NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1958647646|ref|XP_038939070|]
View 

pleckstrin homology domain-containing family A member 1 isoform X8 [Rattus norvegicus]

Protein Classification

pleckstrin homology domain-containing family A protein( domain architecture ID 10192763)

pleckstrin homology domain-containing family A protein such as human TAPP-1, which binds specifically to phosphatidylinositol 3,4-diphosphate (PtdIns3,4P2), but not to other phosphoinositides

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
PH1_TAPP1_2 cd13270
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, N-terminal ...
1-117 6.01e-77

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, N-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain binds PtdIns(3,4)P2. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270089  Cd Length: 118  Bit Score: 233.56  E-value: 6.01e-77
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646   1 MPYVDRQNRICGFLDIEENENSGKFLRRYFILDTREDSFVWYMDNPQNLPSGSSRVGAIKLTYISKVSDATKLRPKAEFC 80
Cdd:cd13270     1 MPYVDRQNRTCGFLDIEENENSGKFLRRYFILDTAANLLLYYMDNPQNLPVGAAPVGSLNLTYISKVSDATKQRPKAEFC 80
                          90       100       110
                  ....*....|....*....|....*....|....*..
gi 1958647646  81 FVMNAGMRKYFLQANDQQDLVEWVNVLNKAIKITVPK 117
Cdd:cd13270    81 FVINALSRRYFLQANDQQDLVEWVEALNNASKITVPK 117
PH2_TAPP1_2 cd13271
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal ...
185-296 2.55e-72

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270090  Cd Length: 114  Bit Score: 221.46  E-value: 2.55e-72
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 185 KPPADSAVIKAGYCVKQGAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLKEVHKVQECKQSDIMMRDNLFEIVTTS 264
Cdd:cd13271     1 RQRAGRNVIKSGYCVKQGAVRKNWKRRFFILDDNTISYYKSETDKEPLRTIPLREVLKVHECLVKSLLMRDNLFEIITTS 80
                          90       100       110
                  ....*....|....*....|....*....|..
gi 1958647646 265 RTFYVQADSPEEMHSWIKAVSGAIVAQRGPGR 296
Cdd:cd13271    81 RTFYIQADSPEEMHSWIKAISGAIVARRGPSR 112
 
Name Accession Description Interval E-value
PH1_TAPP1_2 cd13270
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, N-terminal ...
1-117 6.01e-77

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, N-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain binds PtdIns(3,4)P2. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270089  Cd Length: 118  Bit Score: 233.56  E-value: 6.01e-77
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646   1 MPYVDRQNRICGFLDIEENENSGKFLRRYFILDTREDSFVWYMDNPQNLPSGSSRVGAIKLTYISKVSDATKLRPKAEFC 80
Cdd:cd13270     1 MPYVDRQNRTCGFLDIEENENSGKFLRRYFILDTAANLLLYYMDNPQNLPVGAAPVGSLNLTYISKVSDATKQRPKAEFC 80
                          90       100       110
                  ....*....|....*....|....*....|....*..
gi 1958647646  81 FVMNAGMRKYFLQANDQQDLVEWVNVLNKAIKITVPK 117
Cdd:cd13270    81 FVINALSRRYFLQANDQQDLVEWVEALNNASKITVPK 117
PH2_TAPP1_2 cd13271
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal ...
185-296 2.55e-72

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270090  Cd Length: 114  Bit Score: 221.46  E-value: 2.55e-72
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 185 KPPADSAVIKAGYCVKQGAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLKEVHKVQECKQSDIMMRDNLFEIVTTS 264
Cdd:cd13271     1 RQRAGRNVIKSGYCVKQGAVRKNWKRRFFILDDNTISYYKSETDKEPLRTIPLREVLKVHECLVKSLLMRDNLFEIITTS 80
                          90       100       110
                  ....*....|....*....|....*....|..
gi 1958647646 265 RTFYVQADSPEEMHSWIKAVSGAIVAQRGPGR 296
Cdd:cd13271    81 RTFYIQADSPEEMHSWIKAISGAIVARRGPSR 112
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
192-288 1.23e-19

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 83.37  E-value: 1.23e-19
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646  192 VIKAGYCVKQGAVM-KNWKRRYFQLDENTIGYFKSE---LEKEPLRVIPLKEVhKVQECKQSDIMMRDNLFEIVTTSR-T 266
Cdd:smart00233   1 VIKEGWLYKKSGGGkKSWKKRYFVLFNSTLLYYKSKkdkKSYKPKGSIDLSGC-TVREAPDPDSSKKPHCFEIKTSDRkT 79
                           90       100
                   ....*....|....*....|..
gi 1958647646  267 FYVQADSPEEMHSWIKAVSGAI 288
Cdd:smart00233  80 LLLQAESEEEREKWVEALRKAI 101
PH pfam00169
PH domain; PH stands for pleckstrin homology.
192-288 3.15e-17

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 76.83  E-value: 3.15e-17
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 192 VIKAGYCVKQG-AVMKNWKRRYFQLDENTIGYFKSEL---EKEPLRVIPLKEVhKVQECKQSDIMMRDNLFEIVTT---- 263
Cdd:pfam00169   1 VVKEGWLLKKGgGKKKSWKKRYFVLFDGSLLYYKDDKsgkSKEPKGSISLSGC-EVVEVVASDSPKRKFCFELRTGertg 79
                          90       100
                  ....*....|....*....|....*
gi 1958647646 264 SRTFYVQADSPEEMHSWIKAVSGAI 288
Cdd:pfam00169  80 KRTYLLQAESEEERKDWIKAIQSAI 104
PH pfam00169
PH domain; PH stands for pleckstrin homology.
10-112 7.82e-10

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 55.65  E-value: 7.82e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646  10 ICGFLDIEENENSGKFLRRYFILdtREDSFVWYmdNPQNLPSGSSRVGAIKLTYISKVSDATKLRPKAEFCFV----MNA 85
Cdd:pfam00169   3 KEGWLLKKGGGKKKSWKKRYFVL--FDGSLLYY--KDDKSGKSKEPKGSISLSGCEVVEVVASDSPKRKFCFElrtgERT 78
                          90       100
                  ....*....|....*....|....*..
gi 1958647646  86 GMRKYFLQANDQQDLVEWVNVLNKAIK 112
Cdd:pfam00169  79 GKRTYLLQAESEEERKDWIKAIQSAIR 105
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
10-112 3.02e-09

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 54.09  E-value: 3.02e-09
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646   10 ICGFLDIEENENSGKFLRRYFILDtreDSFVWYMDNPQNLPSGSSRvGAIKLTYISKVSDATKLRPKAEFCFVMNAGMRK 89
Cdd:smart00233   3 KEGWLYKKSGGGKKSWKKRYFVLF---NSTLLYYKSKKDKKSYKPK-GSIDLSGCTVREAPDPDSSKKPHCFEIKTSDRK 78
                           90       100
                   ....*....|....*....|....
gi 1958647646   90 -YFLQANDQQDLVEWVNVLNKAIK 112
Cdd:smart00233  79 tLLLQAESEEEREKWVEALRKAIA 102
 
Name Accession Description Interval E-value
PH1_TAPP1_2 cd13270
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, N-terminal ...
1-117 6.01e-77

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, N-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain binds PtdIns(3,4)P2. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270089  Cd Length: 118  Bit Score: 233.56  E-value: 6.01e-77
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646   1 MPYVDRQNRICGFLDIEENENSGKFLRRYFILDTREDSFVWYMDNPQNLPSGSSRVGAIKLTYISKVSDATKLRPKAEFC 80
Cdd:cd13270     1 MPYVDRQNRTCGFLDIEENENSGKFLRRYFILDTAANLLLYYMDNPQNLPVGAAPVGSLNLTYISKVSDATKQRPKAEFC 80
                          90       100       110
                  ....*....|....*....|....*....|....*..
gi 1958647646  81 FVMNAGMRKYFLQANDQQDLVEWVNVLNKAIKITVPK 117
Cdd:cd13270    81 FVINALSRRYFLQANDQQDLVEWVEALNNASKITVPK 117
PH2_TAPP1_2 cd13271
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal ...
185-296 2.55e-72

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270090  Cd Length: 114  Bit Score: 221.46  E-value: 2.55e-72
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 185 KPPADSAVIKAGYCVKQGAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLKEVHKVQECKQSDIMMRDNLFEIVTTS 264
Cdd:cd13271     1 RQRAGRNVIKSGYCVKQGAVRKNWKRRFFILDDNTISYYKSETDKEPLRTIPLREVLKVHECLVKSLLMRDNLFEIITTS 80
                          90       100       110
                  ....*....|....*....|....*....|..
gi 1958647646 265 RTFYVQADSPEEMHSWIKAVSGAIVAQRGPGR 296
Cdd:cd13271    81 RTFYIQADSPEEMHSWIKAISGAIVARRGPSR 112
PH_TAAP2-like cd13255
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ...
188-292 4.55e-26

Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270075  Cd Length: 110  Bit Score: 100.95  E-value: 4.55e-26
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 188 ADSAVIKAGYCVKQGAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLKEVHKVQECkqsDIMMRDNLFEIVTTSRTF 267
Cdd:cd13255     2 ISEAVLKAGYLEKKGERRKTWKKRWFVLRPTKLAYYKNDKEYRLLRLIDLTDIHTCTEV---QLKKHDNTFGIVTPARTF 78
                          90       100
                  ....*....|....*....|....*
gi 1958647646 268 YVQADSPEEMHSWIKAVSGAIVAQR 292
Cdd:cd13255    79 YVQADSKAEMESWISAINLARQALR 103
PH1_PH_fungal cd13298
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ...
192-284 1.31e-21

Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270110  Cd Length: 106  Bit Score: 88.84  E-value: 1.31e-21
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 192 VIKAGYCVKQGAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLKEVHKVQECKQSDimmRDNLFEIVTTSRTFYVQA 271
Cdd:cd13298     6 VLKSGYLLKRSRKTKNWKKRWVVLRPCQLSYYKDEKEYKLRRVINLSELLAVAPLKDKK---RKNVFGIYTPSKNLHFRA 82
                          90
                  ....*....|...
gi 1958647646 272 DSPEEMHSWIKAV 284
Cdd:cd13298    83 TSEKDANEWVEAL 95
PH_DAPP1 cd10573
Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; ...
194-282 4.00e-20

Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; DAPP1 (also known as PHISH/3' phosphoinositide-interacting SH2 domain-containing protein or Bam32) plays a role in B-cell activation and has potential roles in T-cell and mast cell function. DAPP1 promotes B cell receptor (BCR) induced activation of Rho GTPases Rac1 and Cdc42, which feed into mitogen-activated protein kinases (MAPK) activation pathways and affect cytoskeletal rearrangement. DAPP1can also regulate BCR-induced activation of extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). DAPP1 contains an N-terminal SH2 domain and a C-terminal pleckstrin homology (PH) domain with a single tyrosine phosphorylation site located centrally. DAPP1 binds strongly to both PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The PH domain is essential for plasma membrane recruitment of PI3K upon cell activation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269977 [Multi-domain]  Cd Length: 96  Bit Score: 84.30  E-value: 4.00e-20
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 194 KAGYCVKQGAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLKEVHKVQECKQSDimmRDNLFEIVTTSRTFYVQADS 273
Cdd:cd10573     5 KEGYLTKLGGIVKNWKTRWFVLRRNELKYFKTRGDTKPIRVLDLRECSSVQRDYSQG---KVNCFCLVFPERTFYMYANT 81

                  ....*....
gi 1958647646 274 PEEMHSWIK 282
Cdd:cd10573    82 EEEADEWVK 90
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
194-284 8.00e-20

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 83.36  E-value: 8.00e-20
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 194 KAGYCVKQGAV-MKNWKRRYFQLDENTIGYFKSELE--KEPLRVIPLKEVHKVQECKQSDimmRDNLFEIVTT-SRTFYV 269
Cdd:cd00821     1 KEGYLLKRGGGgLKSWKKRWFVLFEGVLLYYKSKKDssYKPKGSIPLSGILEVEEVSPKE---RPHCFELVTPdGRTYYL 77
                          90
                  ....*....|....*
gi 1958647646 270 QADSPEEMHSWIKAV 284
Cdd:cd00821    78 QADSEEERQEWLKAL 92
PH1_PLEKHH1_PLEKHH2 cd13282
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ...
194-293 9.86e-20

Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241436  Cd Length: 96  Bit Score: 83.12  E-value: 9.86e-20
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 194 KAGYCVKQGAVMKNWKRRYFQLDENTIGYFKS--ELEKEPLRVIPLKEVHKVQ--ECKQSdimmrdnlFEIVTTSRTFYV 269
Cdd:cd13282     1 KAGYLTKLGGKVKTWKRRWFVLKNGELFYYKSpnDVIRKPQGQIALDGSCEIAraEGAQT--------FEIVTEKRTYYL 72
                          90       100
                  ....*....|....*....|....
gi 1958647646 270 QADSPEEMHSWIKAVSGAIVAQRG 293
Cdd:cd13282    73 TADSENDLDEWIRVIQNVLRRQAS 96
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
192-288 1.23e-19

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 83.37  E-value: 1.23e-19
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646  192 VIKAGYCVKQGAVM-KNWKRRYFQLDENTIGYFKSE---LEKEPLRVIPLKEVhKVQECKQSDIMMRDNLFEIVTTSR-T 266
Cdd:smart00233   1 VIKEGWLYKKSGGGkKSWKKRYFVLFNSTLLYYKSKkdkKSYKPKGSIDLSGC-TVREAPDPDSSKKPHCFEIKTSDRkT 79
                           90       100
                   ....*....|....*....|..
gi 1958647646  267 FYVQADSPEEMHSWIKAVSGAI 288
Cdd:smart00233  80 LLLQAESEEEREKWVEALRKAI 101
PH_ACAP cd13250
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ...
194-288 4.84e-18

ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270070  Cd Length: 98  Bit Score: 78.80  E-value: 4.84e-18
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 194 KAGYCVKQGA-VMKNWKRRYFQLDENTIGYFKSELEKEPLRVIP-LKEVHkVQECKQSDimmRDNLFEIVTTSRTFYVQA 271
Cdd:cd13250     1 KEGYLFKRSSnAFKTWKRRWFSLQNGQLYYQKRDKKDEPTVMVEdLRLCT-VKPTEDSD---RRFCFEVISPTKSYMLQA 76
                          90
                  ....*....|....*..
gi 1958647646 272 DSPEEMHSWIKAVSGAI 288
Cdd:cd13250    77 ESEEDRQAWIQAIQSAI 93
PH1_ARAP cd13253
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
193-291 7.70e-18

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270073  Cd Length: 94  Bit Score: 77.81  E-value: 7.70e-18
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 193 IKAGYCVKQGAVMKN--WKRRYFQLDENTIGYFKSELEKEPLRVIPLKEVHKVQECKqsdimmrDNLFEIVTTSRTFYVQ 270
Cdd:cd13253     1 IKSGYLDKQGGQGNNkgFQKRWVVFDGLSLRYFDSEKDAYSKRIIPLSAISTVRAVG-------DNKFELVTTNRTFVFR 73
                          90       100
                  ....*....|....*....|.
gi 1958647646 271 ADSPEEMHSWIKAVSGAIVAQ 291
Cdd:cd13253    74 AESDDERNLWCSTLQAAISEY 94
PH pfam00169
PH domain; PH stands for pleckstrin homology.
192-288 3.15e-17

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 76.83  E-value: 3.15e-17
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 192 VIKAGYCVKQG-AVMKNWKRRYFQLDENTIGYFKSEL---EKEPLRVIPLKEVhKVQECKQSDIMMRDNLFEIVTT---- 263
Cdd:pfam00169   1 VVKEGWLLKKGgGKKKSWKKRYFVLFDGSLLYYKDDKsgkSKEPKGSISLSGC-EVVEVVASDSPKRKFCFELRTGertg 79
                          90       100
                  ....*....|....*....|....*
gi 1958647646 264 SRTFYVQADSPEEMHSWIKAVSGAI 288
Cdd:pfam00169  80 KRTYLLQAESEEERKDWIKAIQSAI 104
PH_PEPP1_2_3 cd13248
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ...
192-287 3.79e-17

Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270068  Cd Length: 104  Bit Score: 76.16  E-value: 3.79e-17
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 192 VIKAGYCVKQ-GAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLKEvHKVQECKQSDIMMRDNLFEIV-TTSRTFYV 269
Cdd:cd13248     7 VVMSGWLHKQgGSGLKNWRKRWFVLKDNCLYYYKDPEEEKALGSILLPS-YTISPAPPSDEISRKFAFKAEhANMRTYYF 85
                          90
                  ....*....|....*...
gi 1958647646 270 QADSPEEMHSWIKAVSGA 287
Cdd:cd13248    86 AADTAEEMEQWMNAMSLA 103
PH_AtPH1 cd13276
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ...
194-289 6.89e-17

Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270095  Cd Length: 106  Bit Score: 75.82  E-value: 6.89e-17
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 194 KAGYCVKQGAVMKNWKRRYFQLDENTIGYFKSEL---EKEPLRVIPLKEVHKVQECKqsDIMMRDNLFEIVTTSRTFYVQ 270
Cdd:cd13276     1 KAGWLEKQGEFIKTWRRRWFVLKQGKLFWFKEPDvtpYSKPRGVIDLSKCLTVKSAE--DATNKENAFELSTPEETFYFI 78
                          90
                  ....*....|....*....
gi 1958647646 271 ADSPEEMHSWIKAVSGAIV 289
Cdd:cd13276    79 ADNEKEKEEWIGAIGRAIV 97
PH_Ses cd13288
Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 ...
181-287 9.73e-16

Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 mammalian members: Ses1 and Ses2, which are also callled 7 kDa inositol polyphosphate phosphatase-interacting protein 1 and 2. They play a role in endocytic trafficking and are required for receptor recycling from endosomes, both to the trans-Golgi network and the plasma membrane. Members of this family form homodimers and heterodimers. Sesquipedalian interacts with inositol polyphosphate 5-phosphatase OCRL-1 (INPP5F) also known as Lowe oculocerebrorenal syndrome protein, a phosphatase enzyme that is involved in actin polymerization and is found in the trans-Golgi network and INPP5B. Sesquipedalian contains a single PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270105 [Multi-domain]  Cd Length: 120  Bit Score: 73.04  E-value: 9.73e-16
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 181 YFAPKPPADsaviKAGYCVKQGAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLkEVHKVQECKQSDimmrDNLFEI 260
Cdd:cd13288     1 YATCNSPVD----KEGYLWKKGERNTSYQKRWFVLKGNLLFYFEKKGDREPLGVIVL-EGCTVELAEDAE----PYAFAI 71
                          90       100       110
                  ....*....|....*....|....*....|
gi 1958647646 261 VTT---SRTFYVQADSPEEMHSWIKAVSGA 287
Cdd:cd13288    72 RFDgpgARSYVLAAENQEDMESWMKALSRA 101
PH1_Pleckstrin_2 cd13301
Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in ...
192-296 1.73e-15

Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270113  Cd Length: 108  Bit Score: 72.02  E-value: 1.73e-15
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 192 VIKAGYCVKQGAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLKEVHKVQECKQSDimMRDNLFEIVTTSRT-FYVQ 270
Cdd:cd13301     3 IIKEGYLVKKGHVVNNWKARWFVLKEDGLEYYKKKTDSSPKGMIPLKGCTITSPCLEYG--KRPLVFKLTTAKGQeHFFQ 80
                          90       100
                  ....*....|....*....|....*.
gi 1958647646 271 ADSPEEMHSWIKAVSGAIVAQRGPGR 296
Cdd:cd13301    81 ACSREERDAWAKDITKAITCLEGGKR 106
PH_GRP1-like cd01252
General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 ...
192-288 3.14e-14

General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 and the related proteins ARNO (ARF nucleotide-binding site opener)/cytohesin-2 and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. The PH domains of all three proteins exhibit relatively high affinity for PtdIns(3,4,5)P3. Within the Grp1 family, diglycine (2G) and triglycine (3G) splice variants, differing only in the number of glycine residues in the PH domain, strongly influence the affinity and specificity for phosphoinositides. The 2G variants selectively bind PtdIns(3,4,5)P3 with high affinity,the 3G variants bind PtdIns(3,4,5)P3 with about 30-fold lower affinity and require the polybasic region for plasma membrane targeting. These ARF-GEFs share a common, tripartite structure consisting of an N-terminal coiled-coil domain, a central domain with homology to the yeast protein Sec7, a PH domain, and a C-terminal polybasic region. The Sec7 domain is autoinhibited by conserved elements proximal to the PH domain. GRP1 binds to the DNA binding domain of certain nuclear receptors (TRalpha, TRbeta, AR, ER, but not RXR), and can repress thyroid hormone receptor (TR)-mediated transactivation by decreasing TR-complex formation on thyroid hormone response elements. ARNO promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion. Cytohesin acts as a PI 3-kinase effector mediating biological responses including cell spreading and adhesion, chemotaxis, protein trafficking, and cytoskeletal rearrangements, only some of which appear to depend on their ability to activate ARFs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269954  Cd Length: 119  Bit Score: 68.49  E-value: 3.14e-14
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 192 VIKAGYCVKQGAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLKEVhKVQECkqsDIMMRDNLFEI----------- 260
Cdd:cd01252     3 PDREGWLLKLGGRVKSWKRRWFILTDNCLYYFEYTTDKEPRGIIPLENL-SVREV---EDKKKPFCFELyspsngqvika 78
                          90       100       110
                  ....*....|....*....|....*....|....*...
gi 1958647646 261 ---------VTTSRTFY-VQADSPEEMHSWIKAVSGAI 288
Cdd:cd01252    79 cktdsdgkvVEGNHTVYrISAASEEERDEWIKSIKASI 116
PH2_MyoX cd13296
Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular ...
194-290 6.17e-14

Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270108  Cd Length: 103  Bit Score: 67.49  E-value: 6.17e-14
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 194 KAGYCVKQGAVM-----KNWKRRYFQLDENTIGYFKSELEKE-PLRVIplkevhKVQECKQS-DIMMRDNLFEIVTTSRT 266
Cdd:cd13296     1 KSGWLTKKGGGSstlsrRNWKSRWFVLRDTVLKYYENDQEGEkLLGTI------DIRSAKEIvDNDPKENRLSITTEERT 74
                          90       100
                  ....*....|....*....|....
gi 1958647646 267 FYVQADSPEEMHSWIKAVSGAIVA 290
Cdd:cd13296    75 YHLVAESPEDASQWVNVLTRVISA 98
PH_RhoGap25-like cd13263
Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; ...
192-295 2.09e-13

Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; RhoGAP25 (also called ArhGap25) like other RhoGaps are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. This hierarchy contains RhoGAP22, RhoGAP24, and RhoGAP25. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270083  Cd Length: 114  Bit Score: 66.25  E-value: 2.09e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 192 VIKAGYCVKQGAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLkevhkvQECKQSDIMMRDN-----LFEIVTTS-- 264
Cdd:cd13263     3 PIKSGWLKKQGSIVKNWQQRWFVLRGDQLYYYKDEDDTKPQGTIPL------PGNKVKEVPFNPEepgkfLFEIIPGGgg 76
                          90       100       110
                  ....*....|....*....|....*....|....*...
gi 1958647646 265 -------RTFYVQADSPEEMHSWIKAVSGAIVAQRGPG 295
Cdd:cd13263    77 drmtsnhDSYLLMANSQAEMEEWVKVIRRVIGSPFGGG 114
PH_SWAP-70 cd13273
Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called ...
192-293 2.15e-13

Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called Differentially expressed in FDCP 6/DEF-6 or IRF4-binding protein) functions in cellular signal transduction pathways (in conjunction with Rac), regulates cell motility through actin rearrangement, and contributes to the transformation and invasion activity of mouse embryo fibroblasts. Metazoan SWAP-70 is found in B lymphocytes, mast cells, and in a variety of organs. Metazoan SWAP-70 contains an N-terminal EF-hand motif, a centrally located PH domain, and a C-terminal coiled-coil domain. The PH domain of Metazoan SWAP-70 contains a phosphoinositide-binding site and a nuclear localization signal (NLS), which localize SWAP-70 to the plasma membrane and nucleus, respectively. The NLS is a sequence of four Lys residues located at the N-terminus of the C-terminal a-helix; this is a unique characteristic of the Metazoan SWAP-70 PH domain. The SWAP-70 PH domain binds PtdIns(3,4,5)P3 and PtdIns(4,5)P2 embedded in lipid bilayer vesicles. There are additional plant SWAP70 proteins, but these are not included in this hierarchy. Rice SWAP70 (OsSWAP70) exhibits GEF activity toward the its Rho GTPase, OsRac1, and regulates chitin-induced production of reactive oxygen species and defense gene expression in rice. Arabidopsis SWAP70 (AtSWAP70) plays a role in both PAMP- and effector-triggered immunity. Plant SWAP70 contains both DH and PH domains, but their arrangement is the reverse of that in typical DH-PH-type Rho GEFs, wherein the DH domain is flanked by a C-terminal PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270092  Cd Length: 110  Bit Score: 66.16  E-value: 2.15e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 192 VIKAGYCVKQGAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLKEVHKVQECKQSDimMRDNLFEIVTTSRTFYVQA 271
Cdd:cd13273     8 VIKKGYLWKKGHLLPTWTERWFVLKPNSLSYYKSEDLKEKKGEIALDSNCCVESLPDRE--GKKCRFLVKTPDKTYELSA 85
                          90       100
                  ....*....|....*....|..
gi 1958647646 272 DSPEEMHSWIKAVSGAIVAQRG 293
Cdd:cd13273    86 SDHKTRQEWIAAIQTAIRLSQE 107
PH-GRAM1_AGT26 cd13215
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, ...
177-283 3.89e-13

Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1; ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275402  Cd Length: 116  Bit Score: 65.34  E-value: 3.89e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 177 SHLPYFAPKPPADSAVIKAGYCVKQGAVMKNWKRRYFQLDENTIGYFKSEleKE---PLRVIPLKEVHKVQECKQSDimM 253
Cdd:cd13215     6 KHLCFFAYLPKRSGAVIKSGYLSKRSKRTLRYTRYWFVLKGDTLSWYNSS--TDlyfPAGTIDLRYATSIELSKSNG--E 81
                          90       100       110
                  ....*....|....*....|....*....|
gi 1958647646 254 RDNLFEIVTTSRTFYVQADSPEEMHSWIKA 283
Cdd:cd13215    82 ATTSFKIVTNSRTYKFKADSETSADEWVKA 111
PH_Sbf1_hMTMR5 cd01235
Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a ...
196-281 3.00e-12

Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a myotubularin-related pseudo-phosphatase. Both Sbf1 and myotubularin interact with the SET domains of Hrx and other epigenetic regulatory proteins, but Sbf1 lacks phosphatase activity due to several amino acid changes in its structurally preserved catalytic pocket. It contains pleckstrin (PH), GEF, and myotubularin homology domains that are thought to be responsible for signaling and growth control. Sbf1 functions as an inhibitor of cellular growth. The N-terminal GEF homology domain serves to inhibit the transforming effects of Sbf1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269941  Cd Length: 106  Bit Score: 62.73  E-value: 3.00e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 196 GYCVKQGAVMKNWKRRYFQLDENT--IGYFKSELEKEPLRVIPLKEVHKVQECKQSDIMMR--DN--LFEIVTTSRTFYV 269
Cdd:cd01235     7 GYLYKRGALLKGWKQRWFVLDSTKhqLRYYESREDTKCKGFIDLAEVESVTPATPIIGAPKraDEgaFFDLKTNKRVYNF 86
                          90
                  ....*....|..
gi 1958647646 270 QADSPEEMHSWI 281
Cdd:cd01235    87 CAFDAESAQQWI 98
PH2_Pleckstrin_2 cd13302
Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 2; Pleckstrin is a protein found in ...
191-284 6.11e-12

Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 2; Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270114  Cd Length: 109  Bit Score: 61.76  E-value: 6.11e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 191 AVIKAGYCVKQGAVMKNWKRRYFQLDENT--IGYFKSELEKEPLRVIPLK-----EVHKVQECKQSDImmRDNLFEIVTT 263
Cdd:cd13302     6 IIVKQGCLLKQGHRRKNWKVRKFVLRDDPayLHYYDPAKGEDPLGAIHLRgcvvtAVEDNSNPRKGSV--EGNLFEIITA 83
                          90       100
                  ....*....|....*....|..
gi 1958647646 264 SRT-FYVQADSPEEMHSWIKAV 284
Cdd:cd13302    84 DEVhYYLQAATPAERTEWIKAI 105
PH_RhoGAP2 cd13378
Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 ...
192-295 1.28e-11

Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 or ArhGap22) are involved in cell polarity, cell morphology and cytoskeletal organization. They activate a GTPase belonging to the RAS superfamily of small GTP-binding proteins. The encoded protein is insulin-responsive, is dependent on the kinase Akt, and requires the Akt-dependent 14-3-3 binding protein which binds sequentially to two serine residues resulting in regulation of cell motility. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241529  Cd Length: 116  Bit Score: 61.12  E-value: 1.28e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 192 VIKAGYCVKQGAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLKEvHKVQECKQSDIMMRDNLFEIV---------- 261
Cdd:cd13378     3 VLKAGWLKKQRSIMKNWQQRWFVLRGDQLFYYKDEEETKPQGCISLQG-SQVNELPPNPEEPGKHLFEILpggagdrekv 81
                          90       100       110
                  ....*....|....*....|....*....|....*
gi 1958647646 262 -TTSRTFYVQADSPEEMHSWIKAVSGAIVAQRGPG 295
Cdd:cd13378    82 pMNHEAFLLMANSQSDMEDWVKAIRRVIWAPFGGG 116
PH_GAP1m_mammal-like cd13370
GTPase activating protein 1 m pleckstrin homology (PH) domain; GAP1(m) (also called RASA2/RAS ...
206-296 2.87e-11

GTPase activating protein 1 m pleckstrin homology (PH) domain; GAP1(m) (also called RASA2/RAS p21 protein activator (GTPase activating protein) 2) is a member of the GAP1 family of GTPase-activating proteins, along with RASAL1, GAP1(IP4BP), and CAPRI. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. GAP1(m) contains two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Its C2 domains, like those of GAP1IP4BP, do not contain the C2 motif that is known to be required for calcium-dependent phospholipid binding. GAP1(m) is regulated by the binding of its PH domains to phophoinositides, PIP3 (phosphatidylinositol 3,4,5-trisphosphate). It suppresses RAS, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. GAP1(m) binds inositol tetrakisphosphate (IP4). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241521  Cd Length: 133  Bit Score: 60.73  E-value: 2.87e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 206 KNWKRRYFQLDENTIGYFKSElEKEPLRVIPLKEVHKVQECKQSDiMMRDNLFEIVTTSRTFYVQADSPEEMHSWIKAVS 285
Cdd:cd13370    35 KNFKKRWFCLTSRELTYHKQK-GKEAIFTIPVKNILAVEKLEESA-FNKKNMFQVIHSEKPLYVQANNCVEANEWIEVLS 112
                          90
                  ....*....|.
gi 1958647646 286 GaiVAQRGPGR 296
Cdd:cd13370   113 R--VSRCNQKR 121
PH_GAP1-like cd01244
RAS p21 protein activator (GTPase activating protein) family pleckstrin homology (PH) domain; ...
205-285 5.93e-11

RAS p21 protein activator (GTPase activating protein) family pleckstrin homology (PH) domain; RASAL1, GAP1(m), GAP1(IP4BP), and CAPRI are all members of the GAP1 family of GTPase-activating proteins. They contain N-terminal SH2-SH3-SH2 domains, followed by two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. They act as a suppressor of RAS enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. PH domains share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269950  Cd Length: 107  Bit Score: 58.84  E-value: 5.93e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 205 MKNWKRRYFQLDENTIGYFKSElEKEPLRVIPLKEVHKVQECKQSDIMMRdNLFEIVTTSRTFYVQADSPEEMHSWIKAV 284
Cdd:cd01244    18 RKNFKKRYFRLTNEALSYSKSK-GKQPLCSIPLEDILAVERVEEESFKMK-NMFQIVQPDRTLYLQAKNVVELNEWLSAL 95

                  .
gi 1958647646 285 S 285
Cdd:cd01244    96 R 96
PH_TBC1D2A cd01265
TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1 ...
195-283 1.47e-10

TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1/Prostate antigen recognized and identified by SEREX 1 and ARMUS) contains a PH domain and a TBC-type GTPase catalytic domain. TBC1D2A integrates signaling between Arf6, Rac1, and Rab7 during junction disassembly. Activated Rac1 recruits TBC1D2A to locally inactivate Rab7 via its C-terminal TBC/RabGAP domain and facilitate E-cadherin degradation in lysosomes. The TBC1D2A PH domain mediates localization at cell-cell contacts and coprecipitates with cadherin complexes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269966  Cd Length: 102  Bit Score: 57.72  E-value: 1.47e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 195 AGYCVK---QGAVMKNWKRRYFQLDENT--IGYFKSELEKEPLRVIPLKevhkvQECKQSDIMMRDNLFEIVTTSRTFYV 269
Cdd:cd01265     3 CGYLNKletRGLGLKGWKRRWFVLDESKcqLYYYRSPQDATPLGSIDLS-----GAAFSYDPEAEPGQFEIHTPGRVHIL 77
                          90
                  ....*....|....
gi 1958647646 270 QADSPEEMHSWIKA 283
Cdd:cd01265    78 KASTRQAMLYWLQA 91
PH_Gab-like cd13324
Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are ...
208-285 3.84e-10

Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. There are 3 families: Gab1, Gab2, and Gab3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270133  Cd Length: 112  Bit Score: 56.65  E-value: 3.84e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 208 WKRRYFQL-------DENTIGYFKSELEKEPLRVIPLKEvhkvqeCKQSDIMMRDN--------LFEIVTTSRTFYVQAD 272
Cdd:cd13324    21 WRRRWFVLrsgrlsgGQDVLEYYTDDHCKKLKGIIDLDQ------CEQVDAGLTFEkkkfknqfIFDIRTPKRTYYLVAE 94
                          90
                  ....*....|...
gi 1958647646 273 SPEEMHSWIKAVS 285
Cdd:cd13324    95 TEEEMNKWVRCIC 107
PH_Gab1_Gab2 cd01266
Grb2-associated binding proteins 1 and 2 pleckstrin homology (PH) domain; The Gab subfamily ...
208-284 3.84e-10

Grb2-associated binding proteins 1 and 2 pleckstrin homology (PH) domain; The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. The members in this cd include the Gab1 and Gab2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241297  Cd Length: 123  Bit Score: 57.26  E-value: 3.84e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 208 WKRRYFQL-------DENTIGYFKSELEKEPLRVIPLkevhkvQECKQSDIMMRDN--------LFEIVTTSRTFYVQAD 272
Cdd:cd01266    24 WKKRWFVLrsgrlsgDPDVLEYYKNDHAKKPIRVIDL------NLCEQVDAGLTFNkkelensyIFDIKTIDRIFYLVAE 97
                          90
                  ....*....|..
gi 1958647646 273 SPEEMHSWIKAV 284
Cdd:cd01266    98 TEEDMNKWVRNI 109
PH_Btk cd01238
Bruton's tyrosine kinase pleckstrin homology (PH) domain; Btk is a member of the Tec family of ...
205-283 4.45e-10

Bruton's tyrosine kinase pleckstrin homology (PH) domain; Btk is a member of the Tec family of cytoplasmic protein tyrosine kinases that includes BMX, IL2-inducible T-cell kinase (Itk) and Tec. Btk plays a role in the maturation of B cells. Tec proteins general have an N-terminal PH domain, followed by a Tek homology (TH) domain, a SH3 domain, a SH2 domain and a kinase domain. The Btk PH domain binds phosphatidylinositol 3,4,5-trisphosphate and responds to signalling via phosphatidylinositol 3-kinase. The PH domain is also involved in membrane anchoring which is confirmed by the discovery of a mutation of a critical arginine residue in the BTK PH domain. This results in severe human immunodeficiency known as X-linked agammaglobulinemia (XLA) in humans and a related disorder is mice.PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269944 [Multi-domain]  Cd Length: 140  Bit Score: 57.24  E-value: 4.45e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 205 MKNWKRRYFQLDENTIGYFKSELEKEPLR--VIPLKEVHKVQECKQSDIMMRDNLFEIVTTSRTFYVQADSPEEMHSWIK 282
Cdd:cd01238    17 PVNYKERWFVLTKSSLSYYEGDGEKRGKEkgSIDLSKVRCVEEVKDEAFFERKYPFQVVYDDYTLYVFAPSEEDRDEWIA 96

                  .
gi 1958647646 283 A 283
Cdd:cd01238    97 A 97
PH pfam00169
PH domain; PH stands for pleckstrin homology.
10-112 7.82e-10

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 55.65  E-value: 7.82e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646  10 ICGFLDIEENENSGKFLRRYFILdtREDSFVWYmdNPQNLPSGSSRVGAIKLTYISKVSDATKLRPKAEFCFV----MNA 85
Cdd:pfam00169   3 KEGWLLKKGGGKKKSWKKRYFVL--FDGSLLYY--KDDKSGKSKEPKGSISLSGCEVVEVVASDSPKRKFCFElrtgERT 78
                          90       100
                  ....*....|....*....|....*..
gi 1958647646  86 GMRKYFLQANDQQDLVEWVNVLNKAIK 112
Cdd:pfam00169  79 GKRTYLLQAESEEERKDWIKAIQSAIR 105
PH_GPBP cd13283
Goodpasture antigen binding protein Pleckstrin homology (PH) domain; The GPBP (also called ...
208-284 8.80e-10

Goodpasture antigen binding protein Pleckstrin homology (PH) domain; The GPBP (also called Collagen type IV alpha-3-binding protein/hCERT; START domain-containing protein 11/StARD11; StAR-related lipid transfer protein 11) is a kinase that phosphorylates an N-terminal region of the alpha 3 chain of type IV collagen, which is commonly known as the goodpasture antigen. Its splice variant the ceramide transporter (CERT) mediates the cytosolic transport of ceramide. There have been additional splice variants identified, but all of them function as ceramide transport proteins. GPBP and CERT both contain an N-terminal PH domain, followed by a serine rich domain, and a C-terminal START domain. However, GPBP has an additional serine rich domain just upstream of its START domain. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270100 [Multi-domain]  Cd Length: 100  Bit Score: 55.37  E-value: 8.80e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 208 WKRRYFQLDENTIGYFKSELEKE-------PLRVIPLKEvHKVQECKqsdimmrdnlFEIVTTSRTFYVQADSPEEMHSW 280
Cdd:cd13283    15 WQDRYFVLKDGTLSYYKSESEKEygcrgsiSLSKAVIKP-HEFDECR----------FDVSVNDSVWYLRAESPEERQRW 83

                  ....
gi 1958647646 281 IKAV 284
Cdd:cd13283    84 IDAL 87
PH_GAP1_mammal-like cd13371
GAP1(IP4BP) pleckstrin homology (PH) domain; GAP1 (also called IP4BP, RASA3/Ras ...
184-281 1.48e-09

GAP1(IP4BP) pleckstrin homology (PH) domain; GAP1 (also called IP4BP, RASA3/Ras GTPase-activating protein 3, and RAS p21 protein activator (GTPase activating protein) 3/GAPIII/MGC46517/MGC47588)) is a member of the GAP1 family of GTPase-activating proteins, along with RASAL1, GAP1(m), and CAPRI. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. GAP1(IP4BP) contains two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Its C2 domains, like those of GAP1M, do not contain the C2 motif that is known to be required for calcium-dependent phospholipid binding. GAP1(IP4BP) is regulated by the binding of its PH domains to phophoinositides, PIP3 (phosphatidylinositol 3,4,5-trisphosphate) and PIP2 (phosphatidylinositol 4,5-bisphosphate). It suppresses RAS, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. GAP1(IP4BP) binds tyrosine-protein kinase, HCK. Members here include humans, chickens, frogs, and fish. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241522  Cd Length: 125  Bit Score: 55.43  E-value: 1.48e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 184 PKPPADSAVIKAGYCVK--QGAV---MKNWKRRYFQLDENTIGYFKSELEkEPLRVIPLKEVHKVQECKQSDIMMRdNLF 258
Cdd:cd13371     8 HKSIEQPILLKEGFMIKraQGRKrfgMKNFKKRWFRLTNHEFTYHKSKGD-HPLCSIPIENILAVERLEEESFKMK-NMF 85
                          90       100
                  ....*....|....*....|...
gi 1958647646 259 EIVTTSRTFYVQADSPEEMHSWI 281
Cdd:cd13371    86 QVIQPERALYIQANNCVEAKDWI 108
PH_Cla4_Ste20 cd13279
Pleckstrin homology (PH) domain; Budding yeast contain two main p21-activated kinases (PAKs), ...
192-281 2.64e-09

Pleckstrin homology (PH) domain; Budding yeast contain two main p21-activated kinases (PAKs), Cla4 and Ste20. The yeast Ste20 protein kinase is involved in pheromone response, though the function of Ste20 mammalian homologs is unknown. Cla4 is involved in budding and cytokinesis and interacts with Cdc42, a GTPase required for polarized cell growth as is Pak. Cla4 and Ste20 kinases share a function in localizing cell growth with respect to the septin ring. They both contain a PH domain, a Cdc42/Rac interactive binding (CRIB) domain, and a C-terminal Protein Kinase catalytic (PKc) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270097  Cd Length: 92  Bit Score: 53.79  E-value: 2.64e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 192 VIKAGYC-VKQGAVMK-NWKRRYFQLDENTIGYFKSELEKEPLRVIPLKEVHKVQeckQSDimMRDNLFEIVTTS--RTF 267
Cdd:cd13279     1 VVKSGWVsVKEDGLLSfRWSKRYLVLREQSLDFYKNESSSSASLSIPLKDISNVS---RTD--LKPYCFEIVRKSstKSI 75
                          90
                  ....*....|....
gi 1958647646 268 YVQADSPEEMHSWI 281
Cdd:cd13279    76 YISVKSDDELYDWM 89
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
10-112 3.02e-09

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 54.09  E-value: 3.02e-09
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646   10 ICGFLDIEENENSGKFLRRYFILDtreDSFVWYMDNPQNLPSGSSRvGAIKLTYISKVSDATKLRPKAEFCFVMNAGMRK 89
Cdd:smart00233   3 KEGWLYKKSGGGKKSWKKRYFVLF---NSTLLYYKSKKDKKSYKPK-GSIDLSGCTVREAPDPDSSKKPHCFEIKTSDRK 78
                           90       100
                   ....*....|....*....|....
gi 1958647646   90 -YFLQANDQQDLVEWVNVLNKAIK 112
Cdd:smart00233  79 tLLLQAESEEEREKWVEALRKAIA 102
PH_IRS cd01257
Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate ...
192-284 5.07e-09

Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate (IRS) molecules are mediators in insulin signaling and play a role in maintaining basic cellular functions such as growth and metabolism. They act as docking proteins between the insulin receptor and a complex network of intracellular signaling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3, IRS-4) of this family have been identified that differ as to tissue distribution, subcellular localization, developmental expression, binding to the insulin receptor, and interaction with SH2 domain-containing proteins. IRS molecules have an N-terminal PH domain, followed by an IRS-like PTB domain which has a PH-like fold. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.cytoskeletal associated molecules, and in lipid associated enzymes.


Pssm-ID: 269959  Cd Length: 106  Bit Score: 53.45  E-value: 5.07e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 192 VIKAGYCVKQgavmKNWKRRYFQLDENTIG------YFKSE----LEKEPLRVIPLKEVHKVQecKQSDIMMRdNLFEIV 261
Cdd:cd01257     3 VRKSGYLKKL----KTMRKRYFVLRAESHGgparleYYENEkkfrRNAEPKRVIPLSSCFNIN--KRADAKHK-HLIALY 75
                          90       100
                  ....*....|....*....|...
gi 1958647646 262 TTSRTFYVQADSPEEMHSWIKAV 284
Cdd:cd01257    76 TKDECFGLVAESEEEQDEWYQAL 98
PH_RhoGap24 cd13379
Rho GTPase activating protein 24 Pleckstrin homology (PH) domain; RhoGap24 (also called ...
192-295 8.28e-09

Rho GTPase activating protein 24 Pleckstrin homology (PH) domain; RhoGap24 (also called ARHGAP24, p73RhoGAp, and Filamin-A-associated RhoGAP) like other RhoGAPs are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241530  Cd Length: 114  Bit Score: 53.05  E-value: 8.28e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 192 VIKAGYCVKQGAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLKEvHKVQECKQSDIMMRDNLFEIV---------T 262
Cdd:cd13379     3 VIKCGWLRKQGGFVKTWHTRWFVLKGDQLYYFKDEDETKPLGTIFLPG-NRVTEHPCNEEEPGKFLFEVVpggdrermtA 81
                          90       100       110
                  ....*....|....*....|....*....|...
gi 1958647646 263 TSRTFYVQADSPEEMHSWIKAVSGAIVAQRGPG 295
Cdd:cd13379    82 NHETYLLMASTQNDMEDWVKSIRRVIWAPFGGG 114
PH_Gab3 cd13385
Grb2-associated binding protein 3 pleckstrin homology (PH) domain; The Gab subfamily includes ...
208-285 9.71e-09

Grb2-associated binding protein 3 pleckstrin homology (PH) domain; The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. The members in this cd include the Gab1, Gab2, and Gab3 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270184  Cd Length: 125  Bit Score: 53.05  E-value: 9.71e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 208 WKRRYFQL-------DENTIGYFKSELEKEPLRVIPLKEVHKVQECKQSDI---MMRDNLFEIVTTSRTFYVQADSPEEM 277
Cdd:cd13385    26 WRKRWFVLrrgrmsgNPDVLEYYRNNHSKKPIRVIDLSECEVLKHSGPNFIrkeFQNNFVFIVKTTYRTFYLVAKTEEEM 105

                  ....*...
gi 1958647646 278 HSWIKAVS 285
Cdd:cd13385   106 QVWVHNIS 113
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
10-107 1.06e-08

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 52.16  E-value: 1.06e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646  10 ICGFLDIEENENSGKFLRRYFILdtREDSFVWYMDNPQnlpSGSSRVGAIKLTYISKVSDATKLRPKAEFCFVmNAGMRK 89
Cdd:cd00821     1 KEGYLLKRGGGGLKSWKKRWFVL--FEGVLLYYKSKKD---SSYKPKGSIPLSGILEVEEVSPKERPHCFELV-TPDGRT 74
                          90
                  ....*....|....*...
gi 1958647646  90 YFLQANDQQDLVEWVNVL 107
Cdd:cd00821    75 YYLQADSEEERQEWLKAL 92
PH_RASA1 cd13260
RAS p21 protein activator (GTPase activating protein) 1 Pleckstrin homology (PH) domain; RASA1 ...
192-285 2.55e-08

RAS p21 protein activator (GTPase activating protein) 1 Pleckstrin homology (PH) domain; RASA1 (also called RasGap1 or p120) is a member of the RasGAP family of GTPase-activating proteins. RASA1 contains N-terminal SH2-SH3-SH2 domains, followed by two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Splice variants lack the N-terminal domains. It is a cytosolic vertebrate protein that acts as a suppressor of RAS via its C-terminal GAP domain function, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. Additionally, it is involved in mitogenic signal transmission towards downstream interacting partners through its N-terminal SH2-SH3-SH2 domains. RASA1 interacts with a number of proteins including: G3BP1, SOCS3, ANXA6, Huntingtin, KHDRBS1, Src, EPHB3, EPH receptor B2, Insulin-like growth factor 1 receptor, PTK2B, DOK1, PDGFRB, HCK, Caveolin 2, DNAJA3, HRAS, GNB2L1 and NCK1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270080  Cd Length: 103  Bit Score: 51.19  E-value: 2.55e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 192 VIKAGYCVKQGAVMKNWKRRYFQL--DENTIGYFKSELEKEPLRVIPLKE--VHKVQEckqsDIMMRDNLFEIV----TT 263
Cdd:cd13260     3 IDKKGYLLKKGGKNKKWKNLYFVLegKEQHLYFFDNEKRTKPKGLIDLSYcsLYPVHD----SLFGRPNCFQIVvralNE 78
                          90       100
                  ....*....|....*....|..
gi 1958647646 264 SRTFYVQADSPEEMHSWIKAVS 285
Cdd:cd13260    79 STITYLCADTAELAQEWMRALR 100
PH_3BP2 cd13308
SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes ...
192-289 6.89e-08

SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes the adaptor protein 3BP2), HD, ITU, IT10C3, and ADD1 are located near the Huntington's Disease Gene on Human Chromosome 4pl6.3. SH3BP2 lies in a region that is often missing in individuals with Wolf-Hirschhorn syndrome (WHS). Gain of function mutations in SH3BP2 causes enhanced B-cell antigen receptor (BCR)-mediated activation of nuclear factor of activated T cells (NFAT), resulting in a rare, genetic disorder called cherubism. This results in an increase in the signaling complex formation with Syk, phospholipase C-gamma2 (PLC-gamma2), and Vav1. It was recently discovered that Tankyrase regulates 3BP2 stability through ADP-ribosylation and ubiquitylation by the E3-ubiquitin ligase. Cherubism mutations uncouple 3BP2 from Tankyrase-mediated protein destruction, which results in its stabilization and subsequent hyperactivation of the Src, Syk, and Vav signaling pathways. SH3BP2 is also a potential negative regulator of the abl oncogene. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270118  Cd Length: 113  Bit Score: 50.48  E-value: 6.89e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 192 VIKAGYCVKQGA---VMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLKEVHkvqeCKQSDIMMRDN--LFEIVTTS-- 264
Cdd:cd13308     9 VIHSGTLTKKGGsqkTLQNWQLRYVIIHQGCVYYYKNDQSAKPKGVFSLNGYN----RRAAEERTSKLkfVFKIIHLSpd 84
                          90       100
                  ....*....|....*....|....*.
gi 1958647646 265 -RTFYVQADSPEEMHSWIKAVSGAIV 289
Cdd:cd13308    85 hRTWYFAAKSEDEMSEWMEYIRREID 110
PH_evt cd13265
Evectin Pleckstrin homology (PH) domain; There are 2 members of the evectin family (also ...
191-288 9.10e-08

Evectin Pleckstrin homology (PH) domain; There are 2 members of the evectin family (also called pleckstrin homology domain containing, family B): evt-1 (also called PLEKHB1) and evt-2 (also called PLEKHB2). evt-1 is specific to the nervous system, where it is expressed in photoreceptors and myelinating glia. evt-2 is widely expressed in both neural and nonneural tissues. Evectins possess a single N-terminal PH domain and a C-terminal hydrophobic region. evt-1 is thought to function as a mediator of post-Golgi trafficking in cells that produce large membrane-rich organelles. It is a candidate gene for the inherited human retinopathy autosomal dominant familial exudative vitreoretinopathy and a susceptibility gene for multiple sclerosis. evt-2 is essential for retrograde endosomal membrane transport from the plasma membrane (PM) to the Golgi. Two membrane trafficking pathways pass through recycling endosomes: a recycling pathway and a retrograde pathway that links the PM to the Golgi/ER. Its PH domain that is unique in that it specifically recognizes phosphatidylserine (PS), but not polyphosphoinositides. PS is an anionic phospholipid class in eukaryotic biomembranes, is highly enriched in the PM, and plays key roles in various physiological processes such as the coagulation cascade, recruitment and activation of signaling molecules, and clearance of apoptotic cells. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270085  Cd Length: 108  Bit Score: 49.99  E-value: 9.10e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 191 AVIKAGYCVKQGAVMKNWKRRYFQLDEN-TIGYFKSELEKEPLRVIPLK----EVHKVQECK---QSDIMMRDNLFEIVT 262
Cdd:cd13265     2 ALVKSGWLLRQSTILKRWKKNWFVLYGDgNLVYYEDETRREVEGRINMPrecrNIRVGLECRdvqPPEGRSRDCLLQIVL 81
                          90       100
                  ....*....|....*....|....*..
gi 1958647646 263 -TSRTFYVQADSPEEMHSWIKAVSGAI 288
Cdd:cd13265    82 rDGSTLFLCAESADDALAWKLALQDAR 108
PH_KIFIA_KIFIB cd01233
KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA ...
192-285 1.12e-07

KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA (Caenorhabditis elegans homolog unc-104) and KIFIB transport synaptic vesicle precursors that contain synaptic vesicle proteins, such as synaptophysin, synaptotagmin and the small GTPase RAB3A, but they do not transport organelles that contain plasma membrane proteins. They have a N-terminal motor domain, followed by a coiled-coil domain, and a C-terminal PH domain. KIF1A adopts a monomeric form in vitro, but acts as a processive dimer in vivo. KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein; this results in their different motor activities. KIF1A and KIF1B bind to RAB3 proteins through the adaptor protein mitogen-activated protein kinase (MAPK) -activating death domain (MADD; also calledDENN), which was first identified as a RAB3 guanine nucleotide exchange factor (GEF). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269939  Cd Length: 103  Bit Score: 49.51  E-value: 1.12e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 192 VIKAGYCVKQGAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLKEVHKVQECKQSDIMMRDNLFEIVTTSRTFYVQA 271
Cdd:cd01233     6 VSKRGYLLFLEDATDGWVRRWVVLRRPYLHIYSSEKDGDERGVINLSTARVEYSPDQEALLGRPNVFAVYTPTNSYLLQA 85
                          90
                  ....*....|....
gi 1958647646 272 DSPEEMHSWIKAVS 285
Cdd:cd01233    86 RSEKEMQDWLYAID 99
PH_Skap_family cd13266
Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor ...
192-285 1.67e-07

Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Src kinase-associated phosphoprotein of 55 kDa (Skap55)/Src kinase-associated phosphoprotein 1 (Skap1), Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270086  Cd Length: 106  Bit Score: 49.06  E-value: 1.67e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 192 VIKAGYCVKQ----GAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLK--EVHKVQECKQSDimMRDNLFEIVTTS- 264
Cdd:cd13266     1 VIKAGYLEKRrkdhSFFGSEWQKRWCAISKNVFYYYGSDKDKQQKGEFAINgyDVRMNPTLRKDG--KKDCCFELVCPDk 78
                          90       100
                  ....*....|....*....|.
gi 1958647646 265 RTFYVQADSPEEMHSWIKAVS 285
Cdd:cd13266    79 RTYQFTAASPEDAEDWVDQIS 99
PH_DGK_type2 cd13274
Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes ...
193-292 1.80e-07

Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA) utilizing ATP as a source of the phosphate. In non-stimulated cells, DGK activity is low and DAG is used for glycerophospholipid biosynthesis. Upon receptor activation of the phosphoinositide pathway, DGK activity increases which drives the conversion of DAG to PA. DGK acts as a switch by terminating the signalling of one lipid while simultaneously activating signalling by another. There are 9 mammalian DGK isoforms all with conserved catalytic domains and two cysteine rich domains. These are further classified into 5 groups according to the presence of additional functional domains and substrate specificity: Type 1 - DGK-alpha, DGK-beta, DGK-gamma - contain EF-hand motifs and a recoverin homology domain; Type 2 - DGK-delta, DGK-eta, and DGK-kappa- contain a pleckstrin homology domain, two cysteine-rich zinc finger-like structures, and a separated catalytic region; Type 3 - DGK-epsilon - has specificity for arachidonate-containing DAG; Type 4 - DGK-zeta, DGK-iota- contain a MARCKS homology domain, ankyrin repeats, a C-terminal nuclear localization signal, and a PDZ-binding motif; Type 5 - DGK-theta - contains a third cysteine-rich domain, a pleckstrin homology domain and a proline rich region. The type 2 DGKs are present as part of this Metazoan DGK hierarchy. They have a N-terminal PH domain, two cysteine rich domains, followed by bipartite catalytic domains, and a C-terminal SAM domain. Their catalytic domains and perhaps other DGK catalytic domains may function as two independent units in a coordinated fashion. They may also require other motifs for maximal activity because several DGK catalytic domains have very little DAG kinase activity when expressed as isolated subunits. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270093  Cd Length: 97  Bit Score: 48.93  E-value: 1.80e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 193 IKAGYCVKQGAVMKNWKRRYFQLDENTIGYFKseLEKEPLR-VIPLKEVhKVQECKQSDImmrDNLFEIVTTSRTFYVQA 271
Cdd:cd13274     1 IKEGPLLKQTSSFQRWKRRYFKLKGRKLYYAK--DSKSLIFeEIDLSDA-SVAECSTKNV---NNSFTVITPFRKLILCA 74
                          90       100
                  ....*....|....*....|.
gi 1958647646 272 DSPEEMHSWIKAVSGaiVAQR 292
Cdd:cd13274    75 ESRKEMEEWISALKT--VQQR 93
PH_PKB cd01241
Protein Kinase B-like pleckstrin homology (PH) domain; PKB (also called Akt), a member of the ...
192-286 7.63e-07

Protein Kinase B-like pleckstrin homology (PH) domain; PKB (also called Akt), a member of the AGC kinase family, is a phosphatidylinositol 3'-kinase (PI3K)-dependent Ser/Thr kinase which alters the activity of the targeted protein. The name AGC is based on the three proteins that it is most similar to cAMP-dependent protein kinase 1 (PKA; also known as PKAC), cGMP-dependent protein kinase (PKG; also known as CGK1) and protein kinase C (PKC). Human Akt has three isoforms derived for distinct genes: Akt1/PKBalpha, Akt2/PKBbeta, and Akt3/PKBgamma. All Akts have an N-terminal PH domain with an activating Thr phosphorylation site, a kinase domain, and a short C-terminal regulatory tail with an activating Ser phosphorylation site. The PH domain recruits Akt to the plasma membrane by binding to phosphoinositides (PtdIns-3,4-P2) and is required for activation. The phosphorylation of Akt at its Thr and Ser phosphorylation sites leads to increased Akt activity toward forkhead transcription factors, the mammalian target of rapamycin (mTOR), and the Bcl-xL/Bcl-2-associated death promoter (BAD), all of which possess a consensus motif R-X-R-XX-ST-B (X = amino acid, B = bulky hydrophobic residue) for Akt phosphorylation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269947  Cd Length: 107  Bit Score: 47.24  E-value: 7.63e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 192 VIKAGYCVKQGAVMKNWKRRYFQL--DENTIGYfkSELEKEPLRVIPLK--EVHKVQECKQSDImmRDNLFEI----VTT 263
Cdd:cd01241     3 VVKEGWLLKRGEYIKNWRPRYFVLksDGSFIGY--KEKPKPNQDPPPLNnfSVAECQLMKTEKP--KPNTFIIrclqWTT 78
                          90       100
                  ....*....|....*....|....*
gi 1958647646 264 S--RTFYVqaDSPEEMHSWIKAVSG 286
Cdd:cd01241    79 VieRTFHV--ESEEEREEWMKAIQG 101
PH_Boi cd13316
Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally ...
195-283 1.74e-06

Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally redundant and important for cell growth with Boi mutants displaying defects in bud formation and in the maintenance of cell polarity.They appear to be linked to Rho-type GTPase, Cdc42 and Rho3. Boi1 and Boi2 display two-hybrid interactions with the GTP-bound ("active") form of Cdc42, while Rho3 can suppress of the lethality caused by deletion of Boi1 and Boi2. These findings suggest that Boi1 and Boi2 are targets of Cdc42 that promote cell growth in a manner that is regulated by Rho3. Boi proteins contain a N-terminal SH3 domain, followed by a SAM (sterile alpha motif) domain, a proline-rich region, which mediates binding to the second SH3 domain of Bem1, and C-terminal PH domain. The PH domain is essential for its function in cell growth and is important for localization to the bud, while the SH3 domain is needed for localization to the neck. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270126  Cd Length: 97  Bit Score: 45.83  E-value: 1.74e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 195 AGYCVKQGAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLKEvHKVqECKQSDIMMRDNL-FEIV--TTSRTFYVQA 271
Cdd:cd13316     3 SGWMKKRGERYGTWKTRYFVLKGTRLYYLKSENDDKEKGLIDLTG-HRV-VPDDSNSPFRGSYgFKLVppAVPKVHYFAV 80
                          90
                  ....*....|..
gi 1958647646 272 DSPEEMHSWIKA 283
Cdd:cd13316    81 DEKEELREWMKA 92
PH_PKD cd01239
Protein kinase D (PKD/PKCmu) pleckstrin homology (PH) domain; Protein Kinase C family is ...
209-272 2.23e-06

Protein kinase D (PKD/PKCmu) pleckstrin homology (PH) domain; Protein Kinase C family is composed of three members, PKD1 (PKCmu), PKD2 and PKD3 (PKCnu). Like the C-type protein kinases (PKCs), PKDs are activated by diacylglycerol (DAG). They are involved in vesicular transport, cell proliferation, survival, migration and immune responses. PKD consists of tandem C1 domains, followed by a PH domain and a kinase domain. While the PKD PH domain has not been shown to bind phosphorylated inositol lipids and is not required for membrane translocation, it is required for nuclear export. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269945  Cd Length: 127  Bit Score: 46.61  E-value: 2.23e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1958647646 209 KRRYFQLDENTIGYFKSELEKEPLRVIPLKEVHKVQECKQSDIM--MRDNLFEIVTTSRTFYVQAD 272
Cdd:cd01239    25 KRHYWRLDTKCITLFQNETTSRYYKEIPLSEILSVEPADNPSLPpgTPPHCFEIRTANLVYYVGED 90
PH_Gab2_2 cd13384
Grb2-associated binding protein family pleckstrin homology (PH) domain; The Gab subfamily ...
208-284 4.46e-06

Grb2-associated binding protein family pleckstrin homology (PH) domain; The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. Members here include insect, nematodes, and crustacean Gab2s. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241535  Cd Length: 115  Bit Score: 45.51  E-value: 4.46e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 208 WKRRYFQLDENTI------GYFKSELEKEplrvipLKEVHKVQECKQSDI---MMRDN------LFEIVTTSRTFYVQAD 272
Cdd:cd13384    23 WRRRYFVLRQSEIpgqyflEYYTDRTCRK------LKGSIDLDQCEQVDAgltFETKNklkdqhIFDIRTPKRTYYLVAD 96
                          90
                  ....*....|..
gi 1958647646 273 SPEEMHSWIKAV 284
Cdd:cd13384    97 TEDEMNKWVNCI 108
PH2_ADAP cd01251
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called ...
193-288 7.11e-06

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241282  Cd Length: 105  Bit Score: 44.50  E-value: 7.11e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 193 IKAGYCVKQGAVMKN-WKRRYFQLDENTIGYFKSELEKEPLRVIPL---KEVHKVQEC-KQSDIMMRDNLFEIVTTSRTF 267
Cdd:cd01251     3 LKEGYLEKTGPKQTDgFRKRWFTLDDRRLMYFKDPLDAFPKGEIFIgskEEGYSVREGlPPGIKGHWGFGFTLVTPDRTF 82
                          90       100
                  ....*....|....*....|.
gi 1958647646 268 YVQADSPEEMHSWIKAVSGAI 288
Cdd:cd01251    83 LLSAETEEERREWITAIQKVL 103
PH_PHLDB1_2 cd14673
Pleckstrin homology-like domain-containing family B member 2 pleckstrin homology (PH) domain; ...
196-287 8.53e-06

Pleckstrin homology-like domain-containing family B member 2 pleckstrin homology (PH) domain; PHLDB2 (also called LL5beta) and PHLDB1 (also called LL5alpha) are cytoskeleton- and membrane-associated proteins. PHLDB2 has been identified as a key component of the synaptic podosomes that play an important role in in postsynaptic maturation. Both are large proteins containing an N-terminal pleckstrin (PH) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270192  Cd Length: 105  Bit Score: 44.10  E-value: 8.53e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 196 GYCVKQGAVMKNWKRRYFQLDEN--TIGYFKSELEKEPLRVIPLKEVHKVQECKQSDIMMRDN---LFEIVTTSRTFYVQ 270
Cdd:cd14673     7 GFLTKMGGKIKTWKKRWFVFDRNkrTLSYYVDKHEKKLKGVIYFQAIEEVYYDHLRSAAKSPNpalTFCVKTHDRLYYMV 86
                          90
                  ....*....|....*...
gi 1958647646 271 ADSPEEMHSWIKA-VSGA 287
Cdd:cd14673    87 APSPEAMRIWMDViVTGA 104
PH2_ADAP cd01251
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called ...
22-111 9.71e-06

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241282  Cd Length: 105  Bit Score: 44.12  E-value: 9.71e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646  22 SGKFLRRYFILDTREdsfVWYMDNPQN-LPSGSSRVGAIKLTYISKVSDATKLRPKAEFCFVMNAGMRKYFLQANDQQDL 100
Cdd:cd01251    16 TDGFRKRWFTLDDRR---LMYFKDPLDaFPKGEIFIGSKEEGYSVREGLPPGIKGHWGFGFTLVTPDRTFLLSAETEEER 92
                          90
                  ....*....|.
gi 1958647646 101 VEWVNVLNKAI 111
Cdd:cd01251    93 REWITAIQKVL 103
PH_TBC1D2A cd01265
TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1 ...
9-107 1.13e-05

TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1/Prostate antigen recognized and identified by SEREX 1 and ARMUS) contains a PH domain and a TBC-type GTPase catalytic domain. TBC1D2A integrates signaling between Arf6, Rac1, and Rab7 during junction disassembly. Activated Rac1 recruits TBC1D2A to locally inactivate Rab7 via its C-terminal TBC/RabGAP domain and facilitate E-cadherin degradation in lysosomes. The TBC1D2A PH domain mediates localization at cell-cell contacts and coprecipitates with cadherin complexes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269966  Cd Length: 102  Bit Score: 43.85  E-value: 1.13e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646   9 RICGFLdieeNENSGK------FLRRYFILDTREDSFVWYMDNPQNLPSGSsrvgaikltyISkVSDAT-KLRPKAEFC- 80
Cdd:cd01265     1 RLCGYL----NKLETRglglkgWKRRWFVLDESKCQLYYYRSPQDATPLGS----------ID-LSGAAfSYDPEAEPGq 65
                          90       100
                  ....*....|....*....|....*..
gi 1958647646  81 FVMNAGMRKYFLQANDQQDLVEWVNVL 107
Cdd:cd01265    66 FEIHTPGRVHILKASTRQAMLYWLQAL 92
Niban-like cd23949
Niban-like protein; Niban-like proteins contain an N-terminal Pleckstrin-Homology (PH) domain ...
183-288 4.03e-05

Niban-like protein; Niban-like proteins contain an N-terminal Pleckstrin-Homology (PH) domain that may be involved in binding to specific ligands. Phosphatidylinositol (3)-phosphate (PI3P) was recognized as the innate ligand of the PH domain of MINERVA (melanoma invasion by ERK, also known as FAM129B) PH. Niban family proteins have been found to regulate phosphorylation of a number of proteins involved in the regularion of translation, such as EIF2A, EIF4EBP1 and RPS6KB1. They may also be involved in the endoplasmic reticulum stress response (FAM129A, Niban-like protein 1), suggested to play a role in apoptosis suppression in cancer cells, while Niban-like protein 2 (FAM129C) is a B-cell membrane protein that is overexpressed in chronic lymphocytic leukemia.


Pssm-ID: 469558 [Multi-domain]  Cd Length: 550  Bit Score: 45.75  E-value: 4.03e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 183 APKPPADSAVIKAGYCVKQGAVMKNWKRRYFQL-DENTIGYFKSELEKE----PLRVIPL--KEVHKVQECKQSDImmrD 255
Cdd:cd23949    53 RKPPPEDRKVIFSGKLSKYGEDSKKWKERFCVVrGDYNLEYYESKEAYErgkkPKGSINLagYKVLTSPEEYLELV---D 129
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1958647646 256 NLFEIVTTS------------------------RTFYVQADSPEEMHSWIKAVSGAI 288
Cdd:cd23949   130 RKFPDLAGKsekasvpfperpppftlelyhpyrRHYYFCFETEKEQEEWVAVLQDCI 186
PH_ORP_plant cd13294
Plant Oxysterol binding protein related protein Pleckstrin homology (PH) domain; Plant ORPs ...
206-287 4.19e-05

Plant Oxysterol binding protein related protein Pleckstrin homology (PH) domain; Plant ORPs contain a N-terminal PH domain and a C-terminal OSBP-related domain. Not much is known about its specific function in plants to date. Members here include: Arabidopsis, spruce, and petunia. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241448  Cd Length: 100  Bit Score: 42.10  E-value: 4.19e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 206 KNWKRRYFQLDENTIGYFKSeleKEPLRVIPLKEVH-KVQECKQSDimMRDNLFEIVTTSRTFYVQADSPEEMHSWIKAV 284
Cdd:cd13294    13 KGWRSRWFVLQDGVLSYYKV---HGPDKVKPSGEVHlKVSSIRESR--SDDKKFYIFTGTKTLHLRAESREDRAAWLEAL 87

                  ...
gi 1958647646 285 SGA 287
Cdd:cd13294    88 QAA 90
PH-GRAM1_AGT26 cd13215
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, ...
22-111 4.74e-05

Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1; ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275402  Cd Length: 116  Bit Score: 42.22  E-value: 4.74e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646  22 SGKFLRRYFILdtREDSFVWYmDNPQNL--PSGSsrvgaIKLTYISKV--SDATKLRPKaEFCFVMNAgmRKYFLQANDQ 97
Cdd:cd13215    34 TLRYTRYWFVL--KGDTLSWY-NSSTDLyfPAGT-----IDLRYATSIelSKSNGEATT-SFKIVTNS--RTYKFKADSE 102
                          90
                  ....*....|....
gi 1958647646  98 QDLVEWVNVLNKAI 111
Cdd:cd13215   103 TSADEWVKALKKQI 116
PH2_FGD4_insect-like cd13238
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 4 pleckstrin homology (PH) ...
195-283 5.01e-05

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 4 pleckstrin homology (PH) domain, C-terminus, in insect and related arthropods; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. This cd contains insects, crustaceans, and chelicerates. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270058  Cd Length: 97  Bit Score: 41.86  E-value: 5.01e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 195 AGYCVKQGAVMKNWKRRYFQLDENTIGY-FKSELEKEPLRVIPL-----KEVHKVQECKQSDIMMRDNLFEIVTTSRTFY 268
Cdd:cd13238     2 SGYLKLKTNGRKTWSRRWFALQPDFVLYsYKSQEDKLPLTATPVpgflvTLLEKGSAVDPLNDPKRPRTFKMFHVKKSYY 81
                          90
                  ....*....|....*
gi 1958647646 269 VQADSPEEMHSWIKA 283
Cdd:cd13238    82 FQANDGDEQKKWVLT 96
PH_ASAP cd13251
ArfGAP with SH3 domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain; ASAPs ...
72-112 5.09e-05

ArfGAP with SH3 domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain; ASAPs (ASAP1, ASAP2, and ASAP3) function as an Arf-specific GAPs, participates in rhodopsin trafficking, is associated with tumor cell metastasis, modulates phagocytosis, promotes cell proliferation, facilitates vesicle budding, Golgi exocytosis, and regulates vesicle coat assembly via a Bin/Amphiphysin/Rvs domain. ASAPs contain an NH2-terminal BAR domain, a tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 (SH3) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270071  Cd Length: 108  Bit Score: 41.96  E-value: 5.09e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 1958647646  72 KLRPKAEFCFVMNAGMRKYFLQANDQQDLVEWVNVLNKAIK 112
Cdd:cd13251    62 KLVPEDKKCFDLISHNRTYHFQAEDENDANAWMSVLKNSKE 102
PH_CpORP2-like cd13293
Cryptosporidium-like Oxysterol binding protein related protein 2 Pleckstrin homology (PH) ...
196-283 5.91e-05

Cryptosporidium-like Oxysterol binding protein related protein 2 Pleckstrin homology (PH) domain; There are 2 types of ORPs found in Cryptosporidium: CpORP1 and CpORP2. Cryptosporium differs from other apicomplexans like Plasmodium, Toxoplasma, and Eimeria which possess only a single long-type ORP consisting of an N-terminal PH domain followed by a C-terminal ligand binding (LB) domain. CpORP2 is like this, but CpORP1 differs and has a truncated N-terminus resulting in only having a LB domain present. The exact functions of these proteins are largely unknown though CpORP1 is thought to be involved in lipid transport across the parasitophorous vacuole membrane. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241447  Cd Length: 88  Bit Score: 41.54  E-value: 5.91e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 196 GYCVKQGAVMKNWKRRYFQLDENTIGYfkSELEKEPLR-VIPLKeVHKVQECKQsdimmrDNL-FEIVTTSRTFYVQADS 273
Cdd:cd13293     3 GYLKKWTNIFNSWKPRYFILYPGILCY--SKQKGGPKKgTIHLK-ICDIRLVPD------DPLrIIINTGTNQLHLRASS 73
                          90
                  ....*....|
gi 1958647646 274 PEEMHSWIKA 283
Cdd:cd13293    74 VEEKLKWYNA 83
PH1_ADAP cd13252
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 1; ADAP (also called ...
193-287 6.57e-05

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 1; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270072  Cd Length: 109  Bit Score: 41.86  E-value: 6.57e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 193 IKAGYCVKQGAVMKNWKRRYFQL--DENTIGYFKSELEKEPLRVIPLKEVHKV-QECKQSD------IMMRDNlfeivtT 263
Cdd:cd13252     2 SKEGFLWKRGKDNNQFKQRKFVLseREGTLKYFVKEDAKEPKAVISIEELNATfQPEKIGHpnglqiTYLKDG------S 75
                          90       100
                  ....*....|....*....|....
gi 1958647646 264 SRTFYVQADSPEEMHSWIKAVSGA 287
Cdd:cd13252    76 TRNIFVYHEDGKEIVDWYNAIRAA 99
PH_CNK_insect-like cd13326
Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; ...
194-284 8.98e-05

Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; CNK family members function as protein scaffolds, regulating the activity and the subcellular localization of RAS activated RAF. There is a single CNK protein present in Drosophila and Caenorhabditis elegans in contrast to mammals which have 3 CNK proteins (CNK1, CNK2, and CNK3). All of the CNK members contain a sterile a motif (SAM), a conserved region in CNK (CRIC) domain, and a PSD-95/DLG-1/ZO-1 (PDZ) domain, and a PH domain. A CNK2 splice variant CNK2A also has a PDZ domain-binding motif at its C terminus and Drosophila CNK (D-CNK) also has a domain known as the Raf-interacting region (RIR) that mediates binding of the Drosophila Raf kinase. This cd contains CNKs from insects, spiders, mollusks, and nematodes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270135  Cd Length: 91  Bit Score: 40.79  E-value: 8.98e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 194 KAGYCVKQgavmknWKRRYFQLDENTIGYFKSELEKEPLRVIPLK--EVHKVQECKQsdimmRDNLFEIVTTSRTFYVQA 271
Cdd:cd13326    10 RKGKGGGK------WAKRWFVLKGSNLYGFRSQESTKADCVIFLPgfTVSPAPEVKS-----RKYAFKVYHTGTVFYFAA 78
                          90
                  ....*....|...
gi 1958647646 272 DSPEEMHSWIKAV 284
Cdd:cd13326    79 ESQEDMKKWLDLL 91
PH_11 pfam15413
Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.
194-284 1.11e-04

Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.


Pssm-ID: 405988  Cd Length: 105  Bit Score: 41.03  E-value: 1.11e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 194 KAGYCVKQGAvmKNWKRRYFQLDENT-IGYFKSELEKEPLRVIPLK---------EVHKVQECKQSDIMMR---DNLFEI 260
Cdd:pfam15413   1 IEGYLKKKGP--KTWKHRWFAVLRNGvLFYYKSEKMKVVKHVIVLSnyivgklgtDIISGALFKIDNIRSEtsdDLLLEI 78
                          90       100
                  ....*....|....*....|....
gi 1958647646 261 VTTSRTFYVQADSPEEMHSWIKAV 284
Cdd:pfam15413  79 STETKIFFLYGDNNEETYEWVEAL 102
PH_DOCK-D cd13267
Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also ...
189-288 1.97e-04

Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also called Zizimin subfamily) consists of Dock9/Zizimin1, Dock10/Zizimin3, and Dock11/Zizimin2. DOCK-D has a N-terminal DUF3398 domain, a PH-like domain, a Dock Homology Region 1, DHR1 (also called CZH1), a C2 domain, and a C-terminal DHR2 domain (also called CZH2). Zizimin1 is enriched in the brain, lung, and kidney; zizimin2 is found in B and T lymphocytes, and zizimin3 is enriched in brain, lung, spleen and thymus. Zizimin1 functions in autoinhibition and membrane targeting. Zizimin2 is an immune-related and age-regulated guanine nucleotide exchange factor, which facilitates filopodial formation through activation of Cdc42, which results in activation of cell migration. No function has been determined for Zizimin3 to date. The N-terminal half of zizimin1 binds to the GEF domain through three distinct areas, including CZH1, to inhibit the interaction with Cdc42. In addition its PH domain binds phosphoinositides and mediates zizimin1 membrane targeting. DOCK is a family of proteins involved in intracellular signalling networks. They act as guanine nucleotide exchange factors for small G proteins of the Rho family, such as Rac and Cdc42. There are 4 subfamilies of DOCK family proteins based on their sequence homology: A-D. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270087  Cd Length: 126  Bit Score: 40.77  E-value: 1.97e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 189 DSAVIKAGYCVK---------QGAVMKNWKRRYFQLDENTIG-----YFKSELEKEPLRVIPLKEVHKVQECKQsdimMR 254
Cdd:cd13267     3 ESGITKEGYLYKgpenssdsfISLAMKSFKRRFFHLKQLVDGsyileFYKDEKKKEAKGTIFLDSCTGVVQNSK----RR 78
                          90       100       110
                  ....*....|....*....|....*....|....*
gi 1958647646 255 DNLFEI-VTTSRTFYVQADSPEEMHSWIKAVSGAI 288
Cdd:cd13267    79 KFCFELrMQDKKSYVLAAESEAEMDEWISKLNKIL 113
PH_8 pfam15409
Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.
25-110 2.38e-04

Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.


Pssm-ID: 405984  Cd Length: 89  Bit Score: 39.66  E-value: 2.38e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646  25 FLRRYFILDTREDSFVWYMDnpqnlPSGSSRVGAIKLTyISKVSDATKLRPkaefcFVMNAGMRKYFLQANDQQDLVEWV 104
Cdd:pfam15409  14 YAKRFFVLNFKSGTLSYYRD-----DNSSALRGKIPLS-LAAISANAKTRE-----IIIDSGMEVWHLKALNEKDFQAWV 82

                  ....*.
gi 1958647646 105 NVLNKA 110
Cdd:pfam15409  83 DALEKA 88
PH_Bud4 cd13278
Bud4 Pleckstrin homology (PH) domain; Bud4 is an anillin-like yeast protein involved in the ...
194-288 3.66e-04

Bud4 Pleckstrin homology (PH) domain; Bud4 is an anillin-like yeast protein involved in the formation and the disassembly of the double ring structure formed by the septins during cytokinesis. Bud4 acts with Bud3 and and in parallel with septin phosphorylation by the p21-activated kinase Cla4 and the septin-dependent kinase Gin4. Bud4 is regulated by the cyclin-dependent protein kinase Cdk1, the master regulator of cell cycle progression. Bud4 contains an anillin-like domain followed by a PH domain. In addition there are two consensus Cdk phosphorylation sites: one at the N-terminus and one right before the C-terminal PH domain. Anillins also have C-terminal PH domains. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241432  Cd Length: 139  Bit Score: 40.27  E-value: 3.66e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 194 KAGYCVKQGAVMKNWKRRYFQLDENT-IGYfkSELEKEPLRVIPLKEVHKVQECKQ------------SDIMMRDNLFEI 260
Cdd:cd13278    21 KEGYLLQEGGDCEYWRRRFFKLQGTKlVAY--HEVTRKPRATINLLKVVDVVDDDDarertssfkrnfTDLVLFEECFRL 98
                          90       100       110
                  ....*....|....*....|....*....|.
gi 1958647646 261 VTTSR---TFYvqADSPEEMHSWIKAVSGAI 288
Cdd:cd13278    99 VFANGeviDFY--ADSKEEKADWYSKLKEVV 127
PH2_FGD5_FGD6 cd13237
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin ...
196-283 6.34e-04

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin homology (PH) domain, C-terminus; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270057  Cd Length: 91  Bit Score: 38.55  E-value: 6.34e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 196 GYCVKQGAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLKEvHKVQECKQSDIMMRDNLFEIVTTSRTFYV-QADSP 274
Cdd:cd13237     3 GYLQRRKKSKKSWKRLWFVLKDKVLYTYKASEDVVALESVPLLG-FTVVTIDESFEEDESLVFQLLHKGQLPIIfRADDA 81

                  ....*....
gi 1958647646 275 EEMHSWIKA 283
Cdd:cd13237    82 ETAQRWIEA 90
PH_PEPP1_2_3 cd13248
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ...
27-110 7.08e-04

Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270068  Cd Length: 104  Bit Score: 38.79  E-value: 7.08e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646  27 RRYFILdtrEDSFVWYMDNPQNlpsgSSRVGAIKL-TYisKVSDATKLRP-KAEFCF-VMNAGMRKYFLQANDQQDLVEW 103
Cdd:cd13248    26 KRWFVL---KDNCLYYYKDPEE----EKALGSILLpSY--TISPAPPSDEiSRKFAFkAEHANMRTYYFAADTAEEMEQW 96

                  ....*..
gi 1958647646 104 VNVLNKA 110
Cdd:cd13248    97 MNAMSLA 103
PH_dynamin cd01256
Dynamin pleckstrin homology (PH) domain; Dynamin is a GTPase that regulates endocytic vesicle ...
190-283 1.04e-03

Dynamin pleckstrin homology (PH) domain; Dynamin is a GTPase that regulates endocytic vesicle formation. It has an N-terminal GTPase domain, followed by a PH domain, a GTPase effector domain and a C-terminal proline arginine rich domain. Dynamin-like proteins, which are found in metazoa, plants and yeast have the same domain architecture as dynamin, but lack the PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269958  Cd Length: 112  Bit Score: 38.46  E-value: 1.04e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 190 SAVIKAGY-CVKQGAVMKNWKRRY-FQLDENTIGYFKSELEKEPLRVIPLKEVhkvqecKQSDI----MMRDNLFEIV-T 262
Cdd:cd01256     1 NQVIRKGWlTINNIGFMKGGSKEYwFVLTAESLSWYKDEEEKEKKYMLPLDGL------KLRDVekgfMSRKHIFALFnT 74
                          90       100
                  ....*....|....*....|....*...
gi 1958647646 263 TSRTFY-------VQADSPEEMHSWiKA 283
Cdd:cd01256    75 DQRNVYkdykqleLSCETQEEVDSW-KA 101
PH_ACAP cd13250
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ...
27-111 1.06e-03

ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270070  Cd Length: 98  Bit Score: 37.97  E-value: 1.06e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646  27 RRYFILDtreDSFVWYMDNPQNLPSgSSRVGAIKLTYIsKVSDATKLRpkaeFCF-VMNAGmRKYFLQANDQQDLVEWVN 105
Cdd:cd13250    18 RRWFSLQ---NGQLYYQKRDKKDEP-TVMVEDLRLCTV-KPTEDSDRR----FCFeVISPT-KSYMLQAESEEDRQAWIQ 87

                  ....*.
gi 1958647646 106 VLNKAI 111
Cdd:cd13250    88 AIQSAI 93
PH_MELT_VEPH1 cd01264
Melted pleckstrin homology (PH) domain; The melted protein (also called Ventricular zone ...
205-291 1.69e-03

Melted pleckstrin homology (PH) domain; The melted protein (also called Ventricular zone expressed PH domain-containing protein homolog 1) is expressed in the developing central nervous system of vertebrates. It contains a single C-terminal PH domain that is required for membrane targeting. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269965  Cd Length: 105  Bit Score: 37.82  E-value: 1.69e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 205 MKNWKRRYFQLDENTIGYFKSELEKEpLRVIPLKEVHKVQECKQSDIMMRdNLFEIVTTSRTFYVQADSPEEMHSWIKAV 284
Cdd:cd01264    18 FKRWRTRYFTLSGAQLSYRGGKSKPD-APPIELSKIRSVKVVRKKDRSIP-KAFEIFTDDKTYVLKAKDEKNAEEWLQCL 95

                  ....*..
gi 1958647646 285 SGAiVAQ 291
Cdd:cd01264    96 SIA-VAQ 101
PH_PLEKHO1_PLEKHO2 cd13317
Pleckstrin homology domain-containing family O Pleckstrin homology domain; The PLEKHO family ...
188-283 1.92e-03

Pleckstrin homology domain-containing family O Pleckstrin homology domain; The PLEKHO family members are PLEKHO1 (also called CKIP-1/Casein kinase 2-interacting protein 1/CK2-interacting protein 1) and PLEKHO2 (PLEKHQ1/PH domain-containing family Q member 1). They both contain a single PH domain. PLEKHO1 acts as a scaffold protein that functions in plasma membrane recruitment, transcriptional activity modulation, and posttranscriptional modification regulation. As an adaptor protein it is involved in signaling pathways, apoptosis, differentiation, cytoskeleton, and bone formation. Not much is know about PLEKHO2. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270127  Cd Length: 102  Bit Score: 37.49  E-value: 1.92e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 188 ADSAVIKAGYCVK-QGAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLKEVHKVQECKQSdiMMRDNLFEIV----- 261
Cdd:cd13317     1 GAPQPEKAGWIKKsSGGLLGIWKDRYVVLKGTQLLVYEKEEKVFDLEDYELCEYLRCSKSRAS--KKNKSRFTLIrskqp 78
                          90       100
                  ....*....|....*....|...
gi 1958647646 262 -TTSRTFYVQADSPEEMHSWIKA 283
Cdd:cd13317    79 gNKAPDLKFQAVSPEEKESWINA 101
PH_AtPH1 cd13276
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ...
23-111 2.53e-03

Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270095  Cd Length: 106  Bit Score: 37.30  E-value: 2.53e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646  23 GKFL----RRYFILdtREDSFVWYMDnpQNLPSGSSRVGAIKLTYISKVSDATKLRPKaEFCFVMNAGMRKYFLQANDQQ 98
Cdd:cd13276     9 GEFIktwrRRWFVL--KQGKLFWFKE--PDVTPYSKPRGVIDLSKCLTVKSAEDATNK-ENAFELSTPEETFYFIADNEK 83
                          90
                  ....*....|...
gi 1958647646  99 DLVEWVNVLNKAI 111
Cdd:cd13276    84 EKEEWIGAIGRAI 96
PH2_FGD4_insect-like cd13238
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 4 pleckstrin homology (PH) ...
10-107 3.84e-03

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 4 pleckstrin homology (PH) domain, C-terminus, in insect and related arthropods; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. This cd contains insects, crustaceans, and chelicerates. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270058  Cd Length: 97  Bit Score: 36.47  E-value: 3.84e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646  10 ICGFLDIEENENSgKFLRRYFILdtREDsFVWYMDNPQN--LPSGSSRVGAIKLTYISKVSDATKLR-PKAEFCFVMNAG 86
Cdd:cd13238     1 LSGYLKLKTNGRK-TWSRRWFAL--QPD-FVLYSYKSQEdkLPLTATPVPGFLVTLLEKGSAVDPLNdPKRPRTFKMFHV 76
                          90       100
                  ....*....|....*....|.
gi 1958647646  87 MRKYFLQANDQQDLVEWVNVL 107
Cdd:cd13238    77 KKSYYFQANDGDEQKKWVLTL 97
PH_Phafin2-like cd01218
Phafin2 (also called EAPF, FLJ13187, ZFYVE18 or PLEKHF2) Pleckstrin Homology (PH) domain; ...
233-281 3.95e-03

Phafin2 (also called EAPF, FLJ13187, ZFYVE18 or PLEKHF2) Pleckstrin Homology (PH) domain; Phafin2 is differentially expressed in the liver cancer cell and regulates the structure and function of the endosomes through Rab5-dependent processes. Phafin2 modulates the cell's response to extracellular stimulation by modulating the receptor density on the cell surface. Phafin2 contains a PH domain and a FYVE domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269927 [Multi-domain]  Cd Length: 123  Bit Score: 36.85  E-value: 3.95e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*....
gi 1958647646 233 RVIPLKEVhKVQECKQSDIMmrDNLFEIVTTSRTFYVQADSPEEMHSWI 281
Cdd:cd01218    72 RIIPLEDV-KIEDLEDTGEL--KNGWQIISPKKSFVVYAATATEKSEWM 117
PH_PLEKHJ1 cd13258
Pleckstrin homology domain containing, family J member 1 Pleckstrin homology (PH) domain; ...
202-287 5.33e-03

Pleckstrin homology domain containing, family J member 1 Pleckstrin homology (PH) domain; PLEKHJ1 (also called GNRPX2/Guanine nucleotide-releasing protein x ). It contains a single PH domain. Very little information is known about PLEKHJ1. PLEKHJ1 has been shown to interact with IKBKG (inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma) and KRT33B (keratin 33B). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270078  Cd Length: 123  Bit Score: 36.53  E-value: 5.33e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646 202 GAVMKNWKRRYFQLDENTIGYFKS---ELEKEPLRVIPLKEVHKVQECKqSDIMmrdNLFEIV---TTSRTFYVQADSPE 275
Cdd:cd13258    30 PKKSEVFKERWFKLKGNLLFYFRTnefGDCSEPIGAIVLENCRVQMEEI-TEKP---FAFSIVfndEPEKKYIFSCRSEE 105
                          90
                  ....*....|..
gi 1958647646 276 EMHSWIKAVSGA 287
Cdd:cd13258   106 QCEQWIEALRQA 117
PH_DOCK-D cd13267
Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also ...
19-120 5.65e-03

Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also called Zizimin subfamily) consists of Dock9/Zizimin1, Dock10/Zizimin3, and Dock11/Zizimin2. DOCK-D has a N-terminal DUF3398 domain, a PH-like domain, a Dock Homology Region 1, DHR1 (also called CZH1), a C2 domain, and a C-terminal DHR2 domain (also called CZH2). Zizimin1 is enriched in the brain, lung, and kidney; zizimin2 is found in B and T lymphocytes, and zizimin3 is enriched in brain, lung, spleen and thymus. Zizimin1 functions in autoinhibition and membrane targeting. Zizimin2 is an immune-related and age-regulated guanine nucleotide exchange factor, which facilitates filopodial formation through activation of Cdc42, which results in activation of cell migration. No function has been determined for Zizimin3 to date. The N-terminal half of zizimin1 binds to the GEF domain through three distinct areas, including CZH1, to inhibit the interaction with Cdc42. In addition its PH domain binds phosphoinositides and mediates zizimin1 membrane targeting. DOCK is a family of proteins involved in intracellular signalling networks. They act as guanine nucleotide exchange factors for small G proteins of the Rho family, such as Rac and Cdc42. There are 4 subfamilies of DOCK family proteins based on their sequence homology: A-D. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270087  Cd Length: 126  Bit Score: 36.54  E-value: 5.65e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1958647646  19 NENSGK---------FLRRYFILdTREDSFVWYMDNPQNLPSGSSrVGAIKLTYISKVSDATKLRpkaEFCF--VMNaGM 87
Cdd:cd13267    16 PENSSDsfislamksFKRRFFHL-KQLVDGSYILEFYKDEKKKEA-KGTIFLDSCTGVVQNSKRR---KFCFelRMQ-DK 89
                          90       100       110
                  ....*....|....*....|....*....|...
gi 1958647646  88 RKYFLQANDQQDLVEWVNVLNKAIKITVPKQSD 120
Cdd:cd13267    90 KSYVLAAESEAEMDEWISKLNKILQSSKEQSIQ 122
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH