Length: 91  Bit Score: 61.02  E-value: 3.48e-11
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  799 RMGRLwlrsPSHAGLAPGLWLSGFGLLRGDHLFLCPAPGPGppapEDMVHLRRLQEISVvsaaDTPDKKEHLVLVETGRT 878
Cdd:cd13257      3 RLGRL----FYKDGLALDRAREGWFALDKSSLHACLQMQEV----EERMHLRKLQELSI----QGDVQLDVLVLVERRRT 70
                           90
                   ....*....|....
gi 1958745559  879 LYLQGEGRLDFAAW 892
Cdd:cd13257     71 LYIQGERKLDFTGW 84
 
Name Accession Description Interval E-value
RhoGAP_ARAP cd04385
RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
907-1082 1.51e-94

RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in ARAPs. ARAPs (also known as centaurin deltas) contain, besides the RhoGAP domain, an Arf GAP, ankyrin repeat ras-associating, and PH domains. Since their ArfGAP activity is PIP3-dependent, ARAPs are considered integration points for phosphoinositide, Arf and Rho signaling. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239850  Cd Length: 184  Bit Score: 302.69  E-value: 1.51e-94
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  907 LQEQQMSRGDIPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDARSVKLRPREHFVEDVTDTLKRFFRELD 986
Cdd:cd04385      5 LEDQQLTDNDIPVIVDKCIDFITQHGLMSEGIYRKNGKNSSVKKLLEAFRKDARSVQLREGEYTVHDVADVLKRFLRDLP 84
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  987 DPVTSARLLPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQTD- 1065
Cdd:cd04385     85 DPLLTSELHAEWIEAAELENKDERIARYKELIRRLPPINRATLKVLIGHLYRVQKHSDENQMSVHNLALVFGPTLFQTDe 164
                          170       180
                   ....*....|....*....|
gi 1958745559 1066 ---GRGEHEVRVLQELIDGY 1082
Cdd:cd04385    165 hsvGQTSHEVKVIEDLIDNY 184
ArfGap_ARAP3 cd17902
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily ...
485-600 2.69e-79

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP3 possesses a unique dual-specificity GAP activity for Arf6 and RhoA regulated by PI(3,4,5)P3 and a small GTPase Rap1-GTP. The RhoGAP activity of ARAP3 is enhanced by direct binding of Rap1-GTP to the Ras-association (RA) domain. ARAP3 is involved in regulation of cell shape and adhesion.


Pssm-ID: 350089 [Multi-domain]  Cd Length: 116  Bit Score: 256.37  E-value: 2.69e-79
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  485 YEVAEKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTSVWTNEIVQLFIVLGNDRAN 564
Cdd:cd17902      1 YEVAEKIWSNKANRFCADCHASSPDWASINLCVVICKQCAGQHRSLGSGISKVQSLKLDTSVWSNEIVQLFIVLGNDRAN 80
                           90       100       110
                   ....*....|....*....|....*....|....*.
gi 1958745559  565 CFWAGALPPGEGLHPDAAPGPRGEFISRKYKLGLYR 600
Cdd:cd17902     81 RFWAARLPASEALHPDATPEQRREFISRKYREGRFR 116
PH5_ARAP cd13259
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
1211-1327 8.26e-59

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 5; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the five PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270079  Cd Length: 121  Bit Score: 198.04  E-value: 8.26e-59
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559 1211 AGCLFTGVRRESPRVGLLRCREEPPRLL-GSRFQERFFLVRGRCLLLLKEKKSSKPEREWSLEGAKVYLGIRKKLKPPTL 1289
Cdd:cd13259      2 AILLYLASKVGSTKHGMLKFREEPSKLLsGNKFQDRYFILNDECLLLYKDVKSSKPEKEWPLKSLKVYLGIKKKLKPPTS 81
                           90       100       110
                   ....*....|....*....|....*....|....*...
gi 1958745559 1290 WGFTLILEKMHLCLSCTDEEEMWDWTTSILKAQHDDQQ 1327
Cdd:cd13259     82 WGFTVLLEKQQWYLCCDSQMEQREWMATILSAQHDGDI 119
RA_ARAP3 cd17228
Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH ...
1114-1211 3.59e-54

Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 3 (ARAP3); ARAP3, also termed Centaurin-delta-3 (Cnt-d3), is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating protein (GAP) that modulates actin cytoskeleton remodeling by regulating ARF and RHO family members, ADP-ribosylation factor 6 (Arf6) and Ras homolog gene family member A (RhoA). It is regulated by phosphatidylinositol 3,4,5-trisphosphate and a small GTPase Rap1-GTP, and has been implicated in the regulation of cell shape and adhesion. ARAP3 contains multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes.


Pssm-ID: 340748  Cd Length: 99  Bit Score: 183.93  E-value: 3.59e-54
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559 1114 AGDLIMEVYIEQQLPDNCVTLKVSPTLTAEELTNQVLEMRG-AASGTDLWVTFEILDHGELERPLHPKEKVLEQALQWCQ 1192
Cdd:cd17228      1 AGDLIIEVYLEQKLPDCCVTLKVSPTMTAEELTNQVLDMRNiAAASKDVWLTFEVIENGELERPLHPKEKVLEQALQWCK 80
                           90
                   ....*....|....*....
gi 1958745559 1193 LPEPCSASLLLRKVSMAHA 1211
Cdd:cd17228     81 LPEPSSAYLLVKKVPIGEG 99
RhoGAP pfam00620
RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.
918-1065 6.07e-48

RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.


Pssm-ID: 459875  Cd Length: 148  Bit Score: 168.11  E-value: 6.07e-48
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  918 PIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDARSVkLRPREHFVEDVTDTLKRFFRELDDPVTSARLLPR 997
Cdd:pfam00620    1 PLIVRKCVEYLEKRGLDTEGIFRVSGSASRIKELREAFDRGPDVD-LDLEEEDVHVVASLLKLFLRELPEPLLTFELYEE 79
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1958745559  998 WREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQTD 1065
Cdd:pfam00620   80 FIEAAKLPDEEERLEALRELLRKLPPANRDTLRYLLAHLNRVAQNSDVNKMNAHNLAIVFGPTLLRPP 147
PH1_ARAP cd13253
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
285-377 1.91e-46

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270073  Cd Length: 94  Bit Score: 161.79  E-value: 1.91e-46
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  285 LLSGWLDKLSPQGN-YVFQRRFVQFNGRSLMYFGSDKDPFPKGVIPLTAIEMTRSSKDNKFQVITGQRVFVFRTESEAQR 363
Cdd:cd13253      1 IKSGYLDKQGGQGNnKGFQKRWVVFDGLSLRYFDSEKDAYSKRIIPLSAISTVRAVGDNKFELVTTNRTFVFRAESDDER 80
                           90
                   ....*....|....
gi 1958745559  364 DIWCSTLQSCLKEQ 377
Cdd:cd13253     81 NLWCSTLQAAISEY 94
PH2_ARAP cd13254
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
392-475 2.67e-44

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 2; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the second PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270074  Cd Length: 90  Bit Score: 155.27  E-value: 2.67e-44
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  392 LRTGMLELRGHKAKVFAALIPGELALYKSEQAFSLGIGICFIELQGCSVRETKSRSFDLLTPHRCFSFTAESGGARQSWA 471
Cdd:cd13254      7 DKCGYLELRGYKAKVYAALMGDEVWLYKNEQDFRLGIGITVIEMNGANVKDVDRRSFDLTTPYRSFSFTAESEHEKQEWI 86

                   ....
gi 1958745559  472 VALQ 475
Cdd:cd13254     87 EAVQ 90
ArfGap pfam01412
Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating ...
486-603 1.47e-42

Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 460200 [Multi-domain]  Cd Length: 117  Bit Score: 151.22  E-value: 1.47e-42
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  486 EVAEKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANC 565
Cdd:pfam01412    2 RVLRELLKLPGNKVCADCGAPNPTWASVNLGIFICIDCSGVHRSLGVHISKVRSLTLDT--WTDEQLELMKAGGNDRANE 79
                           90       100       110
                   ....*....|....*....|....*....|....*...
gi 1958745559  566 FWAGALPPGEGLHPDAAPGPRGEFISRKYKLGLYRKPH 603
Cdd:pfam01412   80 FWEANLPPSYKPPPSSDREKRESFIRAKYVEKKFAKPG 117
RhoGAP smart00324
GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac ...
915-1063 6.73e-42

GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. etter domain limits and outliers.


Pssm-ID: 214618  Cd Length: 174  Bit Score: 151.65  E-value: 6.73e-42
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559   915 GDIPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDARSVkLRPREHFVEDVTDTLKRFFRELDDPVTSARL 994
Cdd:smart00324    1 KPIPIIVEKCIEYLEKRGLDTEGIYRVSGSKSRVKELRDAFDSGPDPD-LDLSEYDVHDVAGLLKLFLRELPEPLITYEL 79
                            90       100       110       120       130       140
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1958745559   995 LPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQ 1063
Cdd:smart00324   80 YEEFIEAAKLEDETERLRALRELLSLLPPANRATLRYLLAHLNRVAEHSEENKMTARNLAIVFGPTLLR 148
PH3_ARAP cd13256
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
672-784 5.37e-36

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 3; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the third PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270076  Cd Length: 110  Bit Score: 132.58  E-value: 5.37e-36
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  672 PATYRGFLYCGPISNKAGAPplRRGRDAPPRLWCVL-GAALEMFASESSSEPLSLLQPQDVVCLGISPPPADSGDldRFP 750
Cdd:cd13256      1 SVFHSGFLYKSPSAAKPTLE--RRAREEFSRRWCVLeDGFLSYYESERSPEPNGEIDVSEIVCLAVSPPDTHPGD--GFP 76
                           90       100       110
                   ....*....|....*....|....*....|....
gi 1958745559  751 FSFELILTGGRIQHFATDGADSLEAWISAVGKWF 784
Cdd:cd13256     77 FTFELYLESERLYLFGLETAEALHEWVKAIAKAF 110
ArfGap smart00105
Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with ...
493-598 1.95e-28

Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 214518 [Multi-domain]  Cd Length: 119  Bit Score: 111.28  E-value: 1.95e-28
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559   493 SNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANCFWAGALP 572
Cdd:smart00105    6 SIPGNKKCFDCGAPNPTWASVNLGVFLCIECSGIHRSLGVHISKVRSLTLDT--WTEEELRLLQKGGNENANSIWESNLD 83
                            90       100
                    ....*....|....*....|....*..
gi 1958745559   573 PGEGLHPDA-APGPRGEFISRKYKLGL 598
Cdd:smart00105   84 DFSLKPPDDdDQQKYESFIAAKYEEKL 110
SAM_Arap1,2,3 cd09490
SAM domain of Arap1,2,3 (angiotensin receptor-associated protein); SAM (sterile alpha motif) ...
4-66 3.21e-26

SAM domain of Arap1,2,3 (angiotensin receptor-associated protein); SAM (sterile alpha motif) domain of Arap1,2,3 subfamily proteins (angiotensin receptor-associated) is a protein-protein interaction domain. Arap1,2,3 proteins are phosphatidylinositol-3,4,5-trisphosphate-dependent GTPase-activating proteins. They are involved in phosphatidylinositol-3 kinase (PI3K) signaling pathways. In addition to SAM domain, Arap1,2,3 proteins contain ArfGap, PH-like, RhoGAP and UBQ domains. SAM domain of Arap3 protein was shown to interact with SAM domain of Ship2 phosphatidylinositol-trisphosphate phosphatase proteins. Such interaction apparently plays a role in inhibition of PI3K regulated pathways since Ship2 converts PI(3,4,5)P3 into PI(3,4)P2. Proteins of this subfamily participate in regulation of signaling and trafficking associated with a number of different receptors (including EGFR, TRAIL-R1/DR4, TRAIL-R2/DR5) in normal and cancer cells; they are involved in regulation of actin cytoskeleton remodeling, cell spreading and formation of lamellipodia.


Pssm-ID: 188889  Cd Length: 63  Bit Score: 102.76  E-value: 3.21e-26
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1958745559    4 PQDLDIAVWLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQSGS 66
Cdd:cd09490      1 EADLDIAEWLASIHLEQYLDLFREHGYVTATDCQGINDSRLKQIGISPTGHRRRILKQLPIIT 63
COG5347 COG5347
GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ...
493-601 4.05e-24

GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ARF-mediated vesicular transport [Intracellular trafficking and secretion];


Pssm-ID: 227651 [Multi-domain]  Cd Length: 319  Bit Score: 104.86  E-value: 4.05e-24
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  493 SNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANCFWAGALP 572
Cdd:COG5347     16 SDSSNKKCADCGAPNPTWASVNLGVFLCIDCAGVHRSLGVHISKVKSLTLDN--WTEEELRRMEVGGNSNANRFYEKNLL 93
                           90       100       110
                   ....*....|....*....|....*....|.
gi 1958745559  573 PGEGLHPDAAPGP--RGEFISRKYKLGLYRK 601
Cdd:COG5347     94 DQLLLPIKAKYDSsvAKKYIRKKYELKKFID 124
RA pfam00788
Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); ...
1115-1208 6.16e-18

Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); putative RasGTP effectors in other cases. Recent evidence (not yet in MEDLINE) shows that some RA domains do NOT bind RasGTP. Predicted structure similar to that determined, and that of the RasGTP-binding domain of Raf kinase.


Pssm-ID: 425871  Cd Length: 93  Bit Score: 80.07  E-value: 6.16e-18
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559 1115 GDLIMEVYIEQQLPDN-CVTLKVSPTLTAEELTNQVLEMRGAASGTDLWVTFEILDHGELERPLHPKEKVLEQALQWCql 1193
Cdd:pfam00788    1 DDGVLKVYTEDGKPGTtYKTILVSSSTTAEEVIEALLEKFGLEDDPRDYVLVEVLERGGGERRLPDDECPLQIQLQWP-- 78
                           90
                   ....*....|....*
gi 1958745559 1194 PEPCSASLLLRKVSM 1208
Cdd:pfam00788   79 RDASDSRFLLRKRDD 93
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
284-375 1.77e-13

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 67.96  E-value: 1.77e-13
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559   284 PLLSGWLDKLSPQGNYVFQRRFVQFNGRSLMYFGSDK---DPFPKGVIPLTAIEMTRS------SKDNKFQVITGQR-VF 353
Cdd:smart00233    1 VIKEGWLYKKSGGGKKSWKKRYFVLFNSTLLYYKSKKdkkSYKPKGSIDLSGCTVREApdpdssKKPHCFEIKTSDRkTL 80
                            90       100
                    ....*....|....*....|..
gi 1958745559   354 VFRTESEAQRDIWCSTLQSCLK 375
Cdd:smart00233   81 LLQAESEEEREKWVEALRKAIA 102
PLN03114 PLN03114
ADP-ribosylation factor GTPase-activating protein AGD10; Provisional
479-567 6.71e-13

ADP-ribosylation factor GTPase-activating protein AGD10; Provisional


Pssm-ID: 178661 [Multi-domain]  Cd Length: 395  Bit Score: 72.58  E-value: 6.71e-13
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  479 TETLSD-YEVAEKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIV 557
Cdd:PLN03114     3 SENLNDkISVFKKLKAKSDNKICFDCNAKNPTWASVTYGIFLCIDCSAVHRSLGVHISFVRSTNLDS--WSSEQLKMMIY 80
                           90
                   ....*....|
gi 1958745559  558 LGNDRANCFW 567
Cdd:PLN03114    81 GGNNRAQVFF 90
PH pfam00169
PH domain; PH stands for pleckstrin homology.
284-375 5.73e-12

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 63.74  E-value: 5.73e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  284 PLLSGWLDKLSPQGNYVFQRRFVQFNGRSLMYFGSD---KDPFPKGVIPLTAIEMTR------SSKDNKFQVITGQ---- 350
Cdd:pfam00169    1 VVKEGWLLKKGGGKKKSWKKRYFVLFDGSLLYYKDDksgKSKEPKGSISLSGCEVVEvvasdsPKRKFCFELRTGErtgk 80
                           90       100
                   ....*....|....*....|....*
gi 1958745559  351 RVFVFRTESEAQRDIWCSTLQSCLK 375
Cdd:pfam00169   81 RTYLLQAESEEERKDWIKAIQSAIR 105
SAM_2 pfam07647
SAM domain (Sterile alpha motif);
8-64 1.79e-11

SAM domain (Sterile alpha motif);


Pssm-ID: 429573  Cd Length: 66  Bit Score: 60.75  E-value: 1.79e-11
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*..
gi 1958745559    8 DIAVWLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQS 64
Cdd:pfam07647    8 SVADWLRSIGLEQYTDNFRDQGITGAELLLRLTLEDLKRLGITSVGHRRKILKKIQE 64
PH4_ARAP cd13257
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
799-892 3.48e-11

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 4; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the fourth PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270077  Cd Length: 91  Bit Score: 61.02  E-value: 3.48e-11
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  799 RMGRLwlrsPSHAGLAPGLWLSGFGLLRGDHLFLCPAPGPGppapEDMVHLRRLQEISVvsaaDTPDKKEHLVLVETGRT 878
Cdd:cd13257      3 RLGRL----FYKDGLALDRAREGWFALDKSSLHACLQMQEV----EERMHLRKLQELSI----QGDVQLDVLVLVERRRT 70
                           90
                   ....*....|....
gi 1958745559  879 LYLQGEGRLDFAAW 892
Cdd:cd13257     71 LYIQGERKLDFTGW 84
SAM smart00454
Sterile alpha motif; Widespread domain in signalling and nuclear proteins. In EPH-related ...
12-63 1.02e-10

Sterile alpha motif; Widespread domain in signalling and nuclear proteins. In EPH-related tyrosine kinases, appears to mediate cell-cell initiated signal transduction via the binding of SH2-containing proteins to a conserved tyrosine that is phosphorylated. In many cases mediates homodimerisation.


Pssm-ID: 197735  Cd Length: 68  Bit Score: 58.85  E-value: 1.02e-10
                            10        20        30        40        50
                    ....*....|....*....|....*....|....*....|....*....|..
gi 1958745559    12 WLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQ 63
Cdd:smart00454   12 WLESIGLEQYADNFRKNGIDGALLLLLTSEEDLKELGITKLGHRKKILKAIQ 63
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
1226-1323 3.36e-07

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 49.85  E-value: 3.36e-07
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  1226 GLLRCREEPPRllgSRFQERFFLVRGRCLLLLKEKK---SSKPEREWSLEGAKVYLGIRKKLKPPTlWGFTLIL-EKMHL 1301
Cdd:smart00233    5 GWLYKKSGGGK---KSWKKRYFVLFNSTLLYYKSKKdkkSYKPKGSIDLSGCTVREAPDPDSSKKP-HCFEIKTsDRKTL 80
                            90       100
                    ....*....|....*....|..
gi 1958745559  1302 CLSCTDEEEMWDWTTSILKAQH 1323
Cdd:smart00233   81 LLQAESEEEREKWVEALRKAIA 102
PH pfam00169
PH domain; PH stands for pleckstrin homology.
1239-1323 7.31e-06

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 46.40  E-value: 7.31e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559 1239 GSRFQERFFLVRGRCLLLLKEK---KSSKPEREWSLEGAKVYLgIRKKLKPPTLWGFTLIL-----EKMHLcLSCTDEEE 1310
Cdd:pfam00169   15 KKSWKKRYFVLFDGSLLYYKDDksgKSKEPKGSISLSGCEVVE-VVASDSPKRKFCFELRTgertgKRTYL-LQAESEEE 92
                           90
                   ....*....|...
gi 1958745559 1311 MWDWTTSILKAQH 1323
Cdd:pfam00169   93 RKDWIKAIQSAIR 105
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
395-478 1.65e-05

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 45.23  E-value: 1.65e-05
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559   395 GMLELRGHKA-----KVFAALIPGELALYKSEQAFSLGIGICFIELQGCSVRETKSRS-------FDLLTPHR-CFSFTA 461
Cdd:smart00233    5 GWLYKKSGGGkkswkKRYFVLFNSTLLYYKSKKDKKSYKPKGSIDLSGCTVREAPDPDsskkphcFEIKTSDRkTLLLQA 84
                            90
                    ....*....|....*..
gi 1958745559   462 ESGGARQSWAVALQEAV 478
Cdd:smart00233   85 ESEEEREKWVEALRKAI 101
 
Name Accession Description Interval E-value
RhoGAP_ARAP cd04385
RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
907-1082 1.51e-94

RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in ARAPs. ARAPs (also known as centaurin deltas) contain, besides the RhoGAP domain, an Arf GAP, ankyrin repeat ras-associating, and PH domains. Since their ArfGAP activity is PIP3-dependent, ARAPs are considered integration points for phosphoinositide, Arf and Rho signaling. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239850  Cd Length: 184  Bit Score: 302.69  E-value: 1.51e-94
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  907 LQEQQMSRGDIPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDARSVKLRPREHFVEDVTDTLKRFFRELD 986
Cdd:cd04385      5 LEDQQLTDNDIPVIVDKCIDFITQHGLMSEGIYRKNGKNSSVKKLLEAFRKDARSVQLREGEYTVHDVADVLKRFLRDLP 84
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  987 DPVTSARLLPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQTD- 1065
Cdd:cd04385     85 DPLLTSELHAEWIEAAELENKDERIARYKELIRRLPPINRATLKVLIGHLYRVQKHSDENQMSVHNLALVFGPTLFQTDe 164
                          170       180
                   ....*....|....*....|
gi 1958745559 1066 ---GRGEHEVRVLQELIDGY 1082
Cdd:cd04385    165 hsvGQTSHEVKVIEDLIDNY 184
ArfGap_ARAP3 cd17902
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily ...
485-600 2.69e-79

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP3 possesses a unique dual-specificity GAP activity for Arf6 and RhoA regulated by PI(3,4,5)P3 and a small GTPase Rap1-GTP. The RhoGAP activity of ARAP3 is enhanced by direct binding of Rap1-GTP to the Ras-association (RA) domain. ARAP3 is involved in regulation of cell shape and adhesion.


Pssm-ID: 350089 [Multi-domain]  Cd Length: 116  Bit Score: 256.37  E-value: 2.69e-79
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  485 YEVAEKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTSVWTNEIVQLFIVLGNDRAN 564
Cdd:cd17902      1 YEVAEKIWSNKANRFCADCHASSPDWASINLCVVICKQCAGQHRSLGSGISKVQSLKLDTSVWSNEIVQLFIVLGNDRAN 80
                           90       100       110
                   ....*....|....*....|....*....|....*.
gi 1958745559  565 CFWAGALPPGEGLHPDAAPGPRGEFISRKYKLGLYR 600
Cdd:cd17902     81 RFWAARLPASEALHPDATPEQRREFISRKYREGRFR 116
ArfGap_ARAP cd08837
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing proteins; The ARAP subfamily ...
485-600 2.03e-75

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing proteins; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics.


Pssm-ID: 350066 [Multi-domain]  Cd Length: 116  Bit Score: 245.36  E-value: 2.03e-75
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  485 YEVAEKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTSVWTNEIVQLFIVLGNDRAN 564
Cdd:cd08837      1 YEVAEKIWSNPANRFCADCGAPDPDWASINLCVVICKQCAGEHRSLGSNISKVRSLKMDTKVWTEELVELFLKLGNDRAN 80
                           90       100       110
                   ....*....|....*....|....*....|....*.
gi 1958745559  565 CFWAGALPPGEGLHPDAAPGPRGEFISRKYKLGLYR 600
Cdd:cd08837     81 RFWAANLPPSEALHPDADSEQRREFITAKYREGKYR 116
PH5_ARAP cd13259
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
1211-1327 8.26e-59

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 5; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the five PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270079  Cd Length: 121  Bit Score: 198.04  E-value: 8.26e-59
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559 1211 AGCLFTGVRRESPRVGLLRCREEPPRLL-GSRFQERFFLVRGRCLLLLKEKKSSKPEREWSLEGAKVYLGIRKKLKPPTL 1289
Cdd:cd13259      2 AILLYLASKVGSTKHGMLKFREEPSKLLsGNKFQDRYFILNDECLLLYKDVKSSKPEKEWPLKSLKVYLGIKKKLKPPTS 81
                           90       100       110
                   ....*....|....*....|....*....|....*...
gi 1958745559 1290 WGFTLILEKMHLCLSCTDEEEMWDWTTSILKAQHDDQQ 1327
Cdd:cd13259     82 WGFTVLLEKQQWYLCCDSQMEQREWMATILSAQHDGDI 119
ArfGap_ARAP2 cd08856
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 2; The ARAP subfamily ...
480-600 7.30e-58

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 2; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP2 localizes to the cell periphery and on focal adhesions composed of paxillin and vinculin, and functions downstream of RhoA to regulate focal adhesion dynamics. ARAP2 is a PI(3,4,5)P3-dependent Arf6 GAP that binds RhoA-GTP, but it lacks the predicted catalytic arginine in the RhoGAP domain and does not have RhoGAP activity. ARAP2 reduces Rac1oGTP levels by reducing Arf6oGTP levels through GAP activity. AGAP2 also binds to and regulates focal adhesion kinase (FAK). Thus, ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology.


Pssm-ID: 350081 [Multi-domain]  Cd Length: 121  Bit Score: 195.51  E-value: 7.30e-58
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  480 ETLSDYEVAEKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTSVWTNEIVQLFIVLG 559
Cdd:cd08856      1 ETLSDYEVAEKIWFNESNRSCADCKAPDPDWASINLCVVICKKCAGQHRSLGPKDSKVRSLKMDASIWSNELIELFIVVG 80
                           90       100       110       120
                   ....*....|....*....|....*....|....*....|.
gi 1958745559  560 NDRANCFWAGALPPGEGLHPDAAPGPRGEFISRKYKLGLYR 600
Cdd:cd08856     81 NKPANLFWAANLFSEEDLHMDSDVEQRTPFITQKYKEGKFR 121
RA_ARAP3 cd17228
Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH ...
1114-1211 3.59e-54

Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 3 (ARAP3); ARAP3, also termed Centaurin-delta-3 (Cnt-d3), is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating protein (GAP) that modulates actin cytoskeleton remodeling by regulating ARF and RHO family members, ADP-ribosylation factor 6 (Arf6) and Ras homolog gene family member A (RhoA). It is regulated by phosphatidylinositol 3,4,5-trisphosphate and a small GTPase Rap1-GTP, and has been implicated in the regulation of cell shape and adhesion. ARAP3 contains multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes.


Pssm-ID: 340748  Cd Length: 99  Bit Score: 183.93  E-value: 3.59e-54
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559 1114 AGDLIMEVYIEQQLPDNCVTLKVSPTLTAEELTNQVLEMRG-AASGTDLWVTFEILDHGELERPLHPKEKVLEQALQWCQ 1192
Cdd:cd17228      1 AGDLIIEVYLEQKLPDCCVTLKVSPTMTAEELTNQVLDMRNiAAASKDVWLTFEVIENGELERPLHPKEKVLEQALQWCK 80
                           90
                   ....*....|....*....
gi 1958745559 1193 LPEPCSASLLLRKVSMAHA 1211
Cdd:cd17228     81 LPEPSSAYLLVKKVPIGEG 99
ArfGap_ARAP1 cd17901
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 1; The ARAP subfamily ...
486-600 1.90e-49

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 1; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP1 localizes to the plasma membrane, the Golgi complex, and endosomal compartments. It displays PI(3,4,5)P3-dependent ArfGAP activity that regulates Arf-, RhoA-, and Cdc42-dependent cellular events. For example, ARAP1 inhibits the trafficking of epidermal growth factor receptor (EGFR) to the early endosome.


Pssm-ID: 350088 [Multi-domain]  Cd Length: 116  Bit Score: 171.15  E-value: 1.90e-49
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  486 EVAEKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTSVWTNEIVQLFIVLGNDRANC 565
Cdd:cd17901      2 EVAEKIWSVESNRFCADCGSPKPDWASVNLCVVICKRCAGEHRGLGPSVSKVRSLKMDRKVWTEELIELFLLLGNGKANQ 81
                           90       100       110
                   ....*....|....*....|....*....|....*
gi 1958745559  566 FWAGALPPGEGLHPDAAPGPRGEFISRKYKLGLYR 600
Cdd:cd17901     82 FWAANVPPSEALCPSSSSEERRHFITAKYKEGKYR 116
RhoGAP pfam00620
RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.
918-1065 6.07e-48

RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.


Pssm-ID: 459875  Cd Length: 148  Bit Score: 168.11  E-value: 6.07e-48
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  918 PIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDARSVkLRPREHFVEDVTDTLKRFFRELDDPVTSARLLPR 997
Cdd:pfam00620    1 PLIVRKCVEYLEKRGLDTEGIFRVSGSASRIKELREAFDRGPDVD-LDLEEEDVHVVASLLKLFLRELPEPLLTFELYEE 79
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1958745559  998 WREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQTD 1065
Cdd:pfam00620   80 FIEAAKLPDEEERLEALRELLRKLPPANRDTLRYLLAHLNRVAQNSDVNKMNAHNLAIVFGPTLLRPP 147
PH1_ARAP cd13253
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
285-377 1.91e-46

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270073  Cd Length: 94  Bit Score: 161.79  E-value: 1.91e-46
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  285 LLSGWLDKLSPQGN-YVFQRRFVQFNGRSLMYFGSDKDPFPKGVIPLTAIEMTRSSKDNKFQVITGQRVFVFRTESEAQR 363
Cdd:cd13253      1 IKSGYLDKQGGQGNnKGFQKRWVVFDGLSLRYFDSEKDAYSKRIIPLSAISTVRAVGDNKFELVTTNRTFVFRAESDDER 80
                           90
                   ....*....|....
gi 1958745559  364 DIWCSTLQSCLKEQ 377
Cdd:cd13253     81 NLWCSTLQAAISEY 94
PH2_ARAP cd13254
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
392-475 2.67e-44

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 2; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the second PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270074  Cd Length: 90  Bit Score: 155.27  E-value: 2.67e-44
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  392 LRTGMLELRGHKAKVFAALIPGELALYKSEQAFSLGIGICFIELQGCSVRETKSRSFDLLTPHRCFSFTAESGGARQSWA 471
Cdd:cd13254      7 DKCGYLELRGYKAKVYAALMGDEVWLYKNEQDFRLGIGITVIEMNGANVKDVDRRSFDLTTPYRSFSFTAESEHEKQEWI 86

                   ....
gi 1958745559  472 VALQ 475
Cdd:cd13254     87 EAVQ 90
ArfGap pfam01412
Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating ...
486-603 1.47e-42

Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 460200 [Multi-domain]  Cd Length: 117  Bit Score: 151.22  E-value: 1.47e-42
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  486 EVAEKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANC 565
Cdd:pfam01412    2 RVLRELLKLPGNKVCADCGAPNPTWASVNLGIFICIDCSGVHRSLGVHISKVRSLTLDT--WTDEQLELMKAGGNDRANE 79
                           90       100       110
                   ....*....|....*....|....*....|....*...
gi 1958745559  566 FWAGALPPGEGLHPDAAPGPRGEFISRKYKLGLYRKPH 603
Cdd:pfam01412   80 FWEANLPPSYKPPPSSDREKRESFIRAKYVEKKFAKPG 117
RhoGAP smart00324
GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac ...
915-1063 6.73e-42

GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. etter domain limits and outliers.


Pssm-ID: 214618  Cd Length: 174  Bit Score: 151.65  E-value: 6.73e-42
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559   915 GDIPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDARSVkLRPREHFVEDVTDTLKRFFRELDDPVTSARL 994
Cdd:smart00324    1 KPIPIIVEKCIEYLEKRGLDTEGIYRVSGSKSRVKELRDAFDSGPDPD-LDLSEYDVHDVAGLLKLFLRELPEPLITYEL 79
                            90       100       110       120       130       140
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1958745559   995 LPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQ 1063
Cdd:smart00324   80 YEEFIEAAKLEDETERLRALRELLSLLPPANRATLRYLLAHLNRVAEHSEENKMTARNLAIVFGPTLLR 148
ArfGap cd08204
GTPase-activating protein (GAP) for the ADP ribosylation factors (ARFs); ArfGAPs are a family ...
489-594 6.94e-39

GTPase-activating protein (GAP) for the ADP ribosylation factors (ARFs); ArfGAPs are a family of proteins containing an ArfGAP catalytic domain that induces the hydrolysis of GTP bound to the small guanine nucleotide-binding protein Arf, a member of the Ras superfamily of GTPases. Like all GTP-binding proteins, Arf proteins function as molecular switches, cycling between GTP (active-membrane bound) and GDP (inactive-cytosolic) form. Conversion to the GTP-bound form requires a guanine nucleotide exchange factor (GEF), whereas conversion to the GDP-bound form is catalyzed by a GTPase activating protein (GAP). In that sense, ArfGAPs were originally proposed to function as terminators of Arf signaling, which is mediated by regulating Arf family GTP-binding proteins. However, recent studies suggest that ArfGAPs can also function as Arf effectors, independently of their GAP enzymatic activity to transduce signals in cells. The ArfGAP domain contains a C4-type zinc finger motif and a conserved arginine that is required for activity, within a specific spacing (CX2CX16CX2CX4R). ArfGAPs, which have multiple functional domains, regulate the membrane trafficking and actin cytoskeleton remodeling via specific interactions with signaling lipids such as phosphoinositides and trafficking proteins, which consequently affect cellular events such as cell growth, migration, and cancer invasion. The ArfGAP family, which includes 31 human ArfGAP-domain containing proteins, is divided into 10 subfamilies based on domain structure and sequence similarity. The ArfGAP nomenclature is mainly based on the protein domain structure. For example, ASAP1 contains ArfGAP, SH3, ANK repeat and PH domains; ARAPs contain ArfGAP, Rho GAP, ANK repeat and PH domains; ACAPs contain ArfGAP, BAR (coiled coil), ANK repeat and PH domains; and AGAPs contain Arf GAP, GTP-binding protein-like, ANK repeat and PH domains. Furthermore, the ArfGAPs can be classified into two major types of subfamilies, according to the overall domain structure: the ArfGAP1 type includes 6 subfamilies (ArfGAP1, ArfGAP2/3, ADAP, SMAP, AGFG, and GIT), which contain the ArfGAP domain at the N-terminus of the protein; and the AZAP type includes 4 subfamilies (ASAP, ACAP, AGAP, and ARAP), which contain an ArfGAP domain between the PH and ANK repeat domains.


Pssm-ID: 350058 [Multi-domain]  Cd Length: 106  Bit Score: 140.33  E-value: 6.94e-39
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  489 EKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANCFWA 568
Cdd:cd08204      2 EELLKLPGNKVCADCGAPDPRWASINLGVFICIRCSGIHRSLGVHISKVRSLTLDS--WTPEQVELMKAIGNARANAYYE 79
                           90       100
                   ....*....|....*....|....*..
gi 1958745559  569 GALPPGEGLHPDAAPGP-RGEFISRKY 594
Cdd:cd08204     80 ANLPPGFKKPTPDSSDEeREQFIRAKY 106
PH3_ARAP cd13256
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
672-784 5.37e-36

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 3; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the third PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270076  Cd Length: 110  Bit Score: 132.58  E-value: 5.37e-36
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  672 PATYRGFLYCGPISNKAGAPplRRGRDAPPRLWCVL-GAALEMFASESSSEPLSLLQPQDVVCLGISPPPADSGDldRFP 750
Cdd:cd13256      1 SVFHSGFLYKSPSAAKPTLE--RRAREEFSRRWCVLeDGFLSYYESERSPEPNGEIDVSEIVCLAVSPPDTHPGD--GFP 76
                           90       100       110
                   ....*....|....*....|....*....|....
gi 1958745559  751 FSFELILTGGRIQHFATDGADSLEAWISAVGKWF 784
Cdd:cd13256     77 FTFELYLESERLYLFGLETAEALHEWVKAIAKAF 110
RhoGAP cd00159
RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like ...
918-1062 1.97e-34

RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like small GTPases. Small GTPases (G proteins) cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when bound to GDP. The Rho family of small G proteins, which includes Cdc42Hs, activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. The RhoGAPs are one of the major classes of regulators of Rho G proteins.


Pssm-ID: 238090 [Multi-domain]  Cd Length: 169  Bit Score: 130.11  E-value: 1.97e-34
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  918 PIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDARSVKLRprEHFVEDVTDTLKRFFRELDDPVTSARLLPR 997
Cdd:cd00159      1 PLIIEKCIEYLEKNGLNTEGIFRVSGSASKIEELKKKFDRGEDIDDLE--DYDVHDVASLLKLYLRELPEPLIPFELYDE 78
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1958745559  998 WREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVF 1062
Cdd:cd00159     79 FIELAKIEDEEERIEALKELLKSLPPENRDLLKYLLKLLHKISQNSEVNKMTASNLAIVFAPTLL 143
RA_ARAP2 cd17227
Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH ...
1114-1209 7.35e-34

Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 2 (ARAP2); ARAP2, also termed Centaurin-delta-1 (Cnt-d1), or Protein PARX, is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating protein (GAP), which promotes GLUT1-mediated basal glucose uptake by modifying sphingolipid metabolism through glucosylceramide synthase (GCS). ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology. ARAP2 contains multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes.


Pssm-ID: 340747  Cd Length: 98  Bit Score: 125.77  E-value: 7.35e-34
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559 1114 AGDLIMEVYIEQQLPDNCVTLKVSPTLTAEELTNQVLEMRGAASGT-DLWVTFEILDHGELERPLHPKEKVLEQALQWCQ 1192
Cdd:cd17227      1 AGDLLIEVYLEKKEPDCSIIIRVSPTMEAEELTNDVLEIKNIIPDKkDIWATFEVIENGELERPLHYKENVLEQVLQWSS 80
                           90
                   ....*....|....*..
gi 1958745559 1193 LPEPCSASLLLRKVSMA 1209
Cdd:cd17227     81 LSEPGSAYLIVKRFQAA 97
RA_ARAPs cd17113
Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH ...
1114-1210 2.53e-29

Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing proteins ARAP1, ARAP2, ARAP3, and similar proteins; ARAPs are phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating proteins (GAPs). They contain multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes.


Pssm-ID: 340633  Cd Length: 95  Bit Score: 112.72  E-value: 2.53e-29
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559 1114 AGDLIMEVYIEQQlPDNCVTLKVSPTLTAEELTNQVLEMRGAASGTDLWVTFEILDHGELERPLHPKEKVLEQALQWCQL 1193
Cdd:cd17113      1 SGDFLIPVYIEEK-EGTSVNIKVTPTMTAEEVVEQALNKKNLGGPEGNWALFEVIEDGGLERPLHESEKVLDVVLRWSQW 79
                           90
                   ....*....|....*..
gi 1958745559 1194 PePCSASLLLRKVSMAH 1210
Cdd:cd17113     80 P-RKSNYLCVKKNPLLE 95
ArfGap smart00105
Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with ...
493-598 1.95e-28

Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 214518 [Multi-domain]  Cd Length: 119  Bit Score: 111.28  E-value: 1.95e-28
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559   493 SNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANCFWAGALP 572
Cdd:smart00105    6 SIPGNKKCFDCGAPNPTWASVNLGVFLCIECSGIHRSLGVHISKVRSLTLDT--WTEEELRLLQKGGNENANSIWESNLD 83
                            90       100
                    ....*....|....*....|....*..
gi 1958745559   573 PGEGLHPDA-APGPRGEFISRKYKLGL 598
Cdd:smart00105   84 DFSLKPPDDdDQQKYESFIAAKYEEKL 110
RhoGAP_fRGD1 cd04398
RhoGAP_fRGD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
915-1086 2.65e-28

RhoGAP_fRGD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal RGD1-like proteins. Yeast Rgd1 is a GAP protein for Rho3 and Rho4 and plays a role in low-pH response. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239863  Cd Length: 192  Bit Score: 113.27  E-value: 2.65e-28
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  915 GDIPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDARSVKLRPREHFVED---VTDTLKRFFRELDDPVTS 991
Cdd:cd04398     14 DNVPNIVYQCIQAIENFGLNLEGIYRLSGNVSRVNKLKELFDKDPLNVLLISPEDYESDihsVASLLKLFFRELPEPLLT 93
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  992 ARLLPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQTDGRGEHE 1071
Cdd:cd04398     94 KALSREFIEAAKIEDESRRRDALHGLINDLPDANYATLRALMFHLARIKEHESVNRMSVNNLAIIWGPTLMNAAPDNAAD 173
                          170
                   ....*....|....*....
gi 1958745559 1072 V----RVLQELIDGYISVF 1086
Cdd:cd04398    174 MsfqsRVIETLLDNAYQIF 192
ArfGap_AGAP cd08836
ArfGAP with GTPase domain, ANK repeat and PH domains; The AGAP subfamily of ADP-ribosylation ...
495-594 8.21e-28

ArfGAP with GTPase domain, ANK repeat and PH domains; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking.


Pssm-ID: 350065 [Multi-domain]  Cd Length: 108  Bit Score: 108.92  E-value: 8.21e-28
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  495 PANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANCFWAGALPPG 574
Cdd:cd08836     10 RGNDHCVDCGAPNPDWASLNLGALMCIECSGIHRNLGTHISRVRSLDLDD--WPVELLKVMSAIGNDLANSVWEGNTQGR 87
                           90       100
                   ....*....|....*....|
gi 1958745559  575 EGLHPDAAPGPRGEFISRKY 594
Cdd:cd08836     88 TKPTPDSSREEKERWIRAKY 107
ArfGap_ADAP cd08832
ArfGap with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) ...
490-607 2.16e-27

ArfGap with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


Pssm-ID: 350061 [Multi-domain]  Cd Length: 113  Bit Score: 107.73  E-value: 2.16e-27
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  490 KVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANCFWAG 569
Cdd:cd08832     10 ELLKLPGNNTCADCGAPDPEWASYNLGVFICLDCSGIHRSLGTHISKVKSLRLDN--WDDSQVEFMEENGNEKAKAKYEA 87
                           90       100       110
                   ....*....|....*....|....*....|....*...
gi 1958745559  570 ALPPGeglhpdaapgprgefisrkyklglYRKPHPRHP 607
Cdd:cd08832     88 HVPAF------------------------YRRPTPTDP 101
SAM_Arap1,2,3 cd09490
SAM domain of Arap1,2,3 (angiotensin receptor-associated protein); SAM (sterile alpha motif) ...
4-66 3.21e-26

SAM domain of Arap1,2,3 (angiotensin receptor-associated protein); SAM (sterile alpha motif) domain of Arap1,2,3 subfamily proteins (angiotensin receptor-associated) is a protein-protein interaction domain. Arap1,2,3 proteins are phosphatidylinositol-3,4,5-trisphosphate-dependent GTPase-activating proteins. They are involved in phosphatidylinositol-3 kinase (PI3K) signaling pathways. In addition to SAM domain, Arap1,2,3 proteins contain ArfGap, PH-like, RhoGAP and UBQ domains. SAM domain of Arap3 protein was shown to interact with SAM domain of Ship2 phosphatidylinositol-trisphosphate phosphatase proteins. Such interaction apparently plays a role in inhibition of PI3K regulated pathways since Ship2 converts PI(3,4,5)P3 into PI(3,4)P2. Proteins of this subfamily participate in regulation of signaling and trafficking associated with a number of different receptors (including EGFR, TRAIL-R1/DR4, TRAIL-R2/DR5) in normal and cancer cells; they are involved in regulation of actin cytoskeleton remodeling, cell spreading and formation of lamellipodia.


Pssm-ID: 188889  Cd Length: 63  Bit Score: 102.76  E-value: 3.21e-26
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1958745559    4 PQDLDIAVWLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQSGS 66
Cdd:cd09490      1 EADLDIAEWLASIHLEQYLDLFREHGYVTATDCQGINDSRLKQIGISPTGHRRRILKQLPIIT 63
ArfGap_SMAP cd08839
Stromal membrane-associated proteins; a subfamily of the ArfGAP family; The SMAP subfamily of ...
495-594 3.42e-26

Stromal membrane-associated proteins; a subfamily of the ArfGAP family; The SMAP subfamily of Arf GTPase-activating proteins consists of the two structurally-related members, SMAP1 and SMAP2. Each SMAP member exhibits common and distinct functions in vesicle trafficking. They both bind to clathrin heavy chain molecules and are involved in the trafficking of clathrin-coated vesicles. SMAP1 preferentially exhibits GAP toward Arf6, while SMAP2 prefers Arf1 as a substrate. SMAP1 is involved in Arf6-dependent vesicle trafficking, but not Arf6-mediated actin cytoskeleton reorganization, and regulates clathrin-dependent endocytosis of the transferrin receptors and E-cadherin. SMAP2 regulates Arf1-dependent retrograde transport of TGN38/46 from the early endosome to the trans-Golgi network (TGN). SMAP2 has the Clathrin Assembly Lymphoid Myeloid (CALM)-binding domain, but SMAP1 does not.


Pssm-ID: 350068 [Multi-domain]  Cd Length: 103  Bit Score: 104.28  E-value: 3.42e-26
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  495 PANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANCFWAGALPPG 574
Cdd:cd08839      8 EDNKYCADCGAKGPRWASWNLGVFICIRCAGIHRNLGVHISKVKSVNLDS--WTPEQVQSMQEMGNARANAYYEANLPDG 85
                           90       100
                   ....*....|....*....|.
gi 1958745559  575 eglHPDAAPGPRGE-FISRKY 594
Cdd:cd08839     86 ---FRRPQTDSALEnFIRDKY 103
ArfGap_ACAP cd08835
ArfGAP domain of ACAP (ArfGAP with Coiled-coil, ANK repeat and PH domains) proteins; ArfGAP ...
487-594 7.81e-26

ArfGAP domain of ACAP (ArfGAP with Coiled-coil, ANK repeat and PH domains) proteins; ArfGAP domain is an essential part of ACAP proteins that play important role in endocytosis, actin remodeling and receptor tyrosine kinase-dependent cell movement. ACAP subfamily of ArfGAPs are composed of coiled coils (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. In addition, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


Pssm-ID: 350064 [Multi-domain]  Cd Length: 116  Bit Score: 103.49  E-value: 7.81e-26
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  487 VAEKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANCF 566
Cdd:cd08835      3 ALEQVLSVPGNAQCCDCGSPDPRWASINLGVTLCIECSGIHRSLGVHVSKVRSLTLDS--WEPELLKVMLELGNDVVNRI 80
                           90       100       110
                   ....*....|....*....|....*....|
gi 1958745559  567 WAGALPPGEG--LHPDAAPGPRGEFISRKY 594
Cdd:cd08835     81 YEANVPDDGSvkPTPDSSRQEREAWIRAKY 110
RhoGAP_p190 cd04373
RhoGAP_p190: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
907-1083 9.07e-25

RhoGAP_p190: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of p190-like proteins. p190, also named RhoGAP5, plays a role in neuritogenesis and axon branch stability. p190 shows a preference for Rho, over Rac and Cdc42, and consists of an N-terminal GTPase domain and a C-terminal GAP domain. The central portion of p190 contains important regulatory phosphorylation sites. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239838  Cd Length: 185  Bit Score: 102.92  E-value: 9.07e-25
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  907 LQEQQMSRGDIPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDArSVKLRPREHFVEDVTDTLKRFFRELD 986
Cdd:cd04373      5 LANVVTSEKPIPIFLEKCVEFIEATGLETEGIYRVSGNKTHLDSLQKQFDQDH-NLDLVSKDFTVNAVAGALKSFFSELP 83
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  987 DPVTSARLLPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQTD- 1065
Cdd:cd04373     84 DPLIPYSMHLELVEAAKINDREQRLHALKELLKKFPPENFDVFKYVITHLNKVSQNSKVNLMTSENLSICFWPTLMRPDf 163
                          170       180
                   ....*....|....*....|
gi 1958745559 1066 -GRGEHE-VRVLQELIDGYI 1083
Cdd:cd04373    164 tSMEALSaTRIYQTIIETFI 183
COG5347 COG5347
GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ...
493-601 4.05e-24

GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ARF-mediated vesicular transport [Intracellular trafficking and secretion];


Pssm-ID: 227651 [Multi-domain]  Cd Length: 319  Bit Score: 104.86  E-value: 4.05e-24
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  493 SNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANCFWAGALP 572
Cdd:COG5347     16 SDSSNKKCADCGAPNPTWASVNLGVFLCIDCAGVHRSLGVHISKVKSLTLDN--WTEEELRRMEVGGNSNANRFYEKNLL 93
                           90       100       110
                   ....*....|....*....|....*....|.
gi 1958745559  573 PGEGLHPDAAPGP--RGEFISRKYKLGLYRK 601
Cdd:COG5347     94 DQLLLPIKAKYDSsvAKKYIRKKYELKKFID 124
RhoGAP_myosin_IX cd04377
RhoGAP_myosin_IX: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
917-1064 1.03e-23

RhoGAP_myosin_IX: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in class IX myosins. Class IX myosins contain a characteristic head domain, a neck domain, a tail domain which contains a C6H2-zinc binding motif and a RhoGAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239842  Cd Length: 186  Bit Score: 100.21  E-value: 1.03e-23
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  917 IPIIVDACISFVTQHGLRLEGVYRKGGA--RARSLRLLAEfrRDARSVKLRprEHFVEDVTDTLKRFFRELDDPVTSARL 994
Cdd:cd04377     15 VPLVLEKLLEHIEMHGLYTEGIYRKSGSanKIKELRQGLD--TDPDSVNLE--DYPIHVITSVLKQWLRELPEPLMTFEL 90
                           90       100       110       120       130       140       150
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  995 LPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQT 1064
Cdd:cd04377     91 YENFLRAMELEEKQERVRALYSVLEQLPRANLNTLERLIFHLVRVALQEEVNRMSANALAIVFAPCILRC 160
ArfGap_ASAP cd08834
ArfGAP domain of ASAP (Arf GAP, SH3, ANK repeat and PH domains) subfamily of ADP-ribosylation ...
489-594 1.86e-23

ArfGAP domain of ASAP (Arf GAP, SH3, ANK repeat and PH domains) subfamily of ADP-ribosylation factor GTPase-activating proteins; The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. Both ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma.


Pssm-ID: 350063 [Multi-domain]  Cd Length: 117  Bit Score: 96.91  E-value: 1.86e-23
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  489 EKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDtsVWTNEIVQLFIVLGNDRANCFWA 568
Cdd:cd08834      7 AEVKRLPGNDVCCDCGSPDPTWLSTNLGILTCIECSGVHRELGVHVSRIQSLTLD--NLGTSELLLARNLGNEGFNEIME 84
                           90       100
                   ....*....|....*....|....*.
gi 1958745559  569 GALPPGEGLHPDAAPGPRGEFISRKY 594
Cdd:cd08834     85 ANLPPGYKPTPNSDMEERKDFIRAKY 110
RhoGAP_ARHGAP27_15_12_9 cd04403
RhoGAP_ARHGAP27_15_12_9: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ...
911-1063 1.93e-23

RhoGAP_ARHGAP27_15_12_9: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ARHGAP27 (also called CAMGAP1), ARHGAP15, 12 and 9-like proteins; This subgroup of ARHGAPs are multidomain proteins that contain RhoGAP, PH, SH3 and WW domains. Most members that are studied show GAP activity towards Rac1, some additionally show activity towards Cdc42. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239868 [Multi-domain]  Cd Length: 187  Bit Score: 99.39  E-value: 1.93e-23
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  911 QMSRGDIPIIVDACISFVTQHGLRLEGVYRKGG--ARARSLRLLAEfrRDARSVKLRPREHFVEDVTDTLKRFFRELDDP 988
Cdd:cd04403     10 QRENSTVPKFVRLCIEAVEKRGLDVDGIYRVSGnlAVIQKLRFAVD--HDEKLDLDDSKWEDIHVITGALKLFFRELPEP 87
                           90       100       110       120       130       140       150
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1958745559  989 VTSARLLPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQ 1063
Cdd:cd04403     88 LFPYSLFNDFVAAIKLSDYEQRVSAVKDLIKSLPKPNHDTLKMLFRHLCRVIEHGEKNRMTTQNLAIVFGPTLLR 162
RhoGAP_nadrin cd04386
RhoGAP_nadrin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
917-1059 3.17e-23

RhoGAP_nadrin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Nadrin-like proteins. Nadrin, also named Rich-1, has been shown to be involved in the regulation of Ca2+-dependent exocytosis in neurons and recently has been implicated in tight junction maintenance in mammalian epithelium. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239851  Cd Length: 203  Bit Score: 99.07  E-value: 3.17e-23
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  917 IPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFrrDARSVKLrPREHFVED---VTDTLKRFFRELDDPVTSAR 993
Cdd:cd04386     20 IALPIEACVMCLLETGMNEEGLFRVGGGASKLKRLKAAL--DAGTFSL-PLDEFYSDphaVASALKSYLRELPDPLLTYN 96
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1958745559  994 LLPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAP 1059
Cdd:cd04386     97 LYEDWVQAANKPDEDERLQAIWRILNKLPRENRDNLRYLIKFLSKLAQKSDENKMSPSNIAIVLAP 162
RhoGAP_myosin_IXB cd04407
RhoGAP_myosin_IXB: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
914-1063 5.36e-23

RhoGAP_myosin_IXB: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in myosins IXB. Class IX myosins contain a characteristic head domain, a neck domain and a tail domain which contains a C6H2-zinc binding motif and a Rho-GAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239872 [Multi-domain]  Cd Length: 186  Bit Score: 98.14  E-value: 5.36e-23
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  914 RGDIPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDARSVKLrprEHF-VEDVTDTLKRFFRELDDPVTSA 992
Cdd:cd04407     12 KTSVPIVLEKLLEHVEMHGLYTEGIYRKSGSANRMKELHQLLQADPENVKL---ENYpIHAITGLLKQWLRELPEPLMTF 88
                           90       100       110       120       130       140       150
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1958745559  993 RLLPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQ 1063
Cdd:cd04407     89 AQYNDFLRAVELPEKQEQLQAIYRVLEQLPTANHNTLERLIFHLVKVALEEDVNRMSPNALAIVFAPCLLR 159
ArfGap_AGAP2 cd08853
ArfGAP with GTPase domain, ANK repeat and PH domain 2; The AGAP subfamily of ADP-ribosylation ...
495-595 7.26e-22

ArfGAP with GTPase domain, ANK repeat and PH domain 2; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking.


Pssm-ID: 350078 [Multi-domain]  Cd Length: 109  Bit Score: 92.00  E-value: 7.26e-22
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  495 PANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANCFWAGAlppG 574
Cdd:cd08853     11 RGNSHCVDCETQNPKWASLNLGVLMCIECSGIHRNLGTHLSRVRSLDLDD--WPVELRKVMSSIGNELANSIWEGS---S 85
                           90       100
                   ....*....|....*....|....
gi 1958745559  575 EGLHPDAAPGPRGE---FISRKYK 595
Cdd:cd08853     86 QGQTKPSSDSTREEkerWIRAKYE 109
RhoGAP_CdGAP cd04384
RhoGAP_CdGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
907-1064 8.11e-22

RhoGAP_CdGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of CdGAP-like proteins; CdGAP contains an N-terminal RhoGAP domain and a C-terminal proline-rich region, and it is active on both Cdc42 and Rac1 but not RhoA. CdGAP is recruited to focal adhesions via the interaction with the scaffold protein actopaxin (alpha-parvin). Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239849 [Multi-domain]  Cd Length: 195  Bit Score: 94.88  E-value: 8.11e-22
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  907 LQEQQMSRG-DIPIIVDACISFVTQHGLrLEGVYRKGGARARSLRLLAEFrrDARSVKLRPREHFVED---VTDTLKRFF 982
Cdd:cd04384      7 LTEHLLNSGqDVPQVLKSCTEFIEKHGI-VDGIYRLSGIASNIQRLRHEF--DSEQIPDLTKDVYIQDihsVSSLCKLYF 83
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  983 RELDDPVTSARLLPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVF 1062
Cdd:cd04384     84 RELPNPLLTYQLYEKFSEAVSAASDEERLEKIHDVIQQLPPPHYRTLEFLMRHLSRLAKYCSITNMHAKNLAIVWAPNLL 163

                   ..
gi 1958745559 1063 QT 1064
Cdd:cd04384    164 RS 165
RhoGAP_MgcRacGAP cd04382
RhoGAP_MgcRacGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
917-1062 1.21e-21

RhoGAP_MgcRacGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in MgcRacGAP proteins. MgcRacGAP plays an important dual role in cytokinesis: i) it is part of centralspindlin-complex, together with the mitotic kinesin MKLP1, which is critical for the structure of the central spindle by promoting microtuble bundling. ii) after phosphorylation by aurora B MgcRacGAP becomes an effective regulator of RhoA and plays an important role in the assembly of the contractile ring and the initiation of cytokinesis. MgcRacGAP-like proteins contain a N-terminal C1-like domain, and a C-terminal RhoGAP domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239847  Cd Length: 193  Bit Score: 94.28  E-value: 1.21e-21
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  917 IPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRdarsVKLRPR--EHFVEDVTDTLKRFFRELDDPVTSARL 994
Cdd:cd04382     17 IPALIVHCVNEIEARGLTEEGLYRVSGSEREVKALKEKFLR----GKTVPNlsKVDIHVICGCLKDFLRSLKEPLITFAL 92
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1958745559  995 LPRWREAAELP-QKNQRLEKYKeVISCLPRVNRRTLATLIGHLYRVQKCAAlNQMCTRNLALLFAPSVF 1062
Cdd:cd04382     93 WKEFMEAAEILdEDNSRAALYQ-AISELPQPNRDTLAFLILHLQRVAQSPE-CKMDINNLARVFGPTIV 159
RhoGAP_GMIP_PARG1 cd04378
RhoGAP_GMIP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
917-1060 2.59e-21

RhoGAP_GMIP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP (Gem interacting protein) and PARG1 (PTPL1-associated RhoGAP1). GMIP plays important roles in neurite growth and axonal guidance, and interacts with Gem, a member of the RGK subfamily of the Ras small GTPase superfamily, through the N-terminal half of the protein. GMIP contains a C-terminal RhoGAP domain. GMIP inhibits RhoA function, but is inactive towards Rac1 and Cdc41. PARG1 interacts with Rap2, also a member of the Ras small GTPase superfamily whose exact function is unknown, and shows strong preference for Rho. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239843  Cd Length: 203  Bit Score: 93.64  E-value: 2.59e-21
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  917 IPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDARSVKLRprEHFVEDVTDTLKRFFRELDDPVTSARLLP 996
Cdd:cd04378     16 VPFIIKKCTSEIENRALGVQGIYRVSGSKARVEKLCQAFENGKDLVELS--ELSPHDISSVLKLFLRQLPEPLILFRLYN 93
                           90       100       110       120       130       140       150
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1958745559  997 RW----REAAELPQKNQRLE----------KYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPS 1060
Cdd:cd04378     94 DFialaKEIQRDTEEDKAPNtpievnriirKLKDLLRQLPASNYNTLQHLIAHLYRVAEQFEENKMSPNNLGIVFGPT 171
ArfGap_AGAP3 cd08855
ArfGAP with GTPase domain, ANK repeat and PH domain 3; The AGAP subfamily of ADP-ribosylation ...
497-595 4.38e-21

ArfGAP with GTPase domain, ANK repeat and PH domain 3; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion.


Pssm-ID: 350080 [Multi-domain]  Cd Length: 110  Bit Score: 89.73  E-value: 4.38e-21
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  497 NRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANCFWAGAL----P 572
Cdd:cd08855     14 NSFCIDCDAPNPDWASLNLGALMCIECSGIHRNLGTHLSRVRSLDLDD--WPVELSMVMTAIGNAMANSVWEGALdgysK 91
                           90       100
                   ....*....|....*....|...
gi 1958745559  573 PGeglhPDAAPGPRGEFISRKYK 595
Cdd:cd08855     92 PG----PDSTREEKERWIRAKYE 110
RhoGAP_ARHGAP21 cd04395
RhoGAP_ARHGAP21: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
917-1064 5.08e-21

RhoGAP_ARHGAP21: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP21-like proteins. ArhGAP21 is a multi-domain protein, containing RhoGAP, PH and PDZ domains, and is believed to play a role in the organization of the cell-cell junction complex. It has been shown to function as a GAP of Cdc42 and RhoA, and to interact with alpha-catenin and Arf6. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239860  Cd Length: 196  Bit Score: 92.46  E-value: 5.08e-21
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  917 IPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDARSVKLR-PREHFVEDVTDTLKRFFRELDDPVTSARLL 995
Cdd:cd04395     18 VPLIVEVCCNIVEARGLETVGIYRVPGNNAAISALQEELNRGGFDIDLQdPRWRDVNVVSSLLKSFFRKLPEPLFTNELY 97
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1958745559  996 PRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQT 1064
Cdd:cd04395     98 PDFIEANRIEDPVERLKELRRLIHSLPDHHYETLKHLIRHLKTVADNSEVNKMEPRNLAIVFGPTLVRT 166
ArfGap_ACAP1 cd08852
ArfGAP domain of ACAP1 (ArfGAP with Coiled-coil, ANK repeat and PH domains 1); ACAP1 belongs ...
486-564 1.22e-20

ArfGAP domain of ACAP1 (ArfGAP with Coiled-coil, ANK repeat and PH domains 1); ACAP1 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


Pssm-ID: 350077 [Multi-domain]  Cd Length: 120  Bit Score: 88.86  E-value: 1.22e-20
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1958745559  486 EVAEKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRAN 564
Cdd:cd08852      2 HAVAQVQSVDGNAQCCDCREPAPEWASINLGVTLCIQCSGIHRSLGVHFSKVRSLTLDS--WEPELVKLMCELGNVIIN 78
ArfGap_GIT cd08833
The GIT subfamily of ADP-ribosylation factor GTPase-activating proteins; The GIT (G-protein ...
495-594 2.41e-20

The GIT subfamily of ADP-ribosylation factor GTPase-activating proteins; The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration.


Pssm-ID: 350062 [Multi-domain]  Cd Length: 109  Bit Score: 87.74  E-value: 2.41e-20
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  495 PANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANCFWAGALPPG 574
Cdd:cd08833      6 SNARVCADCSAPDPEWASINRGVLICDECCSIHRSLGRHISQVKSLRKDQ--WPPSLLEMVQTLGNNGANSIWEHSLLDP 83
                           90       100
                   ....*....|....*....|....*.
gi 1958745559  575 EG------LHPDAAPGPRGEFISRKY 594
Cdd:cd08833     84 SQsgkrkpIPPDPVHPTKEEFIKAKY 109
ArfGap_ArfGap1 cd08830
Arf1 GTPase-activating protein 1; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) ...
493-601 2.55e-20

Arf1 GTPase-activating protein 1; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350059 [Multi-domain]  Cd Length: 115  Bit Score: 87.94  E-value: 2.55e-20
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  493 SNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANCFWAGAlp 572
Cdd:cd08830     10 KLPGNNRCFDCGAPNPQWASVSYGIFICLECSGVHRGLGVHISFVRSITMDS--WSEKQLKKMELGGNAKLREFFESY-- 85
                           90       100       110
                   ....*....|....*....|....*....|..
gi 1958745559  573 pgeGLHPDAApgprgefISRKYK---LGLYRK 601
Cdd:cd08830     86 ---GISPDLP-------IREKYNskaAELYRE 107
ArfGap_ArfGap2_3_like cd08831
Arf1 GTPase-activating protein 2/3-like; ArfGAP (ADP Ribosylation Factor GTPase Activating ...
493-567 7.89e-20

Arf1 GTPase-activating protein 2/3-like; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350060 [Multi-domain]  Cd Length: 116  Bit Score: 86.45  E-value: 7.89e-20
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1958745559  493 SNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANCFW 567
Cdd:cd08831     11 SKPENKVCFDCGAKNPTWASVTFGVFLCLDCSGVHRSLGVHISFVRSTNLDS--WTPEQLRRMKVGGNAKAREFF 83
ArfGap_AGAP1 cd08854
ArfGAP with GTPase domain, ANK repeat and PH domain 1; The AGAP subfamily of ADP-ribosylation ...
497-595 9.25e-20

ArfGAP with GTPase domain, ANK repeat and PH domain 1; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking.


Pssm-ID: 350079 [Multi-domain]  Cd Length: 109  Bit Score: 86.22  E-value: 9.25e-20
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  497 NRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDtsVWTNEIVQLFIVLGNDRANCFWAGALPPGEG 576
Cdd:cd08854     13 NSLCVDCGAPNPTWASLNLGALICIECSGIHRNLGTHLSRVRSLDLD--DWPRELTLVLTAIGNHMANSIWESCTQGRTK 90
                           90
                   ....*....|....*....
gi 1958745559  577 LHPDAAPGPRGEFISRKYK 595
Cdd:cd08854     91 PAPDSSREERESWIRAKYE 109
ArfGap_SMAP2 cd08859
Stromal membrane-associated protein 2; a subfamily of the ArfGAP family; The SMAP subfamily of ...
497-595 1.07e-19

Stromal membrane-associated protein 2; a subfamily of the ArfGAP family; The SMAP subfamily of Arf GTPase-activating proteins consists of the two structurally-related members, SMAP1 and SMAP2. Each SMAP member exhibits common and distinct functions in vesicle trafficking. They both bind to clathrin heavy chain molecules and are involved in the trafficking of clathrin-coated vesicles. SMAP1 preferentially exhibits GAP toward Arf6, while SMAP2 prefers Arf1 as a substrate. SMAP1 is involved in Arf6-dependent vesicle trafficking, but not Arf6-mediated actin cytoskeleton reorganization, and regulates clathrin-dependent endocytosis of the transferrin receptors and E-cadherin. SMAP2 regulates Arf1-dependent retrograde transport of TGN38/46 from the early endosome to the trans-Golgi network (TGN). SMAP2 has the Clathrin Assembly Lymphoid Myeloid (CALM)-binding domain, but SMAP1 does not.


Pssm-ID: 350083 [Multi-domain]  Cd Length: 107  Bit Score: 85.81  E-value: 1.07e-19
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  497 NRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANCFWAGALPPgEG 576
Cdd:cd08859     10 NKFCADCQSKGPRWASWNIGVFICIRCAGIHRNLGVHISRVKSVNLDQ--WTQEQIQCMQEMGNGKANRLYEAFLPE-NF 86
                           90
                   ....*....|....*....
gi 1958745559  577 LHPDAAPGPRGeFISRKYK 595
Cdd:cd08859     87 RRPQTDQAVEG-FIRDKYE 104
RhoGAP_SYD1 cd04379
RhoGAP_SYD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
907-1068 1.17e-19

RhoGAP_SYD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in SYD-1_like proteins. Syd-1, first identified and best studied in C.elegans, has been shown to play an important role in neuronal development by specifying axonal properties. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239844  Cd Length: 207  Bit Score: 89.06  E-value: 1.17e-19
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  907 LQEQQMSRGDIPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDARSVKLRPrEHF--VEDVTDTLKRFFRE 984
Cdd:cd04379      8 LVEREGESRDVPIVLQKCVQEIERRGLDVIGLYRLCGSAAKKKELRDAFERNSAAVELSE-ELYpdINVITGVLKDYLRE 86
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  985 LDDPVTSARLLPRWREAA--ELP-QKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSV 1061
Cdd:cd04379     87 LPEPLITPQLYEMVLEALavALPnDVQTNTHLTLSIIDCLPLSAKATLLLLLDHLSLVLSNSERNKMTPQNLAVCFGPVL 166
                          170
                   ....*....|
gi 1958745559 1062 F---QTDGRG 1068
Cdd:cd04379    167 MfcsQEFSRY 176
ArfGap_ACAP2 cd08851
ArfGAP domain of ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domains 2); ACAP2 belongs ...
489-594 2.71e-19

ArfGAP domain of ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domains 2); ACAP2 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


Pssm-ID: 350076 [Multi-domain]  Cd Length: 116  Bit Score: 85.04  E-value: 2.71e-19
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  489 EKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANCFWA 568
Cdd:cd08851      5 QRVQCIPGNASCCDCGLADPRWASINLGITLCIECSGIHRSLGVHFSKVRSLTLDT--WEPELLKLMCELGNDVINRIYE 82
                           90       100
                   ....*....|....*....|....*....
gi 1958745559  569 GALPPgEGLHPDAAPGPRGE---FISRKY 594
Cdd:cd08851     83 ARVEK-MGAKKPQPGGQRQEkeaYIRAKY 110
RhoGap_RalBP1 cd04381
RhoGap_RalBP1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
916-1061 1.25e-18

RhoGap_RalBP1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in RalBP1 proteins, also known as RLIP, RLIP76 or cytocentrin. RalBP1 plays an important role in endocytosis during interphase. During mitosis, RalBP1 transiently associates with the centromere and has been shown to play an essential role in the proper assembly of the mitotic apparatus. RalBP1 is an effector of the Ral GTPase which itself is an effector of Ras. RalBP1 contains a RhoGAP domain, which shows weak activity towards Rac1 and Cdc42, but not towards Ral, and a Ral effector domain binding motif. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239846 [Multi-domain]  Cd Length: 182  Bit Score: 85.18  E-value: 1.25e-18
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  916 DIPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRdarsvklrpREHF-VED-----VTDTLKRFFRELDDPV 989
Cdd:cd04381     19 DLPLVFRECIDYVEKHGMKCEGIYKVSGIKSKVDELKAAYNR---------RESPnLEEyepptVASLLKQYLRELPEPL 89
                           90       100       110       120       130       140       150
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1958745559  990 TSARLLPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSV 1061
Cdd:cd04381     90 LTKELMPRFEEACGRPTEAEREQELQRLLKELPECNRLLLAWLIVHMDHVIAQELETKMNIQNISIVLSPTV 161
RhoGAP_Bcr cd04387
RhoGAP_Bcr: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Bcr ...
914-1063 5.29e-18

RhoGAP_Bcr: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Bcr (breakpoint cluster region protein)-like proteins. Bcr is a multidomain protein with a variety of enzymatic functions. It contains a RhoGAP and a Rho GEF domain, a Ser/Thr kinase domain, an N-terminal oligomerization domain, and a C-terminal PDZ binding domain, in addition to PH and C2 domains. Bcr is a negative regulator of: i) RacGTPase, via the Rho GAP domain, ii) the Ras-Raf-MEK-ERK pathway, via phosphorylation of the Ras binding protein AF-6, and iii) the Wnt signaling pathway through binding beta-catenin. Bcr can form a complex with beta-catenin and Tcf1. The Wnt signaling pathway is involved in cell proliferation, differentiation, and cell renewal. Bcr was discovered as a fusion partner of Abl. The Bcr-Abl fusion is characteristic for a large majority of chronic myelogenous leukemias (CML). Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239852 [Multi-domain]  Cd Length: 196  Bit Score: 83.82  E-value: 5.29e-18
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  914 RGDIPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDARSVKLRPREHFVEDVTDTLKRFFRELDDPVTSAR 993
Cdd:cd04387     13 RSKVPYIVRQCVEEVERRGMEEVGIYRISGVATDIQALKAAFDTNNKDVSVMLSEMDVNAIAGTLKLYFRELPEPLFTDE 92
                           90       100       110       120       130       140       150
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  994 LLPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQ 1063
Cdd:cd04387     93 LYPNFAEGIALSDPVAKESCMLNLLLSLPDPNLVTFLFLLHHLKRVAEREEVNKMSLHNLATVFGPTLLR 162
ArfGap_ACAP3 cd08850
ArfGAP domain of ACAP3 (ArfGAP with Coiled-coil, ANK repeat and PH domains 3); ACAP3 belongs ...
487-570 6.06e-18

ArfGAP domain of ACAP3 (ArfGAP with Coiled-coil, ANK repeat and PH domains 3); ACAP3 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. It has been shown that ACAP3 positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) also have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages.


Pssm-ID: 350075 [Multi-domain]  Cd Length: 116  Bit Score: 81.14  E-value: 6.06e-18
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  487 VAEKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANCF 566
Cdd:cd08850      3 ILQRVQSIAGNDQCCDCGQPDPRWASINLGILLCIECSGIHRSLGVHCSKVRSLTLDS--WEPELLKLMCELGNSTVNQI 80

                   ....
gi 1958745559  567 WAGA 570
Cdd:cd08850     81 YEAQ 84
RA pfam00788
Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); ...
1115-1208 6.16e-18

Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); putative RasGTP effectors in other cases. Recent evidence (not yet in MEDLINE) shows that some RA domains do NOT bind RasGTP. Predicted structure similar to that determined, and that of the RasGTP-binding domain of Raf kinase.


Pssm-ID: 425871  Cd Length: 93  Bit Score: 80.07  E-value: 6.16e-18
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559 1115 GDLIMEVYIEQQLPDN-CVTLKVSPTLTAEELTNQVLEMRGAASGTDLWVTFEILDHGELERPLHPKEKVLEQALQWCql 1193
Cdd:pfam00788    1 DDGVLKVYTEDGKPGTtYKTILVSSSTTAEEVIEALLEKFGLEDDPRDYVLVEVLERGGGERRLPDDECPLQIQLQWP-- 78
                           90
                   ....*....|....*
gi 1958745559 1194 PEPCSASLLLRKVSM 1208
Cdd:pfam00788   79 RDASDSRFLLRKRDD 93
ArfGap_ADAP2 cd08844
ADAP2 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs ...
495-573 9.01e-18

ADAP2 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


Pssm-ID: 350070 [Multi-domain]  Cd Length: 112  Bit Score: 80.58  E-value: 9.01e-18
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1958745559  495 PANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALgSGISKVQSLKLDtsVWTNEIVQLFIVLGNDRANCFWAGALPP 573
Cdd:cd08844     15 PGNSVCADCGAPDPDWASYTLGIFICLNCSGVHRNL-PDISRVKSIRLD--FWEDELVEFMKENGNLKAKAKFEAFVPP 90
RhoGAP_GMIP cd04408
RhoGAP_GMIP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP ...
916-1063 9.66e-18

RhoGAP_GMIP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP (Gem interacting protein). GMIP plays important roles in neurite growth and axonal guidance, and interacts with Gem, a member of the RGK subfamily of the Ras small GTPase superfamily, through the N-terminal half of the protein. GMIP contains a C-terminal RhoGAP domain. GMIP inhibits RhoA function, but is inactive towards Rac1 and Cdc41. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239873  Cd Length: 200  Bit Score: 83.33  E-value: 9.66e-18
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  916 DIPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDARSVKLRprEHFVEDVTDTLKRFFRELDDPVTSARLL 995
Cdd:cd04408     15 EVPFVVVRCTAEIENRALGVQGIYRISGSKARVEKLCQAFENGRDLVDLS--GHSPHDITSVLKHFLKELPEPVLPFQLY 92
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  996 PRW----REAAELPQKNQR--------LEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQ 1063
Cdd:cd04408     93 DDFialaKELQRDSEKAAEspsiveniIRSLKELLGRLPVSNYNTLRHLMAHLYRVAERFEDNKMSPNNLGIVFGPTLLR 172
ArfGap_ASAP3 cd17900
ArfGAP domain of ASAP3 (ArfGAP with ANK repeat and PH domain-containing protein 3); The ...
491-594 1.06e-17

ArfGAP domain of ASAP3 (ArfGAP with ANK repeat and PH domain-containing protein 3); The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP1 and ASAP2, ASAP3 do not have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma.


Pssm-ID: 350087 [Multi-domain]  Cd Length: 124  Bit Score: 80.66  E-value: 1.06e-17
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  491 VWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsVWTNEIVqLFIVLGNDRANCFWAGA 570
Cdd:cd17900      9 VKSRPGNSQCCDCGAPDPTWLSTNLGILTCIECSGIHRELGVRYSRIQSLTLDL-LSTSELL-LAVSMGNTRFNEVMEAT 86
                           90       100
                   ....*....|....*....|....*.
gi 1958745559  571 LPPGEGLHPDAAP--GPRGEFISRKY 594
Cdd:cd17900     87 LPAHGGPKPSAESdmGTRKDYIMAKY 112
RhoGAP-ARHGAP11A cd04394
RhoGAP-ARHGAP11A: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
915-1080 1.48e-17

RhoGAP-ARHGAP11A: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP11A-like proteins. The mouse homolog of human ArhGAP11A has been detected as a gene exclusively expressed in immature ganglion cells, potentially playing a role in retinal development. The exact function of ArhGAP11A is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239859 [Multi-domain]  Cd Length: 202  Bit Score: 82.91  E-value: 1.48e-17
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  915 GDIP-IIVDACiSFVTQHgLRLEGVYRKGG--ARARSLRLLAEFRRDARSVKLrprehfVEDVTDTLKRFFRELDDPVTS 991
Cdd:cd04394     18 GNVPkFLVDAC-TFLLDH-LSTEGLFRKSGsvVRQKELKAKLEGGEACLSSAL------PCDVAGLLKQFFRELPEPLLP 89
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  992 ARLLPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRV-QKCAAlNQMCTRNLALLFAPSVFQTDGRGE- 1069
Cdd:cd04394     90 YDLHEALLKAQELPTDEERKSATLLLTCLLPDEHVNTLRYFFSFLYDVaQRCSE-NKMDSSNLAVIFAPNLFQSEEGGEk 168
                          170       180
                   ....*....|....*....|.
gi 1958745559 1070 ----------HEVRVLQELID 1080
Cdd:cd04394    169 mssstekrlrLQAAVVQTLID 189
RhoGAP_chimaerin cd04372
RhoGAP_chimaerin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
917-1064 1.74e-17

RhoGAP_chimaerin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of chimaerins. Chimaerins are a family of phorbolester- and diacylglycerol-responsive GAPs specific for the Rho-like GTPase Rac. Chimaerins exist in two alternative splice forms that each contain a C-terminal GAP domain, and a central C1 domain which binds phorbol esters, inducing a conformational change that activates the protein; one splice form is lacking the N-terminal Src homology-2 (SH2) domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239837 [Multi-domain]  Cd Length: 194  Bit Score: 82.18  E-value: 1.74e-17
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  917 IPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDAR----SVKLRPRehfVEDVTDTLKRFFRELDDPVTSA 992
Cdd:cd04372     16 RPMVVDMCIREIEARGLQSEGLYRVSGFAEEIEDVKMAFDRDGEkadiSATVYPD---INVITGALKLYFRDLPIPVITY 92
                           90       100       110       120       130       140       150
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1958745559  993 RLLPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQT 1064
Cdd:cd04372     93 DTYPKFIDAAKISNPDERLEAVHEALMLLPPAHYETLRYLMEHLKRVTLHEKDNKMNAENLGIVFGPTLMRP 164
ArfGap_ASAP1 cd08848
ArfGAP domain of ASAP1 (ArfGAP with SH3 domain, ANK repeat and PH domain-containing protein 1); ...
487-594 1.98e-17

ArfGAP domain of ASAP1 (ArfGAP with SH3 domain, ANK repeat and PH domain-containing protein 1); The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma.


Pssm-ID: 350073 [Multi-domain]  Cd Length: 122  Bit Score: 79.69  E-value: 1.98e-17
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  487 VAEKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDtSVWTNEIVqLFIVLGNDRANCF 566
Cdd:cd08848      5 IIDDVQRLPGNEVCCDCGSPDPTWLSTNLGILTCIECSGIHREMGVHISRIQSLELD-KLGTSELL-LAKNVGNNSFNDI 82
                           90       100       110
                   ....*....|....*....|....*....|....
gi 1958745559  567 WAGALPPgeglhPDAAPGP------RGEFISRKY 594
Cdd:cd08848     83 MEGNLPS-----PSPKPSPssdmtaRKEYITAKY 111
RhoGAP-p50rhoGAP cd04404
RhoGAP-p50rhoGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
907-1059 2.91e-17

RhoGAP-p50rhoGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of p50RhoGAP-like proteins; p50RhoGAP, also known as RhoGAP-1, contains a C-terminal RhoGAP domain and an N-terminal Sec14 domain which binds phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3). It is ubiquitously expressed and preferentially active on Cdc42. This subgroup also contains closely related ARHGAP8. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239869 [Multi-domain]  Cd Length: 195  Bit Score: 81.62  E-value: 2.91e-17
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  907 LQEQQMSRGDIPIIVDACISFVTQHGLRLEGVYRKGgARARSLRLLAEFRRDARSVKLRpREHFVEDVTDTLKRFFRELD 986
Cdd:cd04404     13 LKEKNPEQEPIPPVVRETVEYLQAHALTTEGIFRRS-ANTQVVKEVQQKYNMGEPVDFD-QYEDVHLPAVILKTFLRELP 90
                           90       100       110       120       130       140       150
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1958745559  987 DPVTSARLLPRWREAAELPqKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAP 1059
Cdd:cd04404     91 EPLLTFDLYDDIVGFLNVD-KEERVERVKQLLQTLPEENYQVLKYLIKFLVQVSAHSDQNKMTNSNLAVVFGP 162
RhoGAP_ARHGAP6 cd04376
RhoGAP_ARHGAP6: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
917-1091 3.26e-17

RhoGAP_ARHGAP6: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP6-like proteins. ArhGAP6 shows GAP activity towards RhoA, but not towards Cdc42 and Rac1. ArhGAP6 is often deleted in microphthalmia with linear skin defects syndrome (MLS); MLS is a severe X-linked developmental disorder. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239841  Cd Length: 206  Bit Score: 81.72  E-value: 3.26e-17
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  917 IPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRdARSVKLRpREHFVEDVTDTLKRFFRELDDPVTSARLLP 996
Cdd:cd04376      9 VPRLVESCCQHLEKHGLQTVGIFRVGSSKKRVRQLREEFDR-GIDVVLD-ENHSVHDVAALLKEFFRDMPDPLLPRELYT 86
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  997 RWREAAELPQKNQrLEKYKEVISCLPRVNRRTLATLIGHLYRVQ-----------KCAALNQMCTRNLALLFAPSVFQTD 1065
Cdd:cd04376     87 AFIGTALLEPDEQ-LEALQLLIYLLPPCNCDTLHRLLKFLHTVAehaadsidedgQEVSGNKMTSLNLATIFGPNLLHKQ 165
                          170       180       190       200
                   ....*....|....*....|....*....|....*....|
gi 1958745559 1066 GRGEHE--------------VRVLQELIDGYISVFDIDSD 1091
Cdd:cd04376    166 KSGEREfvqaslrieestaiINVVQTMIDNYEELFMVSPE 205
ArfGap_ArfGap1_like cd08959
ARF1 GTPase-activating protein 1-like; ArfGAP (ADP Ribosylation Factor GTPase Activating ...
493-567 4.68e-17

ARF1 GTPase-activating protein 1-like; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350084 [Multi-domain]  Cd Length: 115  Bit Score: 78.32  E-value: 4.68e-17
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1958745559  493 SNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIVLGNDRANCFW 567
Cdd:cd08959     10 SKPENKVCFDCGAKNPQWASVTYGIFICLDCSGVHRGLGVHISFVRSTTMDK--WTEEQLRKMKVGGNANAREFF 82
ArfGap_GIT2 cd08847
GIT2 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting ...
500-594 1.34e-16

GIT2 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration.


Pssm-ID: 350072 [Multi-domain]  Cd Length: 111  Bit Score: 76.98  E-value: 1.34e-16
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  500 CADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKldTSVWTNEIVQLFIVLGNDRANCFWAGAL-------- 571
Cdd:cd08847     11 CADCSTSDPRWASVNRGVLICDECCSVHRSLGRHISQVRHLK--HTSWPPTLLQMVQTLYNNGANSIWEHSLldpasims 88
                           90       100
                   ....*....|....*....|....*...
gi 1958745559  572 -----PPGEGLHPDAApgprgEFISRKY 594
Cdd:cd08847     89 gkrkaNPQDKVHPNKA-----EFIRAKY 111
RA cd17043
Ras-associating (RA) domain, structurally similar to a beta-grasp ubiquitin-like fold; RA ...
1118-1205 2.74e-15

Ras-associating (RA) domain, structurally similar to a beta-grasp ubiquitin-like fold; RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and are involved in various functions ranging from tumor suppression to being oncoproteins. Ras proteins are small GTPases that are involved in cellular signal transduction. The RA domain has the beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. RA-containing proteins include RalGDS, AF6, RIN, RASSF1, SNX27, CYR1, STE50, and phospholipase C epsilon.


Pssm-ID: 340563  Cd Length: 87  Bit Score: 72.35  E-value: 2.74e-15
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559 1118 IMEVYIEQQLP-DNCVTLKVSPTLTAEELTNQVLEMRGAASGTDLWVTFEILDHGELERPLHPKEKVLEQALQWcqLPEP 1196
Cdd:cd17043      1 VLKVYDDDLAPgSAYKSILVSSTTTAREVVQLLLEKYGLEEDPEDYSLYEVSEKQETERVLHDDECPLLIQLEW--GPQG 78

                   ....*....
gi 1958745559 1197 CSASLLLRK 1205
Cdd:cd17043     79 TEFRFVLKR 87
RhoGAP_PARG1 cd04409
RhoGAP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
917-1061 6.49e-15

RhoGAP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of PARG1 (PTPL1-associated RhoGAP1). PARG1 was originally cloned as an interaction partner of PTPL1, an intracellular protein-tyrosine phosphatase. PARG1 interacts with Rap2, also a member of the Ras small GTPase superfamily whose exact function is unknown, and shows strong preference for Rho. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239874  Cd Length: 211  Bit Score: 75.23  E-value: 6.49e-15
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  917 IPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDARSVKLRprEHFVEDVTDTLKRFFRELDDPVTSARL-- 994
Cdd:cd04409     16 IPFIIKKCTSEIESRALCLKGIYRVNGAKSRVEKLCQAFENGKDLVELS--ELSPHDISNVLKLYLRQLPEPLILFRLyn 93
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  995 --------LPRWREAAELPQKNQR------------LEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLA 1054
Cdd:cd04409     94 efiglakeSQHVNETQEAKKNSDKkwpnmctelnriLLKSKDLLRQLPAPNYNTLQFLIVHLHRVSEQAEENKMSASNLG 173

                   ....*..
gi 1958745559 1055 LLFAPSV 1061
Cdd:cd04409    174 IIFGPTL 180
RhoGAP_Graf cd04374
RhoGAP_Graf: GTPase-activator protein (GAP) domain for Rho-like GTPases found in GRAF (GTPase ...
920-1060 7.64e-15

RhoGAP_Graf: GTPase-activator protein (GAP) domain for Rho-like GTPases found in GRAF (GTPase regulator associated with focal adhesion kinase); Graf is a multi-domain protein, containing SH3 and PH domains, that binds focal adhesion kinase and influences cytoskeletal changes mediated by Rho proteins. Graf exhibits GAP activity toward RhoA and Cdc42, but only weakly activates Rac1. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239839  Cd Length: 203  Bit Score: 74.74  E-value: 7.64e-15
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  920 IVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEF----RRDARSVKLRPREHFVEDVTDTLKRFFRELDDPVTSARLL 995
Cdd:cd04374     31 FVRKCIEAVETRGINEQGLYRVVGVNSKVQKLLSLGldpkTSTPGDVDLDNSEWEIKTITSALKTYLRNLPEPLMTYELH 110
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1958745559  996 PRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPS 1060
Cdd:cd04374    111 NDFINAAKSENLESRVNAIHSLVHKLPEKNREMLELLIKHLTNVSDHSKKNLMTVSNLGVVFGPT 175
RhoGAP_myosin_IXA cd04406
RhoGAP_myosin_IXA: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
917-1063 1.36e-14

RhoGAP_myosin_IXA: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in myosins IXA. Class IX myosins contain a characteristic head domain, a neck domain and a tail domain which contains a C6H2-zinc binding motif and a Rho-GAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239871  Cd Length: 186  Bit Score: 73.88  E-value: 1.36e-14
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  917 IPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDARSVKLRprEHFVEDVTDTLKRFFRELDDPVTSARLLP 996
Cdd:cd04406     15 VPLVVEKLINYIEMHGLYTEGIYRKSGSTNKIKELRQGLDTDANSVNLD--DYNIHVIASVFKQWLRDLPNPLMTFELYE 92
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1958745559  997 RWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQ 1063
Cdd:cd04406     93 EFLRAMGLQERRETVRGVYSVIDQLSRTHLNTLERLIFHLVRIALQEETNRMSANALAIVFAPCILR 159
RhoGAP_ARHGAP18 cd04391
RhoGAP_ARHGAP18: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
907-1077 1.39e-14

RhoGAP_ARHGAP18: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP18-like proteins. The function of ArhGAP18 is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239856  Cd Length: 216  Bit Score: 74.30  E-value: 1.39e-14
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  907 LQEQQMSRG-DIPIIVDACISFVTQHGLRLEGVYRKGGARAR--SLR--LLAEF---RRDARSVKlrprehfVEDVTDTL 978
Cdd:cd04391     11 ERDQKKVPGsKVPLIFQKLINKLEERGLETEGILRIPGSAQRvkFLCqeLEAKFyegTFLWDQVK-------QHDAASLL 83
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  979 KRFFRELDDPVTSARLLPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFA 1058
Cdd:cd04391     84 KLFIRELPQPLLTVEYLPAFYSVQGLPSKKDQLQALNLLVLLLPEANRDTLKALLEFLQKVVDHEEKNKMNLWNVAMIMA 163
                          170
                   ....*....|....*....
gi 1958745559 1059 PSVFQTDGRGEHEVRVLQE 1077
Cdd:cd04391    164 PNLFPPRGKHSKDNESLQE 182
ArfGap_ASAP2 cd08849
ArfGAP domain of ASAP2 (ArfGAP2 with SH3 domain, ANK repeat and PH domain-containing protein 2) ...
486-604 1.75e-14

ArfGAP domain of ASAP2 (ArfGAP2 with SH3 domain, ANK repeat and PH domain-containing protein 2); The Arf GAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf , thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport.


Pssm-ID: 350074 [Multi-domain]  Cd Length: 123  Bit Score: 71.55  E-value: 1.75e-14
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  486 EVAEKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsVWTNEIVqLFIVLGNDRANC 565
Cdd:cd08849      4 EIISEVQRMTGNDVCCDCGAPDPTWLSTNLGILTCIECSGIHRELGVHYSRMQSLTLDV-LGTSELL-LAKNIGNAGFNE 81
                           90       100       110       120
                   ....*....|....*....|....*....|....*....|..
gi 1958745559  566 FWAGALPPGEGLHPDAAP--GPRGEFISRKYKLGLY-RKPHP 604
Cdd:cd08849     82 IMEACLPAEDVVKPNPGSdmNARKDYITAKYIERRYaRKKHA 123
ArfGap_ADAP1 cd08843
ADAP1 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs ...
495-573 2.43e-14

ADAP1 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


Pssm-ID: 350069 [Multi-domain]  Cd Length: 112  Bit Score: 70.80  E-value: 2.43e-14
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1958745559  495 PANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSgISKVQSLKLDTsvWTNEIVQLFIVLGNDRANCFWAGALPP 573
Cdd:cd08843     15 PGNARCADCGAPDPDWASYTLGVFICLSCSGIHRNIPQ-VSKVKSVRLDA--WEEAQVEFMASHGNDAARARFESKVPS 90
RhoGAP_DLC1 cd04375
RhoGAP_DLC1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
917-1063 2.50e-14

RhoGAP_DLC1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of DLC1-like proteins. DLC1 shows in vitro GAP activity towards RhoA and CDC42. Beside its C-terminal GAP domain, DLC1 also contains a SAM (sterile alpha motif) and a START (StAR-related lipid transfer action) domain. DLC1 has tumor suppressor activity in cell culture. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239840  Cd Length: 220  Bit Score: 73.99  E-value: 2.50e-14
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  917 IPIIVDACISFVTQHGLRLEGVYRKGGARAR--SLRLLAEfrrdARSVKLRPREHFVEDVTDTLKRFFRELDDPVTSARL 994
Cdd:cd04375     20 LPRSIQQAMRWLRNNALDQVGLFRKSGVKSRiqKLRSMIE----SSTDNVNYDGQQAYDVADMLKQYFRDLPEPLLTNKL 95
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1958745559  995 LPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQ 1063
Cdd:cd04375     96 SETFIAIFQYVPKEQRLEAVQCAILLLPDENREVLQTLLYFLSDVAANSQENQMTATNLAVCLAPSLFH 164
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
284-375 1.77e-13

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 67.96  E-value: 1.77e-13
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559   284 PLLSGWLDKLSPQGNYVFQRRFVQFNGRSLMYFGSDK---DPFPKGVIPLTAIEMTRS------SKDNKFQVITGQR-VF 353
Cdd:smart00233    1 VIKEGWLYKKSGGGKKSWKKRYFVLFNSTLLYYKSKKdkkSYKPKGSIDLSGCTVREApdpdssKKPHCFEIKTSDRkTL 80
                            90       100
                    ....*....|....*....|..
gi 1958745559   354 VFRTESEAQRDIWCSTLQSCLK 375
Cdd:smart00233   81 LLQAESEEEREKWVEALRKAIA 102
ArfGap_AGFG cd08838
ArfGAP domain of the AGFG subfamily (ArfGAP domain and FG repeat-containing proteins); The ...
495-594 3.61e-13

ArfGAP domain of the AGFG subfamily (ArfGAP domain and FG repeat-containing proteins); The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG1 (alias: HIV-1 Rev binding protein, HRB; Rev interacting protein, RIP; Rev/Rex activating domain-binding protein, RAB) and AGFG2 are involved in the maintenance and spread of immunodeficiency virus type 1 (HIV-1) infection. The ArfGAP domain of AGFG is related to nucleoporins, which is a class of proteins that mediate nucleocytoplasmic transport. AGFG plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs, possibly together by the nuclear export receptor CRM1. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication.


Pssm-ID: 350067 [Multi-domain]  Cd Length: 113  Bit Score: 67.22  E-value: 3.61e-13
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  495 PANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGsgiSKVQSLKLDTsvWTNEIVQLFIVLGNDRANCFWAGALPPG 574
Cdd:cd08838     11 PENKRCFDCGQRGPTYVNLTFGTFVCTTCSGIHREFN---HRVKSISMST--FTPEEVEFLQAGGNEVARKIWLAKWDPR 85
                           90       100
                   ....*....|....*....|.
gi 1958745559  575 EGLHPDAAPGPRG-EFISRKY 594
Cdd:cd08838     86 TDPEPDSGDDQKIrEFIRLKY 106
PLN03114 PLN03114
ADP-ribosylation factor GTPase-activating protein AGD10; Provisional
479-567 6.71e-13

ADP-ribosylation factor GTPase-activating protein AGD10; Provisional


Pssm-ID: 178661 [Multi-domain]  Cd Length: 395  Bit Score: 72.58  E-value: 6.71e-13
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  479 TETLSD-YEVAEKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTsvWTNEIVQLFIV 557
Cdd:PLN03114     3 SENLNDkISVFKKLKAKSDNKICFDCNAKNPTWASVTYGIFLCIDCSAVHRSLGVHISFVRSTNLDS--WSSEQLKMMIY 80
                           90
                   ....*....|
gi 1958745559  558 LGNDRANCFW 567
Cdd:PLN03114    81 GGNNRAQVFF 90
RhoGAP_fLRG1 cd04397
RhoGAP_fLRG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
917-1061 9.32e-13

RhoGAP_fLRG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal LRG1-like proteins. Yeast Lrg1p is required for efficient cell fusion, and mother-daughter cell separation, possibly through acting as a RhoGAP specifically regulating 1,3-beta-glucan synthesis. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239862  Cd Length: 213  Bit Score: 68.93  E-value: 9.32e-13
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  917 IPIIVDACISFVTQHGLRLEGVYRKGGaRARSLRLLAE-FRRDARSVKLRPREHFVEdVTDTLKRFFRELDDPVTSARLL 995
Cdd:cd04397     27 IPALIDDIISAMRQMDMSVEGVFRKNG-NIRRLKELTEeIDKNPTEVPDLSKENPVQ-LAALLKKFLRELPDPLLTFKLY 104
                           90       100       110       120       130       140       150
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1958745559  996 PRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAAL-----NQMCTRNLALLFAPSV 1061
Cdd:cd04397    105 RLWISSQKIEDEEERKRVLHLVYCLLPKYHRDTMEVLFSFLKWVSSFSHIdeetgSKMDIHNLATVITPNI 175
ArfGap_GIT1 cd08846
GIT1 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting ...
495-594 1.01e-12

GIT1 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration.


Pssm-ID: 350071 [Multi-domain]  Cd Length: 111  Bit Score: 65.89  E-value: 1.01e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  495 PANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKldTSVWTNEIVQLFIVLGNDRANCFWAGAL--- 571
Cdd:cd08846      6 PRAEVCADCSAPDPGWASINRGVLICDECCSVHRSLGRHISIVKHLR--HSAWPPTLLQMVHTLASNGANSIWEHSLldp 83
                           90       100       110
                   ....*....|....*....|....*....|...
gi 1958745559  572 ----------PPGEGLHPdaapgPRGEFISRKY 594
Cdd:cd08846     84 aqvqsgrrkaNPQDKVHP-----TKSEFIRAKY 111
RhoGAP_FAM13A1a cd04393
RhoGAP_FAM13A1a: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
907-1080 1.23e-12

RhoGAP_FAM13A1a: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of FAM13A1, isoform a-like proteins. The function of FAM13A1a is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by up several orders of magnitude.


Pssm-ID: 239858 [Multi-domain]  Cd Length: 189  Bit Score: 68.26  E-value: 1.23e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  907 LQEQQMSRGDIPIIVDACISFVTQHGLRLEGVYRKGG--ARARSLRLlaefRRDARSVKLRPREHFVEDVTDTLKRFFRE 984
Cdd:cd04393     10 LQQAGQPENGVPAVVRHIVEYLEQHGLEQEGLFRVNGnaETVEWLRQ----RLDSGEEVDLSKEADVCSAASLLRLFLQE 85
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  985 LDDPVTSARLLPRW-REAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQ 1063
Cdd:cd04393     86 LPEGLIPASLQIRLmQLYQDYNGEDEFGRKLRDLLQQLPPVNYSLLKFLCHFLSNVASQHHENRMTAENLAAVFGPDVFH 165
                          170       180
                   ....*....|....*....|...
gi 1958745559 1064 T----DGRGEHE--VRVLQELID 1080
Cdd:cd04393    166 VytdvEDMKEQEicSRIMAKLLE 188
RhoGAP_ARHGAP20 cd04402
RhoGAP_ARHGAP20: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
915-1079 1.36e-12

RhoGAP_ARHGAP20: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP20-like proteins. ArhGAP20, also known as KIAA1391 and RA-RhoGAP, contains a RhoGAP, a RA, and a PH domain, and ANXL repeats. ArhGAP20 is activated by Rap1 and induces inactivation of Rho, which in turn leads to neurite outgrowth. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239867  Cd Length: 192  Bit Score: 68.09  E-value: 1.36e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  915 GDIPIIVDACISFVTQHGLRLEGVYRKGgARARSLRLLAEFRRDARSVKLRprEHFVEDVTDTLKRFFRELDDPVTSARL 994
Cdd:cd04402     13 DNLPKPILDMLSLLYQKGPSTEGIFRRS-ANAKACKELKEKLNSGVEVDLK--AEPVLLLASVLKDFLRNIPGSLLSSDL 89
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  995 LPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQTDGRGEHEVRV 1074
Cdd:cd04402     90 YEEWMSALDQENEEEKIAELQRLLDKLPRPNVLLLKHLICVLHNISQNSETNKMDAFNLAVCIAPSLLWPPASSELQNED 169

                   ....*
gi 1958745559 1075 LQELI 1079
Cdd:cd04402    170 LKKVT 174
RhoGAP_srGAP cd04383
RhoGAP_srGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
911-1061 2.69e-12

RhoGAP_srGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in srGAPs. srGAPs are components of the intracellular part of Slit-Robo signalling pathway that is important for axon guidance and cell migration. srGAPs contain an N-terminal FCH domain, a central RhoGAP domain and a C-terminal SH3 domain; this SH3 domain interacts with the intracellular proline-rich-tail of the Roundabout receptor (Robo). This interaction with Robo then activates the rhoGAP domain which in turn inhibits Cdc42 activity. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239848  Cd Length: 188  Bit Score: 67.06  E-value: 2.69e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  911 QMSRGDIPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDARSVKLRPREHFVEDVTDTLKRFFRELDDPVT 990
Cdd:cd04383     12 QDSGQAIPLVVESCIRFINLYGLQHQGIFRVSGSQVEVNDIKNAFERGEDPLADDQNDHDINSVAGVLKLYFRGLENPLF 91
                           90       100       110       120       130       140       150
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1958745559  991 SARLLPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSV 1061
Cdd:cd04383     92 PKERFEDLMSCVKLENPTERVHQIREILSTLPRSVIIVMRYLFAFLNHLSQFSDENMMDPYNLAICFGPTL 162
PH-GRAM1_AGT26 cd13215
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, ...
285-371 2.89e-12

Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1; ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275402  Cd Length: 116  Bit Score: 64.95  E-value: 2.89e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  285 LLSGWLDKLSpQGNYVFQRRFVQFNGRSLMYFGSDKDP-FPKGVIPL---TAIEMTRSSKDN--KFQVITGQRVFVFRTE 358
Cdd:cd13215     22 IKSGYLSKRS-KRTLRYTRYWFVLKGDTLSWYNSSTDLyFPAGTIDLryaTSIELSKSNGEAttSFKIVTNSRTYKFKAD 100
                           90
                   ....*....|...
gi 1958745559  359 SEAQRDIWCSTLQ 371
Cdd:cd13215    101 SETSADEWVKALK 113
ArfGap_ArfGap2 cd09029
Arf1 GTPase-activating protein 2; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) ...
495-567 3.00e-12

Arf1 GTPase-activating protein 2; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350086 [Multi-domain]  Cd Length: 120  Bit Score: 65.08  E-value: 3.00e-12
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1958745559  495 PANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTSvWTNEIVQLFIVLGNDRANCFW 567
Cdd:cd09029     17 PTNKACFDCGAKNPSWASITYGVFLCIDCSGVHRSLGVHLSFIRSTELDSN-WNWFQLRCMQVGGNANATAFF 88
RA_ARAP1 cd17226
Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH ...
1114-1184 3.54e-12

Ras-associating (RA) domain found in Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 1 (ARAP1); ARAP1, also termed Centaurin-delta-2 (Cnt-d2), is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3))-dependent Arf Rap-activated guanosine triphosphatase (GTPase)-activating protein (GAP) that inhibits the trafficking of epidermal growth factor receptor (EGFR) to the early endosome. It associates with the Cbl-interacting protein of 85 kDa (CIN85), regulates endocytic trafficking of the EGFR, and thus affects ubiquitination of EGFR. It also regulates the ring size of circular dorsal ruffles through Arf1 and Arf5. ARAP1 contains multiple functional domains, including ArfGAP and RhoGAP domains, as well as a sterile alpha motif (Sam) domain, five PH domains, and a RA domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes.


Pssm-ID: 340746  Cd Length: 93  Bit Score: 63.72  E-value: 3.54e-12
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1958745559 1114 AGDLIMEVYIEQQLPDNCVTLKVSPTLTAEELTNQVLEMRGAAS-GTDLWVTFEILDHGELERPLHPKEKVL 1184
Cdd:cd17226      1 SPDFICTVYLEEKKEGSEQHVQVPASMTAEELTFEILDRRNIHTrEKDYWSCFEVNEREEAERPLHFSEKVL 72
PH pfam00169
PH domain; PH stands for pleckstrin homology.
284-375 5.73e-12

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 63.74  E-value: 5.73e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  284 PLLSGWLDKLSPQGNYVFQRRFVQFNGRSLMYFGSD---KDPFPKGVIPLTAIEMTR------SSKDNKFQVITGQ---- 350
Cdd:pfam00169    1 VVKEGWLLKKGGGKKKSWKKRYFVLFDGSLLYYKDDksgKSKEPKGSISLSGCEVVEvvasdsPKRKFCFELRTGErtgk 80
                           90       100
                   ....*....|....*....|....*
gi 1958745559  351 RVFVFRTESEAQRDIWCSTLQSCLK 375
Cdd:pfam00169   81 RTYLLQAESEEERKDWIKAIQSAIR 105
RhoGAP_ARHGAP22_24_25 cd04390
RhoGAP_ARHGAP22_24_25: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ...
909-1063 7.01e-12

RhoGAP_ARHGAP22_24_25: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ARHGAP22, 24 and 25-like proteins; longer isoforms of these proteins contain an additional N-terminal pleckstrin homology (PH) domain. ARHGAP25 (KIA0053) has been identified as a GAP for Rac1 and Cdc42. Short isoforms (without the PH domain) of ARHGAP24, called RC-GAP72 and p73RhoGAP, and of ARHGAP22, called p68RacGAP, has been shown to be involved in angiogenesis and endothelial cell capillary formation. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239855 [Multi-domain]  Cd Length: 199  Bit Score: 66.31  E-value: 7.01e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  909 EQQMSRGDIPIIVDACISFVTQHGLRLEGVYRKGGARarslRLLAEFRR--DARSVKLRPREHFVEDVTDTLKRFFRELD 986
Cdd:cd04390     14 ERKFGPRLVPILVEQCVDFIREHGLKEEGLFRLPGQA----NLVKQLQDafDAGERPSFDSDTDVHTVASLLKLYLRELP 89
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  987 DPV----------TSARLLPRWREAAELPQKNQrlekykevISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALL 1056
Cdd:cd04390     90 EPVipwaqyedflSCAQLLSKDEEKGLGELMKQ--------VSILPKVNYNLLSYICRFLDEVQSNSSVNKMSVQNLATV 161

                   ....*..
gi 1958745559 1057 FAPSVFQ 1063
Cdd:cd04390    162 FGPNILR 168
RhoGAP_fBEM3 cd04400
RhoGAP_fBEM3: RhoGAP (GTPase-activator [GAP] protein for Rho-like small GTPases) domain of ...
916-1089 7.03e-12

RhoGAP_fBEM3: RhoGAP (GTPase-activator [GAP] protein for Rho-like small GTPases) domain of fungal BEM3-like proteins. Bem3 is a GAP protein of Cdc42, and is specifically involved in the control of the initial assembly of the septin ring in yeast bud formation. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239865 [Multi-domain]  Cd Length: 190  Bit Score: 65.84  E-value: 7.03e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  916 DIPIIVDACISFV-TQHGLRLEGVYRKGGArARSLRLLAEFRRDARSVKL--RPREHFVEDVTDTLKRFFRELDDPVTSA 992
Cdd:cd04400     21 DLPSVVYRCIEYLdKNRAIYEEGIFRLSGS-ASVIKQLKERFNTEYDVDLfsSSLYPDVHTVAGLLKLYLRELPTLILGG 99
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  993 RLLPRWREAAELPQKN-QRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSVFQTDGrgehe 1071
Cdd:cd04400    100 ELHNDFKRLVEENHDRsQRALELKDLVSQLPQANYDLLYVLFSFLRKIIEHSDVNKMNLRNVCIVFSPTLNIPAG----- 174
                          170
                   ....*....|....*...
gi 1958745559 1072 vrVLQELIDGYISVFDID 1089
Cdd:cd04400    175 --IFVLFLTDFDCIFGGI 190
ArfGap_ArfGap3 cd09028
Arf1 GTPase-activating protein 3; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) ...
489-567 8.39e-12

Arf1 GTPase-activating protein 3; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350085 [Multi-domain]  Cd Length: 120  Bit Score: 63.55  E-value: 8.39e-12
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1958745559  489 EKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGISKVQSLKLDTSvWTNEIVQLFIVLGNDRANCFW 567
Cdd:cd09028     11 KRLRSVPTNKVCFDCGAKNPSWASITYGVFLCIDCSGIHRSLGVHLSFIRSTELDSN-WSWFQLRCMQVGGNANASAFF 88
RhoGAP_fSAC7_BAG7 cd04396
RhoGAP_fSAC7_BAG7: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
910-1062 1.00e-11

RhoGAP_fSAC7_BAG7: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal SAC7 and BAG7-like proteins. Both proteins are GTPase activating proteins of Rho1, but differ functionally in vivo: SAC7, but not BAG7, is involved in the control of Rho1-mediated activation of the PKC-MPK1 pathway. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239861  Cd Length: 225  Bit Score: 66.28  E-value: 1.00e-11
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  910 QQMSRGDIPIIVDACISFVTQHGLRLEGVYRKGGARARSLRLLAEFRRDARSVKLRPREHF-VEDVTDTLKRFFRELDDP 988
Cdd:cd04396     25 EQYVYGYIPVVVAKCGVYLKENATEVEGIFRVAGSSKRIRELQLIFSTPPDYGKSFDWDGYtVHDAASVLRRYLNNLPEP 104
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  989 VTSARLLPRWREAAELPQK-----------------NQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTR 1051
Cdd:cd04396    105 LVPLDLYEEFRNPLRKRPRilqymkgrineplntdiDQAIKEYRDLITRLPNLNRQLLLYLLDLLAVFARNSDKNLMTAS 184
                          170
                   ....*....|.
gi 1958745559 1052 NLALLFAPSVF 1062
Cdd:cd04396    185 NLAAIFQPGIL 195
SAM_superfamily cd09487
SAM (Sterile alpha motif ); SAM (Sterile Alpha Motif) domain is a module consisting of ...
8-63 1.22e-11

SAM (Sterile alpha motif ); SAM (Sterile Alpha Motif) domain is a module consisting of approximately 70 amino acids. This domain is found in the Fungi/Metazoa group and in a restricted number of bacteria. Proteins with SAM domains are represented by a wide variety of domain architectures and have different intracellular localization, including nucleus, cytoplasm and membranes. SAM domains have diverse functions. They can interact with proteins, RNAs and membrane lipids, contain site of phosphorylation and/or kinase docking site, and play a role in protein homo and hetero dimerization/oligomerization in processes ranging from signal transduction to regulation of transcription. Mutations in SAM domains have been linked to several diseases.


Pssm-ID: 188886 [Multi-domain]  Cd Length: 56  Bit Score: 61.10  E-value: 1.22e-11
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*.
gi 1958745559    8 DIAVWLAAVHLEQYADTFRRHGLaTAGAAQRLGHEELRHLGISATGHRKRILRLLQ 63
Cdd:cd09487      1 DVAEWLESLGLEQYADLFRKNEI-DGDALLLLTDEDLKELGITSPGHRKKILRAIQ 55
SAM_2 pfam07647
SAM domain (Sterile alpha motif);
8-64 1.79e-11

SAM domain (Sterile alpha motif);


Pssm-ID: 429573  Cd Length: 66  Bit Score: 60.75  E-value: 1.79e-11
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*..
gi 1958745559    8 DIAVWLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQS 64
Cdd:pfam07647    8 SVADWLRSIGLEQYTDNFRDQGITGAELLLRLTLEDLKRLGITSVGHRRKILKKIQE 64
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
286-370 2.45e-11

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 61.40  E-value: 2.45e-11
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  286 LSGWLDKLSPQGNYVFQRRFVQFNGRSLMYFGSDKDP--FPKGVIPLTAI----EMTRSSKDNKFQVIT-GQRVFVFRTE 358
Cdd:cd00821      1 KEGYLLKRGGGGLKSWKKRWFVLFEGVLLYYKSKKDSsyKPKGSIPLSGIleveEVSPKERPHCFELVTpDGRTYYLQAD 80
                           90
                   ....*....|..
gi 1958745559  359 SEAQRDIWCSTL 370
Cdd:cd00821     81 SEEERQEWLKAL 92
PH2_ADAP cd01251
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called ...
288-374 3.23e-11

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241282  Cd Length: 105  Bit Score: 61.45  E-value: 3.23e-11
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  288 GWLDKLSPQGNYVFQRRFVQFNGRSLMYFGSDKDPFPKGVIPLTAIE--------MTRSSKD---NKFQVITGQRVFVFR 356
Cdd:cd01251      6 GYLEKTGPKQTDGFRKRWFTLDDRRLMYFKDPLDAFPKGEIFIGSKEegysvregLPPGIKGhwgFGFTLVTPDRTFLLS 85
                           90
                   ....*....|....*...
gi 1958745559  357 TESEAQRDIWCSTLQSCL 374
Cdd:cd01251     86 AETEEERREWITAIQKVL 103
PH4_ARAP cd13257
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
799-892 3.48e-11

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 4; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the fourth PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270077  Cd Length: 91  Bit Score: 61.02  E-value: 3.48e-11
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  799 RMGRLwlrsPSHAGLAPGLWLSGFGLLRGDHLFLCPAPGPGppapEDMVHLRRLQEISVvsaaDTPDKKEHLVLVETGRT 878
Cdd:cd13257      3 RLGRL----FYKDGLALDRAREGWFALDKSSLHACLQMQEV----EERMHLRKLQELSI----QGDVQLDVLVLVERRRT 70
                           90
                   ....*....|....
gi 1958745559  879 LYLQGEGRLDFAAW 892
Cdd:cd13257     71 LYIQGERKLDFTGW 84
SAM smart00454
Sterile alpha motif; Widespread domain in signalling and nuclear proteins. In EPH-related ...
12-63 1.02e-10

Sterile alpha motif; Widespread domain in signalling and nuclear proteins. In EPH-related tyrosine kinases, appears to mediate cell-cell initiated signal transduction via the binding of SH2-containing proteins to a conserved tyrosine that is phosphorylated. In many cases mediates homodimerisation.


Pssm-ID: 197735  Cd Length: 68  Bit Score: 58.85  E-value: 1.02e-10
                            10        20        30        40        50
                    ....*....|....*....|....*....|....*....|....*....|..
gi 1958745559    12 WLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQ 63
Cdd:smart00454   12 WLESIGLEQYADNFRKNGIDGALLLLLTSEEDLKELGITKLGHRKKILKAIQ 63
RhoGAP_ARHGAP19 cd04392
RhoGAP_ARHGAP19: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
933-1061 3.07e-10

RhoGAP_ARHGAP19: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP19-like proteins. The function of ArhGAP19 is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239857  Cd Length: 208  Bit Score: 61.71  E-value: 3.07e-10
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  933 LRLEGVYRKGGARARSLRLLAEFRRDArSVKLRPREHFVEDVTDTLKRFFRELDDPVTSARLLPRWREAAEL-------- 1004
Cdd:cd04392     24 LRVEGLFRKPGNSARQQELRDLLNSGT-DLDLESGGFHAHDCATVLKGFLGELPEPLLTHAHYPAHLQIADLcqfdekgn 102
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1958745559 1005 ----PQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPSV 1061
Cdd:cd04392    103 ktsaPDKERLLEALQLLLLLLPEENRNLLKLILDLLYQTAKHEDKNKMSADNLALLFTPHL 163
PH1_PLEKHH1_PLEKHH2 cd13282
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ...
287-378 3.49e-10

Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241436  Cd Length: 96  Bit Score: 58.08  E-value: 3.49e-10
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  287 SGWLDKLspqGNYV--FQRR-FVQFNGRsLMYFGSDKDPF--PKGVIPL-TAIEMTRSSKDNKFQVITGQRVFVFRTESE 360
Cdd:cd13282      2 AGYLTKL---GGKVktWKRRwFVLKNGE-LFYYKSPNDVIrkPQGQIALdGSCEIARAEGAQTFEIVTEKRTYYLTADSE 77
                           90
                   ....*....|....*...
gi 1958745559  361 AQRDIWCSTLQSCLKEQR 378
Cdd:cd13282     78 NDLDEWIRVIQNVLRRQA 95
SAM_1 pfam00536
SAM domain (Sterile alpha motif); It has been suggested that SAM is an evolutionarily ...
8-63 7.38e-10

SAM domain (Sterile alpha motif); It has been suggested that SAM is an evolutionarily conserved protein binding domain that is involved in the regulation of numerous developmental processes in diverse eukaryotes. The SAM domain can potentially function as a protein interaction module through its ability to homo- and heterooligomerise with other SAM domains.


Pssm-ID: 425739  Cd Length: 64  Bit Score: 56.12  E-value: 7.38e-10
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*.
gi 1958745559    8 DIAVWLAAVHLEQYADTFRRHgLATAGAAQRLGHEELRHLGISATGHRKRILRLLQ 63
Cdd:pfam00536    7 DVGEWLESIGLGQYIDSFRAG-YIDGDALLQLTEDDLLKLGVTLLGHRKKILYAIQ 61
SAM_Ste50-like_fungal cd09533
SAM domain of Ste50_like (ubc2) subfamily; SAM (sterile alpha motif) domain of Ste50-like (or ...
8-60 7.76e-09

SAM domain of Ste50_like (ubc2) subfamily; SAM (sterile alpha motif) domain of Ste50-like (or Ubc2 for Ustilago bypass of cyclase) subfamily is a putative protein-protein interaction domain. This group includes only fungal proteins. Basidiomycetes have an N-terminal SAM domain, central UBQ domain, and C-terminal SH3 domain, while Ascomycetes lack the SH3 domain. Ubc2 of Ustilago maydis is a major virulence and maize pathogenicity factor. It is required for filamentous growth (the budding haploid form of Ustilago maydis is a saprophyte, while filamentous dikaryotic form is a pathogen). Also the Ubc2 protein is involved in the pheromone-responsive morphogenesis via the MAP kinase cascade. The SAM domain is necessary for ubc2 function; deletion of SAM eliminates this function. A Lys-to-Glu mutation in the SAM domain of ubc2 gene induces temperature sensitivity.


Pssm-ID: 188932  Cd Length: 58  Bit Score: 53.09  E-value: 7.76e-09
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|...
gi 1958745559    8 DIAVWLAAVHLEQYADTFRRHGLaTAGAAQRLGHEELRHLGISATGHRKRILR 60
Cdd:cd09533      1 DVADWLSSLGLPQYEDQFIENGI-TGDVLVALDHEDLKEMGITSVGHRLTILK 52
SAM_EPH-B4 cd09554
SAM domain of EPH-B4 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain ...
12-64 3.16e-08

SAM domain of EPH-B4 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain of EPH-B4 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-B4 receptors and appears to mediate cell-cell initiated signal transduction. EPH-B4 protein kinase performs kinase-dependent and kinase-independent functions. These receptors play a role in the regular vascular system development during embryogenesis. They were found overexpressed in a variety of cancers, including carcinoma of the head and neck, ovarian cancer, bladder cancer, and downregulated in bone myeloma. Thus, EphB4 is a potential biomarker and a target for drug design.


Pssm-ID: 188953  Cd Length: 67  Bit Score: 51.79  E-value: 3.16e-08
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|...
gi 1958745559   12 WLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQS 64
Cdd:cd09554      9 WLRAIKMERYEDSFLQAGFTTFQLVSQISTEDLLRMGVTLAGHQKKILSSIQA 61
PH_TBC1D2A cd01265
TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1 ...
286-372 3.98e-08

TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1/Prostate antigen recognized and identified by SEREX 1 and ARMUS) contains a PH domain and a TBC-type GTPase catalytic domain. TBC1D2A integrates signaling between Arf6, Rac1, and Rab7 during junction disassembly. Activated Rac1 recruits TBC1D2A to locally inactivate Rab7 via its C-terminal TBC/RabGAP domain and facilitate E-cadherin degradation in lysosomes. The TBC1D2A PH domain mediates localization at cell-cell contacts and coprecipitates with cadherin complexes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269966  Cd Length: 102  Bit Score: 52.71  E-value: 3.98e-08
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  286 LSGWLDKLSPQGNYV--FQRRFVQFNGRS--LMYFGSDKDPFPKGVIPLT--AIEMTRSSKDNKFQVITGQRVFVFRTES 359
Cdd:cd01265      2 LCGYLNKLETRGLGLkgWKRRWFVLDESKcqLYYYRSPQDATPLGSIDLSgaAFSYDPEAEPGQFEIHTPGRVHILKAST 81
                           90
                   ....*....|...
gi 1958745559  360 EAQRDIWCSTLQS 372
Cdd:cd01265     82 RQAMLYWLQALQS 94
SAM_AIDA1AB-like_repeat2 cd09500
SAM domain of AIDA1AB-like proteins, repeat 2; SAM (sterile alpha motif) domain repeat 2 of ...
12-59 4.46e-08

SAM domain of AIDA1AB-like proteins, repeat 2; SAM (sterile alpha motif) domain repeat 2 of AIDA1AB-like proteins is a protein-protein interaction domain. AIDA1AB-like proteins have two tandem SAM domains. They may form an intramolecular head-to-tail homodimer. One of two basic motifs of the nuclear localization signal (NLS) is located within helix 5 of the SAM2 (motif HKRK). This signal plays a role in decoupling of SAM2 from SAM1, thus facilitating translocation of this type proteins into the nucleus. SAM domains of the AIDA1AB-like subfamily can directly bind ubiquitin and participate in regulating the degradation of ubiquitinated EphA receptors, particularly EPH-A8 receptor. Additionally AIDA1AB-like proteins may participate in the regulation of nucleoplasmic coilin protein interactions.


Pssm-ID: 188899  Cd Length: 65  Bit Score: 51.15  E-value: 4.46e-08
                           10        20        30        40
                   ....*....|....*....|....*....|....*....|....*....
gi 1958745559   12 WLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRH-LGISATGHRKRIL 59
Cdd:cd09500     11 WLDSIGLGDYIETFLKHGYTSMERVKRIWEVELTNvLEINKLGHRKRIL 59
SAM_EPH-B6 cd09555
SAM domain of EPH-B6 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain ...
12-63 1.38e-07

SAM domain of EPH-B6 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain of EPH-B6 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-B6 receptors and appears to mediate cell-cell initiated signal transduction. Receptors of this type are highly expressed in embryo and adult nervous system, in thymus and also in T-cells. They are involved in regulation of cell adhesion and migration. (EPH-B6 receptor is unusual; it fails to show catalytic activity due to alteration in kinase domain). EPH-B6 may be considered as a biomarker in some types of tumors; EPH-B6 activates MAP kinase signaling in lung adenocarcinoma, suppresses metastasis formation in non-small cell lung cancer, and slows invasiveness in some breast cancer cell lines.


Pssm-ID: 188954  Cd Length: 69  Bit Score: 49.93  E-value: 1.38e-07
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|..
gi 1958745559   12 WLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQ 63
Cdd:cd09555     12 WLSAIGLECYQDNFSKFGLCTFSDVAQLSLEDLPALGITLAGHQKKLLHHIQ 63
SAM_EPH-R cd09488
SAM domain of EPH family of tyrosine kinase receptors; SAM (sterile alpha motif) domain of EPH ...
12-64 2.07e-07

SAM domain of EPH family of tyrosine kinase receptors; SAM (sterile alpha motif) domain of EPH (erythropoietin-producing hepatocyte) family of receptor tyrosine kinases is a C-terminal signal transduction module located in the cytoplasmic region of these receptors. SAM appears to mediate cell-cell initiated signal transduction via binding proteins to a conserved tyrosine that is phosphorylated. In some cases the SAM domain mediates homodimerization/oligomerization and plays a role in the clustering process necessary for signaling. EPH kinases are the largest family of receptor tyrosine kinases. They are classified into two groups based on their abilities to bind ephrin-A and ephrin-B ligands. The EPH receptors are involved in regulation of cell movement, shape, and attachment during embryonic development; they control cell-cell interactions in the vascular, nervous, epithelial, and immune systems, and in many tumors. They are potential molecular markers for cancer diagnostics and potential targets for cancer therapy.


Pssm-ID: 188887  Cd Length: 61  Bit Score: 49.15  E-value: 2.07e-07
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|...
gi 1958745559   12 WLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQS 64
Cdd:cd09488      8 WLESIKMGRYKENFTAAGYTSLDAVAQMTAEDLTRLGVTLVGHQKKILNSIQA 60
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
1226-1323 3.36e-07

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 49.85  E-value: 3.36e-07
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  1226 GLLRCREEPPRllgSRFQERFFLVRGRCLLLLKEKK---SSKPEREWSLEGAKVYLGIRKKLKPPTlWGFTLIL-EKMHL 1301
Cdd:smart00233    5 GWLYKKSGGGK---KSWKKRYFVLFNSTLLYYKSKKdkkSYKPKGSIDLSGCTVREAPDPDSSKKP-HCFEIKTsDRKTL 80
                            90       100
                    ....*....|....*....|..
gi 1958745559  1302 CLSCTDEEEMWDWTTSILKAQH 1323
Cdd:smart00233   81 LLQAESEEEREKWVEALRKAIA 102
SAM_DGK-delta-eta cd09507
SAM domain of diacylglycerol kinase delta and eta subunits; SAM (sterile alpha motif) domain ...
8-59 1.25e-06

SAM domain of diacylglycerol kinase delta and eta subunits; SAM (sterile alpha motif) domain of DGK-eta-delta subfamily proteins is a protein-protein interaction domain. Proteins of this subfamily are multidomain diacylglycerol kinases with a SAM domain located at the C-terminus. DGK proteins participate in signal transduction. They regulate the level of second messengers such as diacylglycerol and phosphatidic acid. The SAM domain of DGK proteins can form high molecular weight homooligomers through head-to-tail interactions as well as heterooligomers between the SAM domains of DGK delta and eta proteins. The oligomerization plays a role in the regulation of DGK intracellular localization.


Pssm-ID: 188906  Cd Length: 65  Bit Score: 47.02  E-value: 1.25e-06
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|..
gi 1958745559    8 DIAVWLAAVHLEQYADTFRRHGLATAGAAQrLGHEELRHLGISATGHRKRIL 59
Cdd:cd09507      9 EVGAWLESLQLGEYRDIFARNDIRGSELLH-LERRDLKDLGITKVGHVKRIL 59
PH2_TAPP1_2 cd13271
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal ...
279-379 1.73e-06

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270090  Cd Length: 114  Bit Score: 48.12  E-value: 1.73e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  279 ADRPVPLLSGWLDKlspQGNYV--FQRRFVQFNGRSLMYFGSDKDPFPKGVIPLTAIEMTRSSK-------DNKFQVITG 349
Cdd:cd13271      3 RAGRNVIKSGYCVK---QGAVRknWKRRFFILDDNTISYYKSETDKEPLRTIPLREVLKVHECLvksllmrDNLFEIITT 79
                           90       100       110
                   ....*....|....*....|....*....|
gi 1958745559  350 QRVFVFRTESEAQRDIWCSTLQSCLKEQRL 379
Cdd:cd13271     80 SRTFYIQADSPEEMHSWIKAISGAIVARRG 109
ArfGap_AGFG2 cd17903
ArfGAP domain of AGFG2 (ArfGAP domain and FG repeat-containing protein 2); The ArfGAP domain ...
487-595 2.03e-06

ArfGAP domain of AGFG2 (ArfGAP domain and FG repeat-containing protein 2); The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG2 is a member of the HIV-1 Rev binding protein (HRB) family and contains one Arf-GAP zinc finger domain, several Phe-Gly (FG) motifs, and four Asn-Pro-Phe (NPF) motifs. AGFG2 interacts with Eps15 homology (EH) domains and plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication.


Pssm-ID: 350090 [Multi-domain]  Cd Length: 116  Bit Score: 48.06  E-value: 2.03e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  487 VAEKVWSNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGiSKVQSLKLDTsvWTNEIVQLFIVLGNDRANCF 566
Cdd:cd17903      4 VRELGGCSAANRHCFECAQRGVTYVDITVGSFVCTTCSGLLRGLNPP-HRVKSISMTT--FTEPEVLFLQARGNEVCRKI 80
                           90       100       110
                   ....*....|....*....|....*....|
gi 1958745559  567 WAGALPPGEGLHPDAA-PGPRGEFISRKYK 595
Cdd:cd17903     81 WLGLFDARTSLIPDSRdPQKVKEFLQEKYE 110
SAM_EPH-A4 cd09545
SAM domain of EPH-A4 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain ...
4-75 2.41e-06

SAM domain of EPH-A4 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain of EPH-A4 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-A4 receptors and appears to mediate cell-cell initiated signal transduction. SAM domains of EPH-A4 receptors can form homodimers. EPH-A4 receptors bind ligands such as erphirin A1, A4, A5. They are known to interact with a number of different proteins, including meltrin beta metalloprotease, Cdk5, and EFS2alpha, however SAM domain doesn't participate in these interactions. EPH-A4 receptors are involved in regulation of corticospinal tract formation, in pathway controlling voluntary movements, in formation of motor neurons, and in axon guidance (SAM domain is not required for axon guidance or for EPH-A4 kinase signaling). In Xenopus embryos EPH-A4 induces loss of cell adhesion, ventro-lateral protrusions, and severely expanded posterior structures. Mutations in SAM domain conserved tyrosine (Y928F) enhance the ability of EPH-A4 to induce these phenotypes, thus supporting the idea that the SAM domain may negatively regulate some aspects of EPH-A4 activity. EphA4 gene was found overexpressed in a number of different cancers including human gastric cancer, colorectal cancer, and pancreatic ductal adenocarcinoma. It is likely to be a promising molecular target for the cancer therapy.


Pssm-ID: 188944  Cd Length: 71  Bit Score: 46.48  E-value: 2.41e-06
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1958745559    4 PQDLDIAVWLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILrllqsGSAEGFLdSQL 75
Cdd:cd09545      1 SAVASVDDWLQAIKMERYKDNFTAAGYTTLEAVVHMNQDDLARIGISAIAHQNKIL-----SSVQGMR-SQM 66
SAM_EPH-A2 cd09543
SAM domain of EPH-A2 family of tyrosine kinase receptors; SAM (sterile alpha motif) domain of ...
9-58 3.07e-06

SAM domain of EPH-A2 family of tyrosine kinase receptors; SAM (sterile alpha motif) domain of EPH-A2 subfamily of receptor tyrosine kinases is a C-terminal protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-A2 receptors and appears to mediate cell-cell initiated signal transduction. For example, SAM domain of EPH-A2 receptors interacts with SAM domain of Ship2 proteins (SH2 containing phosphoinositide 5-phosphotase-2) forming heterodimers; such recruitment of Ship2 by EPH-A2 attenuates the positive signal for receptor endocytosis. Eph-A2 is found overexpressed in many types of human cancer, including breast, prostate, lung and colon cancer. High level of expression could induce cancer progression by a variety of mechanisms and could be used as a novel tag for cancer immunotherapy. EPH-A2 receptors are attractive targets for drag design.


Pssm-ID: 188942  Cd Length: 70  Bit Score: 46.37  E-value: 3.07e-06
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|
gi 1958745559    9 IAVWLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRI 58
Cdd:cd09543      8 VAEWLESIKMQQYTEHFMAAGYNSIDKVLQMTQEDIKHIGVRLPGHQKRI 57
SAM_EPH-A5 cd09546
SAM domain of EPH-A5 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain ...
9-63 4.56e-06

SAM domain of EPH-A5 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain of EPH-A5 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-A5 receptors and appears to mediate cell-cell initiated signal transduction. Eph-A5 gene is almost exclusively expressed in the nervous system. Murine EPH-A5 receptors participate in axon guidance during embryogenesis and play a role in the adult synaptic plasticity, particularly in neuron-target interactions in multiple neural circuits. Additionally EPH-A5 receptors and its ligand ephrin A5 regulate dopaminergic axon outgrowth and influence the formation of the midbrain dopaminergic pathways. EphA5 gene expression was found decreased in a few different breast cancer cell lines, thus it might be a potential molecular marker for breast cancer carcinogenesis and progression.


Pssm-ID: 188945  Cd Length: 66  Bit Score: 45.69  E-value: 4.56e-06
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*
gi 1958745559    9 IAVWLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQ 63
Cdd:cd09546      6 VGEWLEAIKMGRYTEIFMENGYSSMDAVAQVTLEDLRRLGVTLVGHQKKIMNSIQ 60
SAM_EPH-B1 cd09551
SAM domain of EPH-B1 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain ...
12-64 5.12e-06

SAM domain of EPH-B1 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain of EPH-B1 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH- B1 receptors. In human vascular endothelial cells it appears to mediate cell-cell initiated signal transduction via the binding of the adaptor protein GRB10 (growth factor) through its SH2 domain to a conserved tyrosine that is phosphorylated. EPH-B1 receptors play a role in neurogenesis, in particular in regulation of proliferation and migration of neural progenitors in the hippocampus and in corneal neovascularization; they are involved in converting the crossed retinal projection to ipsilateral retinal projection. They may be potential targets in angiogenesis-related disorders.


Pssm-ID: 188950  Cd Length: 68  Bit Score: 45.41  E-value: 5.12e-06
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|...
gi 1958745559   12 WLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQS 64
Cdd:cd09551     12 WLSAIKMSQYRDNFLSSGFTSLQLVAQMTSEDLLRIGVTLAGHQKKILNSIQS 64
SAM_EPH-A1 cd09542
SAM domain of EPH-A1 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain ...
9-63 5.59e-06

SAM domain of EPH-A1 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain of EPH-A1 subfamily of the receptor tyrosine kinases is a C-terminal protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-A1 receptors and appears to mediate cell-cell initiated signal transduction. Activation of these receptors leads to inhibition of cell spreading and migration in a RhoA-ROCK-dependent manner. EPH-A1 receptors are known to bind ILK (integrin-linked kinase) which is the mediator of interactions between integrin and the actin cytoskeleton. However SAM is not sufficient for this interaction; it rather plays an ancillary role. SAM domains of Eph-A1 receptors do not form homo/hetero dimers/oligomers. EphA1 gene was found expressed widely in differentiated epithelial cells. In a number of different malignant tumors EphA1 genes are downregulated. In breast carcinoma the downregulation is associated with invasive behavior of the cell.


Pssm-ID: 188941  Cd Length: 63  Bit Score: 45.38  E-value: 5.59e-06
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*
gi 1958745559    9 IAVWLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQ 63
Cdd:cd09542      7 VSEWLESIRMKRYILHFRSAGLDTMECVLELTAEDLTQMGITLPGHQKRILCSIQ 61
ArfGap_AGFG1 cd08857
ArfGAP domain of AGFG1 (ArfGAP domain and FG repeat-containing protein 1); The ArfGAP domain ...
493-595 6.86e-06

ArfGAP domain of AGFG1 (ArfGAP domain and FG repeat-containing protein 1); The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG1 (alias: HIV-1 Rev binding protein, HRB; Rev interacting protein, RIP; Rev/Rex activating domain-binding protein, RAB) and AGFG2 are involved in the maintenance and spread of immunodeficiency virus type 1 (HIV-1) infection. The ArfGAP domain of AGFG1 is related to nucleoporins, which is a class of proteins that mediate nucleocytoplasmic transport. AGFG1 plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs, possibly together by the nuclear export receptor CRM1. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG1 promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication.


Pssm-ID: 350082 [Multi-domain]  Cd Length: 116  Bit Score: 46.57  E-value: 6.86e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  493 SNPANRHCADCRASRPDWAAVNLGVVICKQCAGQHRALGSGiSKVQSLKLDTsvWTNEIVQLFIVLGNDRANCFWAGALP 572
Cdd:cd08857     10 SLPHNRKCFDCDQRGPTYANMTVGSFVCTSCSGILRGLNPP-HRVKSISMTT--FTQQEIEFLQKHGNEVCKQIWLGLFD 86
                           90       100
                   ....*....|....*....|....
gi 1958745559  573 PGEGLHPD-AAPGPRGEFISRKYK 595
Cdd:cd08857     87 DRSSAIPDfRDPQKVKEFLQEKYE 110
PH pfam00169
PH domain; PH stands for pleckstrin homology.
1239-1323 7.31e-06

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 46.40  E-value: 7.31e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559 1239 GSRFQERFFLVRGRCLLLLKEK---KSSKPEREWSLEGAKVYLgIRKKLKPPTLWGFTLIL-----EKMHLcLSCTDEEE 1310
Cdd:pfam00169   15 KKSWKKRYFVLFDGSLLYYKDDksgKSKEPKGSISLSGCEVVE-VVASDSPKRKFCFELRTgertgKRTYL-LQAESEEE 92
                           90
                   ....*....|...
gi 1958745559 1311 MWDWTTSILKAQH 1323
Cdd:pfam00169   93 RKDWIKAIQSAIR 105
SAM_tankyrase1,2 cd09524
SAM domain of tankyrase1,2 subfamily; SAM (sterile alpha motif) domain of Tankyrase1,2 ...
2-60 9.52e-06

SAM domain of tankyrase1,2 subfamily; SAM (sterile alpha motif) domain of Tankyrase1,2 subfamily is a protein-protein interaction domain. In addition to the SAM domain, proteins of this group have ankyrin repeats and a ADP- ribosyltransferase (poly-(ADP-ribose) synthase) domain. Tankyrases can polymerize through their SAM domains forming homoligomers and these complexes are disrupted by autoribosylation. Tankyrases apparently act as master scaffolding proteins and thus may interact simultaneously with multiple proteins, in particular with TRF1, NuMA, IRAP and Grb14 (ankyrin repeats are involved in these interactions). Tankyrases participate in a variety of cell signaling pathways as effector molecules. Their functions are different depending on the intracellular location: at telomeres they play a role in the regulation of telomere length via control of telomerase access to telomeres, at centrosomes they promote spindle assembly/disassembly, in Golgi vesicles they participate in the regulation of vesicle trafficking and Golgi dynamics. Tankyrase 1 may be of interest as new potential target for telomerase-directed cancer therapy.


Pssm-ID: 188923  Cd Length: 66  Bit Score: 44.63  E-value: 9.52e-06
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*....
gi 1958745559    2 AAPQDLDIAVWLAAVHLEQYADTFRRHGLaTAGAAQRLGHEELRHLGISATGHRKRILR 60
Cdd:cd09524      1 VNGTDFSISQFLSSLGLEHLREIFEREQI-TLDVLAEMGHEELKEIGINAYGHRHKLIK 58
SAM_EPH-A8 cd09550
SAM domain of EPH-A8 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain ...
7-68 1.03e-05

SAM domain of EPH-A8 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain of EPH-A8 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-A8 receptors and appears to mediate cell-cell initiated signal transduction. EPH-A8 receptors are involved in ligand dependent (ephirin A2, A3, A5) regulation of cell adhesion and migration, and in ligand independent regulation of neurite outgrowth in neuronal cells. They perform signaling in kinase dependent and kinase independent manner. EPH-A8 receptors are known to interact with a number of different proteins including PI 3-kinase and AIDA1-like subfamily SAM repeat domain containing proteins. However other domains (not SAM) of EPH-A8 receptors are involved in these interactions.


Pssm-ID: 188949  Cd Length: 65  Bit Score: 44.47  E-value: 1.03e-05
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1958745559    7 LDIAVWLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQSGSAE 68
Cdd:cd09550      3 LSVDDWLDSIKMGRYKDHFAAGGYSSLGMVMRMNIEDIRRLGITLMGHQKKILTSIQVMRAQ 64
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
395-478 1.65e-05

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 45.23  E-value: 1.65e-05
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559   395 GMLELRGHKA-----KVFAALIPGELALYKSEQAFSLGIGICFIELQGCSVRETKSRS-------FDLLTPHR-CFSFTA 461
Cdd:smart00233    5 GWLYKKSGGGkkswkKRYFVLFNSTLLYYKSKKDKKSYKPKGSIDLSGCTVREAPDPDsskkphcFEIKTSDRkTLLLQA 84
                            90
                    ....*....|....*..
gi 1958745559   462 ESGGARQSWAVALQEAV 478
Cdd:smart00233   85 ESEEEREKWVEALRKAI 101
RhoGAP_p85 cd04388
RhoGAP_p85: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
910-1079 1.74e-05

RhoGAP_p85: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in the p85 isoforms of the regulatory subunit of the class IA PI3K (phosphatidylinositol 3'-kinase). This domain is also called Bcr (breakpoint cluster region protein) homology (BH) domain. Class IA PI3Ks are heterodimers, containing a regulatory subunit (p85) and a catalytic subunit (p110) and are activated by growth factor receptor tyrosine kinases (RTKs); this activation is mediated by the p85 subunit. p85 isoforms, alpha and beta, contain a C-terminal p110-binding domain flanked by two SH2 domains, an N-terminal SH3 domain, and a RhoGAP domain flanked by two proline-rich regions. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239853  Cd Length: 200  Bit Score: 47.56  E-value: 1.74e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  910 QQMSRGDI-PIIVDACISFVTQHGLRLEGVYRKGGARARS-LRLLaeFRRDARSVKLrprEHF-VEDVTDTLKRFFRELD 986
Cdd:cd04388      7 EQFSPPDVaPPLLIKLVEAIEKKGLESSTLYRTQSSSSLTeLRQI--LDCDAASVDL---EQFdVAALADALKRYLLDLP 81
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  987 DPVTSArllPRWREAAELPQKNQRLEKY----KEVISC--LPRVNRRTLATLIGHLYRVQKCAALNQMCTRNLALLFAPS 1060
Cdd:cd04388     82 NPVIPA---PVYSEMISRAQEVQSSDEYaqllRKLIRSpnLPHQYWLTLQYLLKHFFRLCQSSSKNLLSARALAEIFSPL 158
                          170       180
                   ....*....|....*....|...
gi 1958745559 1061 VFQ----TDGRGEHEVRVLQELI 1079
Cdd:cd04388    159 LFRfqpaSSDSPEFHIRIIEVLI 181
RhoGAP_KIAA1688 cd04389
RhoGAP_KIAA1688: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ...
978-1064 1.83e-05

RhoGAP_KIAA1688: GTPase-activator protein (GAP) domain for Rho-like GTPases found in KIAA1688-like proteins; KIAA1688 is a protein of unknown function that contains a RhoGAP domain and a myosin tail homology 4 (MyTH4) domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239854  Cd Length: 187  Bit Score: 47.00  E-value: 1.83e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  978 LKRFFRELDDPVTSARLLPRWREAAELPqknqrlEKYKEVISCLPRVNRRTLATLIGHLyrvQKCA-----ALNQMCTRN 1052
Cdd:cd04389     80 LKLWLRELEEPLIPDALYQQCISASEDP------DKAVEIVQKLPIINRLVLCYLINFL---QVFAqpenvAHTKMDVSN 150
                           90
                   ....*....|..
gi 1958745559 1053 LALLFAPSVFQT 1064
Cdd:cd04389    151 LAMVFAPNILRC 162
SAM_caskin1,2_repeat1 cd09497
SAM domain of caskin protein repeat 1; SAM (sterile alpha motif) domain repeat 1 of caskin1,2 ...
9-60 2.39e-05

SAM domain of caskin protein repeat 1; SAM (sterile alpha motif) domain repeat 1 of caskin1,2 proteins is a protein-protein interaction domain. Caskin has two tandem SAM domains. Caskin protein is known to interact with membrane-associated guanylate kinase CASK, and apparently may play a role in neural development, synaptic protein targeting, and regulation of gene expression.


Pssm-ID: 188896  Cd Length: 66  Bit Score: 43.40  E-value: 2.39e-05
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....
gi 1958745559    9 IAVWLAAVHLEQYADTFRRHG--LATAGaaqRLGHEELRHLGISATGHRKRILR 60
Cdd:cd09497      7 IFDWLREFGLEEYTPNFIKAGydLPTIS---RMTPEDLTAIGITKPGHRKKLKS 57
SAM_Shank1,2,3 cd09506
SAM domain of Shank1,2,3 family proteins; SAM (sterile alpha motif) domain of Shank1,2,3 ...
8-64 2.99e-05

SAM domain of Shank1,2,3 family proteins; SAM (sterile alpha motif) domain of Shank1,2,3 family proteins is a protein-protein interaction domain. Shank1,2,3 proteins are scaffold proteins that are known to interact with a variety of cytoplasmic and membrane proteins. SAM domains of the Shank1,2,3 family are prone to homooligomerization. They are highly enriched in the postsynaptic density, acting as scaffolds to organize assembly of postsynaptic proteins. SAM domains of Shank3 proteins can form large sheets of helical fibers. Shank genes show distinct patterns of expression, in rat Shank1 mRNA is found almost exclusively in brain, Shank2 in brain, kidney and liver, and Shank3 in heart, brain and spleen.


Pssm-ID: 188905  Cd Length: 66  Bit Score: 43.46  E-value: 2.99e-05
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*..
gi 1958745559    8 DIAVWLAAVHLEQYADTFRRHGLATAGAAQrLGHEELRHLGISATGHRKRILRLLQS 64
Cdd:cd09506      9 DVGDWLESLNLGEHRERFMDNEIDGSHLPN-LDKEDLTELGVTRVGHRMNIERALKK 64
PH_3BP2 cd13308
SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes ...
1224-1318 3.58e-05

SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes the adaptor protein 3BP2), HD, ITU, IT10C3, and ADD1 are located near the Huntington's Disease Gene on Human Chromosome 4pl6.3. SH3BP2 lies in a region that is often missing in individuals with Wolf-Hirschhorn syndrome (WHS). Gain of function mutations in SH3BP2 causes enhanced B-cell antigen receptor (BCR)-mediated activation of nuclear factor of activated T cells (NFAT), resulting in a rare, genetic disorder called cherubism. This results in an increase in the signaling complex formation with Syk, phospholipase C-gamma2 (PLC-gamma2), and Vav1. It was recently discovered that Tankyrase regulates 3BP2 stability through ADP-ribosylation and ubiquitylation by the E3-ubiquitin ligase. Cherubism mutations uncouple 3BP2 from Tankyrase-mediated protein destruction, which results in its stabilization and subsequent hyperactivation of the Src, Syk, and Vav signaling pathways. SH3BP2 is also a potential negative regulator of the abl oncogene. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270118  Cd Length: 113  Bit Score: 44.70  E-value: 3.58e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559 1224 RVGLLRCREEPPRLLgSRFQERFFLVRGRCLLLLKEKKSSKPEREWSLEGAKVYLG--IRKKLKpptlWGFTLI---LEK 1298
Cdd:cd13308     11 HSGTLTKKGGSQKTL-QNWQLRYVIIHQGCVYYYKNDQSAKPKGVFSLNGYNRRAAeeRTSKLK----FVFKIIhlsPDH 85
                           90       100
                   ....*....|....*....|
gi 1958745559 1299 MHLCLSCTDEEEMWDWTTSI 1318
Cdd:cd13308     86 RTWYFAAKSEDEMSEWMEYI 105
SAM_EPH-A6 cd09547
SAM domain of EPH-A6 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain ...
4-64 5.73e-05

SAM domain of EPH-A6 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain of EPH-A6 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-A6 receptors and appears to mediate cell-cell initiated signal transduction. Eph-A6 gene is preferentially expressed in the nervous system. EPH-A6 receptors are involved in primate retina vascular and axon guidance, and in neural circuits responsible for learning and memory. EphA6 gene was significantly down regulated in colorectal cancer and in malignant melanomas. It is a potential molecular marker for these cancers.


Pssm-ID: 188946  Cd Length: 64  Bit Score: 42.57  E-value: 5.73e-05
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1958745559    4 PQDLDIAVWLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQS 64
Cdd:cd09547      1 PLFVTVSDWLDSIKMGQYKNNFMAAGFTTLDMVSRMTIDDIRRIGVTLIGHQRRIVSSIQT 61
SAM_EPH-A7 cd09548
SAM domain of EPH-A7 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain ...
12-68 1.04e-04

SAM domain of EPH-A7 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain of EPH-A7 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-A7 receptors and appears to mediate cell-cell initiated signal transduction. EphA7 was found expressed in human embryonic stem (ES) cells, neural tissues, kidney vasculature. EphA7 knockout mice show decrease in cortical progenitor cell death at mid-neurogenesis and significant increase in cortical size. EphA7 may be involved in the pathogenesis and development of different cancers; in particular, EphA7 was found upregulated in glioblastoma and downregulated in colorectal cancer and gastric cancer. Thus, it is a potential molecular marker and/or therapy target for these types of cancers.


Pssm-ID: 188947  Cd Length: 70  Bit Score: 41.94  E-value: 1.04e-04
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*..
gi 1958745559   12 WLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQSGSAE 68
Cdd:cd09548     13 WLEAIKMERYKDNFTAAGYNSLESVARMTIEDVMSLGITLVGHQKKIMSSIQTMRAQ 69
PH_RhoGap25-like cd13263
Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; ...
284-366 1.11e-04

Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; RhoGAP25 (also called ArhGap25) like other RhoGaps are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. This hierarchy contains RhoGAP22, RhoGAP24, and RhoGAP25. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270083  Cd Length: 114  Bit Score: 43.14  E-value: 1.11e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  284 PLLSGWLDKlspQGNYV--FQRRFVQFNGRSLMYFGSDKDPFPKGVIPL---TAIEMTRSSKD-NK--FQVITG------ 349
Cdd:cd13263      3 PIKSGWLKK---QGSIVknWQQRWFVLRGDQLYYYKDEDDTKPQGTIPLpgnKVKEVPFNPEEpGKflFEIIPGgggdrm 79
                           90       100
                   ....*....|....*....|
gi 1958745559  350 ---QRVFVFRTESEAQRDIW 366
Cdd:cd13263     80 tsnHDSYLLMANSQAEMEEW 99
SAM_DGK-delta cd09575
SAM domain of diacylglycerol kinase delta; SAM (sterile alpha motif) domain of DGK-delta ...
8-59 1.55e-04

SAM domain of diacylglycerol kinase delta; SAM (sterile alpha motif) domain of DGK-delta subfamily proteins is a protein-protein interaction domain. Proteins of this subfamily are multidomain diacylglycerol kinases with a SAM domain located at the C-terminus. DGK-delta proteins participate in signal transduction. They regulate the level of second messengers such as diacylglycerol and phosphatidic acid. In particular DGK-delta is involved in the regulation of clathrin-dependent endocytosis. The SAM domain of DGK-delta proteins can form high molecular weight homooligomers through head-to-tail interactions as well as heterooligomers with the SAM domain of DGK-eta proteins. The oligomerization plays a role in the regulation of the DGK-delta intracellular localization: it inhibits the translocation of the protein to the plasma membrane from the cytoplasm. The SAM domain also can bind Zn at multiple (not conserved) sites driving the formation of highly ordered large sheets of polymers, thus suggesting that Zn may play important role in the function of DCK-delta.


Pssm-ID: 188974  Cd Length: 65  Bit Score: 41.47  E-value: 1.55e-04
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|..
gi 1958745559    8 DIAVWLAAVHLEQYADTFRRHGLATAGAAQrLGHEELRHLGISATGHRKRIL 59
Cdd:cd09575      9 EVAAWLEHLSLCEYKDIFTRHDVRGSELLH-LERRDLKDLGVTKVGHMKRIL 59
PH_AtPH1 cd13276
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ...
287-374 1.88e-04

Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270095  Cd Length: 106  Bit Score: 42.30  E-value: 1.88e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  287 SGWLDKlspQGNYV--FQRR-FVQFNGRSLMYFGSDKDPF--PKGVIPLTAIEMTRS-----SKDNKFQVITGQRVFVFR 356
Cdd:cd13276      2 AGWLEK---QGEFIktWRRRwFVLKQGKLFWFKEPDVTPYskPRGVIDLSKCLTVKSaedatNKENAFELSTPEETFYFI 78
                           90
                   ....*....|....*...
gi 1958745559  357 TESEAQRDIWCSTLQSCL 374
Cdd:cd13276     79 ADNEKEKEEWIGAIGRAI 96
PH_Osh3p_yeast cd13289
Yeast oxysterol binding protein homolog 3 Pleckstrin homology (PH) domain; Yeast Osh3p is ...
286-373 2.25e-04

Yeast oxysterol binding protein homolog 3 Pleckstrin homology (PH) domain; Yeast Osh3p is proposed to function in sterol transport and regulation of nuclear fusion during mating and of pseudohyphal growth as well as sphingolipid metabolism. Osh3 contains a N-GOLD (Golgi dynamics) domain, a PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. GOLD domains are thought to mediate protein-protein interactions, but their role in ORPs are unknown. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241443  Cd Length: 90  Bit Score: 41.48  E-value: 2.25e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  286 LSGWLDKLSPQGNYVFQRRFVQFNGRS--LMYFGSDKDPFpKGVIPLTAIEMTRSSKDNKFQVITGQRVFVFRTESEAQR 363
Cdd:cd13289      2 LEGWLLKKRRKKMQGFARRYFVLNFKYgtLSYYFNPNSPV-RGQIPLRLASISASPRRRTIHIDSGSEVWHLKALNDEDF 80
                           90
                   ....*....|
gi 1958745559  364 DIWCSTLQSC 373
Cdd:cd13289     81 QAWMKALRKF 90
SAM_EPH-B2 cd09552
SAM domain of EPH-B2 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain ...
12-68 2.48e-04

SAM domain of EPH-B2 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain of EPH-B2 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-B2 receptors and appears to mediate cell-cell initiated signal transduction. SAM domains of this subfamily form homodimers/oligomers (in head-to-head/tail-to-tail orientation); apparently such clustering is necessary for signaling. EPH-B2 receptor is involved in regulation of synaptic function; it is needed for normal vestibular function, proper formation of anterior commissure, control of cell positioning, and ordered migration in the intestinal epithelium. EPH-B2 plays a tumor suppressor role in colorectal cancer. It was found to be downregulated in gastric cancer and thus may be a negative biomarker for it.


Pssm-ID: 188951  Cd Length: 71  Bit Score: 40.76  E-value: 2.48e-04
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*..
gi 1958745559   12 WLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQSGSAE 68
Cdd:cd09552     12 WLDAIKMGQYKESFANAGFTSFDVVSQMTMEDILRVGVTLAGHQKKILNSIQVMRAQ 68
SAM_EPH-A10 cd09549
SAM domain of EPH-A10 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain ...
9-64 3.91e-04

SAM domain of EPH-A10 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain of EPH-A10 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-A10 receptors and appears to mediate cell-cell initiated signal transduction. It was found preferentially expressed in the testis. EphA10 may be involved in the pathogenesis and development of prostate carcinoma and lymphocytic leukemia. It is a potential molecular marker and/or therapy target for these types of cancers.


Pssm-ID: 188948  Cd Length: 70  Bit Score: 40.23  E-value: 3.91e-04
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*.
gi 1958745559    9 IAVWLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQS 64
Cdd:cd09549     10 VGEWLEALDLCRYKDNFAAAGYGSLEAVARMTAQDVLSLGITSLEHQELLLAGIQA 65
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
393-474 4.27e-04

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 40.99  E-value: 4.27e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  393 RTGMLELRGHKA-----KVFAALIPGELALYKSEQAFSLGIgICFIELQG-CSVRE----TKSRSFDLLTP-HRCFSFTA 461
Cdd:cd00821      1 KEGYLLKRGGGGlkswkKRWFVLFEGVLLYYKSKKDSSYKP-KGSIPLSGiLEVEEvspkERPHCFELVTPdGRTYYLQA 79
                           90
                   ....*....|...
gi 1958745559  462 ESGGARQSWAVAL 474
Cdd:cd00821     80 DSEEERQEWLKAL 92
PH_SWAP-70 cd13273
Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called ...
392-479 5.25e-04

Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called Differentially expressed in FDCP 6/DEF-6 or IRF4-binding protein) functions in cellular signal transduction pathways (in conjunction with Rac), regulates cell motility through actin rearrangement, and contributes to the transformation and invasion activity of mouse embryo fibroblasts. Metazoan SWAP-70 is found in B lymphocytes, mast cells, and in a variety of organs. Metazoan SWAP-70 contains an N-terminal EF-hand motif, a centrally located PH domain, and a C-terminal coiled-coil domain. The PH domain of Metazoan SWAP-70 contains a phosphoinositide-binding site and a nuclear localization signal (NLS), which localize SWAP-70 to the plasma membrane and nucleus, respectively. The NLS is a sequence of four Lys residues located at the N-terminus of the C-terminal a-helix; this is a unique characteristic of the Metazoan SWAP-70 PH domain. The SWAP-70 PH domain binds PtdIns(3,4,5)P3 and PtdIns(4,5)P2 embedded in lipid bilayer vesicles. There are additional plant SWAP70 proteins, but these are not included in this hierarchy. Rice SWAP70 (OsSWAP70) exhibits GEF activity toward the its Rho GTPase, OsRac1, and regulates chitin-induced production of reactive oxygen species and defense gene expression in rice. Arabidopsis SWAP70 (AtSWAP70) plays a role in both PAMP- and effector-triggered immunity. Plant SWAP70 contains both DH and PH domains, but their arrangement is the reverse of that in typical DH-PH-type Rho GEFs, wherein the DH domain is flanked by a C-terminal PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270092  Cd Length: 110  Bit Score: 41.13  E-value: 5.25e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  392 LRTGMLELRGHKAKVFA----ALIPGELALYKSE-QAFSLG-IGICfielQGCSV-----RETKSRSFDLLTPHRCFSFT 460
Cdd:cd13273      9 IKKGYLWKKGHLLPTWTerwfVLKPNSLSYYKSEdLKEKKGeIALD----SNCCVeslpdREGKKCRFLVKTPDKTYELS 84
                           90
                   ....*....|....*....
gi 1958745559  461 AESGGARQSWAVALQEAVT 479
Cdd:cd13273     85 ASDHKTRQEWIAAIQTAIR 103
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
1224-1318 5.84e-04

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 40.60  E-value: 5.84e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559 1224 RVGLLRCREEPPRllgSRFQERFFLVRGRCLLLLKEKK--SSKPEREWSLEGakvYLGIRKKLKPPTLWGFTLILEKM-H 1300
Cdd:cd00821      1 KEGYLLKRGGGGL---KSWKKRWFVLFEGVLLYYKSKKdsSYKPKGSIPLSG---ILEVEEVSPKERPHCFELVTPDGrT 74
                           90
                   ....*....|....*...
gi 1958745559 1301 LCLSCTDEEEMWDWTTSI 1318
Cdd:cd00821     75 YYLQADSEEERQEWLKAL 92
PH_TAAP2-like cd13255
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ...
392-477 8.24e-04

Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270075  Cd Length: 110  Bit Score: 40.47  E-value: 8.24e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  392 LRTGMLELRGHKAKVFA----ALIPGELALYKSEQAFSLGIGICFIELQGCSVRETKSR--SFDLLTPHRCFSFTAESGG 465
Cdd:cd13255      7 LKAGYLEKKGERRKTWKkrwfVLRPTKLAYYKNDKEYRLLRLIDLTDIHTCTEVQLKKHdnTFGIVTPARTFYVQADSKA 86
                           90
                   ....*....|..
gi 1958745559  466 ARQSWAVALQEA 477
Cdd:cd13255     87 EMESWISAINLA 98
PH_KIFIA_KIFIB cd01233
KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA ...
282-370 8.88e-04

KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA (Caenorhabditis elegans homolog unc-104) and KIFIB transport synaptic vesicle precursors that contain synaptic vesicle proteins, such as synaptophysin, synaptotagmin and the small GTPase RAB3A, but they do not transport organelles that contain plasma membrane proteins. They have a N-terminal motor domain, followed by a coiled-coil domain, and a C-terminal PH domain. KIF1A adopts a monomeric form in vitro, but acts as a processive dimer in vivo. KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein; this results in their different motor activities. KIF1A and KIF1B bind to RAB3 proteins through the adaptor protein mitogen-activated protein kinase (MAPK) -activating death domain (MADD; also calledDENN), which was first identified as a RAB3 guanine nucleotide exchange factor (GEF). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269939  Cd Length: 103  Bit Score: 40.27  E-value: 8.88e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  282 PVPLLSGWLDKLSPQGNyVFQRRFVQFNgRSLMY-FGSDKDPFPKGVIPLTAIEMTRS-------SKDNKFQVITGQRVF 353
Cdd:cd01233      4 PVVSKRGYLLFLEDATD-GWVRRWVVLR-RPYLHiYSSEKDGDERGVINLSTARVEYSpdqeallGRPNVFAVYTPTNSY 81
                           90
                   ....*....|....*..
gi 1958745559  354 VFRTESEAQRDIWCSTL 370
Cdd:cd01233     82 LLQARSEKEMQDWLYAI 98
SAM_DGK-eta cd09576
SAM domain of diacylglycerol kinase eta; SAM (sterile alpha motif) domain of DGK-eta subfamily ...
8-60 9.98e-04

SAM domain of diacylglycerol kinase eta; SAM (sterile alpha motif) domain of DGK-eta subfamily proteins is a protein-protein interaction domain. Proteins of this subfamily are multidomain diacylglycerol kinases. The SAM domain is located at the C-terminus of two out of three isoforms of DGK-eta protein. DGK-eta proteins participate in signal transduction. They regulate the level of second messengers such as diacylglycerol and phosphatidic acid. The SAM domain of DCK-eta proteins can form high molecular weight homooligomers through head-to-tail interactions as well as heterooligomers with the SAM domain of DGK-delta proteins. The oligomerization plays a role in the regulation of the DGK-delta intracellular localization: it is responsible for sustained endosomal localization of the protein and resulted in negative regulation of DCK-eta catalytic activity.


Pssm-ID: 188975  Cd Length: 65  Bit Score: 39.18  E-value: 9.98e-04
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|...
gi 1958745559    8 DIAVWLAAVHLEQYADTFRRHGLATAGAAQrLGHEELRHLGISATGHRKRILR 60
Cdd:cd09576      9 EVAAWLDLLSLGEYKEIFIRHDIRGSELLH-LERRDLKDLGIPKVGHMKRILQ 60
SAM_EPH-B3 cd09553
SAM domain of EPH-B3 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain ...
12-63 1.11e-03

SAM domain of EPH-B3 subfamily of tyrosine kinase receptors; SAM (sterile alpha motif) domain of EPH-B3 subfamily of receptor tyrosine kinases is a C-terminal potential protein-protein interaction domain. This domain is located in the cytoplasmic region of EPH-B3 receptors and appears to mediate cell-cell initiated signal transduction. EPH-B3 receptor protein kinase performs kinase-dependent and kinase-independent functions. It is known to be involved in thymus morphogenesis, in regulation of cell adhesion and migration. Also EphB3 controls cell positioning and ordered migration in the intestinal epithelium and plays a role in the regulation of adult retinal ganglion cell axon plasticity after optic nerve injury. In some experimental models overexpression of EphB3 enhances cell/cell contacts and suppresses colon tumor growth.


Pssm-ID: 188952  Cd Length: 69  Bit Score: 38.86  E-value: 1.11e-03
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|..
gi 1958745559   12 WLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQ 63
Cdd:cd09553     12 WLDAIKMGRYKENFVSAGFASFDLVAQMTAEDLLRIGVTLAGHQKKILSSIQ 63
PH_Sbf1_hMTMR5 cd01235
Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a ...
302-375 1.29e-03

Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a myotubularin-related pseudo-phosphatase. Both Sbf1 and myotubularin interact with the SET domains of Hrx and other epigenetic regulatory proteins, but Sbf1 lacks phosphatase activity due to several amino acid changes in its structurally preserved catalytic pocket. It contains pleckstrin (PH), GEF, and myotubularin homology domains that are thought to be responsible for signaling and growth control. Sbf1 functions as an inhibitor of cellular growth. The N-terminal GEF homology domain serves to inhibit the transforming effects of Sbf1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269941  Cd Length: 106  Bit Score: 40.01  E-value: 1.29e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  302 QRRFVQFNGR-SLMYFGSDKDPFPKGVIPLTAIEMTRSSK---------DNK--FQVITGQRVFVFRTESEAQRDIWCST 369
Cdd:cd01235     21 QRWFVLDSTKhQLRYYESREDTKCKGFIDLAEVESVTPATpiigapkraDEGafFDLKTNKRVYNFCAFDAESAQQWIEK 100

                   ....*.
gi 1958745559  370 LQSCLK 375
Cdd:cd01235    101 IQSCLS 106
SAM_WDSUB1 cd09505
SAM domain of WDSUB1 proteins; SAM (sterile alpha motif) domain of WDSUB1 subfamily proteins ...
8-63 1.36e-03

SAM domain of WDSUB1 proteins; SAM (sterile alpha motif) domain of WDSUB1 subfamily proteins is a putative protein-protein interaction domain. Proteins of this group contain multiple domains: SAM, one or more WD40 repeats and U-box (derived version of the RING-finger domain). Apparently the WDSUB1 subfamily proteins participate in protein degradation through ubiquitination, since U-box domain are known as a member of E3 ubiquitin ligase family, while SAM and WD40 domains most probably are responsible for an E2 ubiquitin-conjugating enzyme binding and a target protein binding.


Pssm-ID: 188904  Cd Length: 72  Bit Score: 38.84  E-value: 1.36e-03
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|....*...
gi 1958745559    8 DIAVWLAAVHLEQYADTFRRHglATAGAA-QRLGHEEL-RHLGISATGHRKRILRLLQ 63
Cdd:cd09505      9 DVCTWLRSIGLEQYVEVFRAN--NIDGKElLNLTKESLsKDLKIESLGHRNKILRKIE 64
SAM_Samd5 cd09527
SAM domain of Samd5 subfamily; SAM (sterile alpha motif) domain of Samd5 subfamily is a ...
12-63 1.54e-03

SAM domain of Samd5 subfamily; SAM (sterile alpha motif) domain of Samd5 subfamily is a putative protein-protein interaction domain. Proteins of this subfamily have a SAM domain at the N-terminus. SAM is a widespread domain in signaling and regulatory proteins. In many cases SAM mediates dimerization/oligomerization. The exact function of proteins belonging to this subfamily is unknown.


Pssm-ID: 188926  Cd Length: 63  Bit Score: 38.20  E-value: 1.54e-03
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|..
gi 1958745559   12 WLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRILRLLQ 63
Cdd:cd09527      8 WLRTLQLEQYAEKFVDNGYDDLEVCKQIGDPDLDAIGVMNPAHRKRILEAVR 59
PH1_PH_fungal cd13298
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ...
285-370 2.18e-03

Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270110  Cd Length: 106  Bit Score: 39.15  E-value: 2.18e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  285 LLSGWLDKLS-PQGNYvfQRRFVQFNGRSLMYFGSDKDPFPKGVIPLTAI------EMTRssKDNKFQVITGQRVFVFRT 357
Cdd:cd13298      7 LKSGYLLKRSrKTKNW--KKRWVVLRPCQLSYYKDEKEYKLRRVINLSELlavaplKDKK--RKNVFGIYTPSKNLHFRA 82
                           90
                   ....*....|...
gi 1958745559  358 ESEAQRDIWCSTL 370
Cdd:cd13298     83 TSEKDANEWVEAL 95
SAM_tumor-p63,p73 cd09503
SAM domain of tumor-p63,p73 proteins; SAM (sterile alpha motif) domain of p63, p73 ...
3-63 2.36e-03

SAM domain of tumor-p63,p73 proteins; SAM (sterile alpha motif) domain of p63, p73 transcriptional factors is a putative protein-protein interaction domain and lipid-binding domain. p63 and p73 are homologs to the tumor suppressor p53. They have a C-terminal SAM domain in their longest spliced alpha forms, while p53 doesn't have it. p63 or p73 knockout mice show significant developmental abnormalities but no increased cancer susceptibility, suggesting that p63 and p73 play a role in regulation of normal development. It was shown that SAM domain of p73 is able to bind some membrane lipids. The structural rearrangements in SAM are necessary to accomplish the binding. No evidence for homooligomerization through SAM domains was found for p63/p73 subfamily. It was suggested that the partner proteins should be either more distantly related SAM-containing domain proteins or proteins without the SAM domain.


Pssm-ID: 188902  Cd Length: 65  Bit Score: 38.07  E-value: 2.36e-03
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1958745559    3 APQDLDIAVWLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISaTGHRKRILRLLQ 63
Cdd:cd09503      1 YPTDNSVASWLTKLGCSNYIDNFHQQGLLSIFQLDEFTLEDLAAMKIP-EQHRNKIWKGLL 60
PH_DOCK-D cd13267
Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also ...
287-378 2.65e-03

Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also called Zizimin subfamily) consists of Dock9/Zizimin1, Dock10/Zizimin3, and Dock11/Zizimin2. DOCK-D has a N-terminal DUF3398 domain, a PH-like domain, a Dock Homology Region 1, DHR1 (also called CZH1), a C2 domain, and a C-terminal DHR2 domain (also called CZH2). Zizimin1 is enriched in the brain, lung, and kidney; zizimin2 is found in B and T lymphocytes, and zizimin3 is enriched in brain, lung, spleen and thymus. Zizimin1 functions in autoinhibition and membrane targeting. Zizimin2 is an immune-related and age-regulated guanine nucleotide exchange factor, which facilitates filopodial formation through activation of Cdc42, which results in activation of cell migration. No function has been determined for Zizimin3 to date. The N-terminal half of zizimin1 binds to the GEF domain through three distinct areas, including CZH1, to inhibit the interaction with Cdc42. In addition its PH domain binds phosphoinositides and mediates zizimin1 membrane targeting. DOCK is a family of proteins involved in intracellular signalling networks. They act as guanine nucleotide exchange factors for small G proteins of the Rho family, such as Rac and Cdc42. There are 4 subfamilies of DOCK family proteins based on their sequence homology: A-D. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270087  Cd Length: 126  Bit Score: 39.62  E-value: 2.65e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  287 SGWLDK--------LSPQGNYVFQRRFVQF-----NGRSLMYFGSDKDPFPKGVIPLTA-IEMTRSSKDNK--FQV-ITG 349
Cdd:cd13267      9 EGYLYKgpenssdsFISLAMKSFKRRFFHLkqlvdGSYILEFYKDEKKKEAKGTIFLDScTGVVQNSKRRKfcFELrMQD 88
                           90       100
                   ....*....|....*....|....*....
gi 1958745559  350 QRVFVFRTESEAQRDIWCSTLQSCLKEQR 378
Cdd:cd13267     89 KKSYVLAAESEAEMDEWISKLNKILQSSK 117
SAM_caskin1,2_repeat2 cd09498
SAM domain of caskin protein repeat 2; SAM (sterile alpha motif) domain repeat 2 of caskin1,2 ...
8-59 2.84e-03

SAM domain of caskin protein repeat 2; SAM (sterile alpha motif) domain repeat 2 of caskin1,2 proteins is a protein-protein interaction domain. Caskin has two tandem SAM domains. Caskin protein is known to interact with membrane-associated guanylate kinase CASK, and may play a role in neural development, synaptic protein targeting, and regulation of gene expression.


Pssm-ID: 188897  Cd Length: 71  Bit Score: 38.04  E-value: 2.84e-03
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|..
gi 1958745559    8 DIAVWLAAVHLEQYADTFRRHGLATAGAAQRLGHEELRHLGISATGHRKRIL 59
Cdd:cd09498      9 DLLEWLSLLGLPQYHKVLVENGYDSIDFVTDLTWEDLQDIGITKLGHQKKLM 60
RhoGAP_fRGD2 cd04399
RhoGAP_fRGD2: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
974-1086 3.33e-03

RhoGAP_fRGD2: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal RGD2-like proteins. Yeast Rgd2 is a GAP protein for Cdc42 and Rho5. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239864  Cd Length: 212  Bit Score: 40.78  E-value: 3.33e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  974 VTDTLKRFFRELDDPVTS------ARLLPRWREAAELPQKNQRLEKYKEVISCLPRVNRRTLATLIGHLYRV-------- 1039
Cdd:cd04399     81 VASVLKLYLLELPDSLIPhdiydlIRSLYSAYPPSQEDSDTARIQGLQSTLSQLPKSHIATLDAIITHFYRLieitkmge 160
                           90       100       110       120       130
                   ....*....|....*....|....*....|....*....|....*....|
gi 1958745559 1040 -QKCAALNqmCTRNLALLFAPSVFQTDG--RGEHEVRVLQELIDGYISVF 1086
Cdd:cd04399    161 sEEEYADK--LATSLSREILRPIIESLLtiGDKHGYKFFRDLLTHKDQIF 208
PH_APBB1IP cd01259
Amyloid beta (A4) Precursor protein-Binding, family B, member 1 Interacting Protein pleckstrin ...
1245-1318 4.27e-03

Amyloid beta (A4) Precursor protein-Binding, family B, member 1 Interacting Protein pleckstrin homology (PH) domain; APBB1IP consists of a Ras-associated (RA) domain, a PH domain, a family-specific BPS region, and a C-terminal SH2 domain. Grb7, Grb10 and Grb14 are paralogs that are also present in this hierarchy. These adapter proteins bind a variety of receptor tyrosine kinases, including the insulin and insulin-like growth factor-1 (IGF1) receptors. Grb10 and Grb14 are important tissue-specific negative regulators of insulin and IGF1 signaling based and may contribute to type 2 (non-insulin-dependent) diabetes in humans. RA-PH function as a single structural unit and is dimerized via a helical extension of the PH domain. The PH domain here are proposed to bind phosphoinositides non-cannonically ahd are unlikely to bind an activated GTPase. The tandem RA-PH domains are present in a second adapter-protein family, MRL proteins, Caenorhabditis elegans protein MIG-1012, the mammalian proteins RIAM and lamellipodin and the Drosophila melanogaster protein Pico12, all of which are Ena/VASP-binding proteins involved in actin-cytoskeleton rearrangement. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269961  Cd Length: 124  Bit Score: 38.76  E-value: 4.27e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559 1245 RFFLVRGRCLLLLKEKKSSKPereWSL------EGAKVYLGI--RKKLKPPTLWGFTL----ILEKMH---LCLSCTDEE 1309
Cdd:cd01259     25 RYFVLRASGLYYSPKGKSKES---RDLqclaqfDDYNVYTGLngKKKYKAPTDFGFCLkpnkQQEKGSkdiKYLCAEDEQ 101

                   ....*....
gi 1958745559 1310 EMWDWTTSI 1318
Cdd:cd01259    102 SRTCWLTAI 110
PH_ORP_plant cd13294
Plant Oxysterol binding protein related protein Pleckstrin homology (PH) domain; Plant ORPs ...
303-373 5.68e-03

Plant Oxysterol binding protein related protein Pleckstrin homology (PH) domain; Plant ORPs contain a N-terminal PH domain and a C-terminal OSBP-related domain. Not much is known about its specific function in plants to date. Members here include: Arabidopsis, spruce, and petunia. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241448  Cd Length: 100  Bit Score: 37.86  E-value: 5.68e-03
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1958745559  303 RRFVQFNGrSLMYF---GSDKDPfPKGVIPLTAIEMTRS-SKDNKFQVITGQRVFVFRTESEAQRDIWCSTLQSC 373
Cdd:cd13294     18 RWFVLQDG-VLSYYkvhGPDKVK-PSGEVHLKVSSIRESrSDDKKFYIFTGTKTLHLRAESREDRAAWLEALQAA 90
PH_Skap1 cd13380
Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 ...
288-376 6.29e-03

Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 (also called Skap55/Src kinase-associated phosphoprotein of 55 kDa) and its partner, ADAP (adhesion and degranulation promoting adapter protein) help reorganize the cytoskeleton and/or promote integrin-mediated adhesion upon immunoreceptor activation. Skap1 is also involved in T Cell Receptor (TCR)-induced RapL-Rap1 complex formation and LFA-1 activation. Skap1 has an N-terminal coiled-coil conformation which is proposed to be involved in homodimer formation, a central PH domain and a C-terminal SH3 domain that associates with ADAP. The Skap1 PH domain plays a role in controlling integrin function via recruitment of ADAP-SKAP complexes to integrins as well as in controlling the ability of ADAP to interact with the CBM signalosome and regulate NF-kappaB. SKAP1 is necessary for RapL binding to membranes in a PH domain-dependent manner and the PI3K pathway. Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Skap55/Skap1, Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270180  Cd Length: 106  Bit Score: 37.91  E-value: 6.29e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  288 GWLDKLSPQGNYV---FQRRFVQFNGRSLMYFGSDKDPFPKG--VIPLTAIEMT-----RSSKDNKFQVIT-GQRVFVFR 356
Cdd:cd13380      5 GYLEKRSKDHSFFgseWQKRWCVLTNRAFYYYASEKSKQPKGgfLIKGYSAQMAphlrkDSRRDSCFELTTpGRRTYQFT 84
                           90       100
                   ....*....|....*....|
gi 1958745559  357 TESEAQRDIWCSTLQSCLKE 376
Cdd:cd13380     85 AASPSEARDWVDQIQFLLKD 104
PH_SKIP cd13309
SifA and kinesin-interacting protein Pleckstrin homology (PH) domain; SKIP (also called ...
1223-1321 7.24e-03

SifA and kinesin-interacting protein Pleckstrin homology (PH) domain; SKIP (also called PLEKHM2/Pleckstrin homology domain-containing family M member 2) is a soluble cytosolic protein that contains a RUN domain and a PH domain separated by a unstructured linker region. SKIP is a target of the Salmonella effector protein SifA and the SifA-SKIP complex regulates kinesin-1 on the bacterial vacuole. The PH domain of SKIP binds to the N-terminal region of SifA while the N-terminus of SKIP is proposed to bind the TPR domain of the kinesin light chain. The opposite side of the SKIP PH domain is proposed to bind phosphoinositides. TSifA, SKIP, SseJ, and RhoA family GTPases are also thought to promote host membrane tubulation. Recently, it was shown that the lysosomal GTPase Arl8 binds to the kinesin-1 linker SKIP and that both are required for the normal intracellular distribution of lysosomes. Interestingly, two kinesin light chain binding motifs (WD) in SKIP have now been identified to match a consensus sequence for a kinesin light chain binding site found in several proteins including calsyntenin-1/alcadein, caytaxin, and vaccinia virus A36. SKIP has also been shown to interact with Rab1A. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270119  Cd Length: 103  Bit Score: 37.74  E-value: 7.24e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559 1223 PRVGLLRCREEPPRLLGSRFQERFFLVRGRCLLLLKEKKSSKPEREWSLEGAKVYlGIRKKLKPPTLWGFTLIL-EKMHL 1301
Cdd:cd13309      1 TKEGMLMYKTGTSYLGGETWKPGYFLLKNGVLYQYPDRSDRLPLLSISLGGEQCG-GCRRINNTERPHTFELILtDRSSL 79
                           90       100
                   ....*....|....*....|
gi 1958745559 1302 CLSCTDEEEMWDWTTSILKA 1321
Cdd:cd13309     80 ELAAPDEYEASEWLQSLCQS 99
PH_8 pfam15409
Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.
288-370 7.71e-03

Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.


Pssm-ID: 405984  Cd Length: 89  Bit Score: 37.35  E-value: 7.71e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  288 GWLDKLSPQGNYVFQRRFVQFN--GRSLMYFGSDKDPFPKGVIPLTAIEMTRSSKDNKFQVITGQRVFVFRTESEAQRDI 365
Cdd:pfam15409    1 GILLKKRRKKLQGYAKRFFVLNfkSGTLSYYRDDNSSALRGKIPLSLAAISANAKTREIIIDSGMEVWHLKALNEKDFQA 80

                   ....*
gi 1958745559  366 WCSTL 370
Cdd:pfam15409   81 WVDAL 85
PH_Boi cd13316
Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally ...
287-370 8.37e-03

Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally redundant and important for cell growth with Boi mutants displaying defects in bud formation and in the maintenance of cell polarity.They appear to be linked to Rho-type GTPase, Cdc42 and Rho3. Boi1 and Boi2 display two-hybrid interactions with the GTP-bound ("active") form of Cdc42, while Rho3 can suppress of the lethality caused by deletion of Boi1 and Boi2. These findings suggest that Boi1 and Boi2 are targets of Cdc42 that promote cell growth in a manner that is regulated by Rho3. Boi proteins contain a N-terminal SH3 domain, followed by a SAM (sterile alpha motif) domain, a proline-rich region, which mediates binding to the second SH3 domain of Bem1, and C-terminal PH domain. The PH domain is essential for its function in cell growth and is important for localization to the bud, while the SH3 domain is needed for localization to the neck. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270126  Cd Length: 97  Bit Score: 37.35  E-value: 8.37e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958745559  287 SGWLDKLSpQGNYVFQRRFVQFNGRSLMYFGSDKDPFPKGVIPLTAIEMTRSSKDNK------FQVI--TGQRVFVFRTE 358
Cdd:cd13316      3 SGWMKKRG-ERYGTWKTRYFVLKGTRLYYLKSENDDKEKGLIDLTGHRVVPDDSNSPfrgsygFKLVppAVPKVHYFAVD 81
                           90
                   ....*....|..
gi 1958745559  359 SEAQRDIWCSTL 370
Cdd:cd13316     82 EKEELREWMKAL 93
PH_TAAP2-like cd13255
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ...
303-370 9.30e-03

Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270075  Cd Length: 110  Bit Score: 37.39  E-value: 9.30e-03
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1958745559  303 RRFVqFNGRSLMYFGSDKDPFPKGVIPLTAI----EMTRSSKDNKFQVITGQRVFVFRTESEAQRDIWCSTL 370
Cdd:cd13255     25 RWFV-LRPTKLAYYKNDKEYRLLRLIDLTDIhtctEVQLKKHDNTFGIVTPARTFYVQADSKAEMESWISAI 95
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH