papilin isoform X2 [Megalopta genalis]
List of domain hits
Name | Accession | Description | Interval | E-value | |||||||
ADAMTS_spacer1 | pfam05986 | ADAM-TS Spacer 1; This domain represents the Spacer-1 region from the ADAM-TS and ADAM-TS-like ... |
217-331 | 7.80e-32 | |||||||
ADAM-TS Spacer 1; This domain represents the Spacer-1 region from the ADAM-TS and ADAM-TS-like proteins. ADAM-TS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) is closely related to the ADAM family (A Disintegrin and Metalloproteinase) and is a subfamily of the metalloprotease family, sharing a high degree of sequence similarity and conserved domain organization among its members. Members of the ADAM-TS family have been implicated in a range of diseases. ADAM-TS-like proteins lack a metalloprotease domain. They resides in the ECM and have regulatory roles. Examples of ADAM-TS-like proteins are papilin and punctin. : Pssm-ID: 461796 Cd Length: 115 Bit Score: 121.53 E-value: 7.80e-32
|
|||||||||||
Kunitz_papilin_lacunin-like | cd22639 | Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr ... |
1668-1719 | 1.25e-27 | |||||||
Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr proteins; This model includes Drosophila melanogaster Kunitz domain 1 of papilin and Manduca sexta Kunitz domain 1 of lacunin, and similar proteins. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinase action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. M. sexta lacunin is a large multidomain ECM containing several domains including several Kunitz-type protease inhibitors, thrombospondin type I, immunoglobulin-like and others. It exerts multiple effects on a variety of cell behaviors associated with the complex phenomenon of epithelial morphogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. : Pssm-ID: 438681 Cd Length: 52 Bit Score: 107.28 E-value: 1.25e-27
|
|||||||||||
MSCRAMM_ClfA super family | cl41352 | MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial ... |
849-1253 | 1.36e-22 | |||||||
MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules). It is heavily studied in Staphylococcus aureus both for its biological role in adhesion and for its potential for vaccination. Features of the sequence, but also of other MSCRAMM adhesins, include a long run of Ser-Asp dipeptide repeats and a C-terminal cell wall anchoring LPXTG motif. The actual alignment was detected with superfamily member NF033609: Pssm-ID: 468110 [Multi-domain] Cd Length: 934 Bit Score: 106.53 E-value: 1.36e-22
|
|||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
1908-1959 | 8.76e-20 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. : Pssm-ID: 425421 Cd Length: 53 Bit Score: 85.00 E-value: 8.76e-20
|
|||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
1727-1777 | 2.03e-19 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. : Pssm-ID: 438633 Cd Length: 51 Bit Score: 83.75 E-value: 2.03e-19
|
|||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
1786-1836 | 2.70e-19 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. : Pssm-ID: 438633 Cd Length: 51 Bit Score: 83.37 E-value: 2.70e-19
|
|||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
1850-1900 | 3.34e-19 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. : Pssm-ID: 438633 Cd Length: 51 Bit Score: 82.98 E-value: 3.34e-19
|
|||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
2115-2165 | 1.44e-17 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. : Pssm-ID: 438633 Cd Length: 51 Bit Score: 78.36 E-value: 1.44e-17
|
|||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
2174-2224 | 6.77e-17 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. : Pssm-ID: 438633 Cd Length: 51 Bit Score: 76.43 E-value: 6.77e-17
|
|||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
1978-2028 | 9.70e-16 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. : Pssm-ID: 438633 Cd Length: 51 Bit Score: 73.35 E-value: 9.70e-16
|
|||||||||||
Ig super family | cl11960 | Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found ... |
2452-2527 | 7.14e-15 | |||||||
Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found in the Ig superfamily. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. Members of this group are components of immunoglobulin, neuroglia, cell surface glycoproteins, including T-cell receptors, CD2, CD4, CD8, and membrane glycoproteins, including butyrophilin and chondroitin sulfate proteoglycan core protein. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. Ig superfamily (IgSF) domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Typically, the V-set domains have A, B, E, and D strands in one sheet and A', G, F, C, C' and C" in the other. The structures in C1-set are smaller than those in the V-set; they have one beta sheet that is formed by strands A, B, E, and D and the other by strands G, F, C, and C'. Moreover, a C1-set Ig domain contains a short C' strand (three residues) and lacks A' and C" strand. Unlike other Ig domain sets, C2-set structures do not have a D strand. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. The actual alignment was detected with superfamily member cd20952: Pssm-ID: 472250 [Multi-domain] Cd Length: 87 Bit Score: 72.14 E-value: 7.14e-15
|
|||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
2245-2297 | 7.83e-15 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. : Pssm-ID: 438633 Cd Length: 51 Bit Score: 70.66 E-value: 7.83e-15
|
|||||||||||
Ig super family | cl11960 | Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found ... |
2708-2797 | 1.03e-14 | |||||||
Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found in the Ig superfamily. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. Members of this group are components of immunoglobulin, neuroglia, cell surface glycoproteins, including T-cell receptors, CD2, CD4, CD8, and membrane glycoproteins, including butyrophilin and chondroitin sulfate proteoglycan core protein. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. Ig superfamily (IgSF) domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Typically, the V-set domains have A, B, E, and D strands in one sheet and A', G, F, C, C' and C" in the other. The structures in C1-set are smaller than those in the V-set; they have one beta sheet that is formed by strands A, B, E, and D and the other by strands G, F, C, and C'. Moreover, a C1-set Ig domain contains a short C' strand (three residues) and lacks A' and C" strand. Unlike other Ig domain sets, C2-set structures do not have a D strand. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. The actual alignment was detected with superfamily member pfam07679: Pssm-ID: 472250 [Multi-domain] Cd Length: 90 Bit Score: 71.52 E-value: 1.03e-14
|
|||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
2033-2085 | 1.07e-14 | |||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. : Pssm-ID: 197529 Cd Length: 53 Bit Score: 70.37 E-value: 1.07e-14
|
|||||||||||
TSP1_ADAMTS | pfam19030 | Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found ... |
344-398 | 4.80e-11 | |||||||
Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found in ADAMTS proteins. : Pssm-ID: 465950 [Multi-domain] Cd Length: 55 Bit Score: 60.16 E-value: 4.80e-11
|
|||||||||||
WAP | pfam00095 | WAP-type (Whey Acidic Protein) 'four-disulfide core'; WAP belongs to the group of Elafin or ... |
2384-2425 | 4.98e-10 | |||||||
WAP-type (Whey Acidic Protein) 'four-disulfide core'; WAP belongs to the group of Elafin or elastase-specific inhibitors. : Pssm-ID: 459672 [Multi-domain] Cd Length: 42 Bit Score: 56.66 E-value: 4.98e-10
|
|||||||||||
TSP1_ADAMTS | pfam19030 | Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found ... |
645-697 | 9.57e-10 | |||||||
Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found in ADAMTS proteins. : Pssm-ID: 465950 [Multi-domain] Cd Length: 55 Bit Score: 56.31 E-value: 9.57e-10
|
|||||||||||
ADAMTS_CR_3 super family | cl41950 | ADAMTS cysteine-rich domain; This cysteine rich domain is found in a variety of ADAMTS and ... |
118-215 | 9.89e-09 | |||||||
ADAMTS cysteine-rich domain; This cysteine rich domain is found in a variety of ADAMTS and ADAMTS-like endopeptidases widely spread in animals. It is a well-conserved cysteine-rich sequence containing 10 cysteine residues. ADAM-TS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) is closely related to the ADAM family (A Disintegrin and Metalloproteinase, pfam08516) and consists of at least 20 members sharing a high degree of sequence similarity and conserved domain organization. Members of the ADAMTS family have been implicated in a range of diseases. The actual alignment was detected with superfamily member pfam19236: Pssm-ID: 437068 Cd Length: 115 Bit Score: 55.49 E-value: 9.89e-09
|
|||||||||||
Ig_3 | pfam13927 | Immunoglobulin domain; This family contains immunoglobulin-like domains. |
2552-2621 | 3.23e-08 | |||||||
Immunoglobulin domain; This family contains immunoglobulin-like domains. : Pssm-ID: 464046 [Multi-domain] Cd Length: 78 Bit Score: 52.95 E-value: 3.23e-08
|
|||||||||||
PLAC | pfam08686 | PLAC (protease and lacunin) domain; The PLAC (protease and lacunin) domain is a short ... |
2806-2838 | 3.78e-08 | |||||||
PLAC (protease and lacunin) domain; The PLAC (protease and lacunin) domain is a short six-cysteine region that is usually found at the C terminal of proteins. It is found in a range of proteins including PACE4 (paired basic amino acid cleaving enzyme 4) and the extracellular matrix protein lacunin. : Pssm-ID: 462560 Cd Length: 31 Bit Score: 51.38 E-value: 3.78e-08
|
|||||||||||
TSP1_ADAMTS super family | cl40597 | Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found ... |
584-636 | 2.51e-07 | |||||||
Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found in ADAMTS proteins. The actual alignment was detected with superfamily member pfam19030: Pssm-ID: 465950 [Multi-domain] Cd Length: 55 Bit Score: 49.76 E-value: 2.51e-07
|
|||||||||||
TSP1 | smart00209 | Thrombospondin type 1 repeats; Type 1 repeats in thrombospondin-1 bind and activate TGF-beta. |
62-113 | 3.22e-07 | |||||||
Thrombospondin type 1 repeats; Type 1 repeats in thrombospondin-1 bind and activate TGF-beta. : Pssm-ID: 214559 [Multi-domain] Cd Length: 53 Bit Score: 49.12 E-value: 3.22e-07
|
|||||||||||
TSP1_ADAMTS super family | cl40597 | Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found ... |
467-521 | 1.70e-06 | |||||||
Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found in ADAMTS proteins. The actual alignment was detected with superfamily member pfam19030: Pssm-ID: 465950 [Multi-domain] Cd Length: 55 Bit Score: 47.06 E-value: 1.70e-06
|
|||||||||||
TSP1_ADAMTS super family | cl40597 | Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found ... |
402-443 | 1.25e-03 | |||||||
Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found in ADAMTS proteins. The actual alignment was detected with superfamily member pfam19030: Pssm-ID: 465950 [Multi-domain] Cd Length: 55 Bit Score: 38.97 E-value: 1.25e-03
|
|||||||||||
TSP1_ADAMTS super family | cl40597 | Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found ... |
526-574 | 1.82e-03 | |||||||
Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found in ADAMTS proteins. The actual alignment was detected with superfamily member pfam19030: Pssm-ID: 465950 [Multi-domain] Cd Length: 55 Bit Score: 38.59 E-value: 1.82e-03
|
|||||||||||
Name | Accession | Description | Interval | E-value | |||||||
ADAMTS_spacer1 | pfam05986 | ADAM-TS Spacer 1; This domain represents the Spacer-1 region from the ADAM-TS and ADAM-TS-like ... |
217-331 | 7.80e-32 | |||||||
ADAM-TS Spacer 1; This domain represents the Spacer-1 region from the ADAM-TS and ADAM-TS-like proteins. ADAM-TS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) is closely related to the ADAM family (A Disintegrin and Metalloproteinase) and is a subfamily of the metalloprotease family, sharing a high degree of sequence similarity and conserved domain organization among its members. Members of the ADAM-TS family have been implicated in a range of diseases. ADAM-TS-like proteins lack a metalloprotease domain. They resides in the ECM and have regulatory roles. Examples of ADAM-TS-like proteins are papilin and punctin. Pssm-ID: 461796 Cd Length: 115 Bit Score: 121.53 E-value: 7.80e-32
|
|||||||||||
Kunitz_papilin_lacunin-like | cd22639 | Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr ... |
1668-1719 | 1.25e-27 | |||||||
Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr proteins; This model includes Drosophila melanogaster Kunitz domain 1 of papilin and Manduca sexta Kunitz domain 1 of lacunin, and similar proteins. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinase action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. M. sexta lacunin is a large multidomain ECM containing several domains including several Kunitz-type protease inhibitors, thrombospondin type I, immunoglobulin-like and others. It exerts multiple effects on a variety of cell behaviors associated with the complex phenomenon of epithelial morphogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438681 Cd Length: 52 Bit Score: 107.28 E-value: 1.25e-27
|
|||||||||||
MSCRAMM_ClfA | NF033609 | MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial ... |
849-1253 | 1.36e-22 | |||||||
MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules). It is heavily studied in Staphylococcus aureus both for its biological role in adhesion and for its potential for vaccination. Features of the sequence, but also of other MSCRAMM adhesins, include a long run of Ser-Asp dipeptide repeats and a C-terminal cell wall anchoring LPXTG motif. Pssm-ID: 468110 [Multi-domain] Cd Length: 934 Bit Score: 106.53 E-value: 1.36e-22
|
|||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
1908-1959 | 8.76e-20 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 85.00 E-value: 8.76e-20
|
|||||||||||
ser_rich_anae_1 | NF033849 | serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 ... |
954-1238 | 9.22e-20 | |||||||
serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 amino acids), which a highly serine-rich central region that averages over 300 aa in length. Species encoding members of this family of proteins tend to be anaerobic bacteria, including Gram-positive bacteria of the human gut microbiome and Chloroflexi from marine sediments. Pssm-ID: 468206 [Multi-domain] Cd Length: 1122 Bit Score: 97.38 E-value: 9.22e-20
|
|||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
1727-1777 | 2.03e-19 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. Pssm-ID: 438633 Cd Length: 51 Bit Score: 83.75 E-value: 2.03e-19
|
|||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
1908-1958 | 2.31e-19 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. Pssm-ID: 438633 Cd Length: 51 Bit Score: 83.75 E-value: 2.31e-19
|
|||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
1786-1836 | 2.70e-19 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. Pssm-ID: 438633 Cd Length: 51 Bit Score: 83.37 E-value: 2.70e-19
|
|||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
1850-1900 | 3.34e-19 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. Pssm-ID: 438633 Cd Length: 51 Bit Score: 82.98 E-value: 3.34e-19
|
|||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
1785-1836 | 7.92e-19 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 82.30 E-value: 7.92e-19
|
|||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
1906-1958 | 8.52e-19 | |||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 81.93 E-value: 8.52e-19
|
|||||||||||
ser_rich_anae_1 | NF033849 | serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 ... |
922-1229 | 9.27e-19 | |||||||
serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 amino acids), which a highly serine-rich central region that averages over 300 aa in length. Species encoding members of this family of proteins tend to be anaerobic bacteria, including Gram-positive bacteria of the human gut microbiome and Chloroflexi from marine sediments. Pssm-ID: 468206 [Multi-domain] Cd Length: 1122 Bit Score: 94.30 E-value: 9.27e-19
|
|||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
1849-1900 | 4.19e-18 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 79.99 E-value: 4.19e-18
|
|||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
1848-1900 | 8.09e-18 | |||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 79.23 E-value: 8.09e-18
|
|||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
1784-1836 | 9.65e-18 | |||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 79.23 E-value: 9.65e-18
|
|||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
1725-1777 | 1.28e-17 | |||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 78.85 E-value: 1.28e-17
|
|||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
2115-2165 | 1.44e-17 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. Pssm-ID: 438633 Cd Length: 51 Bit Score: 78.36 E-value: 1.44e-17
|
|||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
2113-2165 | 2.21e-17 | |||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 78.07 E-value: 2.21e-17
|
|||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
1668-1719 | 2.75e-17 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 77.68 E-value: 2.75e-17
|
|||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
1726-1778 | 3.25e-17 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 77.68 E-value: 3.25e-17
|
|||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
2174-2224 | 6.77e-17 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. Pssm-ID: 438633 Cd Length: 51 Bit Score: 76.43 E-value: 6.77e-17
|
|||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
2114-2166 | 1.95e-16 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 75.37 E-value: 1.95e-16
|
|||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
2172-2224 | 2.12e-16 | |||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 75.38 E-value: 2.12e-16
|
|||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
1667-1718 | 2.21e-16 | |||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 74.99 E-value: 2.21e-16
|
|||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
1978-2028 | 9.70e-16 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. Pssm-ID: 438633 Cd Length: 51 Bit Score: 73.35 E-value: 9.70e-16
|
|||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
2173-2224 | 1.12e-15 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 73.06 E-value: 1.12e-15
|
|||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
1976-2028 | 4.67e-15 | |||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 71.53 E-value: 4.67e-15
|
|||||||||||
IgI_5_Robo | cd20952 | Fifth Ig-like domain of Roundabout (Robo) homolog 1/2, and similar domains; a member of the ... |
2452-2527 | 7.14e-15 | |||||||
Fifth Ig-like domain of Roundabout (Robo) homolog 1/2, and similar domains; a member of the I-set of IgSF domains; The members here are composed of the fifth Ig-like domain of Roundabout (Robo) homolog 1/2 and similar domains. Robo receptors play a role in the development of the central nervous system (CNS), and are receptors of Slit protein. Slit is a repellant secreted by the neural cells in the midline. Slit acts through Robo to prevent most neurons from crossing the midline from either side. Three mammalian Robo homologs (Robo1, -2, and -3), and three mammalian Slit homologs (Slit-1,-2, -3), have been identified. Commissural axons, which cross the midline, express low levels of Robo; longitudinal axons, which avoid the midline, express high levels of Robo. Robo1, -2, and -3 are expressed by commissural neurons in the vertebrate spinal cord and Slits 1, -2, -3 are expressed at the ventral midline. Robo-3 is a divergent member of the Robo family which instead of being a positive regulator of slit responsiveness, antagonizes slit responsiveness in precrossing axons. The Slit-Robo interaction is mediated by the second leucine-rich repeat (LRR) domain of Slit and the two N-terminal Ig domains of Robo, Ig1 and Ig2. The primary Robo binding site for Slit2 has been shown by surface plasmon resonance experiments and mutational analysis to be is the Ig1 domain, while the Ig2 domain has been proposed to harbor a weak secondary binding site. The fifth Ig-like domain of Robo 1 and 2 is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand but lack a C" strand. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors Pssm-ID: 409544 [Multi-domain] Cd Length: 87 Bit Score: 72.14 E-value: 7.14e-15
|
|||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
2245-2297 | 7.83e-15 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. Pssm-ID: 438633 Cd Length: 51 Bit Score: 70.66 E-value: 7.83e-15
|
|||||||||||
I-set | pfam07679 | Immunoglobulin I-set domain; |
2708-2797 | 1.03e-14 | |||||||
Immunoglobulin I-set domain; Pssm-ID: 400151 [Multi-domain] Cd Length: 90 Bit Score: 71.52 E-value: 1.03e-14
|
|||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
2033-2085 | 1.07e-14 | |||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 70.37 E-value: 1.07e-14
|
|||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
2034-2086 | 1.10e-14 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 70.36 E-value: 1.10e-14
|
|||||||||||
IG_like | smart00410 | Immunoglobulin like; IG domains that cannot be classified into one of IGv1, IGc1, IGc2, IG. |
2724-2797 | 1.26e-14 | |||||||
Immunoglobulin like; IG domains that cannot be classified into one of IGv1, IGc1, IGc2, IG. Pssm-ID: 214653 [Multi-domain] Cd Length: 85 Bit Score: 71.38 E-value: 1.26e-14
|
|||||||||||
ser_rich_anae_1 | NF033849 | serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 ... |
1001-1251 | 1.41e-14 | |||||||
serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 amino acids), which a highly serine-rich central region that averages over 300 aa in length. Species encoding members of this family of proteins tend to be anaerobic bacteria, including Gram-positive bacteria of the human gut microbiome and Chloroflexi from marine sediments. Pssm-ID: 468206 [Multi-domain] Cd Length: 1122 Bit Score: 80.43 E-value: 1.41e-14
|
|||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
1977-2029 | 1.53e-14 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 69.98 E-value: 1.53e-14
|
|||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
2035-2085 | 2.20e-14 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. Pssm-ID: 438633 Cd Length: 51 Bit Score: 69.50 E-value: 2.20e-14
|
|||||||||||
PRK15319 | PRK15319 | fibronectin-binding autotransporter adhesin ShdA; |
843-1230 | 2.95e-14 | |||||||
fibronectin-binding autotransporter adhesin ShdA; Pssm-ID: 185219 [Multi-domain] Cd Length: 2039 Bit Score: 79.74 E-value: 2.95e-14
|
|||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
2244-2297 | 4.22e-14 | |||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 68.82 E-value: 4.22e-14
|
|||||||||||
DUF5585 | pfam17823 | Family of unknown function (DUF5585); This is a family of unknown function found in chordata. |
843-1192 | 6.85e-14 | |||||||
Family of unknown function (DUF5585); This is a family of unknown function found in chordata. Pssm-ID: 465521 [Multi-domain] Cd Length: 506 Bit Score: 77.31 E-value: 6.85e-14
|
|||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
2243-2297 | 1.75e-13 | |||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 66.90 E-value: 1.75e-13
|
|||||||||||
Ig_3 | pfam13927 | Immunoglobulin domain; This family contains immunoglobulin-like domains. |
2450-2524 | 8.15e-13 | |||||||
Immunoglobulin domain; This family contains immunoglobulin-like domains. Pssm-ID: 464046 [Multi-domain] Cd Length: 78 Bit Score: 66.05 E-value: 8.15e-13
|
|||||||||||
FhaB | COG3210 | Large exoprotein involved in heme utilization or adhesion [Intracellular trafficking, ... |
804-1262 | 4.53e-12 | |||||||
Large exoprotein involved in heme utilization or adhesion [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442443 [Multi-domain] Cd Length: 1698 Bit Score: 72.49 E-value: 4.53e-12
|
|||||||||||
IgI_2_MuSK | cd20968 | agrin-responsive second immunoglobulin-like domains (Ig2) of the Muscle-specific kinase (MuSK) ... |
2708-2797 | 2.71e-11 | |||||||
agrin-responsive second immunoglobulin-like domains (Ig2) of the Muscle-specific kinase (MuSK) ectodomain; a member of the I-set of Ig superfamily domains; The members here are composed of the second immunoglobulin-like (Ig) domains of the Muscle-specific kinase (MuSK) ectodomain. MuSK is a receptor tyrosine kinase specifically expressed in skeletal muscle, where it plays a central role in the formation and maintenance of the neuromuscular junction (NMJ). MuSK is activated by agrin, a neuron-derived heparan sulfate proteoglycan. The activation of MUSK in myotubes regulates the formation of NMJs through the regulation of different processes including the specific expression of genes in subsynaptic nuclei, the reorganization of the actin cytoskeleton and the clustering of the acetylcholine receptors (AChR) in the postsynaptic membrane. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Unlike the V-set, one of the distinctive features of I-set domains is the lack of a C" strand. The structure of the MuSK lacks this strand and thus it belongs to the I-set of the IgSF. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409560 [Multi-domain] Cd Length: 88 Bit Score: 61.87 E-value: 2.71e-11
|
|||||||||||
TSP1_ADAMTS | pfam19030 | Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found ... |
344-398 | 4.80e-11 | |||||||
Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found in ADAMTS proteins. Pssm-ID: 465950 [Multi-domain] Cd Length: 55 Bit Score: 60.16 E-value: 4.80e-11
|
|||||||||||
IG_like | smart00410 | Immunoglobulin like; IG domains that cannot be classified into one of IGv1, IGc1, IGc2, IG. |
2457-2538 | 1.16e-10 | |||||||
Immunoglobulin like; IG domains that cannot be classified into one of IGv1, IGc1, IGc2, IG. Pssm-ID: 214653 [Multi-domain] Cd Length: 85 Bit Score: 60.21 E-value: 1.16e-10
|
|||||||||||
WAP | pfam00095 | WAP-type (Whey Acidic Protein) 'four-disulfide core'; WAP belongs to the group of Elafin or ... |
2384-2425 | 4.98e-10 | |||||||
WAP-type (Whey Acidic Protein) 'four-disulfide core'; WAP belongs to the group of Elafin or elastase-specific inhibitors. Pssm-ID: 459672 [Multi-domain] Cd Length: 42 Bit Score: 56.66 E-value: 4.98e-10
|
|||||||||||
TSP1_ADAMTS | pfam19030 | Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found ... |
645-697 | 9.57e-10 | |||||||
Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found in ADAMTS proteins. Pssm-ID: 465950 [Multi-domain] Cd Length: 55 Bit Score: 56.31 E-value: 9.57e-10
|
|||||||||||
MSCRAMM_ClfA | NF033609 | MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial ... |
699-1097 | 2.50e-09 | |||||||
MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules). It is heavily studied in Staphylococcus aureus both for its biological role in adhesion and for its potential for vaccination. Features of the sequence, but also of other MSCRAMM adhesins, include a long run of Ser-Asp dipeptide repeats and a C-terminal cell wall anchoring LPXTG motif. Pssm-ID: 468110 [Multi-domain] Cd Length: 934 Bit Score: 63.39 E-value: 2.50e-09
|
|||||||||||
ser_rich_anae_1 | NF033849 | serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 ... |
1129-1255 | 9.88e-09 | |||||||
serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 amino acids), which a highly serine-rich central region that averages over 300 aa in length. Species encoding members of this family of proteins tend to be anaerobic bacteria, including Gram-positive bacteria of the human gut microbiome and Chloroflexi from marine sediments. Pssm-ID: 468206 [Multi-domain] Cd Length: 1122 Bit Score: 61.17 E-value: 9.88e-09
|
|||||||||||
ADAMTS_CR_3 | pfam19236 | ADAMTS cysteine-rich domain; This cysteine rich domain is found in a variety of ADAMTS and ... |
118-215 | 9.89e-09 | |||||||
ADAMTS cysteine-rich domain; This cysteine rich domain is found in a variety of ADAMTS and ADAMTS-like endopeptidases widely spread in animals. It is a well-conserved cysteine-rich sequence containing 10 cysteine residues. ADAM-TS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) is closely related to the ADAM family (A Disintegrin and Metalloproteinase, pfam08516) and consists of at least 20 members sharing a high degree of sequence similarity and conserved domain organization. Members of the ADAMTS family have been implicated in a range of diseases. Pssm-ID: 437068 Cd Length: 115 Bit Score: 55.49 E-value: 9.89e-09
|
|||||||||||
ser_rich_anae_1 | NF033849 | serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 ... |
1084-1241 | 1.28e-08 | |||||||
serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 amino acids), which a highly serine-rich central region that averages over 300 aa in length. Species encoding members of this family of proteins tend to be anaerobic bacteria, including Gram-positive bacteria of the human gut microbiome and Chloroflexi from marine sediments. Pssm-ID: 468206 [Multi-domain] Cd Length: 1122 Bit Score: 60.79 E-value: 1.28e-08
|
|||||||||||
Ig_3 | pfam13927 | Immunoglobulin domain; This family contains immunoglobulin-like domains. |
2552-2621 | 3.23e-08 | |||||||
Immunoglobulin domain; This family contains immunoglobulin-like domains. Pssm-ID: 464046 [Multi-domain] Cd Length: 78 Bit Score: 52.95 E-value: 3.23e-08
|
|||||||||||
PLAC | pfam08686 | PLAC (protease and lacunin) domain; The PLAC (protease and lacunin) domain is a short ... |
2806-2838 | 3.78e-08 | |||||||
PLAC (protease and lacunin) domain; The PLAC (protease and lacunin) domain is a short six-cysteine region that is usually found at the C terminal of proteins. It is found in a range of proteins including PACE4 (paired basic amino acid cleaving enzyme 4) and the extracellular matrix protein lacunin. Pssm-ID: 462560 Cd Length: 31 Bit Score: 51.38 E-value: 3.78e-08
|
|||||||||||
ser_rich_anae_1 | NF033849 | serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 ... |
1120-1255 | 1.49e-07 | |||||||
serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 amino acids), which a highly serine-rich central region that averages over 300 aa in length. Species encoding members of this family of proteins tend to be anaerobic bacteria, including Gram-positive bacteria of the human gut microbiome and Chloroflexi from marine sediments. Pssm-ID: 468206 [Multi-domain] Cd Length: 1122 Bit Score: 57.32 E-value: 1.49e-07
|
|||||||||||
Ig | cd00096 | Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found ... |
2564-2628 | 2.12e-07 | |||||||
Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found in the Ig superfamily. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. Members of this group are components of immunoglobulin, neuroglia, cell surface glycoproteins, including T-cell receptors, CD2, CD4, CD8, and membrane glycoproteins, including butyrophilin and chondroitin sulfate proteoglycan core protein. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. Ig superfamily (IgSF) domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Typically, the V-set domains have A, B, E, and D strands in one sheet and A', G, F, C, C' and C" in the other. The structures in C1-set are smaller than those in the V-set; they have one beta sheet that is formed by strands A, B, E, and D and the other by strands G, F, C, and C'. Moreover, a C1-set Ig domain contains a short C' strand (three residues) and lacks A' and C" strand. Unlike other Ig domain sets, C2-set structures do not have a D strand. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409353 [Multi-domain] Cd Length: 70 Bit Score: 50.41 E-value: 2.12e-07
|
|||||||||||
TSP1_ADAMTS | pfam19030 | Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found ... |
584-636 | 2.51e-07 | |||||||
Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found in ADAMTS proteins. Pssm-ID: 465950 [Multi-domain] Cd Length: 55 Bit Score: 49.76 E-value: 2.51e-07
|
|||||||||||
IG_like | smart00410 | Immunoglobulin like; IG domains that cannot be classified into one of IGv1, IGc1, IGc2, IG. |
2555-2624 | 3.13e-07 | |||||||
Immunoglobulin like; IG domains that cannot be classified into one of IGv1, IGc1, IGc2, IG. Pssm-ID: 214653 [Multi-domain] Cd Length: 85 Bit Score: 50.20 E-value: 3.13e-07
|
|||||||||||
TSP1 | smart00209 | Thrombospondin type 1 repeats; Type 1 repeats in thrombospondin-1 bind and activate TGF-beta. |
62-113 | 3.22e-07 | |||||||
Thrombospondin type 1 repeats; Type 1 repeats in thrombospondin-1 bind and activate TGF-beta. Pssm-ID: 214559 [Multi-domain] Cd Length: 53 Bit Score: 49.12 E-value: 3.22e-07
|
|||||||||||
MSCRAMM_ClfA | NF033609 | MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial ... |
834-1024 | 1.38e-06 | |||||||
MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules). It is heavily studied in Staphylococcus aureus both for its biological role in adhesion and for its potential for vaccination. Features of the sequence, but also of other MSCRAMM adhesins, include a long run of Ser-Asp dipeptide repeats and a C-terminal cell wall anchoring LPXTG motif. Pssm-ID: 468110 [Multi-domain] Cd Length: 934 Bit Score: 54.14 E-value: 1.38e-06
|
|||||||||||
TSP1_ADAMTS | pfam19030 | Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found ... |
467-521 | 1.70e-06 | |||||||
Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found in ADAMTS proteins. Pssm-ID: 465950 [Multi-domain] Cd Length: 55 Bit Score: 47.06 E-value: 1.70e-06
|
|||||||||||
WAP | cd00199 | whey acidic protein-type four-disulfide core domains. Members of the family include whey ... |
2374-2425 | 2.06e-06 | |||||||
whey acidic protein-type four-disulfide core domains. Members of the family include whey acidic protein, elafin (elastase-specific inhibitor), caltrin-like protein (a calcium transport inhibitor) and other extracellular proteinase inhibitors. A group of proteins containing 8 characteristically-spaced cysteine residuesforming disulphide bonds, have been termed '4-disulphide core' proteins. Protease inhibition occurs by insertion of the inhibitory loop into the active site pocket and interference with the catalytic residues of the protease. Pssm-ID: 238120 [Multi-domain] Cd Length: 60 Bit Score: 47.06 E-value: 2.06e-06
|
|||||||||||
KLF18_N | cd21575 | N-terminal domain of Kruppel-like factor 18; Kruppel-like factor 18 (KLF18), or Krueppel-like ... |
977-1115 | 6.20e-06 | |||||||
N-terminal domain of Kruppel-like factor 18; Kruppel-like factor 18 (KLF18), or Krueppel-like factor 18, is a product of a chromosomal neighbor of the KLF17 gene and is likely a product of its duplication. Phylogenetic analyses revealed that mammalian predicted KLF18 proteins and KLF17 proteins experienced elevated rates of evolution and are grouped with KLF1/KLF2/KLF4 and non-mammalian KLF17. KLF18 has been found in the human testis, though it was previously hypothesized to be a pseudogene in extant placental mammals. Mouse KLF18 expression data indicates that it may function in early embryonic development. It belongs to a family of proteins, called the Specificity Protein (SP)/KLF family, characterized by a C-terminal DNA-binding domain of 81 amino acids consisting of three Kruppel-like C2H2 zinc fingers. These factors bind to a loose consensus motif, namely NNRCRCCYY (where N is any nucleotide; R is A/G, and Y is C/T), such as the recurring motifs in GC and GT boxes (5'-GGGGCGGGG-3' and 5-GGTGTGGGG-3') that are present in promoters and more distal regulatory elements of mammalian genes. Members of the KLF family can act as activators or repressors of transcription depending on cell and promoter context. KLFs regulate various cellular functions, such as proliferation, differentiation, and apoptosis, as well as the development and homeostasis of several types of tissue. In addition to the C-terminal DNA-binding domain, each KLF also has a unique N-terminal activation/repression domain that confers specificity and allows it to bind specifically to a certain partner, leading to distinct activities in vivo. This model represents the N-terminal domain of KLF18. Some KLF18 isoforms have duplicated N-terminal domains. Pssm-ID: 410566 [Multi-domain] Cd Length: 276 Bit Score: 50.46 E-value: 6.20e-06
|
|||||||||||
2A1904 | TIGR00927 | K+-dependent Na+/Ca+ exchanger; [Transport and binding proteins, Cations and iron carrying ... |
968-1253 | 6.23e-06 | |||||||
K+-dependent Na+/Ca+ exchanger; [Transport and binding proteins, Cations and iron carrying compounds] Pssm-ID: 273344 [Multi-domain] Cd Length: 1096 Bit Score: 52.31 E-value: 6.23e-06
|
|||||||||||
MSCRAMM_ClfA | NF033609 | MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial ... |
811-980 | 7.28e-06 | |||||||
MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules). It is heavily studied in Staphylococcus aureus both for its biological role in adhesion and for its potential for vaccination. Features of the sequence, but also of other MSCRAMM adhesins, include a long run of Ser-Asp dipeptide repeats and a C-terminal cell wall anchoring LPXTG motif. Pssm-ID: 468110 [Multi-domain] Cd Length: 934 Bit Score: 51.83 E-value: 7.28e-06
|
|||||||||||
WAP | smart00217 | Four-disulfide core domains; |
2384-2426 | 8.86e-06 | |||||||
Four-disulfide core domains; Pssm-ID: 197580 [Multi-domain] Cd Length: 47 Bit Score: 45.05 E-value: 8.86e-06
|
|||||||||||
TSP1 | smart00209 | Thrombospondin type 1 repeats; Type 1 repeats in thrombospondin-1 bind and activate TGF-beta. |
643-698 | 1.28e-05 | |||||||
Thrombospondin type 1 repeats; Type 1 repeats in thrombospondin-1 bind and activate TGF-beta. Pssm-ID: 214559 [Multi-domain] Cd Length: 53 Bit Score: 44.89 E-value: 1.28e-05
|
|||||||||||
MSCRAMM_ClfA | NF033609 | MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial ... |
934-1072 | 1.63e-05 | |||||||
MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules). It is heavily studied in Staphylococcus aureus both for its biological role in adhesion and for its potential for vaccination. Features of the sequence, but also of other MSCRAMM adhesins, include a long run of Ser-Asp dipeptide repeats and a C-terminal cell wall anchoring LPXTG motif. Pssm-ID: 468110 [Multi-domain] Cd Length: 934 Bit Score: 50.68 E-value: 1.63e-05
|
|||||||||||
MSCRAMM_ClfA | NF033609 | MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial ... |
1050-1237 | 6.77e-05 | |||||||
MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules). It is heavily studied in Staphylococcus aureus both for its biological role in adhesion and for its potential for vaccination. Features of the sequence, but also of other MSCRAMM adhesins, include a long run of Ser-Asp dipeptide repeats and a C-terminal cell wall anchoring LPXTG motif. Pssm-ID: 468110 [Multi-domain] Cd Length: 934 Bit Score: 48.75 E-value: 6.77e-05
|
|||||||||||
TSP1 | smart00209 | Thrombospondin type 1 repeats; Type 1 repeats in thrombospondin-1 bind and activate TGF-beta. |
350-399 | 2.04e-04 | |||||||
Thrombospondin type 1 repeats; Type 1 repeats in thrombospondin-1 bind and activate TGF-beta. Pssm-ID: 214559 [Multi-domain] Cd Length: 53 Bit Score: 41.42 E-value: 2.04e-04
|
|||||||||||
PHA02826 | PHA02826 | IL-1 receptor-like protein; Provisional |
2721-2780 | 1.09e-03 | |||||||
IL-1 receptor-like protein; Provisional Pssm-ID: 165173 [Multi-domain] Cd Length: 227 Bit Score: 43.36 E-value: 1.09e-03
|
|||||||||||
TSP1_ADAMTS | pfam19030 | Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found ... |
402-443 | 1.25e-03 | |||||||
Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found in ADAMTS proteins. Pssm-ID: 465950 [Multi-domain] Cd Length: 55 Bit Score: 38.97 E-value: 1.25e-03
|
|||||||||||
TSP1_ADAMTS | pfam19030 | Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found ... |
526-574 | 1.82e-03 | |||||||
Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found in ADAMTS proteins. Pssm-ID: 465950 [Multi-domain] Cd Length: 55 Bit Score: 38.59 E-value: 1.82e-03
|
|||||||||||
auto_AIDA-I | NF033176 | autotransporter adhesin AIDA-I; |
1003-1233 | 6.81e-03 | |||||||
autotransporter adhesin AIDA-I; Pssm-ID: 380183 [Multi-domain] Cd Length: 1287 Bit Score: 42.34 E-value: 6.81e-03
|
|||||||||||
Name | Accession | Description | Interval | E-value | ||||||||
ADAMTS_spacer1 | pfam05986 | ADAM-TS Spacer 1; This domain represents the Spacer-1 region from the ADAM-TS and ADAM-TS-like ... |
217-331 | 7.80e-32 | ||||||||
ADAM-TS Spacer 1; This domain represents the Spacer-1 region from the ADAM-TS and ADAM-TS-like proteins. ADAM-TS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) is closely related to the ADAM family (A Disintegrin and Metalloproteinase) and is a subfamily of the metalloprotease family, sharing a high degree of sequence similarity and conserved domain organization among its members. Members of the ADAM-TS family have been implicated in a range of diseases. ADAM-TS-like proteins lack a metalloprotease domain. They resides in the ECM and have regulatory roles. Examples of ADAM-TS-like proteins are papilin and punctin. Pssm-ID: 461796 Cd Length: 115 Bit Score: 121.53 E-value: 7.80e-32
|
||||||||||||
Kunitz_papilin_lacunin-like | cd22639 | Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr ... |
1668-1719 | 1.25e-27 | ||||||||
Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr proteins; This model includes Drosophila melanogaster Kunitz domain 1 of papilin and Manduca sexta Kunitz domain 1 of lacunin, and similar proteins. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinase action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. M. sexta lacunin is a large multidomain ECM containing several domains including several Kunitz-type protease inhibitors, thrombospondin type I, immunoglobulin-like and others. It exerts multiple effects on a variety of cell behaviors associated with the complex phenomenon of epithelial morphogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438681 Cd Length: 52 Bit Score: 107.28 E-value: 1.25e-27
|
||||||||||||
Kunitz_collagen_alpha6_VI | cd22630 | Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This ... |
1668-1720 | 4.04e-23 | ||||||||
Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain), encoded by COL6A6 gene, and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438673 Cd Length: 55 Bit Score: 94.59 E-value: 4.04e-23
|
||||||||||||
MSCRAMM_ClfA | NF033609 | MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial ... |
849-1253 | 1.36e-22 | ||||||||
MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules). It is heavily studied in Staphylococcus aureus both for its biological role in adhesion and for its potential for vaccination. Features of the sequence, but also of other MSCRAMM adhesins, include a long run of Ser-Asp dipeptide repeats and a C-terminal cell wall anchoring LPXTG motif. Pssm-ID: 468110 [Multi-domain] Cd Length: 934 Bit Score: 106.53 E-value: 1.36e-22
|
||||||||||||
Kunitz_collagen_alpha3_VI | cd22629 | Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This ... |
1668-1718 | 1.37e-21 | ||||||||
Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha3 chain of type VI collagen (collagen alpha 3(VI) chain), encoded by COL6A3 gene. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. Mutations in the alpha1, alpha2, and alpha3 chains of collagen VI cause myopathies ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, including intermediate forms. Early onset isolated dystonia, a neurological disease, has been shown to be caused by mutations in the alpha3 chain. Findings also indicated potential associations between COL6A3 polymorphisms and lung cancer risk. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438672 Cd Length: 53 Bit Score: 90.12 E-value: 1.37e-21
|
||||||||||||
Kunitz_collagen_alpha6_VI-like | cd22631 | Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This ... |
1668-1718 | 2.31e-21 | ||||||||
Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain) and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438674 [Multi-domain] Cd Length: 51 Bit Score: 89.21 E-value: 2.31e-21
|
||||||||||||
Kunitz_papilin | cd22635 | Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in ... |
1668-1718 | 1.20e-20 | ||||||||
Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in human and mouse papilin, and similar proteins. Papilin is an extracellular matrix glycoprotein that has been found in many organisms to be involved in thin matrix layers during gastrulation, matrix associated with wandering, phagocytic hemocytes, basement membranes and space-filling matrix during Drosophila development. It is a multidomain protein that primarily occurs in basement membranes. Papilins interact with several extracellular matrix components and ADAMTS enzymes, influences cell rearrangements and may modulate metalloproteinases during organogenesis. Papilins exist in mammals and invertebrates as a set of related, though not necessarily identical proteins. Mammalian papilin contains a single Kunitz domain, while other papilins such as that from Caenorhabditis elegans, contains multiple Kunitz domains. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438678 Cd Length: 52 Bit Score: 87.32 E-value: 1.20e-20
|
||||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
1908-1959 | 8.76e-20 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 85.00 E-value: 8.76e-20
|
||||||||||||
ser_rich_anae_1 | NF033849 | serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 ... |
954-1238 | 9.22e-20 | ||||||||
serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 amino acids), which a highly serine-rich central region that averages over 300 aa in length. Species encoding members of this family of proteins tend to be anaerobic bacteria, including Gram-positive bacteria of the human gut microbiome and Chloroflexi from marine sediments. Pssm-ID: 468206 [Multi-domain] Cd Length: 1122 Bit Score: 97.38 E-value: 9.22e-20
|
||||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
1727-1777 | 2.03e-19 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. Pssm-ID: 438633 Cd Length: 51 Bit Score: 83.75 E-value: 2.03e-19
|
||||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
1908-1958 | 2.31e-19 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. Pssm-ID: 438633 Cd Length: 51 Bit Score: 83.75 E-value: 2.31e-19
|
||||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
1786-1836 | 2.70e-19 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. Pssm-ID: 438633 Cd Length: 51 Bit Score: 83.37 E-value: 2.70e-19
|
||||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
1850-1900 | 3.34e-19 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. Pssm-ID: 438633 Cd Length: 51 Bit Score: 82.98 E-value: 3.34e-19
|
||||||||||||
Kunitz_HAI1_1-like | cd22623 | Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes ... |
1784-1836 | 7.14e-19 | ||||||||
Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 1 (HAI1 or HAI-1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. KD1, the major inhibitory domain of HAI-1, is involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure; presence of the target protease causes changes in the HAI-1 structure to an extended conformation. HAI-1 has been shown to inhibit several serine proteases such as matripase, hepsin, trypsin, hepatocyte growth factor activator (HGFA), and prostasin. It is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438666 Cd Length: 59 Bit Score: 82.59 E-value: 7.14e-19
|
||||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
1785-1836 | 7.92e-19 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 82.30 E-value: 7.92e-19
|
||||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
1906-1958 | 8.52e-19 | ||||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 81.93 E-value: 8.52e-19
|
||||||||||||
ser_rich_anae_1 | NF033849 | serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 ... |
922-1229 | 9.27e-19 | ||||||||
serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 amino acids), which a highly serine-rich central region that averages over 300 aa in length. Species encoding members of this family of proteins tend to be anaerobic bacteria, including Gram-positive bacteria of the human gut microbiome and Chloroflexi from marine sediments. Pssm-ID: 468206 [Multi-domain] Cd Length: 1122 Bit Score: 94.30 E-value: 9.27e-19
|
||||||||||||
Kunitz_papilin_mig6-like | cd22637 | Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of ... |
1908-1958 | 1.17e-18 | ||||||||
Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, and similar domains; This model includes Kunitz domains from papilins with multiple Kunitz domains, such as Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, among others. Papilins are essential for embryonic development. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinases action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438679 Cd Length: 51 Bit Score: 81.63 E-value: 1.17e-18
|
||||||||||||
Kunitz_papilin | cd22635 | Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in ... |
1908-1958 | 3.92e-18 | ||||||||
Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in human and mouse papilin, and similar proteins. Papilin is an extracellular matrix glycoprotein that has been found in many organisms to be involved in thin matrix layers during gastrulation, matrix associated with wandering, phagocytic hemocytes, basement membranes and space-filling matrix during Drosophila development. It is a multidomain protein that primarily occurs in basement membranes. Papilins interact with several extracellular matrix components and ADAMTS enzymes, influences cell rearrangements and may modulate metalloproteinases during organogenesis. Papilins exist in mammals and invertebrates as a set of related, though not necessarily identical proteins. Mammalian papilin contains a single Kunitz domain, while other papilins such as that from Caenorhabditis elegans, contains multiple Kunitz domains. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438678 Cd Length: 52 Bit Score: 80.00 E-value: 3.92e-18
|
||||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
1849-1900 | 4.19e-18 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 79.99 E-value: 4.19e-18
|
||||||||||||
Kunitz_PPTI-like | cd22608 | Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor ... |
1727-1777 | 5.94e-18 | ||||||||
Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor bitisilin, and similar proteins; This group contains Pseudocerastes persicus trypsin inhibitor (PPTI), Bitis gabonica Kunitz-type serine protease inhibitor bitisilin-1 (BG-11), -2 (BG-15) and -3 (two-Kunitz protease inhibitor), Oxyuranus scutellatus scutellatus taicatoxin, and serine protease inhibitor component (TSPI, also called venom protease inhibitor 1 or venom protease inhibitor 2), among others. PPTI from P. persicus venom shows inhibitory effect against trypsin proteolytic activity and has similarities to dendrotoxins (DTXs), with corresponding functionally important residues. Studies have shown the ability of PPTI to inhibit voltage-gated potassium channels, and consequently have dual functionality. Bitilisins 1, 2, and 3 are serine protease inhibitors expressed in snake venom glands; bitsilin-3 consists of two Kunitz protease inhibitor domains. Taicatoxin inhibits trypsin, tissue kallikrein, elastase, plasmin and factor Xa, and is also known to block the voltage-dependent L-type calcium channels from the heart, and the small conductance calcium-activated potassium channels (KCa) in chromaffin cells and in the brain. The structures of these Kunitz-type proteins are similar to other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438651 Cd Length: 54 Bit Score: 79.65 E-value: 5.94e-18
|
||||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
1668-1718 | 7.93e-18 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. Pssm-ID: 438633 Cd Length: 51 Bit Score: 79.13 E-value: 7.93e-18
|
||||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
1848-1900 | 8.09e-18 | ||||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 79.23 E-value: 8.09e-18
|
||||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
1784-1836 | 9.65e-18 | ||||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 79.23 E-value: 9.65e-18
|
||||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
1725-1777 | 1.28e-17 | ||||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 78.85 E-value: 1.28e-17
|
||||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
2115-2165 | 1.44e-17 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. Pssm-ID: 438633 Cd Length: 51 Bit Score: 78.36 E-value: 1.44e-17
|
||||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
2113-2165 | 2.21e-17 | ||||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 78.07 E-value: 2.21e-17
|
||||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
1668-1719 | 2.75e-17 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 77.68 E-value: 2.75e-17
|
||||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
1726-1778 | 3.25e-17 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 77.68 E-value: 3.25e-17
|
||||||||||||
Kunitz_collagen_alpha1_XXVIII | cd22628 | Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This ... |
1668-1718 | 4.89e-17 | ||||||||
Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type XXVIII collagen (collagen alpha-1(XXVIII) chain) and similar proteins. The zebrafish has four collagen XXVIII genes all of which are differentially expressed in the liver, thymus, muscle, intestine and skin; only the alpha1 chain contains the Kunitz domain which is often proteolytically processed. Mammals only contain the alpha1 collagen chain, expressed mostly in dorsal root ganglia and peripheral nerves. The Kunitz domain is found at the C-terminus, and is most related to Kunitz domains of papilin and alpha3(VI) collagen. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438671 Cd Length: 51 Bit Score: 76.94 E-value: 4.89e-17
|
||||||||||||
Kunitz_collagen_alpha6_VI | cd22630 | Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This ... |
1725-1778 | 5.14e-17 | ||||||||
Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain), encoded by COL6A6 gene, and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438673 Cd Length: 55 Bit Score: 76.87 E-value: 5.14e-17
|
||||||||||||
Kunitz_bikunin_1-like | cd22596 | first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal ... |
1784-1836 | 6.24e-17 | ||||||||
first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. It is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438639 Cd Length: 54 Bit Score: 76.91 E-value: 6.24e-17
|
||||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
2174-2224 | 6.77e-17 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. Pssm-ID: 438633 Cd Length: 51 Bit Score: 76.43 E-value: 6.77e-17
|
||||||||||||
Kunitz_PPTI-like | cd22608 | Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor ... |
2115-2165 | 6.93e-17 | ||||||||
Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor bitisilin, and similar proteins; This group contains Pseudocerastes persicus trypsin inhibitor (PPTI), Bitis gabonica Kunitz-type serine protease inhibitor bitisilin-1 (BG-11), -2 (BG-15) and -3 (two-Kunitz protease inhibitor), Oxyuranus scutellatus scutellatus taicatoxin, and serine protease inhibitor component (TSPI, also called venom protease inhibitor 1 or venom protease inhibitor 2), among others. PPTI from P. persicus venom shows inhibitory effect against trypsin proteolytic activity and has similarities to dendrotoxins (DTXs), with corresponding functionally important residues. Studies have shown the ability of PPTI to inhibit voltage-gated potassium channels, and consequently have dual functionality. Bitilisins 1, 2, and 3 are serine protease inhibitors expressed in snake venom glands; bitsilin-3 consists of two Kunitz protease inhibitor domains. Taicatoxin inhibits trypsin, tissue kallikrein, elastase, plasmin and factor Xa, and is also known to block the voltage-dependent L-type calcium channels from the heart, and the small conductance calcium-activated potassium channels (KCa) in chromaffin cells and in the brain. The structures of these Kunitz-type proteins are similar to other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438651 Cd Length: 54 Bit Score: 76.57 E-value: 6.93e-17
|
||||||||||||
Kunitz_collagen_alpha6_VI | cd22630 | Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This ... |
1848-1900 | 8.21e-17 | ||||||||
Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain), encoded by COL6A6 gene, and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438673 Cd Length: 55 Bit Score: 76.49 E-value: 8.21e-17
|
||||||||||||
Kunitz_collagen_alpha6_VI | cd22630 | Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This ... |
1906-1958 | 8.62e-17 | ||||||||
Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain), encoded by COL6A6 gene, and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438673 Cd Length: 55 Bit Score: 76.49 E-value: 8.62e-17
|
||||||||||||
Kunitz_textilinin-like | cd22594 | venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins ... |
1727-1778 | 1.01e-16 | ||||||||
venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins isolated from snake venoms, such as textilinin, vestiginin, spermatin, mulgin, venom basic protease inhibitor IX (BF9), and protease inhibitor-like protein (PILP), among others. Pseudonaja textilis textilinin-1 is a Kunitz-type serine protease inhibitor that binds to and blocks the activity of a range of serine proteases, including plasmin and trypsin. Ability of testilinin to inhibit plasmin, a protease involved in fibrinolysis, raises the possibility that it may be used as an alternative to aprotinin (Trasylol), which is a systemic antibleeding agent in surgery. Also included is the Bungarus fasciatus fraction IX (BF9), a chymotrypsin inhibitor that binds chymotrypsin but not trypsin. Protease inhibitor-like proteins PILP-1 and PILP-2 show weak binding and inhibition of matrix metalloproteinase-2 (MMP-2) and show an activity in inhibiting migration and invasion of neuroblastoma; they do not inhibit chymotrypsin or trypsin. The structures of these toxins are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438637 Cd Length: 56 Bit Score: 76.20 E-value: 1.01e-16
|
||||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
2114-2166 | 1.95e-16 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 75.37 E-value: 1.95e-16
|
||||||||||||
Kunitz_TFPI2_1-like | cd22616 | Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
1725-1777 | 2.01e-16 | ||||||||
Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1. The TFPI2 domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. Structure studies of KD1 complexed with proteases may help in the development of specific and potent KD1 domain protein that may have a large pharmacologic impact in preventing tumor metastasis, retinal degeneration, and degradation of collagen in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438659 Cd Length: 57 Bit Score: 75.35 E-value: 2.01e-16
|
||||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
2172-2224 | 2.12e-16 | ||||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 75.38 E-value: 2.12e-16
|
||||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
1667-1718 | 2.21e-16 | ||||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 74.99 E-value: 2.21e-16
|
||||||||||||
Kunitz_textilinin-like | cd22594 | venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins ... |
2115-2165 | 2.26e-16 | ||||||||
venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins isolated from snake venoms, such as textilinin, vestiginin, spermatin, mulgin, venom basic protease inhibitor IX (BF9), and protease inhibitor-like protein (PILP), among others. Pseudonaja textilis textilinin-1 is a Kunitz-type serine protease inhibitor that binds to and blocks the activity of a range of serine proteases, including plasmin and trypsin. Ability of testilinin to inhibit plasmin, a protease involved in fibrinolysis, raises the possibility that it may be used as an alternative to aprotinin (Trasylol), which is a systemic antibleeding agent in surgery. Also included is the Bungarus fasciatus fraction IX (BF9), a chymotrypsin inhibitor that binds chymotrypsin but not trypsin. Protease inhibitor-like proteins PILP-1 and PILP-2 show weak binding and inhibition of matrix metalloproteinase-2 (MMP-2) and show an activity in inhibiting migration and invasion of neuroblastoma; they do not inhibit chymotrypsin or trypsin. The structures of these toxins are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438637 Cd Length: 56 Bit Score: 75.43 E-value: 2.26e-16
|
||||||||||||
Kunitz_HAI2_1-like | cd22621 | Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
1784-1836 | 3.92e-16 | ||||||||
Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes the Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. HAI-2 Kunitz domain 1 (KD1) has been found to be the domain responsible for inhibition of hepatocyte growth factor (HGF) activator; activated HGF/scatter factor (HGF/SF) binds to its receptor tyrosine kinase MET to induce dimerization and initiate phosphorylation cascades leading to comprehensive cellular changes that, in the deregulated context of cancer, drive malignant transformation and progression. HAI-2 has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer; its loss leads to tumor growth and progression in part due to increased MET signaling. HAI-2 is also a specific substrate for mesotrypsin, which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in HGF/SF activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. The structures of these KD1 domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438664 Cd Length: 53 Bit Score: 74.43 E-value: 3.92e-16
|
||||||||||||
Kunitz_TFPI2_1-like | cd22616 | Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
1908-1958 | 6.06e-16 | ||||||||
Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1. The TFPI2 domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. Structure studies of KD1 complexed with proteases may help in the development of specific and potent KD1 domain protein that may have a large pharmacologic impact in preventing tumor metastasis, retinal degeneration, and degradation of collagen in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438659 Cd Length: 57 Bit Score: 74.20 E-value: 6.06e-16
|
||||||||||||
Kunitz_collagen_alpha3_VI | cd22629 | Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This ... |
1848-1900 | 7.43e-16 | ||||||||
Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha3 chain of type VI collagen (collagen alpha 3(VI) chain), encoded by COL6A3 gene. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. Mutations in the alpha1, alpha2, and alpha3 chains of collagen VI cause myopathies ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, including intermediate forms. Early onset isolated dystonia, a neurological disease, has been shown to be caused by mutations in the alpha3 chain. Findings also indicated potential associations between COL6A3 polymorphisms and lung cancer risk. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438672 Cd Length: 53 Bit Score: 73.56 E-value: 7.43e-16
|
||||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
1978-2028 | 9.70e-16 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. Pssm-ID: 438633 Cd Length: 51 Bit Score: 73.35 E-value: 9.70e-16
|
||||||||||||
Kunitz_HAI2_1-like | cd22621 | Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
1906-1958 | 9.72e-16 | ||||||||
Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes the Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. HAI-2 Kunitz domain 1 (KD1) has been found to be the domain responsible for inhibition of hepatocyte growth factor (HGF) activator; activated HGF/scatter factor (HGF/SF) binds to its receptor tyrosine kinase MET to induce dimerization and initiate phosphorylation cascades leading to comprehensive cellular changes that, in the deregulated context of cancer, drive malignant transformation and progression. HAI-2 has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer; its loss leads to tumor growth and progression in part due to increased MET signaling. HAI-2 is also a specific substrate for mesotrypsin, which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in HGF/SF activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. The structures of these KD1 domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438664 Cd Length: 53 Bit Score: 73.28 E-value: 9.72e-16
|
||||||||||||
Kunitz_eppin | cd22611 | Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily ... |
1725-1777 | 9.88e-16 | ||||||||
Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily includes the Kunitz inhibitor domain protein eppin (also called Cancer/testis antigen 71 or CT71, epididymal protease inhibitor, protease inhibitor WAP7, serine protease inhibitor-like with Kunitz and WAP domains 1, or WAP four-disulfide core domain protein 7) as well as WAP four-disulfide core domain proteins 6A and 6B in mice, and similar proteins. Eppin is a serine protease inhibitor that plays an essential role in male reproduction and fertility. It modulates the hydrolysis of seminal fluid protein semenogelin 1 (SEMG1) by the serine protease kallikrein-related peptidase 3 (KLK3, PSA), provides antimicrobial protection for spermatozoa in the ejaculate coagulum, and binds SEMG1, thereby inhibiting sperm motility. Thus, eppin could potentially be used as a target for male contraception. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438654 Cd Length: 57 Bit Score: 73.59 E-value: 9.88e-16
|
||||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
2173-2224 | 1.12e-15 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 73.06 E-value: 1.12e-15
|
||||||||||||
Kunitz_SmCI_3-like | cd22603 | third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
1725-1777 | 1.28e-15 | ||||||||
third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), Bombyx mori cocoon shell-associated trypsin inhibitor (CSTI), Bombus terrestris Kunitz-type serine protease inhibitor Bt-KTI, and similar domains. SmCI is a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. CSTI and Bt-KTI are single Kunitz domain proteins that inhibit trypsin; in addition, Bt-KTI also inhibits plasmin. This model contains the third Kunitz domain of SmCI which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438646 Cd Length: 53 Bit Score: 72.85 E-value: 1.28e-15
|
||||||||||||
Kunitz_eppin | cd22611 | Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily ... |
1848-1901 | 1.38e-15 | ||||||||
Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily includes the Kunitz inhibitor domain protein eppin (also called Cancer/testis antigen 71 or CT71, epididymal protease inhibitor, protease inhibitor WAP7, serine protease inhibitor-like with Kunitz and WAP domains 1, or WAP four-disulfide core domain protein 7) as well as WAP four-disulfide core domain proteins 6A and 6B in mice, and similar proteins. Eppin is a serine protease inhibitor that plays an essential role in male reproduction and fertility. It modulates the hydrolysis of seminal fluid protein semenogelin 1 (SEMG1) by the serine protease kallikrein-related peptidase 3 (KLK3, PSA), provides antimicrobial protection for spermatozoa in the ejaculate coagulum, and binds SEMG1, thereby inhibiting sperm motility. Thus, eppin could potentially be used as a target for male contraception. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438654 Cd Length: 57 Bit Score: 73.21 E-value: 1.38e-15
|
||||||||||||
Kunitz_eppin | cd22611 | Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily ... |
1784-1840 | 1.58e-15 | ||||||||
Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily includes the Kunitz inhibitor domain protein eppin (also called Cancer/testis antigen 71 or CT71, epididymal protease inhibitor, protease inhibitor WAP7, serine protease inhibitor-like with Kunitz and WAP domains 1, or WAP four-disulfide core domain protein 7) as well as WAP four-disulfide core domain proteins 6A and 6B in mice, and similar proteins. Eppin is a serine protease inhibitor that plays an essential role in male reproduction and fertility. It modulates the hydrolysis of seminal fluid protein semenogelin 1 (SEMG1) by the serine protease kallikrein-related peptidase 3 (KLK3, PSA), provides antimicrobial protection for spermatozoa in the ejaculate coagulum, and binds SEMG1, thereby inhibiting sperm motility. Thus, eppin could potentially be used as a target for male contraception. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438654 Cd Length: 57 Bit Score: 72.82 E-value: 1.58e-15
|
||||||||||||
Kunitz_collagen_alpha3_VI | cd22629 | Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This ... |
1906-1958 | 2.26e-15 | ||||||||
Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha3 chain of type VI collagen (collagen alpha 3(VI) chain), encoded by COL6A3 gene. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. Mutations in the alpha1, alpha2, and alpha3 chains of collagen VI cause myopathies ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, including intermediate forms. Early onset isolated dystonia, a neurological disease, has been shown to be caused by mutations in the alpha3 chain. Findings also indicated potential associations between COL6A3 polymorphisms and lung cancer risk. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438672 Cd Length: 53 Bit Score: 72.40 E-value: 2.26e-15
|
||||||||||||
Kunitz_HAI1_2-like | cd22624 | Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes ... |
1908-1959 | 2.74e-15 | ||||||||
Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 1 (HAI-1 or HAI1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. While the Kunitz domain 1 (KD1) is the major inhibitory domain of HAI-1 and involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure, studies show that deletion of HAI-1 Kunitz domain 2 (KD2) and the extracellular region enhanced inhibition of matriptase. HAI-1 KD2 has been shown to have potent inhibitory activity against trypsin, but it cannot inhibit hepatocyte growth factor activator (HGFA), and matriptase. HAI-1 is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structure of KD2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438667 Cd Length: 61 Bit Score: 72.16 E-value: 2.74e-15
|
||||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
1976-2028 | 4.67e-15 | ||||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 71.53 E-value: 4.67e-15
|
||||||||||||
Kunitz_TFPI2_1-like | cd22616 | Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
1846-1900 | 4.93e-15 | ||||||||
Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1. The TFPI2 domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. Structure studies of KD1 complexed with proteases may help in the development of specific and potent KD1 domain protein that may have a large pharmacologic impact in preventing tumor metastasis, retinal degeneration, and degradation of collagen in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438659 Cd Length: 57 Bit Score: 71.50 E-value: 4.93e-15
|
||||||||||||
Kunitz_WFIKKN_2-like | cd22606 | second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
1907-1958 | 5.76e-15 | ||||||||
second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the second Kunitz (KU2) domain, which has been shown to inhibit trypsin, but not chymotrypsin, elastase, plasmin, pancreatic kallikrein, lung tryptase, plasma kallikrein, thrombin, urokinase or tissue plasminogen activator. However, the inhibition constant of this domain for bovine trypsin is about five orders of magnitudes lower than that of bovine pancreatic trypsin inhibitor (BPTI) for trypsin. This could be due to unfavorable side-chain conformation of a tryptophan at P2' site which is incompatible with a trypsin complex; typical trypsin inhibitors of the Kunitz family feature a tyrosine residue or other less bulky residues at this site. The structure of KU2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438649 Cd Length: 53 Bit Score: 71.23 E-value: 5.76e-15
|
||||||||||||
Kunitz_TFPI2_1-like | cd22616 | Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
1786-1836 | 5.82e-15 | ||||||||
Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1. The TFPI2 domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. Structure studies of KD1 complexed with proteases may help in the development of specific and potent KD1 domain protein that may have a large pharmacologic impact in preventing tumor metastasis, retinal degeneration, and degradation of collagen in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438659 Cd Length: 57 Bit Score: 71.12 E-value: 5.82e-15
|
||||||||||||
Kunitz_HAI2_2-like | cd22622 | Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
1906-1958 | 5.87e-15 | ||||||||
Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. It has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer, the loss of which leads to tumor growth and progression attributable at least in part to increased MET signaling. HAI-2 is a specific substrate of mesotrypsin which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in hetatocyte growth factor/scatter factor (HGF/SF) activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. KD2 is similar to KD1, whose structure is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438665 Cd Length: 53 Bit Score: 71.23 E-value: 5.87e-15
|
||||||||||||
Kunitz_amblin-like | cd22638 | Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration ... |
1908-1958 | 6.02e-15 | ||||||||
Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6), Amblyomma hebraeum amblin domain 1, and similar proteins; This model includes Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6) and domain 1 of Amblyomma hebraeum amblin, and similar proteins. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. Amblin contains two Kunitz-like domains and specifically inhibits thrombin. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438680 Cd Length: 51 Bit Score: 70.88 E-value: 6.02e-15
|
||||||||||||
Kunitz_papilin_mig6-like | cd22637 | Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of ... |
1850-1900 | 6.40e-15 | ||||||||
Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, and similar domains; This model includes Kunitz domains from papilins with multiple Kunitz domains, such as Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, among others. Papilins are essential for embryonic development. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinases action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438679 Cd Length: 51 Bit Score: 70.85 E-value: 6.40e-15
|
||||||||||||
Kunitz_collagen_alpha6_VI-like | cd22631 | Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This ... |
1727-1777 | 6.99e-15 | ||||||||
Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain) and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438674 [Multi-domain] Cd Length: 51 Bit Score: 70.72 E-value: 6.99e-15
|
||||||||||||
IgI_5_Robo | cd20952 | Fifth Ig-like domain of Roundabout (Robo) homolog 1/2, and similar domains; a member of the ... |
2452-2527 | 7.14e-15 | ||||||||
Fifth Ig-like domain of Roundabout (Robo) homolog 1/2, and similar domains; a member of the I-set of IgSF domains; The members here are composed of the fifth Ig-like domain of Roundabout (Robo) homolog 1/2 and similar domains. Robo receptors play a role in the development of the central nervous system (CNS), and are receptors of Slit protein. Slit is a repellant secreted by the neural cells in the midline. Slit acts through Robo to prevent most neurons from crossing the midline from either side. Three mammalian Robo homologs (Robo1, -2, and -3), and three mammalian Slit homologs (Slit-1,-2, -3), have been identified. Commissural axons, which cross the midline, express low levels of Robo; longitudinal axons, which avoid the midline, express high levels of Robo. Robo1, -2, and -3 are expressed by commissural neurons in the vertebrate spinal cord and Slits 1, -2, -3 are expressed at the ventral midline. Robo-3 is a divergent member of the Robo family which instead of being a positive regulator of slit responsiveness, antagonizes slit responsiveness in precrossing axons. The Slit-Robo interaction is mediated by the second leucine-rich repeat (LRR) domain of Slit and the two N-terminal Ig domains of Robo, Ig1 and Ig2. The primary Robo binding site for Slit2 has been shown by surface plasmon resonance experiments and mutational analysis to be is the Ig1 domain, while the Ig2 domain has been proposed to harbor a weak secondary binding site. The fifth Ig-like domain of Robo 1 and 2 is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand but lack a C" strand. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors Pssm-ID: 409544 [Multi-domain] Cd Length: 87 Bit Score: 72.14 E-value: 7.14e-15
|
||||||||||||
Kunitz_SCI-I-like | cd22634 | chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin ... |
1717-1777 | 7.19e-15 | ||||||||
chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin inhibitors SCI-III and SCI-I, and similar proteins in insects. SCI-III and SCI-I inhibit chymotrypsin, avoiding the accidental chymotrypsin-mediated activation of prophenoloxidase. This enzyme is required by the insect immune system to produce melanin which is used to engulf foreign objects. This subfamily also includes Kunitz-type male accessory gland peptide with protease inhibitory activity, synthesized and secreted by male accessory glands of Drosophila funebris; it may play a role as an acrosin inhibitor involved in reproduction. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438677 Cd Length: 57 Bit Score: 71.00 E-value: 7.19e-15
|
||||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
2245-2297 | 7.83e-15 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. Pssm-ID: 438633 Cd Length: 51 Bit Score: 70.66 E-value: 7.83e-15
|
||||||||||||
Kunitz_papilin_mig6-like | cd22637 | Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of ... |
2115-2165 | 7.93e-15 | ||||||||
Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, and similar domains; This model includes Kunitz domains from papilins with multiple Kunitz domains, such as Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, among others. Papilins are essential for embryonic development. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinases action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438679 Cd Length: 51 Bit Score: 70.85 E-value: 7.93e-15
|
||||||||||||
Kunitz_papilin_mig6-like | cd22637 | Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of ... |
1668-1718 | 8.57e-15 | ||||||||
Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, and similar domains; This model includes Kunitz domains from papilins with multiple Kunitz domains, such as Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, among others. Papilins are essential for embryonic development. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinases action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438679 Cd Length: 51 Bit Score: 70.46 E-value: 8.57e-15
|
||||||||||||
I-set | pfam07679 | Immunoglobulin I-set domain; |
2708-2797 | 1.03e-14 | ||||||||
Immunoglobulin I-set domain; Pssm-ID: 400151 [Multi-domain] Cd Length: 90 Bit Score: 71.52 E-value: 1.03e-14
|
||||||||||||
Kunitz_collagen_alpha3_VI | cd22629 | Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This ... |
1725-1777 | 1.07e-14 | ||||||||
Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha3 chain of type VI collagen (collagen alpha 3(VI) chain), encoded by COL6A3 gene. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. Mutations in the alpha1, alpha2, and alpha3 chains of collagen VI cause myopathies ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, including intermediate forms. Early onset isolated dystonia, a neurological disease, has been shown to be caused by mutations in the alpha3 chain. Findings also indicated potential associations between COL6A3 polymorphisms and lung cancer risk. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438672 Cd Length: 53 Bit Score: 70.48 E-value: 1.07e-14
|
||||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
2033-2085 | 1.07e-14 | ||||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 70.37 E-value: 1.07e-14
|
||||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
2034-2086 | 1.10e-14 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 70.36 E-value: 1.10e-14
|
||||||||||||
Kunitz_actitoxin-like | cd22633 | Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This ... |
1727-1777 | 1.23e-14 | ||||||||
Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This model includes the Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l (also called U-AITX-Avd3l or AsKC9), Anthopleura elegantissima KappaPI-actitoxin-Ael3a (also called KappaPI-AITX-Ael3a or Kunitz-type serine protease inhibitor APEKTx1) and Anthopleura aff. xanthogrammica PI-actitoxin-Axm2b (also called PI-AITX-Axm2b or Kunitz-type proteinase inhibitor AXPI-II). U-AITX-Avd3l and KappaPI-AITX-Ael3a are dual-function toxins that inhibit both the serine protease trypsin and voltage-gated potassium channels Kv1.2/KCNA2. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438676 Cd Length: 55 Bit Score: 70.26 E-value: 1.23e-14
|
||||||||||||
IG_like | smart00410 | Immunoglobulin like; IG domains that cannot be classified into one of IGv1, IGc1, IGc2, IG. |
2724-2797 | 1.26e-14 | ||||||||
Immunoglobulin like; IG domains that cannot be classified into one of IGv1, IGc1, IGc2, IG. Pssm-ID: 214653 [Multi-domain] Cd Length: 85 Bit Score: 71.38 E-value: 1.26e-14
|
||||||||||||
Kunitz_HAI1_2-like | cd22624 | Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes ... |
1786-1836 | 1.34e-14 | ||||||||
Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 1 (HAI-1 or HAI1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. While the Kunitz domain 1 (KD1) is the major inhibitory domain of HAI-1 and involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure, studies show that deletion of HAI-1 Kunitz domain 2 (KD2) and the extracellular region enhanced inhibition of matriptase. HAI-1 KD2 has been shown to have potent inhibitory activity against trypsin, but it cannot inhibit hepatocyte growth factor activator (HGFA), and matriptase. HAI-1 is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structure of KD2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438667 Cd Length: 61 Bit Score: 70.24 E-value: 1.34e-14
|
||||||||||||
Kunitz_amblin-like | cd22638 | Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration ... |
1727-1777 | 1.37e-14 | ||||||||
Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6), Amblyomma hebraeum amblin domain 1, and similar proteins; This model includes Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6) and domain 1 of Amblyomma hebraeum amblin, and similar proteins. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. Amblin contains two Kunitz-like domains and specifically inhibits thrombin. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438680 Cd Length: 51 Bit Score: 70.11 E-value: 1.37e-14
|
||||||||||||
ser_rich_anae_1 | NF033849 | serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 ... |
1001-1251 | 1.41e-14 | ||||||||
serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 amino acids), which a highly serine-rich central region that averages over 300 aa in length. Species encoding members of this family of proteins tend to be anaerobic bacteria, including Gram-positive bacteria of the human gut microbiome and Chloroflexi from marine sediments. Pssm-ID: 468206 [Multi-domain] Cd Length: 1122 Bit Score: 80.43 E-value: 1.41e-14
|
||||||||||||
Kunitz_papilin_lacunin-like | cd22639 | Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr ... |
1978-2028 | 1.47e-14 | ||||||||
Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr proteins; This model includes Drosophila melanogaster Kunitz domain 1 of papilin and Manduca sexta Kunitz domain 1 of lacunin, and similar proteins. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinase action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. M. sexta lacunin is a large multidomain ECM containing several domains including several Kunitz-type protease inhibitors, thrombospondin type I, immunoglobulin-like and others. It exerts multiple effects on a variety of cell behaviors associated with the complex phenomenon of epithelial morphogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438681 Cd Length: 52 Bit Score: 69.91 E-value: 1.47e-14
|
||||||||||||
Kunitz_WFIKKN_2-like | cd22606 | second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
1726-1777 | 1.53e-14 | ||||||||
second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the second Kunitz (KU2) domain, which has been shown to inhibit trypsin, but not chymotrypsin, elastase, plasmin, pancreatic kallikrein, lung tryptase, plasma kallikrein, thrombin, urokinase or tissue plasminogen activator. However, the inhibition constant of this domain for bovine trypsin is about five orders of magnitudes lower than that of bovine pancreatic trypsin inhibitor (BPTI) for trypsin. This could be due to unfavorable side-chain conformation of a tryptophan at P2' site which is incompatible with a trypsin complex; typical trypsin inhibitors of the Kunitz family feature a tyrosine residue or other less bulky residues at this site. The structure of KU2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438649 Cd Length: 53 Bit Score: 70.08 E-value: 1.53e-14
|
||||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
1977-2029 | 1.53e-14 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 69.98 E-value: 1.53e-14
|
||||||||||||
Kunitz_SmCI_3-like | cd22603 | third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
1906-1958 | 1.82e-14 | ||||||||
third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), Bombyx mori cocoon shell-associated trypsin inhibitor (CSTI), Bombus terrestris Kunitz-type serine protease inhibitor Bt-KTI, and similar domains. SmCI is a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. CSTI and Bt-KTI are single Kunitz domain proteins that inhibit trypsin; in addition, Bt-KTI also inhibits plasmin. This model contains the third Kunitz domain of SmCI which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438646 Cd Length: 53 Bit Score: 69.77 E-value: 1.82e-14
|
||||||||||||
Kunitz_papilin_lacunin-like | cd22639 | Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr ... |
1908-1959 | 1.90e-14 | ||||||||
Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr proteins; This model includes Drosophila melanogaster Kunitz domain 1 of papilin and Manduca sexta Kunitz domain 1 of lacunin, and similar proteins. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinase action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. M. sexta lacunin is a large multidomain ECM containing several domains including several Kunitz-type protease inhibitors, thrombospondin type I, immunoglobulin-like and others. It exerts multiple effects on a variety of cell behaviors associated with the complex phenomenon of epithelial morphogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438681 Cd Length: 52 Bit Score: 69.53 E-value: 1.90e-14
|
||||||||||||
Kunitz_papilin | cd22635 | Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in ... |
1850-1900 | 1.91e-14 | ||||||||
Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in human and mouse papilin, and similar proteins. Papilin is an extracellular matrix glycoprotein that has been found in many organisms to be involved in thin matrix layers during gastrulation, matrix associated with wandering, phagocytic hemocytes, basement membranes and space-filling matrix during Drosophila development. It is a multidomain protein that primarily occurs in basement membranes. Papilins interact with several extracellular matrix components and ADAMTS enzymes, influences cell rearrangements and may modulate metalloproteinases during organogenesis. Papilins exist in mammals and invertebrates as a set of related, though not necessarily identical proteins. Mammalian papilin contains a single Kunitz domain, while other papilins such as that from Caenorhabditis elegans, contains multiple Kunitz domains. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438678 Cd Length: 52 Bit Score: 69.60 E-value: 1.91e-14
|
||||||||||||
Kunitz_amblin-like | cd22638 | Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration ... |
1850-1900 | 2.12e-14 | ||||||||
Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6), Amblyomma hebraeum amblin domain 1, and similar proteins; This model includes Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6) and domain 1 of Amblyomma hebraeum amblin, and similar proteins. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. Amblin contains two Kunitz-like domains and specifically inhibits thrombin. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438680 Cd Length: 51 Bit Score: 69.34 E-value: 2.12e-14
|
||||||||||||
Kunitz-type | cd00109 | Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz ... |
2035-2085 | 2.20e-14 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor (BPTI) domain; This family contains the Kunitz domain which is a common structural fold found in a family of reversible serine protease inhibitors. This domain is thought to have evolved over 500 million years and is ubiquitous in all kingdoms of life and has been incorporated into many different genes. In general, each domain is encoded by a single exon. Some genes encode proteins with a single Kunitz domain, e.g. bovine pancreatic trypsin inhibitor (BPTI), trophoblast Kunitz domain protein (TKDP), amyloid beta-protein precursor (ABPP), as well as Kunitz-type venom peptides such as dendrotoxin. Genes that encode multiple Kunitz domains include hepatocyte growth factor activator inhibitors HAI1 and HAI2 (two domains), tissue factor pathway inhibitor TFPI1 and TFPI2 (three domains) and Caenorhabditis elegans papilin (eleven domains). In addition, the Kunitz domain has been integrated into multi-domain proteins, e.g. the collagen alpha3(VI), alpha1(VII) and alpha1(XXVIII) chains, WFIKKN1 (containing WAP, Follistatin/Kazal, Immunoglobulin, two Kunitz and NTR domains) and papilin. Furthermore, each domain within a multi-Kunitz domain protein may exhibit different protease activity, such as for the three tandemly repeated domains within both tissue factor pathway inhibitors 1 and 2. The Kunitz domain is a representative of alpha/beta proteins with irregular secondary structure stabilized by three disulfide bonds and presenting three peptide loops that can be varied without introducing much destabilization to the scaffold. Protease inhibitors meet the scaffold criteria in that they are small, stable and capable of evolving the binding activity of exposed peptide loops through targeted randomization to construct combinatorial libraries. Kunitz domain-based scaffolds have been successfully utilized to construct and select a library of protease inhibitors with the potential for therapeutic application. Pssm-ID: 438633 Cd Length: 51 Bit Score: 69.50 E-value: 2.20e-14
|
||||||||||||
Kunitz_TFPI1_2-like | cd22614 | Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor ... |
1725-1777 | 2.40e-14 | ||||||||
Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor (TFPI); This model represents the second Kunitz-type domain (K2 or KPI-2) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; the K2 domain is exposed on functionally active TFPI pools in circulation in blood, in platelets, and attached to the endothelium. While the K1 (or KPI-1) domain of TFPI has been shown to bind and inhibit FVIIa, the K2 domain inhibits FXa by binding directly to the active site and forming a FXa:TFPI complex. A close interaction between the TFPI K2 domain and the FXa active site is essential for the FXa inhibitory action of TFPI and for the formation of an inactive TF/FVIIa/FXa/TFPI complex which then prevents FXa generation. Thus, blockage of K2 would prevent TFPI binding to both FXa and FVIIa/TF, and fully abolish TFPI inhibition of the coagulation cascade. The structure of the K2 domain is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438657 Cd Length: 56 Bit Score: 69.65 E-value: 2.40e-14
|
||||||||||||
PRK15319 | PRK15319 | fibronectin-binding autotransporter adhesin ShdA; |
843-1230 | 2.95e-14 | ||||||||
fibronectin-binding autotransporter adhesin ShdA; Pssm-ID: 185219 [Multi-domain] Cd Length: 2039 Bit Score: 79.74 E-value: 2.95e-14
|
||||||||||||
Kunitz_PPTI-like | cd22608 | Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor ... |
1786-1836 | 2.99e-14 | ||||||||
Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor bitisilin, and similar proteins; This group contains Pseudocerastes persicus trypsin inhibitor (PPTI), Bitis gabonica Kunitz-type serine protease inhibitor bitisilin-1 (BG-11), -2 (BG-15) and -3 (two-Kunitz protease inhibitor), Oxyuranus scutellatus scutellatus taicatoxin, and serine protease inhibitor component (TSPI, also called venom protease inhibitor 1 or venom protease inhibitor 2), among others. PPTI from P. persicus venom shows inhibitory effect against trypsin proteolytic activity and has similarities to dendrotoxins (DTXs), with corresponding functionally important residues. Studies have shown the ability of PPTI to inhibit voltage-gated potassium channels, and consequently have dual functionality. Bitilisins 1, 2, and 3 are serine protease inhibitors expressed in snake venom glands; bitsilin-3 consists of two Kunitz protease inhibitor domains. Taicatoxin inhibits trypsin, tissue kallikrein, elastase, plasmin and factor Xa, and is also known to block the voltage-dependent L-type calcium channels from the heart, and the small conductance calcium-activated potassium channels (KCa) in chromaffin cells and in the brain. The structures of these Kunitz-type proteins are similar to other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438651 Cd Length: 54 Bit Score: 69.25 E-value: 2.99e-14
|
||||||||||||
Kunitz_collagen_alpha6_VI | cd22630 | Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This ... |
1976-2028 | 3.03e-14 | ||||||||
Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain), encoded by COL6A6 gene, and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438673 Cd Length: 55 Bit Score: 69.17 E-value: 3.03e-14
|
||||||||||||
Kunitz_amblin-like | cd22638 | Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration ... |
2115-2165 | 3.04e-14 | ||||||||
Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6), Amblyomma hebraeum amblin domain 1, and similar proteins; This model includes Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6) and domain 1 of Amblyomma hebraeum amblin, and similar proteins. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. Amblin contains two Kunitz-like domains and specifically inhibits thrombin. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438680 Cd Length: 51 Bit Score: 68.95 E-value: 3.04e-14
|
||||||||||||
Kunitz_TFPI1_TFPI2_3-like | cd22615 | Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor ... |
2115-2165 | 3.44e-14 | ||||||||
Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor (TFPI) and TFPI2, and similar proteins; This model represents the third Kunitz-type domain (K3 or KPI-3) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI), and of TFPI2 (or TFPI-2). TFPI1 down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI1 complex that then slowly isomerizes to a tight FXa-TFPI1* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI1-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI1 consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; while the K1 domain of TFPI has been shown to bind and inhibit FVIIa and the K2 domain similarly inhibits FXa, the K3 domain has no known inhibitory function. However, Protein S, which functions as a cofactor for TFPI to efficiently enhance TFPI inhibition of FXa and FXa activated TF-VIIa, is dependent on direct interactions with two important residues within K3, a Glutamate and an Arginine. This model also includes TFPI2 Kunitz domain 3 (KD3). TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438658 Cd Length: 54 Bit Score: 68.86 E-value: 3.44e-14
|
||||||||||||
IgI_1_MuSK | cd20970 | agrin-responsive first immunoglobulin-like domains (Ig1) of the MuSK ectodomain; a member of ... |
2451-2538 | 3.81e-14 | ||||||||
agrin-responsive first immunoglobulin-like domains (Ig1) of the MuSK ectodomain; a member of the I-set of IgSF domains; The members here are composed of the first immunoglobulin-like domains (Ig1) of the Muscle-specific kinase (MuSK). MuSK is a receptor tyrosine kinase specifically expressed in skeletal muscle, where it plays a central role in the formation and maintenance of the neuromuscular junction (NMJ). MuSK is activated by agrin, a neuron-derived heparan sulfate proteoglycan. The activation of MUSK in myotubes regulates the formation of NMJs through the regulation of different processes including the specific expression of genes in subsynaptic nuclei, the reorganization of the actin cytoskeleton and the clustering of the acetylcholine receptors (AChR) in the postsynaptic membrane. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Unlike the V-set, one of the distinctive features of I-set domains is the lack of a C" strand. The structure of the MuSK lacks this strand and thus it belongs to the I-set of the IgSF. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409562 [Multi-domain] Cd Length: 92 Bit Score: 70.23 E-value: 3.81e-14
|
||||||||||||
Kunitz_BPTI | pfam00014 | Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually ... |
2244-2297 | 4.22e-14 | ||||||||
Kunitz/Bovine pancreatic trypsin inhibitor domain; Indicative of a protease inhibitor, usually a serine protease inhibitor. Structure is a disulfide rich alpha+beta fold. BPTI (bovine pancreatic trypsin inhibitor) is an extensively studied model structure. Certain family members are similar to the tick anticoagulant peptide (TAP). This is a highly selective inhibitor of factor Xa in the blood coagulation pathways. TAP molecules are highly dipolar, and are arranged to form a twisted two- stranded antiparallel beta-sheet followed by an alpha helix. Pssm-ID: 425421 Cd Length: 53 Bit Score: 68.82 E-value: 4.22e-14
|
||||||||||||
Kunitz_PPTI-like | cd22608 | Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor ... |
2174-2224 | 5.69e-14 | ||||||||
Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor bitisilin, and similar proteins; This group contains Pseudocerastes persicus trypsin inhibitor (PPTI), Bitis gabonica Kunitz-type serine protease inhibitor bitisilin-1 (BG-11), -2 (BG-15) and -3 (two-Kunitz protease inhibitor), Oxyuranus scutellatus scutellatus taicatoxin, and serine protease inhibitor component (TSPI, also called venom protease inhibitor 1 or venom protease inhibitor 2), among others. PPTI from P. persicus venom shows inhibitory effect against trypsin proteolytic activity and has similarities to dendrotoxins (DTXs), with corresponding functionally important residues. Studies have shown the ability of PPTI to inhibit voltage-gated potassium channels, and consequently have dual functionality. Bitilisins 1, 2, and 3 are serine protease inhibitors expressed in snake venom glands; bitsilin-3 consists of two Kunitz protease inhibitor domains. Taicatoxin inhibits trypsin, tissue kallikrein, elastase, plasmin and factor Xa, and is also known to block the voltage-dependent L-type calcium channels from the heart, and the small conductance calcium-activated potassium channels (KCa) in chromaffin cells and in the brain. The structures of these Kunitz-type proteins are similar to other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438651 Cd Length: 54 Bit Score: 68.48 E-value: 5.69e-14
|
||||||||||||
Kunitz_PPTI-like | cd22608 | Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor ... |
1908-1958 | 5.75e-14 | ||||||||
Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor bitisilin, and similar proteins; This group contains Pseudocerastes persicus trypsin inhibitor (PPTI), Bitis gabonica Kunitz-type serine protease inhibitor bitisilin-1 (BG-11), -2 (BG-15) and -3 (two-Kunitz protease inhibitor), Oxyuranus scutellatus scutellatus taicatoxin, and serine protease inhibitor component (TSPI, also called venom protease inhibitor 1 or venom protease inhibitor 2), among others. PPTI from P. persicus venom shows inhibitory effect against trypsin proteolytic activity and has similarities to dendrotoxins (DTXs), with corresponding functionally important residues. Studies have shown the ability of PPTI to inhibit voltage-gated potassium channels, and consequently have dual functionality. Bitilisins 1, 2, and 3 are serine protease inhibitors expressed in snake venom glands; bitsilin-3 consists of two Kunitz protease inhibitor domains. Taicatoxin inhibits trypsin, tissue kallikrein, elastase, plasmin and factor Xa, and is also known to block the voltage-dependent L-type calcium channels from the heart, and the small conductance calcium-activated potassium channels (KCa) in chromaffin cells and in the brain. The structures of these Kunitz-type proteins are similar to other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438651 Cd Length: 54 Bit Score: 68.48 E-value: 5.75e-14
|
||||||||||||
Kunitz_collagen_alpha1_XXVIII | cd22628 | Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This ... |
1908-1958 | 6.18e-14 | ||||||||
Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type XXVIII collagen (collagen alpha-1(XXVIII) chain) and similar proteins. The zebrafish has four collagen XXVIII genes all of which are differentially expressed in the liver, thymus, muscle, intestine and skin; only the alpha1 chain contains the Kunitz domain which is often proteolytically processed. Mammals only contain the alpha1 collagen chain, expressed mostly in dorsal root ganglia and peripheral nerves. The Kunitz domain is found at the C-terminus, and is most related to Kunitz domains of papilin and alpha3(VI) collagen. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438671 Cd Length: 51 Bit Score: 68.08 E-value: 6.18e-14
|
||||||||||||
Kunitz_collagen_alpha3_VI | cd22629 | Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This ... |
2114-2165 | 6.42e-14 | ||||||||
Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha3 chain of type VI collagen (collagen alpha 3(VI) chain), encoded by COL6A3 gene. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. Mutations in the alpha1, alpha2, and alpha3 chains of collagen VI cause myopathies ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, including intermediate forms. Early onset isolated dystonia, a neurological disease, has been shown to be caused by mutations in the alpha3 chain. Findings also indicated potential associations between COL6A3 polymorphisms and lung cancer risk. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438672 Cd Length: 53 Bit Score: 68.16 E-value: 6.42e-14
|
||||||||||||
Kunitz_actitoxin-like | cd22633 | Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This ... |
1786-1836 | 6.65e-14 | ||||||||
Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This model includes the Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l (also called U-AITX-Avd3l or AsKC9), Anthopleura elegantissima KappaPI-actitoxin-Ael3a (also called KappaPI-AITX-Ael3a or Kunitz-type serine protease inhibitor APEKTx1) and Anthopleura aff. xanthogrammica PI-actitoxin-Axm2b (also called PI-AITX-Axm2b or Kunitz-type proteinase inhibitor AXPI-II). U-AITX-Avd3l and KappaPI-AITX-Ael3a are dual-function toxins that inhibit both the serine protease trypsin and voltage-gated potassium channels Kv1.2/KCNA2. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438676 Cd Length: 55 Bit Score: 68.33 E-value: 6.65e-14
|
||||||||||||
DUF5585 | pfam17823 | Family of unknown function (DUF5585); This is a family of unknown function found in chordata. |
843-1192 | 6.85e-14 | ||||||||
Family of unknown function (DUF5585); This is a family of unknown function found in chordata. Pssm-ID: 465521 [Multi-domain] Cd Length: 506 Bit Score: 77.31 E-value: 6.85e-14
|
||||||||||||
Kunitz_papilin | cd22635 | Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in ... |
1727-1777 | 8.69e-14 | ||||||||
Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in human and mouse papilin, and similar proteins. Papilin is an extracellular matrix glycoprotein that has been found in many organisms to be involved in thin matrix layers during gastrulation, matrix associated with wandering, phagocytic hemocytes, basement membranes and space-filling matrix during Drosophila development. It is a multidomain protein that primarily occurs in basement membranes. Papilins interact with several extracellular matrix components and ADAMTS enzymes, influences cell rearrangements and may modulate metalloproteinases during organogenesis. Papilins exist in mammals and invertebrates as a set of related, though not necessarily identical proteins. Mammalian papilin contains a single Kunitz domain, while other papilins such as that from Caenorhabditis elegans, contains multiple Kunitz domains. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438678 Cd Length: 52 Bit Score: 67.67 E-value: 8.69e-14
|
||||||||||||
Kunitz_papilin_lacunin-like | cd22639 | Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr ... |
1850-1900 | 8.87e-14 | ||||||||
Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr proteins; This model includes Drosophila melanogaster Kunitz domain 1 of papilin and Manduca sexta Kunitz domain 1 of lacunin, and similar proteins. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinase action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. M. sexta lacunin is a large multidomain ECM containing several domains including several Kunitz-type protease inhibitors, thrombospondin type I, immunoglobulin-like and others. It exerts multiple effects on a variety of cell behaviors associated with the complex phenomenon of epithelial morphogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438681 Cd Length: 52 Bit Score: 67.60 E-value: 8.87e-14
|
||||||||||||
Kunitz_papilin_mig6-like | cd22637 | Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of ... |
1727-1777 | 1.03e-13 | ||||||||
Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, and similar domains; This model includes Kunitz domains from papilins with multiple Kunitz domains, such as Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, among others. Papilins are essential for embryonic development. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinases action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438679 Cd Length: 51 Bit Score: 67.38 E-value: 1.03e-13
|
||||||||||||
Kunitz_textilinin-like | cd22594 | venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins ... |
1786-1836 | 1.24e-13 | ||||||||
venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins isolated from snake venoms, such as textilinin, vestiginin, spermatin, mulgin, venom basic protease inhibitor IX (BF9), and protease inhibitor-like protein (PILP), among others. Pseudonaja textilis textilinin-1 is a Kunitz-type serine protease inhibitor that binds to and blocks the activity of a range of serine proteases, including plasmin and trypsin. Ability of testilinin to inhibit plasmin, a protease involved in fibrinolysis, raises the possibility that it may be used as an alternative to aprotinin (Trasylol), which is a systemic antibleeding agent in surgery. Also included is the Bungarus fasciatus fraction IX (BF9), a chymotrypsin inhibitor that binds chymotrypsin but not trypsin. Protease inhibitor-like proteins PILP-1 and PILP-2 show weak binding and inhibition of matrix metalloproteinase-2 (MMP-2) and show an activity in inhibiting migration and invasion of neuroblastoma; they do not inhibit chymotrypsin or trypsin. The structures of these toxins are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438637 Cd Length: 56 Bit Score: 67.34 E-value: 1.24e-13
|
||||||||||||
Kunitz_TFPI2_1-like | cd22616 | Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
2171-2224 | 1.32e-13 | ||||||||
Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1. The TFPI2 domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. Structure studies of KD1 complexed with proteases may help in the development of specific and potent KD1 domain protein that may have a large pharmacologic impact in preventing tumor metastasis, retinal degeneration, and degradation of collagen in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438659 Cd Length: 57 Bit Score: 67.26 E-value: 1.32e-13
|
||||||||||||
Kunitz_papilin_mig6-like | cd22637 | Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of ... |
1786-1836 | 1.51e-13 | ||||||||
Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, and similar domains; This model includes Kunitz domains from papilins with multiple Kunitz domains, such as Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, among others. Papilins are essential for embryonic development. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinases action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438679 Cd Length: 51 Bit Score: 67.00 E-value: 1.51e-13
|
||||||||||||
KU | smart00131 | BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of ... |
2243-2297 | 1.75e-13 | ||||||||
BPTI/Kunitz family of serine protease inhibitors; Serine protease inhibitors. One member of the family is encoded by an alternatively-spliced form of Alzheimer's amyloid beta-protein. Pssm-ID: 197529 Cd Length: 53 Bit Score: 66.90 E-value: 1.75e-13
|
||||||||||||
Kunitz_HAI1_2-like | cd22624 | Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes ... |
1850-1906 | 1.87e-13 | ||||||||
Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 1 (HAI-1 or HAI1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. While the Kunitz domain 1 (KD1) is the major inhibitory domain of HAI-1 and involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure, studies show that deletion of HAI-1 Kunitz domain 2 (KD2) and the extracellular region enhanced inhibition of matriptase. HAI-1 KD2 has been shown to have potent inhibitory activity against trypsin, but it cannot inhibit hepatocyte growth factor activator (HGFA), and matriptase. HAI-1 is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structure of KD2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438667 Cd Length: 61 Bit Score: 67.16 E-value: 1.87e-13
|
||||||||||||
Kunitz_HAI1_1-like | cd22623 | Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes ... |
1727-1777 | 1.98e-13 | ||||||||
Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 1 (HAI1 or HAI-1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. KD1, the major inhibitory domain of HAI-1, is involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure; presence of the target protease causes changes in the HAI-1 structure to an extended conformation. HAI-1 has been shown to inhibit several serine proteases such as matripase, hepsin, trypsin, hepatocyte growth factor activator (HGFA), and prostasin. It is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438666 Cd Length: 59 Bit Score: 66.80 E-value: 1.98e-13
|
||||||||||||
IgI_2_Robo | cd05724 | Second immunoglobulin (Ig)-like domain in Robo (roundabout) receptors; member of the I-set of ... |
2455-2527 | 2.50e-13 | ||||||||
Second immunoglobulin (Ig)-like domain in Robo (roundabout) receptors; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the second immunoglobulin (Ig)-like domain in Robo (roundabout) receptors. Robo receptors play a role in the development of the central nervous system (CNS), and are receptors of the Slit protein. Slit is a repellant secreted by the neural cells in the midline. Slit acts through Robo to prevent most neurons from crossing the midline from either side. Three mammalian Robo homologs (Robo1, Robo2, and Robo3), and three mammalian Slit homologs (Slit-1,Slit-2, Slit-3), have been identified. Commissural axons, which cross the midline, express low levels of Robo; longitudinal axons, which avoid the midline, express high levels of Robo. Robo1, Robo2, and Robo3 are expressed by commissural neurons in the vertebrate spinal cord and Slit-1, Slit-2, Slit-3 are expressed at the ventral midline. Robo-3 is a divergent member of the Robo family which instead of being a positive regulator of Slit responsiveness, antagonizes Slit responsiveness in precrossing axons. The Slit-Robo interaction is mediated by the second leucine-rich repeat (LRR) domain of Slit and the two N-terminal Ig domains of Robo, Ig1 and Ig2. The primary Robo binding site for Slit-2 has been shown by surface plasmon resonance experiments and mutational analysis to be the Ig1 domain, while the Ig2 domain has been proposed to harbor a weak secondary binding site. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409389 [Multi-domain] Cd Length: 87 Bit Score: 67.81 E-value: 2.50e-13
|
||||||||||||
Kunitz_textilinin-like | cd22594 | venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins ... |
2174-2224 | 2.56e-13 | ||||||||
venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins isolated from snake venoms, such as textilinin, vestiginin, spermatin, mulgin, venom basic protease inhibitor IX (BF9), and protease inhibitor-like protein (PILP), among others. Pseudonaja textilis textilinin-1 is a Kunitz-type serine protease inhibitor that binds to and blocks the activity of a range of serine proteases, including plasmin and trypsin. Ability of testilinin to inhibit plasmin, a protease involved in fibrinolysis, raises the possibility that it may be used as an alternative to aprotinin (Trasylol), which is a systemic antibleeding agent in surgery. Also included is the Bungarus fasciatus fraction IX (BF9), a chymotrypsin inhibitor that binds chymotrypsin but not trypsin. Protease inhibitor-like proteins PILP-1 and PILP-2 show weak binding and inhibition of matrix metalloproteinase-2 (MMP-2) and show an activity in inhibiting migration and invasion of neuroblastoma; they do not inhibit chymotrypsin or trypsin. The structures of these toxins are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438637 Cd Length: 56 Bit Score: 66.57 E-value: 2.56e-13
|
||||||||||||
Kunitz_collagen_alpha6_VI | cd22630 | Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This ... |
2114-2167 | 2.78e-13 | ||||||||
Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain), encoded by COL6A6 gene, and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438673 Cd Length: 55 Bit Score: 66.47 E-value: 2.78e-13
|
||||||||||||
Kunitz_papilin_lacunin-like | cd22639 | Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr ... |
2115-2165 | 2.92e-13 | ||||||||
Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr proteins; This model includes Drosophila melanogaster Kunitz domain 1 of papilin and Manduca sexta Kunitz domain 1 of lacunin, and similar proteins. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinase action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. M. sexta lacunin is a large multidomain ECM containing several domains including several Kunitz-type protease inhibitors, thrombospondin type I, immunoglobulin-like and others. It exerts multiple effects on a variety of cell behaviors associated with the complex phenomenon of epithelial morphogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438681 Cd Length: 52 Bit Score: 66.44 E-value: 2.92e-13
|
||||||||||||
Kunitz_TFPI2_1-like | cd22616 | Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
2114-2167 | 3.31e-13 | ||||||||
Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1. The TFPI2 domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. Structure studies of KD1 complexed with proteases may help in the development of specific and potent KD1 domain protein that may have a large pharmacologic impact in preventing tumor metastasis, retinal degeneration, and degradation of collagen in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438659 Cd Length: 57 Bit Score: 66.11 E-value: 3.31e-13
|
||||||||||||
Kunitz_actitoxin-like | cd22633 | Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This ... |
2113-2165 | 3.33e-13 | ||||||||
Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This model includes the Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l (also called U-AITX-Avd3l or AsKC9), Anthopleura elegantissima KappaPI-actitoxin-Ael3a (also called KappaPI-AITX-Ael3a or Kunitz-type serine protease inhibitor APEKTx1) and Anthopleura aff. xanthogrammica PI-actitoxin-Axm2b (also called PI-AITX-Axm2b or Kunitz-type proteinase inhibitor AXPI-II). U-AITX-Avd3l and KappaPI-AITX-Ael3a are dual-function toxins that inhibit both the serine protease trypsin and voltage-gated potassium channels Kv1.2/KCNA2. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438676 Cd Length: 55 Bit Score: 66.40 E-value: 3.33e-13
|
||||||||||||
Kunitz_HAI2_2-like | cd22622 | Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
1786-1836 | 3.47e-13 | ||||||||
Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. It has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer, the loss of which leads to tumor growth and progression attributable at least in part to increased MET signaling. HAI-2 is a specific substrate of mesotrypsin which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in hetatocyte growth factor/scatter factor (HGF/SF) activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. KD2 is similar to KD1, whose structure is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438665 Cd Length: 53 Bit Score: 66.23 E-value: 3.47e-13
|
||||||||||||
Kunitz_BmTI-like | cd22604 | Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group ... |
1848-1900 | 3.70e-13 | ||||||||
Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group includes Kunitz-type serine protease inhibitors 6 (BmTI-6) and A (BmTI-A), both of which inhibit bovine trypsin, bovine chymotrypsin, human plasmin, human plasma kallikrein and human neutrophil elastase, but not bovine thrombin, human factor Xa or porcine pancreatic kallikrein. They may play a role in blocking blood coagulation during the larvae fixation on cattle. This subfamily also includes Rhipicephalus microplus protease inhibitor carrapatin. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438647 [Multi-domain] Cd Length: 56 Bit Score: 66.32 E-value: 3.70e-13
|
||||||||||||
Kunitz_TFPI1_TFPI2_3-like | cd22615 | Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor ... |
1786-1836 | 3.88e-13 | ||||||||
Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor (TFPI) and TFPI2, and similar proteins; This model represents the third Kunitz-type domain (K3 or KPI-3) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI), and of TFPI2 (or TFPI-2). TFPI1 down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI1 complex that then slowly isomerizes to a tight FXa-TFPI1* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI1-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI1 consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; while the K1 domain of TFPI has been shown to bind and inhibit FVIIa and the K2 domain similarly inhibits FXa, the K3 domain has no known inhibitory function. However, Protein S, which functions as a cofactor for TFPI to efficiently enhance TFPI inhibition of FXa and FXa activated TF-VIIa, is dependent on direct interactions with two important residues within K3, a Glutamate and an Arginine. This model also includes TFPI2 Kunitz domain 3 (KD3). TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438658 Cd Length: 54 Bit Score: 66.16 E-value: 3.88e-13
|
||||||||||||
Kunitz_TFPI1_2-like | cd22614 | Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor ... |
1784-1836 | 3.99e-13 | ||||||||
Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor (TFPI); This model represents the second Kunitz-type domain (K2 or KPI-2) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; the K2 domain is exposed on functionally active TFPI pools in circulation in blood, in platelets, and attached to the endothelium. While the K1 (or KPI-1) domain of TFPI has been shown to bind and inhibit FVIIa, the K2 domain inhibits FXa by binding directly to the active site and forming a FXa:TFPI complex. A close interaction between the TFPI K2 domain and the FXa active site is essential for the FXa inhibitory action of TFPI and for the formation of an inactive TF/FVIIa/FXa/TFPI complex which then prevents FXa generation. Thus, blockage of K2 would prevent TFPI binding to both FXa and FVIIa/TF, and fully abolish TFPI inhibition of the coagulation cascade. The structure of the K2 domain is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438657 Cd Length: 56 Bit Score: 66.18 E-value: 3.99e-13
|
||||||||||||
Kunitz_papilin | cd22635 | Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in ... |
2115-2165 | 4.02e-13 | ||||||||
Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in human and mouse papilin, and similar proteins. Papilin is an extracellular matrix glycoprotein that has been found in many organisms to be involved in thin matrix layers during gastrulation, matrix associated with wandering, phagocytic hemocytes, basement membranes and space-filling matrix during Drosophila development. It is a multidomain protein that primarily occurs in basement membranes. Papilins interact with several extracellular matrix components and ADAMTS enzymes, influences cell rearrangements and may modulate metalloproteinases during organogenesis. Papilins exist in mammals and invertebrates as a set of related, though not necessarily identical proteins. Mammalian papilin contains a single Kunitz domain, while other papilins such as that from Caenorhabditis elegans, contains multiple Kunitz domains. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438678 Cd Length: 52 Bit Score: 65.75 E-value: 4.02e-13
|
||||||||||||
Kunitz_bikunin_2-like | cd22597 | second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal ... |
1725-1777 | 4.36e-13 | ||||||||
second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. Bikunin is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438640 Cd Length: 55 Bit Score: 65.87 E-value: 4.36e-13
|
||||||||||||
Kunitz_BmTI-like | cd22604 | Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group ... |
1733-1777 | 4.36e-13 | ||||||||
Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group includes Kunitz-type serine protease inhibitors 6 (BmTI-6) and A (BmTI-A), both of which inhibit bovine trypsin, bovine chymotrypsin, human plasmin, human plasma kallikrein and human neutrophil elastase, but not bovine thrombin, human factor Xa or porcine pancreatic kallikrein. They may play a role in blocking blood coagulation during the larvae fixation on cattle. This subfamily also includes Rhipicephalus microplus protease inhibitor carrapatin. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438647 [Multi-domain] Cd Length: 56 Bit Score: 65.93 E-value: 4.36e-13
|
||||||||||||
Kunitz_SmCI_3-like | cd22603 | third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
1848-1900 | 4.55e-13 | ||||||||
third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), Bombyx mori cocoon shell-associated trypsin inhibitor (CSTI), Bombus terrestris Kunitz-type serine protease inhibitor Bt-KTI, and similar domains. SmCI is a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. CSTI and Bt-KTI are single Kunitz domain proteins that inhibit trypsin; in addition, Bt-KTI also inhibits plasmin. This model contains the third Kunitz domain of SmCI which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438646 Cd Length: 53 Bit Score: 65.91 E-value: 4.55e-13
|
||||||||||||
Kunitz_collagen_alpha1_VII | cd22627 | Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This ... |
1848-1900 | 4.83e-13 | ||||||||
Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type VII collagen (collagen alpha-1(VII) chain also called long-chain collagen or LC collagen) and similar proteins. LC collagen, encoded by the COL7A1 gene, is a stratified squamous epithelial basement membrane protein that forms anchoring fibrils which may contribute to epithelial basement membrane organization and adherence by interacting with extracellular matrix (ECM) proteins such as type IV collagen. So far, over 800 COL7A1 mutations have been reported, including missense, nonsense, splicing, insertion, and deletion mutations which to varying degrees leads to deficiency of type VII collagen. Epidermolysis bullosa acquisita (EBA) is an autoimmune acquired blistering skin disease resulting from autoantibodies to type VII collagen. The COL7A1 protein contains a Kunitz domain, the deactivation of which induces tumorigenesis. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438670 Cd Length: 53 Bit Score: 65.73 E-value: 4.83e-13
|
||||||||||||
Kunitz_TFPI1_TFPI2_3-like | cd22615 | Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor ... |
2243-2297 | 4.85e-13 | ||||||||
Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor (TFPI) and TFPI2, and similar proteins; This model represents the third Kunitz-type domain (K3 or KPI-3) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI), and of TFPI2 (or TFPI-2). TFPI1 down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI1 complex that then slowly isomerizes to a tight FXa-TFPI1* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI1-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI1 consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; while the K1 domain of TFPI has been shown to bind and inhibit FVIIa and the K2 domain similarly inhibits FXa, the K3 domain has no known inhibitory function. However, Protein S, which functions as a cofactor for TFPI to efficiently enhance TFPI inhibition of FXa and FXa activated TF-VIIa, is dependent on direct interactions with two important residues within K3, a Glutamate and an Arginine. This model also includes TFPI2 Kunitz domain 3 (KD3). TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438658 Cd Length: 54 Bit Score: 65.78 E-value: 4.85e-13
|
||||||||||||
Kunitz_papilin_mig6-like | cd22637 | Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of ... |
1978-2028 | 4.97e-13 | ||||||||
Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, and similar domains; This model includes Kunitz domains from papilins with multiple Kunitz domains, such as Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, among others. Papilins are essential for embryonic development. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinases action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438679 Cd Length: 51 Bit Score: 65.45 E-value: 4.97e-13
|
||||||||||||
Kunitz_TFPI2_2-like | cd22617 | Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
1786-1836 | 5.02e-13 | ||||||||
Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438660 Cd Length: 54 Bit Score: 65.87 E-value: 5.02e-13
|
||||||||||||
Kunitz_collagen_alpha6_VI-like | cd22631 | Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This ... |
1908-1958 | 5.44e-13 | ||||||||
Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain) and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438674 [Multi-domain] Cd Length: 51 Bit Score: 65.33 E-value: 5.44e-13
|
||||||||||||
Kunitz_PPTI-like | cd22608 | Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor ... |
1850-1900 | 5.70e-13 | ||||||||
Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor bitisilin, and similar proteins; This group contains Pseudocerastes persicus trypsin inhibitor (PPTI), Bitis gabonica Kunitz-type serine protease inhibitor bitisilin-1 (BG-11), -2 (BG-15) and -3 (two-Kunitz protease inhibitor), Oxyuranus scutellatus scutellatus taicatoxin, and serine protease inhibitor component (TSPI, also called venom protease inhibitor 1 or venom protease inhibitor 2), among others. PPTI from P. persicus venom shows inhibitory effect against trypsin proteolytic activity and has similarities to dendrotoxins (DTXs), with corresponding functionally important residues. Studies have shown the ability of PPTI to inhibit voltage-gated potassium channels, and consequently have dual functionality. Bitilisins 1, 2, and 3 are serine protease inhibitors expressed in snake venom glands; bitsilin-3 consists of two Kunitz protease inhibitor domains. Taicatoxin inhibits trypsin, tissue kallikrein, elastase, plasmin and factor Xa, and is also known to block the voltage-dependent L-type calcium channels from the heart, and the small conductance calcium-activated potassium channels (KCa) in chromaffin cells and in the brain. The structures of these Kunitz-type proteins are similar to other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438651 Cd Length: 54 Bit Score: 65.40 E-value: 5.70e-13
|
||||||||||||
Kunitz_TFPI1_2-like | cd22614 | Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor ... |
1847-1900 | 6.76e-13 | ||||||||
Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor (TFPI); This model represents the second Kunitz-type domain (K2 or KPI-2) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; the K2 domain is exposed on functionally active TFPI pools in circulation in blood, in platelets, and attached to the endothelium. While the K1 (or KPI-1) domain of TFPI has been shown to bind and inhibit FVIIa, the K2 domain inhibits FXa by binding directly to the active site and forming a FXa:TFPI complex. A close interaction between the TFPI K2 domain and the FXa active site is essential for the FXa inhibitory action of TFPI and for the formation of an inactive TF/FVIIa/FXa/TFPI complex which then prevents FXa generation. Thus, blockage of K2 would prevent TFPI binding to both FXa and FVIIa/TF, and fully abolish TFPI inhibition of the coagulation cascade. The structure of the K2 domain is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438657 Cd Length: 56 Bit Score: 65.41 E-value: 6.76e-13
|
||||||||||||
Kunitz_HAI1_1-like | cd22623 | Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes ... |
1908-1959 | 6.97e-13 | ||||||||
Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 1 (HAI1 or HAI-1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. KD1, the major inhibitory domain of HAI-1, is involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure; presence of the target protease causes changes in the HAI-1 structure to an extended conformation. HAI-1 has been shown to inhibit several serine proteases such as matripase, hepsin, trypsin, hepatocyte growth factor activator (HGFA), and prostasin. It is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438666 Cd Length: 59 Bit Score: 65.26 E-value: 6.97e-13
|
||||||||||||
Kunitz_bikunin_1-like | cd22596 | first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal ... |
1906-1958 | 7.02e-13 | ||||||||
first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. It is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438639 Cd Length: 54 Bit Score: 65.35 E-value: 7.02e-13
|
||||||||||||
Kunitz_conkunitzin | cd22593 | conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 ... |
1908-1958 | 7.03e-13 | ||||||||
conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 (Cs1) and -S2 (Cs2). Conkunitzins are pore-modulating toxins that block voltage-dependent potassium channels (Kvs) by exploiting inherent slow inactivation to block K+ channels. Cs1 binds to the channel turrets and disrupts the structural water hydrogen-bonding network, exposing the peripheral water pockets of ion channels and triggering an asymmetric collapse of the pore. Conus bullatus conkunitzin-B1, expressed in the venom duct, specifically blocks voltage-activated potassium channels (Kv) of the Shaker family. Members of this subfamily contain 2 disulfide bonds instead of the 3 present in most Kunitz domain proteins. Pssm-ID: 438636 Cd Length: 51 Bit Score: 65.32 E-value: 7.03e-13
|
||||||||||||
Kunitz_bikunin_1-like | cd22596 | first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal ... |
1848-1900 | 7.09e-13 | ||||||||
first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. It is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438639 Cd Length: 54 Bit Score: 65.35 E-value: 7.09e-13
|
||||||||||||
Kunitz_actitoxin-like | cd22633 | Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This ... |
2173-2224 | 8.09e-13 | ||||||||
Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This model includes the Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l (also called U-AITX-Avd3l or AsKC9), Anthopleura elegantissima KappaPI-actitoxin-Ael3a (also called KappaPI-AITX-Ael3a or Kunitz-type serine protease inhibitor APEKTx1) and Anthopleura aff. xanthogrammica PI-actitoxin-Axm2b (also called PI-AITX-Axm2b or Kunitz-type proteinase inhibitor AXPI-II). U-AITX-Avd3l and KappaPI-AITX-Ael3a are dual-function toxins that inhibit both the serine protease trypsin and voltage-gated potassium channels Kv1.2/KCNA2. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438676 Cd Length: 55 Bit Score: 65.25 E-value: 8.09e-13
|
||||||||||||
Ig_3 | pfam13927 | Immunoglobulin domain; This family contains immunoglobulin-like domains. |
2450-2524 | 8.15e-13 | ||||||||
Immunoglobulin domain; This family contains immunoglobulin-like domains. Pssm-ID: 464046 [Multi-domain] Cd Length: 78 Bit Score: 66.05 E-value: 8.15e-13
|
||||||||||||
Kunitz_collagen_alpha1_XXVIII | cd22628 | Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This ... |
1850-1900 | 8.71e-13 | ||||||||
Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type XXVIII collagen (collagen alpha-1(XXVIII) chain) and similar proteins. The zebrafish has four collagen XXVIII genes all of which are differentially expressed in the liver, thymus, muscle, intestine and skin; only the alpha1 chain contains the Kunitz domain which is often proteolytically processed. Mammals only contain the alpha1 collagen chain, expressed mostly in dorsal root ganglia and peripheral nerves. The Kunitz domain is found at the C-terminus, and is most related to Kunitz domains of papilin and alpha3(VI) collagen. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438671 Cd Length: 51 Bit Score: 64.99 E-value: 8.71e-13
|
||||||||||||
Kunitz_collagen_alpha1_VII | cd22627 | Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This ... |
1668-1718 | 8.76e-13 | ||||||||
Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type VII collagen (collagen alpha-1(VII) chain also called long-chain collagen or LC collagen) and similar proteins. LC collagen, encoded by the COL7A1 gene, is a stratified squamous epithelial basement membrane protein that forms anchoring fibrils which may contribute to epithelial basement membrane organization and adherence by interacting with extracellular matrix (ECM) proteins such as type IV collagen. So far, over 800 COL7A1 mutations have been reported, including missense, nonsense, splicing, insertion, and deletion mutations which to varying degrees leads to deficiency of type VII collagen. Epidermolysis bullosa acquisita (EBA) is an autoimmune acquired blistering skin disease resulting from autoantibodies to type VII collagen. The COL7A1 protein contains a Kunitz domain, the deactivation of which induces tumorigenesis. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438670 Cd Length: 53 Bit Score: 64.96 E-value: 8.76e-13
|
||||||||||||
Kunitz_collagen_alpha1_VII | cd22627 | Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This ... |
1906-1958 | 9.38e-13 | ||||||||
Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type VII collagen (collagen alpha-1(VII) chain also called long-chain collagen or LC collagen) and similar proteins. LC collagen, encoded by the COL7A1 gene, is a stratified squamous epithelial basement membrane protein that forms anchoring fibrils which may contribute to epithelial basement membrane organization and adherence by interacting with extracellular matrix (ECM) proteins such as type IV collagen. So far, over 800 COL7A1 mutations have been reported, including missense, nonsense, splicing, insertion, and deletion mutations which to varying degrees leads to deficiency of type VII collagen. Epidermolysis bullosa acquisita (EBA) is an autoimmune acquired blistering skin disease resulting from autoantibodies to type VII collagen. The COL7A1 protein contains a Kunitz domain, the deactivation of which induces tumorigenesis. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438670 Cd Length: 53 Bit Score: 64.96 E-value: 9.38e-13
|
||||||||||||
Kunitz_HAI1_2-like | cd22624 | Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes ... |
1727-1777 | 9.84e-13 | ||||||||
Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 1 (HAI-1 or HAI1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. While the Kunitz domain 1 (KD1) is the major inhibitory domain of HAI-1 and involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure, studies show that deletion of HAI-1 Kunitz domain 2 (KD2) and the extracellular region enhanced inhibition of matriptase. HAI-1 KD2 has been shown to have potent inhibitory activity against trypsin, but it cannot inhibit hepatocyte growth factor activator (HGFA), and matriptase. HAI-1 is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structure of KD2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438667 Cd Length: 61 Bit Score: 65.23 E-value: 9.84e-13
|
||||||||||||
Kunitz_papilin | cd22635 | Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in ... |
1978-2028 | 1.03e-12 | ||||||||
Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in human and mouse papilin, and similar proteins. Papilin is an extracellular matrix glycoprotein that has been found in many organisms to be involved in thin matrix layers during gastrulation, matrix associated with wandering, phagocytic hemocytes, basement membranes and space-filling matrix during Drosophila development. It is a multidomain protein that primarily occurs in basement membranes. Papilins interact with several extracellular matrix components and ADAMTS enzymes, influences cell rearrangements and may modulate metalloproteinases during organogenesis. Papilins exist in mammals and invertebrates as a set of related, though not necessarily identical proteins. Mammalian papilin contains a single Kunitz domain, while other papilins such as that from Caenorhabditis elegans, contains multiple Kunitz domains. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438678 Cd Length: 52 Bit Score: 64.59 E-value: 1.03e-12
|
||||||||||||
Ig_3 | pfam13927 | Immunoglobulin domain; This family contains immunoglobulin-like domains. |
2723-2784 | 1.13e-12 | ||||||||
Immunoglobulin domain; This family contains immunoglobulin-like domains. Pssm-ID: 464046 [Multi-domain] Cd Length: 78 Bit Score: 65.66 E-value: 1.13e-12
|
||||||||||||
IgI_4_hemolin-like | cd20978 | Fourth immunoglobulin (Ig)-like domain of hemolin, and similar domains; a member of the I-set ... |
2450-2538 | 1.16e-12 | ||||||||
Fourth immunoglobulin (Ig)-like domain of hemolin, and similar domains; a member of the I-set of IgSF domains; The members here are composed of the fourth immunoglobulin (Ig)-like domain of hemolin and similar proteins. Hemolin, an insect immunoglobulin superfamily (IgSF) member containing four Ig-like domains, is a lipopolysaccharide-binding immune protein induced during bacterial infection. Hemolin shares significant sequence similarity with the first four Ig-like domains of the transmembrane cell adhesion molecules (CAMs) of the L1 family. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. The fourth Ig-like domain of hemolin is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set domains, members of the I-set have a discontinuous A strand but lack a C" strand. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409570 [Multi-domain] Cd Length: 88 Bit Score: 65.88 E-value: 1.16e-12
|
||||||||||||
Kunitz_TFPI1_1-like | cd22613 | Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor ... |
1668-1719 | 1.24e-12 | ||||||||
Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor (TFPI); This model represents the first Kunitz-type domain (K1 or KPI-1) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; The K1 domain of TFPI has been shown to bind and inhibit FVIIa while the K2 domain similarly inhibits FXa. Small peptide blocking inhibition of FXa and TF-FVIIa by TFPI shows that domain K1 is not only important for FVIIa inhibition but also for FXa inhibition, i.e. for the transition of the loose to the tight FXa-TFPI complex. The structure of the K1 domain is similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438656 Cd Length: 55 Bit Score: 64.68 E-value: 1.24e-12
|
||||||||||||
Kunitz_collagen_alpha1_VII | cd22627 | Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This ... |
2115-2165 | 1.27e-12 | ||||||||
Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type VII collagen (collagen alpha-1(VII) chain also called long-chain collagen or LC collagen) and similar proteins. LC collagen, encoded by the COL7A1 gene, is a stratified squamous epithelial basement membrane protein that forms anchoring fibrils which may contribute to epithelial basement membrane organization and adherence by interacting with extracellular matrix (ECM) proteins such as type IV collagen. So far, over 800 COL7A1 mutations have been reported, including missense, nonsense, splicing, insertion, and deletion mutations which to varying degrees leads to deficiency of type VII collagen. Epidermolysis bullosa acquisita (EBA) is an autoimmune acquired blistering skin disease resulting from autoantibodies to type VII collagen. The COL7A1 protein contains a Kunitz domain, the deactivation of which induces tumorigenesis. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438670 Cd Length: 53 Bit Score: 64.58 E-value: 1.27e-12
|
||||||||||||
Kunitz_dendrotoxin | cd22595 | dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake ... |
1726-1779 | 1.31e-12 | ||||||||
dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake venoms, such as dendrotoxins (DTXs) I, K and B, mambaquaretin-1 (MQ-1) and calcicludine. The dendrotoxins have little or no anti-protease activity but have been shown to block certain subtypes of voltage dependent potassium channels in neurons. Dendroaspis angusticeps (green mamba) alpha-dendrotoxin is a neurotoxin that enhances acetylcholine release at neuromuscular junctions. Studies with cloned K(+) channels show that this toxin blocks Kv1.1, Kv1.2 and Kv1.6 channels in the nanomolar range, whereas Dendroaspis polylepis (black mamba) dendrotoxin K preferentially blocks Kv1.1 channels. Also, structural analogs of dendrotoxins have facilitated defining the molecular recognition properties of different types of K(+) channels, and therefore, dendrotoxins are widely used as probes for studying the function of K(+) channels in physiology and pathophysiology. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438638 Cd Length: 56 Bit Score: 64.77 E-value: 1.31e-12
|
||||||||||||
Kunitz_WFIKKN_2-like | cd22606 | second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
1849-1901 | 1.46e-12 | ||||||||
second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the second Kunitz (KU2) domain, which has been shown to inhibit trypsin, but not chymotrypsin, elastase, plasmin, pancreatic kallikrein, lung tryptase, plasma kallikrein, thrombin, urokinase or tissue plasminogen activator. However, the inhibition constant of this domain for bovine trypsin is about five orders of magnitudes lower than that of bovine pancreatic trypsin inhibitor (BPTI) for trypsin. This could be due to unfavorable side-chain conformation of a tryptophan at P2' site which is incompatible with a trypsin complex; typical trypsin inhibitors of the Kunitz family feature a tyrosine residue or other less bulky residues at this site. The structure of KU2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438649 Cd Length: 53 Bit Score: 64.30 E-value: 1.46e-12
|
||||||||||||
Kunitz_dendrotoxin | cd22595 | dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake ... |
2115-2165 | 1.46e-12 | ||||||||
dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake venoms, such as dendrotoxins (DTXs) I, K and B, mambaquaretin-1 (MQ-1) and calcicludine. The dendrotoxins have little or no anti-protease activity but have been shown to block certain subtypes of voltage dependent potassium channels in neurons. Dendroaspis angusticeps (green mamba) alpha-dendrotoxin is a neurotoxin that enhances acetylcholine release at neuromuscular junctions. Studies with cloned K(+) channels show that this toxin blocks Kv1.1, Kv1.2 and Kv1.6 channels in the nanomolar range, whereas Dendroaspis polylepis (black mamba) dendrotoxin K preferentially blocks Kv1.1 channels. Also, structural analogs of dendrotoxins have facilitated defining the molecular recognition properties of different types of K(+) channels, and therefore, dendrotoxins are widely used as probes for studying the function of K(+) channels in physiology and pathophysiology. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438638 Cd Length: 56 Bit Score: 64.38 E-value: 1.46e-12
|
||||||||||||
Kunitz_TFPI1_2-like | cd22614 | Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor ... |
1906-1959 | 1.46e-12 | ||||||||
Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor (TFPI); This model represents the second Kunitz-type domain (K2 or KPI-2) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; the K2 domain is exposed on functionally active TFPI pools in circulation in blood, in platelets, and attached to the endothelium. While the K1 (or KPI-1) domain of TFPI has been shown to bind and inhibit FVIIa, the K2 domain inhibits FXa by binding directly to the active site and forming a FXa:TFPI complex. A close interaction between the TFPI K2 domain and the FXa active site is essential for the FXa inhibitory action of TFPI and for the formation of an inactive TF/FVIIa/FXa/TFPI complex which then prevents FXa generation. Thus, blockage of K2 would prevent TFPI binding to both FXa and FVIIa/TF, and fully abolish TFPI inhibition of the coagulation cascade. The structure of the K2 domain is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438657 Cd Length: 56 Bit Score: 64.25 E-value: 1.46e-12
|
||||||||||||
Kunitz_SmCI_3-like | cd22603 | third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
2113-2165 | 1.48e-12 | ||||||||
third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), Bombyx mori cocoon shell-associated trypsin inhibitor (CSTI), Bombus terrestris Kunitz-type serine protease inhibitor Bt-KTI, and similar domains. SmCI is a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. CSTI and Bt-KTI are single Kunitz domain proteins that inhibit trypsin; in addition, Bt-KTI also inhibits plasmin. This model contains the third Kunitz domain of SmCI which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438646 Cd Length: 53 Bit Score: 64.37 E-value: 1.48e-12
|
||||||||||||
Herpes_BLLF1 | pfam05109 | Herpes virus major outer envelope glycoprotein (BLLF1); This family consists of the BLLF1 ... |
827-1237 | 1.56e-12 | ||||||||
Herpes virus major outer envelope glycoprotein (BLLF1); This family consists of the BLLF1 viral late glycoprotein, also termed gp350/220. It is the most abundantly expressed glycoprotein in the viral envelope of the Herpesviruses and is the major antigen responsible for stimulating the production of neutralising antibodies in vivo. Pssm-ID: 282904 [Multi-domain] Cd Length: 886 Bit Score: 73.80 E-value: 1.56e-12
|
||||||||||||
Kunitz_HAI1_1-like | cd22623 | Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes ... |
1850-1900 | 1.65e-12 | ||||||||
Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 1 (HAI1 or HAI-1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. KD1, the major inhibitory domain of HAI-1, is involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure; presence of the target protease causes changes in the HAI-1 structure to an extended conformation. HAI-1 has been shown to inhibit several serine proteases such as matripase, hepsin, trypsin, hepatocyte growth factor activator (HGFA), and prostasin. It is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438666 Cd Length: 59 Bit Score: 64.49 E-value: 1.65e-12
|
||||||||||||
Kunitz_HAI2_1-like | cd22621 | Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
1725-1777 | 1.75e-12 | ||||||||
Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes the Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. HAI-2 Kunitz domain 1 (KD1) has been found to be the domain responsible for inhibition of hepatocyte growth factor (HGF) activator; activated HGF/scatter factor (HGF/SF) binds to its receptor tyrosine kinase MET to induce dimerization and initiate phosphorylation cascades leading to comprehensive cellular changes that, in the deregulated context of cancer, drive malignant transformation and progression. HAI-2 has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer; its loss leads to tumor growth and progression in part due to increased MET signaling. HAI-2 is also a specific substrate for mesotrypsin, which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in HGF/SF activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. The structures of these KD1 domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438664 Cd Length: 53 Bit Score: 64.03 E-value: 1.75e-12
|
||||||||||||
Kunitz_ELP-like | cd22632 | early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This ... |
1786-1836 | 1.85e-12 | ||||||||
early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This model includes the Kunitz-type proteins, colostrum trypsin inhibitor (CTI, also called colostrum BPI) and early lactation protein (ELP). In marsupials, the ELP gene is expressed in the mammary gland and the protein is secreted into milk during early lactation. Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine CTI protein. Marsupial ELP and eutherian CTI both have a single Kunitz domain and are secreted only during the early lactation phases, suggesting that this protein may have an important role in the immunologically immature young of these species. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438675 Cd Length: 55 Bit Score: 63.99 E-value: 1.85e-12
|
||||||||||||
Kunitz_SmCI_3-like | cd22603 | third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
1976-2028 | 1.97e-12 | ||||||||
third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), Bombyx mori cocoon shell-associated trypsin inhibitor (CSTI), Bombus terrestris Kunitz-type serine protease inhibitor Bt-KTI, and similar domains. SmCI is a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. CSTI and Bt-KTI are single Kunitz domain proteins that inhibit trypsin; in addition, Bt-KTI also inhibits plasmin. This model contains the third Kunitz domain of SmCI which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438646 Cd Length: 53 Bit Score: 63.99 E-value: 1.97e-12
|
||||||||||||
Kunitz_collagen_alpha6_VI-like | cd22631 | Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This ... |
1850-1900 | 2.15e-12 | ||||||||
Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain) and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438674 [Multi-domain] Cd Length: 51 Bit Score: 63.79 E-value: 2.15e-12
|
||||||||||||
Kunitz_TFPI1_2-like | cd22614 | Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor ... |
2111-2166 | 2.36e-12 | ||||||||
Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor (TFPI); This model represents the second Kunitz-type domain (K2 or KPI-2) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; the K2 domain is exposed on functionally active TFPI pools in circulation in blood, in platelets, and attached to the endothelium. While the K1 (or KPI-1) domain of TFPI has been shown to bind and inhibit FVIIa, the K2 domain inhibits FXa by binding directly to the active site and forming a FXa:TFPI complex. A close interaction between the TFPI K2 domain and the FXa active site is essential for the FXa inhibitory action of TFPI and for the formation of an inactive TF/FVIIa/FXa/TFPI complex which then prevents FXa generation. Thus, blockage of K2 would prevent TFPI binding to both FXa and FVIIa/TF, and fully abolish TFPI inhibition of the coagulation cascade. The structure of the K2 domain is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438657 Cd Length: 56 Bit Score: 63.87 E-value: 2.36e-12
|
||||||||||||
Kunitz_collagen_alpha1_XXVIII | cd22628 | Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This ... |
1727-1777 | 2.60e-12 | ||||||||
Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type XXVIII collagen (collagen alpha-1(XXVIII) chain) and similar proteins. The zebrafish has four collagen XXVIII genes all of which are differentially expressed in the liver, thymus, muscle, intestine and skin; only the alpha1 chain contains the Kunitz domain which is often proteolytically processed. Mammals only contain the alpha1 collagen chain, expressed mostly in dorsal root ganglia and peripheral nerves. The Kunitz domain is found at the C-terminus, and is most related to Kunitz domains of papilin and alpha3(VI) collagen. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438671 Cd Length: 51 Bit Score: 63.45 E-value: 2.60e-12
|
||||||||||||
Kunitz_PPTI-like | cd22608 | Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor ... |
1975-2028 | 2.62e-12 | ||||||||
Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor bitisilin, and similar proteins; This group contains Pseudocerastes persicus trypsin inhibitor (PPTI), Bitis gabonica Kunitz-type serine protease inhibitor bitisilin-1 (BG-11), -2 (BG-15) and -3 (two-Kunitz protease inhibitor), Oxyuranus scutellatus scutellatus taicatoxin, and serine protease inhibitor component (TSPI, also called venom protease inhibitor 1 or venom protease inhibitor 2), among others. PPTI from P. persicus venom shows inhibitory effect against trypsin proteolytic activity and has similarities to dendrotoxins (DTXs), with corresponding functionally important residues. Studies have shown the ability of PPTI to inhibit voltage-gated potassium channels, and consequently have dual functionality. Bitilisins 1, 2, and 3 are serine protease inhibitors expressed in snake venom glands; bitsilin-3 consists of two Kunitz protease inhibitor domains. Taicatoxin inhibits trypsin, tissue kallikrein, elastase, plasmin and factor Xa, and is also known to block the voltage-dependent L-type calcium channels from the heart, and the small conductance calcium-activated potassium channels (KCa) in chromaffin cells and in the brain. The structures of these Kunitz-type proteins are similar to other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438651 Cd Length: 54 Bit Score: 63.47 E-value: 2.62e-12
|
||||||||||||
Ig5_Contactin | cd04969 | Fifth immunoglobulin (Ig) domain of contactin; The members here are composed of the fifth ... |
2454-2527 | 2.82e-12 | ||||||||
Fifth immunoglobulin (Ig) domain of contactin; The members here are composed of the fifth immunoglobulin (Ig) domain of contactins. Contactins are neural cell adhesion molecules and are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. The first four Ig domains form the intermolecular binding fragment, which arranges as a compact U-shaped module via contacts between Ig domains 1 and 4, and between Ig domains 2 and 3. Contactin-2 (TAG-1, axonin-1) may play a part in the neuronal processes of neurite outgrowth, axon guidance and fasciculation, and neuronal migration. This group also includes contactin-1 and contactin-5. The different contactins show different expression patterns in the central nervous system. During development and in adulthood, contactin-2 is transiently expressed in subsets of central and peripheral neurons. Contactin-5 is expressed specifically in the rat postnatal nervous system, peaking at about 3 weeks postnatal, and a lack of contactin-5 (NB-2) results in an impairment of neuronal activity in the rat auditory system. Contactin-5 is highly expressed in the adult human brain in the occipital lobe and in the amygdala. Contactin-1 is differentially expressed in tumor tissues and may, through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. Pssm-ID: 409358 [Multi-domain] Cd Length: 89 Bit Score: 64.79 E-value: 2.82e-12
|
||||||||||||
Kunitz_HAI2_2-like | cd22622 | Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
1725-1777 | 3.25e-12 | ||||||||
Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. It has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer, the loss of which leads to tumor growth and progression attributable at least in part to increased MET signaling. HAI-2 is a specific substrate of mesotrypsin which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in hetatocyte growth factor/scatter factor (HGF/SF) activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. KD2 is similar to KD1, whose structure is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438665 Cd Length: 53 Bit Score: 63.53 E-value: 3.25e-12
|
||||||||||||
Kunitz_papilin | cd22635 | Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in ... |
1786-1836 | 3.42e-12 | ||||||||
Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in human and mouse papilin, and similar proteins. Papilin is an extracellular matrix glycoprotein that has been found in many organisms to be involved in thin matrix layers during gastrulation, matrix associated with wandering, phagocytic hemocytes, basement membranes and space-filling matrix during Drosophila development. It is a multidomain protein that primarily occurs in basement membranes. Papilins interact with several extracellular matrix components and ADAMTS enzymes, influences cell rearrangements and may modulate metalloproteinases during organogenesis. Papilins exist in mammals and invertebrates as a set of related, though not necessarily identical proteins. Mammalian papilin contains a single Kunitz domain, while other papilins such as that from Caenorhabditis elegans, contains multiple Kunitz domains. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438678 Cd Length: 52 Bit Score: 63.43 E-value: 3.42e-12
|
||||||||||||
Kunitz_SmCI_1-like | cd22601 | first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
1784-1836 | 3.76e-12 | ||||||||
first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the first Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438644 Cd Length: 55 Bit Score: 63.29 E-value: 3.76e-12
|
||||||||||||
Kunitz_SmCI_1-like | cd22601 | first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
1725-1777 | 3.80e-12 | ||||||||
first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the first Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438644 Cd Length: 55 Bit Score: 63.29 E-value: 3.80e-12
|
||||||||||||
Kunitz_eppin | cd22611 | Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily ... |
1906-1959 | 3.93e-12 | ||||||||
Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily includes the Kunitz inhibitor domain protein eppin (also called Cancer/testis antigen 71 or CT71, epididymal protease inhibitor, protease inhibitor WAP7, serine protease inhibitor-like with Kunitz and WAP domains 1, or WAP four-disulfide core domain protein 7) as well as WAP four-disulfide core domain proteins 6A and 6B in mice, and similar proteins. Eppin is a serine protease inhibitor that plays an essential role in male reproduction and fertility. It modulates the hydrolysis of seminal fluid protein semenogelin 1 (SEMG1) by the serine protease kallikrein-related peptidase 3 (KLK3, PSA), provides antimicrobial protection for spermatozoa in the ejaculate coagulum, and binds SEMG1, thereby inhibiting sperm motility. Thus, eppin could potentially be used as a target for male contraception. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438654 Cd Length: 57 Bit Score: 63.19 E-value: 3.93e-12
|
||||||||||||
Kunitz_boophilin_1-like | cd22599 | first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
1668-1722 | 4.17e-12 | ||||||||
first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438642 Cd Length: 61 Bit Score: 63.26 E-value: 4.17e-12
|
||||||||||||
Kunitz_HAI2_1-like | cd22621 | Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
1848-1900 | 4.34e-12 | ||||||||
Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes the Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. HAI-2 Kunitz domain 1 (KD1) has been found to be the domain responsible for inhibition of hepatocyte growth factor (HGF) activator; activated HGF/scatter factor (HGF/SF) binds to its receptor tyrosine kinase MET to induce dimerization and initiate phosphorylation cascades leading to comprehensive cellular changes that, in the deregulated context of cancer, drive malignant transformation and progression. HAI-2 has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer; its loss leads to tumor growth and progression in part due to increased MET signaling. HAI-2 is also a specific substrate for mesotrypsin, which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in HGF/SF activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. The structures of these KD1 domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438664 Cd Length: 53 Bit Score: 62.88 E-value: 4.34e-12
|
||||||||||||
FhaB | COG3210 | Large exoprotein involved in heme utilization or adhesion [Intracellular trafficking, ... |
804-1262 | 4.53e-12 | ||||||||
Large exoprotein involved in heme utilization or adhesion [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442443 [Multi-domain] Cd Length: 1698 Bit Score: 72.49 E-value: 4.53e-12
|
||||||||||||
Kunitz_TKDP-like | cd22609 | trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the ... |
1786-1836 | 4.66e-12 | ||||||||
trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the trophoblast Kunitz domain protein 1 (TKDP-1) and splice variant TKDP-4, among others, which are Kunitz inhibitor domain proteins. TKDP-1 is expressed in the trophectoderm which forms the outer epithelial layer of the trophoblast, and may play a role in mediating maternal-conceptus interactions in the immediate preimplantation period. However, it does not appear to have proteinase inhibitory activity. These domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438652 Cd Length: 52 Bit Score: 62.85 E-value: 4.66e-12
|
||||||||||||
Kunitz_HAI1_2-like | cd22624 | Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes ... |
2115-2173 | 5.03e-12 | ||||||||
Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 1 (HAI-1 or HAI1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. While the Kunitz domain 1 (KD1) is the major inhibitory domain of HAI-1 and involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure, studies show that deletion of HAI-1 Kunitz domain 2 (KD2) and the extracellular region enhanced inhibition of matriptase. HAI-1 KD2 has been shown to have potent inhibitory activity against trypsin, but it cannot inhibit hepatocyte growth factor activator (HGFA), and matriptase. HAI-1 is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structure of KD2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438667 Cd Length: 61 Bit Score: 62.92 E-value: 5.03e-12
|
||||||||||||
PHA03255 | PHA03255 | BDLF3; Provisional |
1088-1256 | 5.03e-12 | ||||||||
BDLF3; Provisional Pssm-ID: 165513 [Multi-domain] Cd Length: 234 Bit Score: 68.39 E-value: 5.03e-12
|
||||||||||||
FhaB | COG3210 | Large exoprotein involved in heme utilization or adhesion [Intracellular trafficking, ... |
798-1262 | 5.10e-12 | ||||||||
Large exoprotein involved in heme utilization or adhesion [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442443 [Multi-domain] Cd Length: 1698 Bit Score: 72.49 E-value: 5.10e-12
|
||||||||||||
Kunitz_HAI2_2-like | cd22622 | Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
1850-1900 | 5.19e-12 | ||||||||
Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. It has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer, the loss of which leads to tumor growth and progression attributable at least in part to increased MET signaling. HAI-2 is a specific substrate of mesotrypsin which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in hetatocyte growth factor/scatter factor (HGF/SF) activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. KD2 is similar to KD1, whose structure is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438665 Cd Length: 53 Bit Score: 62.76 E-value: 5.19e-12
|
||||||||||||
Kunitz_boophilin_1-like | cd22599 | first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
1908-1958 | 5.22e-12 | ||||||||
first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438642 Cd Length: 61 Bit Score: 62.88 E-value: 5.22e-12
|
||||||||||||
Kunitz_BPTI | cd22592 | bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor ... |
1786-1836 | 5.22e-12 | ||||||||
bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor (BPTI, also known as pancreatic Kunitz inhibitor, aprotinin, or trypsin-kallikrein inhibitor), a small protein that inhibits the action of the trypsin, and is thus a member of the serine protease family of inhibitors. This class of enzymes contains conserved cysteine residues that form 3 disulfide bonds to stabilize the three-dimensional structure. BPTI has a relatively broad specificity, inhibiting trypsin as well as chymotrypsin, and elastase-like serine (pro)enzymes capable of very different primary specificity. It reacts rapidly with serine proteases to form stable complexes, but the enzyme:inhibitor complex formation may involve several intermediates corresponding to discrete reaction steps. Furthermore, BPTI inhibits the nitric oxide synthase type-I and -II action, and impairs K+ transport by Ca2+-activated K+ channels. Clinically, BPTI is used in certain surgical interventions, such as cardiopulmonary surgery and orthotopic liver transplantation since it significantly reduces hemorrhagic complications. Pssm-ID: 438635 Cd Length: 52 Bit Score: 62.66 E-value: 5.22e-12
|
||||||||||||
Kunitz_amblin-like | cd22638 | Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration ... |
1668-1718 | 5.22e-12 | ||||||||
Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6), Amblyomma hebraeum amblin domain 1, and similar proteins; This model includes Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6) and domain 1 of Amblyomma hebraeum amblin, and similar proteins. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. Amblin contains two Kunitz-like domains and specifically inhibits thrombin. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438680 Cd Length: 51 Bit Score: 62.79 E-value: 5.22e-12
|
||||||||||||
Kunitz_collagen_alpha6_VI-like | cd22631 | Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This ... |
2115-2165 | 5.61e-12 | ||||||||
Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain) and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438674 [Multi-domain] Cd Length: 51 Bit Score: 62.63 E-value: 5.61e-12
|
||||||||||||
Kunitz_collagen_alpha3_VI | cd22629 | Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This ... |
1976-2028 | 5.68e-12 | ||||||||
Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha3 chain of type VI collagen (collagen alpha 3(VI) chain), encoded by COL6A3 gene. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. Mutations in the alpha1, alpha2, and alpha3 chains of collagen VI cause myopathies ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, including intermediate forms. Early onset isolated dystonia, a neurological disease, has been shown to be caused by mutations in the alpha3 chain. Findings also indicated potential associations between COL6A3 polymorphisms and lung cancer risk. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438672 Cd Length: 53 Bit Score: 62.77 E-value: 5.68e-12
|
||||||||||||
Kunitz_TFPI1_1-like | cd22613 | Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor ... |
2174-2225 | 5.75e-12 | ||||||||
Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor (TFPI); This model represents the first Kunitz-type domain (K1 or KPI-1) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; The K1 domain of TFPI has been shown to bind and inhibit FVIIa while the K2 domain similarly inhibits FXa. Small peptide blocking inhibition of FXa and TF-FVIIa by TFPI shows that domain K1 is not only important for FVIIa inhibition but also for FXa inhibition, i.e. for the transition of the loose to the tight FXa-TFPI complex. The structure of the K1 domain is similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438656 Cd Length: 55 Bit Score: 62.76 E-value: 5.75e-12
|
||||||||||||
Kunitz_eppin | cd22611 | Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily ... |
2033-2088 | 5.81e-12 | ||||||||
Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily includes the Kunitz inhibitor domain protein eppin (also called Cancer/testis antigen 71 or CT71, epididymal protease inhibitor, protease inhibitor WAP7, serine protease inhibitor-like with Kunitz and WAP domains 1, or WAP four-disulfide core domain protein 7) as well as WAP four-disulfide core domain proteins 6A and 6B in mice, and similar proteins. Eppin is a serine protease inhibitor that plays an essential role in male reproduction and fertility. It modulates the hydrolysis of seminal fluid protein semenogelin 1 (SEMG1) by the serine protease kallikrein-related peptidase 3 (KLK3, PSA), provides antimicrobial protection for spermatozoa in the ejaculate coagulum, and binds SEMG1, thereby inhibiting sperm motility. Thus, eppin could potentially be used as a target for male contraception. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438654 Cd Length: 57 Bit Score: 62.81 E-value: 5.81e-12
|
||||||||||||
Kunitz_actitoxin-like | cd22633 | Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This ... |
1667-1718 | 5.88e-12 | ||||||||
Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This model includes the Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l (also called U-AITX-Avd3l or AsKC9), Anthopleura elegantissima KappaPI-actitoxin-Ael3a (also called KappaPI-AITX-Ael3a or Kunitz-type serine protease inhibitor APEKTx1) and Anthopleura aff. xanthogrammica PI-actitoxin-Axm2b (also called PI-AITX-Axm2b or Kunitz-type proteinase inhibitor AXPI-II). U-AITX-Avd3l and KappaPI-AITX-Ael3a are dual-function toxins that inhibit both the serine protease trypsin and voltage-gated potassium channels Kv1.2/KCNA2. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438676 Cd Length: 55 Bit Score: 62.55 E-value: 5.88e-12
|
||||||||||||
Kunitz_conkunitzin | cd22593 | conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 ... |
1850-1900 | 6.15e-12 | ||||||||
conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 (Cs1) and -S2 (Cs2). Conkunitzins are pore-modulating toxins that block voltage-dependent potassium channels (Kvs) by exploiting inherent slow inactivation to block K+ channels. Cs1 binds to the channel turrets and disrupts the structural water hydrogen-bonding network, exposing the peripheral water pockets of ion channels and triggering an asymmetric collapse of the pore. Conus bullatus conkunitzin-B1, expressed in the venom duct, specifically blocks voltage-activated potassium channels (Kv) of the Shaker family. Members of this subfamily contain 2 disulfide bonds instead of the 3 present in most Kunitz domain proteins. Pssm-ID: 438636 Cd Length: 51 Bit Score: 62.63 E-value: 6.15e-12
|
||||||||||||
Kunitz_collagen_alpha3_VI | cd22629 | Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This ... |
2172-2224 | 6.38e-12 | ||||||||
Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha3 chain of type VI collagen (collagen alpha 3(VI) chain), encoded by COL6A3 gene. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. Mutations in the alpha1, alpha2, and alpha3 chains of collagen VI cause myopathies ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, including intermediate forms. Early onset isolated dystonia, a neurological disease, has been shown to be caused by mutations in the alpha3 chain. Findings also indicated potential associations between COL6A3 polymorphisms and lung cancer risk. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438672 Cd Length: 53 Bit Score: 62.39 E-value: 6.38e-12
|
||||||||||||
Kunitz_boophilin_1-like | cd22599 | first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
1727-1780 | 6.66e-12 | ||||||||
first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438642 Cd Length: 61 Bit Score: 62.88 E-value: 6.66e-12
|
||||||||||||
Kunitz_SmCI_3-like | cd22603 | third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
1784-1836 | 7.74e-12 | ||||||||
third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), Bombyx mori cocoon shell-associated trypsin inhibitor (CSTI), Bombus terrestris Kunitz-type serine protease inhibitor Bt-KTI, and similar domains. SmCI is a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. CSTI and Bt-KTI are single Kunitz domain proteins that inhibit trypsin; in addition, Bt-KTI also inhibits plasmin. This model contains the third Kunitz domain of SmCI which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438646 Cd Length: 53 Bit Score: 62.45 E-value: 7.74e-12
|
||||||||||||
Kunitz_SmCI_3-like | cd22603 | third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
2172-2224 | 7.82e-12 | ||||||||
third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), Bombyx mori cocoon shell-associated trypsin inhibitor (CSTI), Bombus terrestris Kunitz-type serine protease inhibitor Bt-KTI, and similar domains. SmCI is a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. CSTI and Bt-KTI are single Kunitz domain proteins that inhibit trypsin; in addition, Bt-KTI also inhibits plasmin. This model contains the third Kunitz domain of SmCI which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438646 Cd Length: 53 Bit Score: 62.45 E-value: 7.82e-12
|
||||||||||||
Kunitz_conkunitzin | cd22593 | conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 ... |
2115-2165 | 9.83e-12 | ||||||||
conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 (Cs1) and -S2 (Cs2). Conkunitzins are pore-modulating toxins that block voltage-dependent potassium channels (Kvs) by exploiting inherent slow inactivation to block K+ channels. Cs1 binds to the channel turrets and disrupts the structural water hydrogen-bonding network, exposing the peripheral water pockets of ion channels and triggering an asymmetric collapse of the pore. Conus bullatus conkunitzin-B1, expressed in the venom duct, specifically blocks voltage-activated potassium channels (Kv) of the Shaker family. Members of this subfamily contain 2 disulfide bonds instead of the 3 present in most Kunitz domain proteins. Pssm-ID: 438636 Cd Length: 51 Bit Score: 61.85 E-value: 9.83e-12
|
||||||||||||
Ig5_Contactin-1 | cd05852 | Fifth immunoglobulin (Ig) domain of contactin-1; The members here are composed of the fifth ... |
2454-2527 | 9.87e-12 | ||||||||
Fifth immunoglobulin (Ig) domain of contactin-1; The members here are composed of the fifth immunoglobulin (Ig) domain of the neural cell adhesion molecule contactin-1. Contactins are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. Contactin-1 is differentially expressed in tumor tissues and may through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. Pssm-ID: 409438 Cd Length: 89 Bit Score: 63.09 E-value: 9.87e-12
|
||||||||||||
Kunitz_textilinin-like | cd22594 | venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins ... |
1850-1900 | 9.89e-12 | ||||||||
venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins isolated from snake venoms, such as textilinin, vestiginin, spermatin, mulgin, venom basic protease inhibitor IX (BF9), and protease inhibitor-like protein (PILP), among others. Pseudonaja textilis textilinin-1 is a Kunitz-type serine protease inhibitor that binds to and blocks the activity of a range of serine proteases, including plasmin and trypsin. Ability of testilinin to inhibit plasmin, a protease involved in fibrinolysis, raises the possibility that it may be used as an alternative to aprotinin (Trasylol), which is a systemic antibleeding agent in surgery. Also included is the Bungarus fasciatus fraction IX (BF9), a chymotrypsin inhibitor that binds chymotrypsin but not trypsin. Protease inhibitor-like proteins PILP-1 and PILP-2 show weak binding and inhibition of matrix metalloproteinase-2 (MMP-2) and show an activity in inhibiting migration and invasion of neuroblastoma; they do not inhibit chymotrypsin or trypsin. The structures of these toxins are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438637 Cd Length: 56 Bit Score: 61.95 E-value: 9.89e-12
|
||||||||||||
Kunitz_SHPI | cd22618 | Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor ... |
1727-1777 | 9.92e-12 | ||||||||
Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor stichotoxin-Hcr2e, and similar proteins; This model includes Kunitz inhibitor protein ShPI-1, the major protease inhibitor from the sea anemone Stichodactyla helianthus, as well as protease inhibitor stichotoxin-Hcr2e (also called PI- stichotoxin-Hcr2e, PI-SHTX-Hcr2e, or Kunitz-type serine protease inhibitor InhVJ) and HCRG1 from Heteractis crispa. ShPI-1 has an unusually broad specificity toward several serine proteases, including trypsin, chymotrypsin, human neutrophil elastase, kallikrein and plasmin, and can also bind aspartic and cysteine proteases, such as pepsin and papain, respectively. PI-SHTX-Hcr2e and HCRG1 inhibit trypsin and chymotrypsin, but do not inhibit the serine proteases plasmin, thrombin, kallikrein, the cysteine proteinase papain, and the aspartic protease pepsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438661 Cd Length: 53 Bit Score: 62.17 E-value: 9.92e-12
|
||||||||||||
Kunitz_SmCI_2-like | cd22602 | second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
1786-1836 | 1.05e-11 | ||||||||
second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the second Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438645 Cd Length: 51 Bit Score: 61.79 E-value: 1.05e-11
|
||||||||||||
Kunitz_SmCI_1-like | cd22601 | first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
1848-1900 | 1.09e-11 | ||||||||
first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the first Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438644 Cd Length: 55 Bit Score: 62.14 E-value: 1.09e-11
|
||||||||||||
Kunitz_collagen_alpha6_VI | cd22630 | Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This ... |
2172-2225 | 1.33e-11 | ||||||||
Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain), encoded by COL6A6 gene, and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438673 Cd Length: 55 Bit Score: 61.85 E-value: 1.33e-11
|
||||||||||||
Kunitz_collagen_alpha6_VI | cd22630 | Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This ... |
1784-1838 | 1.41e-11 | ||||||||
Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain), encoded by COL6A6 gene, and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438673 Cd Length: 55 Bit Score: 61.46 E-value: 1.41e-11
|
||||||||||||
Kunitz_conkunitzin | cd22593 | conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 ... |
2245-2297 | 1.42e-11 | ||||||||
conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 (Cs1) and -S2 (Cs2). Conkunitzins are pore-modulating toxins that block voltage-dependent potassium channels (Kvs) by exploiting inherent slow inactivation to block K+ channels. Cs1 binds to the channel turrets and disrupts the structural water hydrogen-bonding network, exposing the peripheral water pockets of ion channels and triggering an asymmetric collapse of the pore. Conus bullatus conkunitzin-B1, expressed in the venom duct, specifically blocks voltage-activated potassium channels (Kv) of the Shaker family. Members of this subfamily contain 2 disulfide bonds instead of the 3 present in most Kunitz domain proteins. Pssm-ID: 438636 Cd Length: 51 Bit Score: 61.47 E-value: 1.42e-11
|
||||||||||||
Kunitz_ABPP-like | cd22607 | Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily ... |
1908-1958 | 1.47e-11 | ||||||||
Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily includes the amyloid-beta precursor protein (ABPP, also called APP, APPI, Alzheimer disease amyloid protein, amyloid-beta A4 protein, cerebral vascular amyloid peptide (CVAP), protease nexin II (PN2)), as well as amyloid-like protein 2 (APLP2, also called amyloid protein homolog or APPH), among others. ABPP/APPI is an inhibitor of serine proteases such as anionic and cationic trypsins. For example, APPI-4M is a variant that specifically inhibits Kallikrein (KLK)-related peptidase 6 (KLK6), which is highly upregulated in several types of cancer where its increased activity promotes cancer invasion and metastasis. Amyloid-like protein 2 (APLP2) inhibits trypsin, chymotrypsin, plasmin, factor XIA, and plasma and glandular kallikrein, and may play a role in the regulation of hemostasis. Proteins in this subfamily contain a single Kunitz domain, with a structure similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438650 Cd Length: 52 Bit Score: 61.29 E-value: 1.47e-11
|
||||||||||||
Kunitz_bikunin_2-like | cd22597 | second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal ... |
1847-1900 | 1.53e-11 | ||||||||
second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. Bikunin is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438640 Cd Length: 55 Bit Score: 61.63 E-value: 1.53e-11
|
||||||||||||
Kunitz_TFPI1_1-like | cd22613 | Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor ... |
1907-1958 | 1.56e-11 | ||||||||
Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor (TFPI); This model represents the first Kunitz-type domain (K1 or KPI-1) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; The K1 domain of TFPI has been shown to bind and inhibit FVIIa while the K2 domain similarly inhibits FXa. Small peptide blocking inhibition of FXa and TF-FVIIa by TFPI shows that domain K1 is not only important for FVIIa inhibition but also for FXa inhibition, i.e. for the transition of the loose to the tight FXa-TFPI complex. The structure of the K1 domain is similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438656 Cd Length: 55 Bit Score: 61.60 E-value: 1.56e-11
|
||||||||||||
Kunitz_textilinin-like | cd22594 | venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins ... |
1908-1958 | 1.61e-11 | ||||||||
venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins isolated from snake venoms, such as textilinin, vestiginin, spermatin, mulgin, venom basic protease inhibitor IX (BF9), and protease inhibitor-like protein (PILP), among others. Pseudonaja textilis textilinin-1 is a Kunitz-type serine protease inhibitor that binds to and blocks the activity of a range of serine proteases, including plasmin and trypsin. Ability of testilinin to inhibit plasmin, a protease involved in fibrinolysis, raises the possibility that it may be used as an alternative to aprotinin (Trasylol), which is a systemic antibleeding agent in surgery. Also included is the Bungarus fasciatus fraction IX (BF9), a chymotrypsin inhibitor that binds chymotrypsin but not trypsin. Protease inhibitor-like proteins PILP-1 and PILP-2 show weak binding and inhibition of matrix metalloproteinase-2 (MMP-2) and show an activity in inhibiting migration and invasion of neuroblastoma; they do not inhibit chymotrypsin or trypsin. The structures of these toxins are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438637 Cd Length: 56 Bit Score: 61.56 E-value: 1.61e-11
|
||||||||||||
Kunitz_TFPI1_1-like | cd22613 | Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor ... |
1727-1778 | 1.91e-11 | ||||||||
Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor (TFPI); This model represents the first Kunitz-type domain (K1 or KPI-1) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; The K1 domain of TFPI has been shown to bind and inhibit FVIIa while the K2 domain similarly inhibits FXa. Small peptide blocking inhibition of FXa and TF-FVIIa by TFPI shows that domain K1 is not only important for FVIIa inhibition but also for FXa inhibition, i.e. for the transition of the loose to the tight FXa-TFPI complex. The structure of the K1 domain is similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438656 Cd Length: 55 Bit Score: 61.22 E-value: 1.91e-11
|
||||||||||||
FhaB | COG3210 | Large exoprotein involved in heme utilization or adhesion [Intracellular trafficking, ... |
812-1262 | 1.96e-11 | ||||||||
Large exoprotein involved in heme utilization or adhesion [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442443 [Multi-domain] Cd Length: 1698 Bit Score: 70.57 E-value: 1.96e-11
|
||||||||||||
Kunitz_boophilin_1-like | cd22599 | first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
2114-2166 | 1.97e-11 | ||||||||
first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438642 Cd Length: 61 Bit Score: 61.34 E-value: 1.97e-11
|
||||||||||||
Kunitz_TFPI1_TFPI2_3-like | cd22615 | Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor ... |
1908-1958 | 2.03e-11 | ||||||||
Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor (TFPI) and TFPI2, and similar proteins; This model represents the third Kunitz-type domain (K3 or KPI-3) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI), and of TFPI2 (or TFPI-2). TFPI1 down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI1 complex that then slowly isomerizes to a tight FXa-TFPI1* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI1-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI1 consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; while the K1 domain of TFPI has been shown to bind and inhibit FVIIa and the K2 domain similarly inhibits FXa, the K3 domain has no known inhibitory function. However, Protein S, which functions as a cofactor for TFPI to efficiently enhance TFPI inhibition of FXa and FXa activated TF-VIIa, is dependent on direct interactions with two important residues within K3, a Glutamate and an Arginine. This model also includes TFPI2 Kunitz domain 3 (KD3). TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438658 Cd Length: 54 Bit Score: 61.15 E-value: 2.03e-11
|
||||||||||||
Kunitz_TFPI1_2-like | cd22614 | Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor ... |
2172-2224 | 2.07e-11 | ||||||||
Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor (TFPI); This model represents the second Kunitz-type domain (K2 or KPI-2) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; the K2 domain is exposed on functionally active TFPI pools in circulation in blood, in platelets, and attached to the endothelium. While the K1 (or KPI-1) domain of TFPI has been shown to bind and inhibit FVIIa, the K2 domain inhibits FXa by binding directly to the active site and forming a FXa:TFPI complex. A close interaction between the TFPI K2 domain and the FXa active site is essential for the FXa inhibitory action of TFPI and for the formation of an inactive TF/FVIIa/FXa/TFPI complex which then prevents FXa generation. Thus, blockage of K2 would prevent TFPI binding to both FXa and FVIIa/TF, and fully abolish TFPI inhibition of the coagulation cascade. The structure of the K2 domain is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438657 Cd Length: 56 Bit Score: 61.17 E-value: 2.07e-11
|
||||||||||||
Kunitz_bikunin_1-like | cd22596 | first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal ... |
1725-1777 | 2.10e-11 | ||||||||
first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. It is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438639 Cd Length: 54 Bit Score: 61.11 E-value: 2.10e-11
|
||||||||||||
Ig | cd00096 | Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found ... |
2467-2527 | 2.11e-11 | ||||||||
Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found in the Ig superfamily. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. Members of this group are components of immunoglobulin, neuroglia, cell surface glycoproteins, including T-cell receptors, CD2, CD4, CD8, and membrane glycoproteins, including butyrophilin and chondroitin sulfate proteoglycan core protein. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. Ig superfamily (IgSF) domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Typically, the V-set domains have A, B, E, and D strands in one sheet and A', G, F, C, C' and C" in the other. The structures in C1-set are smaller than those in the V-set; they have one beta sheet that is formed by strands A, B, E, and D and the other by strands G, F, C, and C'. Moreover, a C1-set Ig domain contains a short C' strand (three residues) and lacks A' and C" strand. Unlike other Ig domain sets, C2-set structures do not have a D strand. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409353 [Multi-domain] Cd Length: 70 Bit Score: 61.58 E-value: 2.11e-11
|
||||||||||||
Kunitz_boophilin_2-like | cd22600 | second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
1786-1837 | 2.24e-11 | ||||||||
second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438643 Cd Length: 54 Bit Score: 60.90 E-value: 2.24e-11
|
||||||||||||
Kunitz_SHPI | cd22618 | Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor ... |
1786-1836 | 2.28e-11 | ||||||||
Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor stichotoxin-Hcr2e, and similar proteins; This model includes Kunitz inhibitor protein ShPI-1, the major protease inhibitor from the sea anemone Stichodactyla helianthus, as well as protease inhibitor stichotoxin-Hcr2e (also called PI- stichotoxin-Hcr2e, PI-SHTX-Hcr2e, or Kunitz-type serine protease inhibitor InhVJ) and HCRG1 from Heteractis crispa. ShPI-1 has an unusually broad specificity toward several serine proteases, including trypsin, chymotrypsin, human neutrophil elastase, kallikrein and plasmin, and can also bind aspartic and cysteine proteases, such as pepsin and papain, respectively. PI-SHTX-Hcr2e and HCRG1 inhibit trypsin and chymotrypsin, but do not inhibit the serine proteases plasmin, thrombin, kallikrein, the cysteine proteinase papain, and the aspartic protease pepsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438661 Cd Length: 53 Bit Score: 61.01 E-value: 2.28e-11
|
||||||||||||
IgI_2_MuSK | cd20968 | agrin-responsive second immunoglobulin-like domains (Ig2) of the Muscle-specific kinase (MuSK) ... |
2708-2797 | 2.71e-11 | ||||||||
agrin-responsive second immunoglobulin-like domains (Ig2) of the Muscle-specific kinase (MuSK) ectodomain; a member of the I-set of Ig superfamily domains; The members here are composed of the second immunoglobulin-like (Ig) domains of the Muscle-specific kinase (MuSK) ectodomain. MuSK is a receptor tyrosine kinase specifically expressed in skeletal muscle, where it plays a central role in the formation and maintenance of the neuromuscular junction (NMJ). MuSK is activated by agrin, a neuron-derived heparan sulfate proteoglycan. The activation of MUSK in myotubes regulates the formation of NMJs through the regulation of different processes including the specific expression of genes in subsynaptic nuclei, the reorganization of the actin cytoskeleton and the clustering of the acetylcholine receptors (AChR) in the postsynaptic membrane. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Unlike the V-set, one of the distinctive features of I-set domains is the lack of a C" strand. The structure of the MuSK lacks this strand and thus it belongs to the I-set of the IgSF. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409560 [Multi-domain] Cd Length: 88 Bit Score: 61.87 E-value: 2.71e-11
|
||||||||||||
Kunitz_BmTI-like | cd22604 | Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group ... |
1781-1836 | 3.87e-11 | ||||||||
Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group includes Kunitz-type serine protease inhibitors 6 (BmTI-6) and A (BmTI-A), both of which inhibit bovine trypsin, bovine chymotrypsin, human plasmin, human plasma kallikrein and human neutrophil elastase, but not bovine thrombin, human factor Xa or porcine pancreatic kallikrein. They may play a role in blocking blood coagulation during the larvae fixation on cattle. This subfamily also includes Rhipicephalus microplus protease inhibitor carrapatin. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438647 [Multi-domain] Cd Length: 56 Bit Score: 60.54 E-value: 3.87e-11
|
||||||||||||
IgC2_3_Dscam | cd20957 | Third immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; ... |
2725-2797 | 4.37e-11 | ||||||||
Third immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; a member of the Constant 2 (C2)-set of IgSF domains; The members here are composed of the third immunoglobulin domain of the Drosophila melanogaster Down syndrome cell adhesion molecule (DSCAM) protein and similar proteins. Down syndrome cell adhesion molecule (DSCAM) is a cell adhesion molecule that plays critical roles in neural development, including axon guidance and branching, axon target recognition, self-avoidance and synaptic formation. DSCAM belongs to the immunoglobulin superfamily and contributes to defects in the central nervous system in Down syndrome patients. Vertebrate DSCAMs differ from Drosophila Dscam1 in that they lack the extensive alternative splicing that occurs in the insect gene. Drosophila melanogaster Dscam has 38,016 isoforms generated by the alternative splicing of four variable exon clusters, which allows every neuron in the fly to display a distinctive set of Dscam proteins on its cell surface. Drosophila Dscam1 is a cell-surface protein that plays important roles in neural development and axon tiling of neurons. It is shown that thousands of isoforms bind themselves through specific homophilic (self-binding) interactions, a process which mediates cellular self-recognition. Drosophila Dscam2 is also alternatively spliced and plays a key role in the development of two visual system neurons, monopolar cells L1 and L2. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. This group belongs to the C2-set of IgSF domains, having A, B, and E strands in one beta-sheet and A', G, F, C, and C' in the other. Unlike other Ig domain sets, the C2-set lacks the D strand. Pssm-ID: 409549 [Multi-domain] Cd Length: 88 Bit Score: 61.39 E-value: 4.37e-11
|
||||||||||||
TSP1_ADAMTS | pfam19030 | Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found ... |
344-398 | 4.80e-11 | ||||||||
Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found in ADAMTS proteins. Pssm-ID: 465950 [Multi-domain] Cd Length: 55 Bit Score: 60.16 E-value: 4.80e-11
|
||||||||||||
Kunitz_TFPI1_2-like | cd22614 | Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor ... |
1667-1718 | 4.98e-11 | ||||||||
Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor (TFPI); This model represents the second Kunitz-type domain (K2 or KPI-2) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; the K2 domain is exposed on functionally active TFPI pools in circulation in blood, in platelets, and attached to the endothelium. While the K1 (or KPI-1) domain of TFPI has been shown to bind and inhibit FVIIa, the K2 domain inhibits FXa by binding directly to the active site and forming a FXa:TFPI complex. A close interaction between the TFPI K2 domain and the FXa active site is essential for the FXa inhibitory action of TFPI and for the formation of an inactive TF/FVIIa/FXa/TFPI complex which then prevents FXa generation. Thus, blockage of K2 would prevent TFPI binding to both FXa and FVIIa/TF, and fully abolish TFPI inhibition of the coagulation cascade. The structure of the K2 domain is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438657 Cd Length: 56 Bit Score: 60.02 E-value: 4.98e-11
|
||||||||||||
Kunitz_papilin_lacunin-like | cd22639 | Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr ... |
2174-2224 | 5.49e-11 | ||||||||
Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr proteins; This model includes Drosophila melanogaster Kunitz domain 1 of papilin and Manduca sexta Kunitz domain 1 of lacunin, and similar proteins. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinase action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. M. sexta lacunin is a large multidomain ECM containing several domains including several Kunitz-type protease inhibitors, thrombospondin type I, immunoglobulin-like and others. It exerts multiple effects on a variety of cell behaviors associated with the complex phenomenon of epithelial morphogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438681 Cd Length: 52 Bit Score: 59.90 E-value: 5.49e-11
|
||||||||||||
Kunitz_conkunitzin | cd22593 | conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 ... |
1786-1836 | 5.71e-11 | ||||||||
conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 (Cs1) and -S2 (Cs2). Conkunitzins are pore-modulating toxins that block voltage-dependent potassium channels (Kvs) by exploiting inherent slow inactivation to block K+ channels. Cs1 binds to the channel turrets and disrupts the structural water hydrogen-bonding network, exposing the peripheral water pockets of ion channels and triggering an asymmetric collapse of the pore. Conus bullatus conkunitzin-B1, expressed in the venom duct, specifically blocks voltage-activated potassium channels (Kv) of the Shaker family. Members of this subfamily contain 2 disulfide bonds instead of the 3 present in most Kunitz domain proteins. Pssm-ID: 438636 Cd Length: 51 Bit Score: 59.93 E-value: 5.71e-11
|
||||||||||||
Kunitz_actitoxin-like | cd22633 | Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This ... |
1975-2028 | 5.84e-11 | ||||||||
Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This model includes the Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l (also called U-AITX-Avd3l or AsKC9), Anthopleura elegantissima KappaPI-actitoxin-Ael3a (also called KappaPI-AITX-Ael3a or Kunitz-type serine protease inhibitor APEKTx1) and Anthopleura aff. xanthogrammica PI-actitoxin-Axm2b (also called PI-AITX-Axm2b or Kunitz-type proteinase inhibitor AXPI-II). U-AITX-Avd3l and KappaPI-AITX-Ael3a are dual-function toxins that inhibit both the serine protease trypsin and voltage-gated potassium channels Kv1.2/KCNA2. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438676 Cd Length: 55 Bit Score: 59.86 E-value: 5.84e-11
|
||||||||||||
Kunitz_collagen_alpha3_VI | cd22629 | Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This ... |
1784-1836 | 6.29e-11 | ||||||||
Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha3 chain of type VI collagen (collagen alpha 3(VI) chain), encoded by COL6A3 gene. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. Mutations in the alpha1, alpha2, and alpha3 chains of collagen VI cause myopathies ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, including intermediate forms. Early onset isolated dystonia, a neurological disease, has been shown to be caused by mutations in the alpha3 chain. Findings also indicated potential associations between COL6A3 polymorphisms and lung cancer risk. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438672 Cd Length: 53 Bit Score: 59.69 E-value: 6.29e-11
|
||||||||||||
Kunitz_TFPI1_1-like | cd22613 | Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor ... |
2115-2165 | 6.43e-11 | ||||||||
Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor (TFPI); This model represents the first Kunitz-type domain (K1 or KPI-1) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; The K1 domain of TFPI has been shown to bind and inhibit FVIIa while the K2 domain similarly inhibits FXa. Small peptide blocking inhibition of FXa and TF-FVIIa by TFPI shows that domain K1 is not only important for FVIIa inhibition but also for FXa inhibition, i.e. for the transition of the loose to the tight FXa-TFPI complex. The structure of the K1 domain is similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438656 Cd Length: 55 Bit Score: 59.68 E-value: 6.43e-11
|
||||||||||||
Kunitz_TFPI2_1-like | cd22616 | Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
1978-2029 | 6.73e-11 | ||||||||
Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1. The TFPI2 domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. Structure studies of KD1 complexed with proteases may help in the development of specific and potent KD1 domain protein that may have a large pharmacologic impact in preventing tumor metastasis, retinal degeneration, and degradation of collagen in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438659 Cd Length: 57 Bit Score: 59.56 E-value: 6.73e-11
|
||||||||||||
Kunitz_SCI-I-like | cd22634 | chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin ... |
1855-1900 | 6.91e-11 | ||||||||
chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin inhibitors SCI-III and SCI-I, and similar proteins in insects. SCI-III and SCI-I inhibit chymotrypsin, avoiding the accidental chymotrypsin-mediated activation of prophenoloxidase. This enzyme is required by the insect immune system to produce melanin which is used to engulf foreign objects. This subfamily also includes Kunitz-type male accessory gland peptide with protease inhibitory activity, synthesized and secreted by male accessory glands of Drosophila funebris; it may play a role as an acrosin inhibitor involved in reproduction. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438677 Cd Length: 57 Bit Score: 59.83 E-value: 6.91e-11
|
||||||||||||
IgI_2_MuSK | cd20968 | agrin-responsive second immunoglobulin-like domains (Ig2) of the Muscle-specific kinase (MuSK) ... |
2463-2535 | 7.63e-11 | ||||||||
agrin-responsive second immunoglobulin-like domains (Ig2) of the Muscle-specific kinase (MuSK) ectodomain; a member of the I-set of Ig superfamily domains; The members here are composed of the second immunoglobulin-like (Ig) domains of the Muscle-specific kinase (MuSK) ectodomain. MuSK is a receptor tyrosine kinase specifically expressed in skeletal muscle, where it plays a central role in the formation and maintenance of the neuromuscular junction (NMJ). MuSK is activated by agrin, a neuron-derived heparan sulfate proteoglycan. The activation of MUSK in myotubes regulates the formation of NMJs through the regulation of different processes including the specific expression of genes in subsynaptic nuclei, the reorganization of the actin cytoskeleton and the clustering of the acetylcholine receptors (AChR) in the postsynaptic membrane. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Unlike the V-set, one of the distinctive features of I-set domains is the lack of a C" strand. The structure of the MuSK lacks this strand and thus it belongs to the I-set of the IgSF. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409560 [Multi-domain] Cd Length: 88 Bit Score: 60.72 E-value: 7.63e-11
|
||||||||||||
Kunitz_ELP-like | cd22632 | early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This ... |
1908-1959 | 8.02e-11 | ||||||||
early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This model includes the Kunitz-type proteins, colostrum trypsin inhibitor (CTI, also called colostrum BPI) and early lactation protein (ELP). In marsupials, the ELP gene is expressed in the mammary gland and the protein is secreted into milk during early lactation. Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine CTI protein. Marsupial ELP and eutherian CTI both have a single Kunitz domain and are secreted only during the early lactation phases, suggesting that this protein may have an important role in the immunologically immature young of these species. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438675 Cd Length: 55 Bit Score: 59.37 E-value: 8.02e-11
|
||||||||||||
Kunitz_boophilin_1-like | cd22599 | first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
2173-2224 | 8.96e-11 | ||||||||
first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438642 Cd Length: 61 Bit Score: 59.41 E-value: 8.96e-11
|
||||||||||||
Kunitz_SCI-I-like | cd22634 | chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin ... |
2164-2224 | 9.17e-11 | ||||||||
chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin inhibitors SCI-III and SCI-I, and similar proteins in insects. SCI-III and SCI-I inhibit chymotrypsin, avoiding the accidental chymotrypsin-mediated activation of prophenoloxidase. This enzyme is required by the insect immune system to produce melanin which is used to engulf foreign objects. This subfamily also includes Kunitz-type male accessory gland peptide with protease inhibitory activity, synthesized and secreted by male accessory glands of Drosophila funebris; it may play a role as an acrosin inhibitor involved in reproduction. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438677 Cd Length: 57 Bit Score: 59.45 E-value: 9.17e-11
|
||||||||||||
Kunitz_huwentoxin | cd22598 | Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor ... |
1848-1900 | 9.35e-11 | ||||||||
Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor huwentoxin-XI, including U15-theraphotoxin-Hs1g (also called U15-TRTX-Hs1g or Huwentoxin HW11c39), and kappaPI-theraphotoxin-Hs1a (also called KappaPI-TRTX-Hs1a or Huwentoxin-HW11g8). Huwentoxin-XI is a bifunctional toxin that inhibits both serine proteases (trypsin) and voltage-gated potassium channels (Kv) via surfaces displayed on opposite faces of the toxin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438641 Cd Length: 53 Bit Score: 59.24 E-value: 9.35e-11
|
||||||||||||
Kunitz_TFPI2_1-like | cd22616 | Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
2035-2085 | 9.38e-11 | ||||||||
Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1. The TFPI2 domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. Structure studies of KD1 complexed with proteases may help in the development of specific and potent KD1 domain protein that may have a large pharmacologic impact in preventing tumor metastasis, retinal degeneration, and degradation of collagen in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438659 Cd Length: 57 Bit Score: 59.17 E-value: 9.38e-11
|
||||||||||||
Kunitz_actitoxin-like | cd22633 | Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This ... |
1849-1900 | 9.72e-11 | ||||||||
Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This model includes the Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l (also called U-AITX-Avd3l or AsKC9), Anthopleura elegantissima KappaPI-actitoxin-Ael3a (also called KappaPI-AITX-Ael3a or Kunitz-type serine protease inhibitor APEKTx1) and Anthopleura aff. xanthogrammica PI-actitoxin-Axm2b (also called PI-AITX-Axm2b or Kunitz-type proteinase inhibitor AXPI-II). U-AITX-Avd3l and KappaPI-AITX-Ael3a are dual-function toxins that inhibit both the serine protease trypsin and voltage-gated potassium channels Kv1.2/KCNA2. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438676 Cd Length: 55 Bit Score: 59.09 E-value: 9.72e-11
|
||||||||||||
Ig | cd00096 | Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found ... |
2728-2790 | 9.89e-11 | ||||||||
Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found in the Ig superfamily. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. Members of this group are components of immunoglobulin, neuroglia, cell surface glycoproteins, including T-cell receptors, CD2, CD4, CD8, and membrane glycoproteins, including butyrophilin and chondroitin sulfate proteoglycan core protein. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. Ig superfamily (IgSF) domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Typically, the V-set domains have A, B, E, and D strands in one sheet and A', G, F, C, C' and C" in the other. The structures in C1-set are smaller than those in the V-set; they have one beta sheet that is formed by strands A, B, E, and D and the other by strands G, F, C, and C'. Moreover, a C1-set Ig domain contains a short C' strand (three residues) and lacks A' and C" strand. Unlike other Ig domain sets, C2-set structures do not have a D strand. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409353 [Multi-domain] Cd Length: 70 Bit Score: 59.65 E-value: 9.89e-11
|
||||||||||||
COG4625 | COG4625 | Uncharacterized conserved protein, contains a C-terminal beta-barrel porin domain [Function ... |
800-1235 | 1.09e-10 | ||||||||
Uncharacterized conserved protein, contains a C-terminal beta-barrel porin domain [Function unknown]; Pssm-ID: 443664 [Multi-domain] Cd Length: 900 Bit Score: 67.50 E-value: 1.09e-10
|
||||||||||||
Kunitz_ELP-like | cd22632 | early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This ... |
2171-2224 | 1.15e-10 | ||||||||
early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This model includes the Kunitz-type proteins, colostrum trypsin inhibitor (CTI, also called colostrum BPI) and early lactation protein (ELP). In marsupials, the ELP gene is expressed in the mammary gland and the protein is secreted into milk during early lactation. Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine CTI protein. Marsupial ELP and eutherian CTI both have a single Kunitz domain and are secreted only during the early lactation phases, suggesting that this protein may have an important role in the immunologically immature young of these species. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438675 Cd Length: 55 Bit Score: 58.98 E-value: 1.15e-10
|
||||||||||||
IG_like | smart00410 | Immunoglobulin like; IG domains that cannot be classified into one of IGv1, IGc1, IGc2, IG. |
2457-2538 | 1.16e-10 | ||||||||
Immunoglobulin like; IG domains that cannot be classified into one of IGv1, IGc1, IGc2, IG. Pssm-ID: 214653 [Multi-domain] Cd Length: 85 Bit Score: 60.21 E-value: 1.16e-10
|
||||||||||||
Kunitz_boophilin_2-like | cd22600 | second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
1668-1718 | 1.19e-10 | ||||||||
second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438643 Cd Length: 54 Bit Score: 58.98 E-value: 1.19e-10
|
||||||||||||
Kunitz_collagen_alpha1_XXVIII | cd22628 | Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This ... |
1786-1836 | 1.23e-10 | ||||||||
Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type XXVIII collagen (collagen alpha-1(XXVIII) chain) and similar proteins. The zebrafish has four collagen XXVIII genes all of which are differentially expressed in the liver, thymus, muscle, intestine and skin; only the alpha1 chain contains the Kunitz domain which is often proteolytically processed. Mammals only contain the alpha1 collagen chain, expressed mostly in dorsal root ganglia and peripheral nerves. The Kunitz domain is found at the C-terminus, and is most related to Kunitz domains of papilin and alpha3(VI) collagen. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438671 Cd Length: 51 Bit Score: 58.83 E-value: 1.23e-10
|
||||||||||||
Kunitz_ixolaris_2 | cd22626 | Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second ... |
1727-1777 | 1.25e-10 | ||||||||
Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second Kunitz-type domain (K2) of ixolaris from the venomous organism Conus striatus. Ixolaris is a potent tick salivary anticoagulant that binds coagulation factor Xa (FXa) and zymogen FX, and forms a quaternary tissue factor (TF)/FVIIa/FX(a)/Ixolaris inhibitory complex. It blocks TF-induced coagulation and PAR2 (proteinase-activated receptor 2) signaling, and prevents thrombosis, tumor growth, and immune activation. Ixolaris consists of 2 Kunitz domains (K1 and K2), both of which recognize the heparin-binding (pro)exosite (HBE) on FX. This model contains K2, an extraordinarily dynamic domain that encompasses several residues involved in FX binding. Its backbone plasticity is critical for ixolaris biological activity. This domain contains 2 disulfide bonds instead of the 3 typical of Kunitz domain proteins. Pssm-ID: 438669 Cd Length: 51 Bit Score: 58.63 E-value: 1.25e-10
|
||||||||||||
IgI_3_Contactin | cd04968 | Third immunoglobulin (Ig) domain of contactin; member of the I-set of Ig superfamily (IgSF) ... |
2451-2527 | 1.29e-10 | ||||||||
Third immunoglobulin (Ig) domain of contactin; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the third immunoglobulin (Ig) domain of contactins. Contactins are neural cell adhesion molecules and are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. The first four Ig domains form the intermolecular binding fragment, which arranges as a compact U-shaped module via contacts between Ig domains 1 and 4, and between Ig domains 2 and 3. Contactin-2 (TAG-1, axonin-1) may play a part in the neuronal processes of neurite outgrowth, axon guidance and fasciculation, and neuronal migration. This group also includes contactin-1 and contactin-5. The different contactins show different expression patterns in the central nervous system. During development and in adulthood, contactin-2 is transiently expressed in subsets of central and peripheral neurons. Contactin-5 is expressed specifically in the rat postnatal nervous system, peaking at about 3 weeks postnatal, and a lack of contactin-5 (NB-2) results in an impairment of neuronal activity in the rat auditory system. Contactin-5 is highly expressed in the adult human brain in the occipital lobe and in the amygdala. Contactin-1 is differentially expressed in tumor tissues and may, through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. This group belongs to the I-set of IgSF domains. Pssm-ID: 409357 [Multi-domain] Cd Length: 88 Bit Score: 59.87 E-value: 1.29e-10
|
||||||||||||
Kunitz_collagen_alpha1_VII | cd22627 | Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This ... |
1976-2028 | 1.32e-10 | ||||||||
Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type VII collagen (collagen alpha-1(VII) chain also called long-chain collagen or LC collagen) and similar proteins. LC collagen, encoded by the COL7A1 gene, is a stratified squamous epithelial basement membrane protein that forms anchoring fibrils which may contribute to epithelial basement membrane organization and adherence by interacting with extracellular matrix (ECM) proteins such as type IV collagen. So far, over 800 COL7A1 mutations have been reported, including missense, nonsense, splicing, insertion, and deletion mutations which to varying degrees leads to deficiency of type VII collagen. Epidermolysis bullosa acquisita (EBA) is an autoimmune acquired blistering skin disease resulting from autoantibodies to type VII collagen. The COL7A1 protein contains a Kunitz domain, the deactivation of which induces tumorigenesis. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438670 Cd Length: 53 Bit Score: 58.80 E-value: 1.32e-10
|
||||||||||||
PHA03255 | PHA03255 | BDLF3; Provisional |
1052-1197 | 1.32e-10 | ||||||||
BDLF3; Provisional Pssm-ID: 165513 [Multi-domain] Cd Length: 234 Bit Score: 64.15 E-value: 1.32e-10
|
||||||||||||
Kunitz_collagen_alpha6_VI-like | cd22631 | Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This ... |
1978-2028 | 1.33e-10 | ||||||||
Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain) and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438674 [Multi-domain] Cd Length: 51 Bit Score: 58.78 E-value: 1.33e-10
|
||||||||||||
Kunitz_SCI-I-like | cd22634 | chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin ... |
2120-2165 | 1.34e-10 | ||||||||
chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin inhibitors SCI-III and SCI-I, and similar proteins in insects. SCI-III and SCI-I inhibit chymotrypsin, avoiding the accidental chymotrypsin-mediated activation of prophenoloxidase. This enzyme is required by the insect immune system to produce melanin which is used to engulf foreign objects. This subfamily also includes Kunitz-type male accessory gland peptide with protease inhibitory activity, synthesized and secreted by male accessory glands of Drosophila funebris; it may play a role as an acrosin inhibitor involved in reproduction. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438677 Cd Length: 57 Bit Score: 59.06 E-value: 1.34e-10
|
||||||||||||
Kunitz_TFPI2_2-like | cd22617 | Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
1847-1900 | 1.34e-10 | ||||||||
Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438660 Cd Length: 54 Bit Score: 58.93 E-value: 1.34e-10
|
||||||||||||
Kunitz_TFPI2_2-like | cd22617 | Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
2171-2224 | 1.36e-10 | ||||||||
Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438660 Cd Length: 54 Bit Score: 58.93 E-value: 1.36e-10
|
||||||||||||
Kunitz_textilinin-like | cd22594 | venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins ... |
1668-1719 | 1.37e-10 | ||||||||
venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins isolated from snake venoms, such as textilinin, vestiginin, spermatin, mulgin, venom basic protease inhibitor IX (BF9), and protease inhibitor-like protein (PILP), among others. Pseudonaja textilis textilinin-1 is a Kunitz-type serine protease inhibitor that binds to and blocks the activity of a range of serine proteases, including plasmin and trypsin. Ability of testilinin to inhibit plasmin, a protease involved in fibrinolysis, raises the possibility that it may be used as an alternative to aprotinin (Trasylol), which is a systemic antibleeding agent in surgery. Also included is the Bungarus fasciatus fraction IX (BF9), a chymotrypsin inhibitor that binds chymotrypsin but not trypsin. Protease inhibitor-like proteins PILP-1 and PILP-2 show weak binding and inhibition of matrix metalloproteinase-2 (MMP-2) and show an activity in inhibiting migration and invasion of neuroblastoma; they do not inhibit chymotrypsin or trypsin. The structures of these toxins are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438637 Cd Length: 56 Bit Score: 58.87 E-value: 1.37e-10
|
||||||||||||
Kunitz_papilin_lacunin-like | cd22639 | Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr ... |
1786-1836 | 1.44e-10 | ||||||||
Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr proteins; This model includes Drosophila melanogaster Kunitz domain 1 of papilin and Manduca sexta Kunitz domain 1 of lacunin, and similar proteins. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinase action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. M. sexta lacunin is a large multidomain ECM containing several domains including several Kunitz-type protease inhibitors, thrombospondin type I, immunoglobulin-like and others. It exerts multiple effects on a variety of cell behaviors associated with the complex phenomenon of epithelial morphogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438681 Cd Length: 52 Bit Score: 58.74 E-value: 1.44e-10
|
||||||||||||
Kunitz_WFIKKN_2-like | cd22606 | second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
2114-2165 | 1.46e-10 | ||||||||
second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the second Kunitz (KU2) domain, which has been shown to inhibit trypsin, but not chymotrypsin, elastase, plasmin, pancreatic kallikrein, lung tryptase, plasma kallikrein, thrombin, urokinase or tissue plasminogen activator. However, the inhibition constant of this domain for bovine trypsin is about five orders of magnitudes lower than that of bovine pancreatic trypsin inhibitor (BPTI) for trypsin. This could be due to unfavorable side-chain conformation of a tryptophan at P2' site which is incompatible with a trypsin complex; typical trypsin inhibitors of the Kunitz family feature a tyrosine residue or other less bulky residues at this site. The structure of KU2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438649 Cd Length: 53 Bit Score: 58.52 E-value: 1.46e-10
|
||||||||||||
Kunitz_actitoxin-like | cd22633 | Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This ... |
1908-1958 | 1.51e-10 | ||||||||
Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This model includes the Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l (also called U-AITX-Avd3l or AsKC9), Anthopleura elegantissima KappaPI-actitoxin-Ael3a (also called KappaPI-AITX-Ael3a or Kunitz-type serine protease inhibitor APEKTx1) and Anthopleura aff. xanthogrammica PI-actitoxin-Axm2b (also called PI-AITX-Axm2b or Kunitz-type proteinase inhibitor AXPI-II). U-AITX-Avd3l and KappaPI-AITX-Ael3a are dual-function toxins that inhibit both the serine protease trypsin and voltage-gated potassium channels Kv1.2/KCNA2. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438676 Cd Length: 55 Bit Score: 58.70 E-value: 1.51e-10
|
||||||||||||
Kunitz_HAI1_1-like | cd22623 | Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes ... |
2174-2224 | 1.53e-10 | ||||||||
Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 1 (HAI1 or HAI-1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. KD1, the major inhibitory domain of HAI-1, is involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure; presence of the target protease causes changes in the HAI-1 structure to an extended conformation. HAI-1 has been shown to inhibit several serine proteases such as matripase, hepsin, trypsin, hepatocyte growth factor activator (HGFA), and prostasin. It is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438666 Cd Length: 59 Bit Score: 58.71 E-value: 1.53e-10
|
||||||||||||
Kunitz_SmCI_1-like | cd22601 | first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
1906-1958 | 1.59e-10 | ||||||||
first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the first Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438644 Cd Length: 55 Bit Score: 58.67 E-value: 1.59e-10
|
||||||||||||
PHA03255 | PHA03255 | BDLF3; Provisional |
1022-1161 | 1.60e-10 | ||||||||
BDLF3; Provisional Pssm-ID: 165513 [Multi-domain] Cd Length: 234 Bit Score: 63.77 E-value: 1.60e-10
|
||||||||||||
Kunitz_TFPI2_2-like | cd22617 | Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
2042-2085 | 1.67e-10 | ||||||||
Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438660 Cd Length: 54 Bit Score: 58.55 E-value: 1.67e-10
|
||||||||||||
Kunitz_boophilin_2-like | cd22600 | second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
1726-1777 | 1.75e-10 | ||||||||
second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438643 Cd Length: 54 Bit Score: 58.59 E-value: 1.75e-10
|
||||||||||||
Ig_Titin_like | cd05748 | Immunoglobulin (Ig)-like domain of titin and similar proteins; The members here are composed ... |
2724-2797 | 1.78e-10 | ||||||||
Immunoglobulin (Ig)-like domain of titin and similar proteins; The members here are composed of the immunoglobulin (Ig)-like domain found in titin-like proteins and similar proteins. Titin (also called connectin) is a fibrous sarcomeric protein specifically found in vertebrate striated muscle. Titin is a giant protein; depending on isoform composition, it ranges from 2970 to 3700 kDa, and is of a length that spans half a sarcomere. Titin largely consists of multiple repeats of Ig-like and fibronectin type 3 (FN-III)-like domains. Titin connects the ends of myosin thick filaments to Z disks and extends along the thick filament to the H zone. It appears to function similarly to an elastic band, keeping the myosin filaments centered in the sarcomere during muscle contraction or stretching. Within the sarcomere, titin is also attached to or is associated with myosin binding protein C (MyBP-C). MyBP-C appears to contribute to the generation of passive tension by titin and like titin has repeated Ig-like and FN-III domains. Also included in this group are worm twitchin and insect projectin, thick filament proteins of invertebrate muscle which also have repeated Ig-like and FN-III domains. Pssm-ID: 409406 [Multi-domain] Cd Length: 82 Bit Score: 59.53 E-value: 1.78e-10
|
||||||||||||
Kunitz_collagen_alpha1_XXVIII | cd22628 | Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This ... |
2115-2165 | 1.95e-10 | ||||||||
Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type XXVIII collagen (collagen alpha-1(XXVIII) chain) and similar proteins. The zebrafish has four collagen XXVIII genes all of which are differentially expressed in the liver, thymus, muscle, intestine and skin; only the alpha1 chain contains the Kunitz domain which is often proteolytically processed. Mammals only contain the alpha1 collagen chain, expressed mostly in dorsal root ganglia and peripheral nerves. The Kunitz domain is found at the C-terminus, and is most related to Kunitz domains of papilin and alpha3(VI) collagen. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438671 Cd Length: 51 Bit Score: 58.06 E-value: 1.95e-10
|
||||||||||||
Kunitz_ELP-like | cd22632 | early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This ... |
1975-2028 | 1.97e-10 | ||||||||
early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This model includes the Kunitz-type proteins, colostrum trypsin inhibitor (CTI, also called colostrum BPI) and early lactation protein (ELP). In marsupials, the ELP gene is expressed in the mammary gland and the protein is secreted into milk during early lactation. Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine CTI protein. Marsupial ELP and eutherian CTI both have a single Kunitz domain and are secreted only during the early lactation phases, suggesting that this protein may have an important role in the immunologically immature young of these species. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438675 Cd Length: 55 Bit Score: 58.21 E-value: 1.97e-10
|
||||||||||||
Kunitz_TFPI1_2-like | cd22614 | Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor ... |
1974-2029 | 2.02e-10 | ||||||||
Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor (TFPI); This model represents the second Kunitz-type domain (K2 or KPI-2) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; the K2 domain is exposed on functionally active TFPI pools in circulation in blood, in platelets, and attached to the endothelium. While the K1 (or KPI-1) domain of TFPI has been shown to bind and inhibit FVIIa, the K2 domain inhibits FXa by binding directly to the active site and forming a FXa:TFPI complex. A close interaction between the TFPI K2 domain and the FXa active site is essential for the FXa inhibitory action of TFPI and for the formation of an inactive TF/FVIIa/FXa/TFPI complex which then prevents FXa generation. Thus, blockage of K2 would prevent TFPI binding to both FXa and FVIIa/TF, and fully abolish TFPI inhibition of the coagulation cascade. The structure of the K2 domain is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438657 Cd Length: 56 Bit Score: 58.48 E-value: 2.02e-10
|
||||||||||||
Kunitz_SmCI_3-like | cd22603 | third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
2033-2085 | 2.03e-10 | ||||||||
third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), Bombyx mori cocoon shell-associated trypsin inhibitor (CSTI), Bombus terrestris Kunitz-type serine protease inhibitor Bt-KTI, and similar domains. SmCI is a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. CSTI and Bt-KTI are single Kunitz domain proteins that inhibit trypsin; in addition, Bt-KTI also inhibits plasmin. This model contains the third Kunitz domain of SmCI which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438646 Cd Length: 53 Bit Score: 58.21 E-value: 2.03e-10
|
||||||||||||
Kunitz_collagen_alpha1_VII | cd22627 | Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This ... |
1725-1777 | 2.04e-10 | ||||||||
Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type VII collagen (collagen alpha-1(VII) chain also called long-chain collagen or LC collagen) and similar proteins. LC collagen, encoded by the COL7A1 gene, is a stratified squamous epithelial basement membrane protein that forms anchoring fibrils which may contribute to epithelial basement membrane organization and adherence by interacting with extracellular matrix (ECM) proteins such as type IV collagen. So far, over 800 COL7A1 mutations have been reported, including missense, nonsense, splicing, insertion, and deletion mutations which to varying degrees leads to deficiency of type VII collagen. Epidermolysis bullosa acquisita (EBA) is an autoimmune acquired blistering skin disease resulting from autoantibodies to type VII collagen. The COL7A1 protein contains a Kunitz domain, the deactivation of which induces tumorigenesis. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438670 Cd Length: 53 Bit Score: 58.41 E-value: 2.04e-10
|
||||||||||||
Kunitz_HAI2_1-like | cd22621 | Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
1976-2028 | 2.08e-10 | ||||||||
Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes the Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. HAI-2 Kunitz domain 1 (KD1) has been found to be the domain responsible for inhibition of hepatocyte growth factor (HGF) activator; activated HGF/scatter factor (HGF/SF) binds to its receptor tyrosine kinase MET to induce dimerization and initiate phosphorylation cascades leading to comprehensive cellular changes that, in the deregulated context of cancer, drive malignant transformation and progression. HAI-2 has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer; its loss leads to tumor growth and progression in part due to increased MET signaling. HAI-2 is also a specific substrate for mesotrypsin, which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in HGF/SF activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. The structures of these KD1 domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438664 Cd Length: 53 Bit Score: 58.25 E-value: 2.08e-10
|
||||||||||||
Kunitz_dendrotoxin | cd22595 | dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake ... |
2174-2225 | 2.15e-10 | ||||||||
dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake venoms, such as dendrotoxins (DTXs) I, K and B, mambaquaretin-1 (MQ-1) and calcicludine. The dendrotoxins have little or no anti-protease activity but have been shown to block certain subtypes of voltage dependent potassium channels in neurons. Dendroaspis angusticeps (green mamba) alpha-dendrotoxin is a neurotoxin that enhances acetylcholine release at neuromuscular junctions. Studies with cloned K(+) channels show that this toxin blocks Kv1.1, Kv1.2 and Kv1.6 channels in the nanomolar range, whereas Dendroaspis polylepis (black mamba) dendrotoxin K preferentially blocks Kv1.1 channels. Also, structural analogs of dendrotoxins have facilitated defining the molecular recognition properties of different types of K(+) channels, and therefore, dendrotoxins are widely used as probes for studying the function of K(+) channels in physiology and pathophysiology. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438638 Cd Length: 56 Bit Score: 58.22 E-value: 2.15e-10
|
||||||||||||
Kunitz_TFPI2_2-like | cd22617 | Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
1905-1958 | 2.21e-10 | ||||||||
Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438660 Cd Length: 54 Bit Score: 58.16 E-value: 2.21e-10
|
||||||||||||
PHA03255 | PHA03255 | BDLF3; Provisional |
943-1094 | 2.34e-10 | ||||||||
BDLF3; Provisional Pssm-ID: 165513 [Multi-domain] Cd Length: 234 Bit Score: 63.38 E-value: 2.34e-10
|
||||||||||||
Kunitz_WFIKKN_2-like | cd22606 | second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
1785-1836 | 2.40e-10 | ||||||||
second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the second Kunitz (KU2) domain, which has been shown to inhibit trypsin, but not chymotrypsin, elastase, plasmin, pancreatic kallikrein, lung tryptase, plasma kallikrein, thrombin, urokinase or tissue plasminogen activator. However, the inhibition constant of this domain for bovine trypsin is about five orders of magnitudes lower than that of bovine pancreatic trypsin inhibitor (BPTI) for trypsin. This could be due to unfavorable side-chain conformation of a tryptophan at P2' site which is incompatible with a trypsin complex; typical trypsin inhibitors of the Kunitz family feature a tyrosine residue or other less bulky residues at this site. The structure of KU2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438649 Cd Length: 53 Bit Score: 58.14 E-value: 2.40e-10
|
||||||||||||
Kunitz_WFIKKN_1-like | cd22605 | first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
1850-1900 | 2.67e-10 | ||||||||
first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the first Kunitz domain that is similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438648 Cd Length: 52 Bit Score: 57.76 E-value: 2.67e-10
|
||||||||||||
Kunitz_collagen_alpha3_VI | cd22629 | Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This ... |
2033-2085 | 2.75e-10 | ||||||||
Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha3 chain of type VI collagen (collagen alpha 3(VI) chain), encoded by COL6A3 gene. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. Mutations in the alpha1, alpha2, and alpha3 chains of collagen VI cause myopathies ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, including intermediate forms. Early onset isolated dystonia, a neurological disease, has been shown to be caused by mutations in the alpha3 chain. Findings also indicated potential associations between COL6A3 polymorphisms and lung cancer risk. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438672 Cd Length: 53 Bit Score: 57.76 E-value: 2.75e-10
|
||||||||||||
Kunitz_HAI1_2-like | cd22624 | Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes ... |
1978-2031 | 2.87e-10 | ||||||||
Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 1 (HAI-1 or HAI1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. While the Kunitz domain 1 (KD1) is the major inhibitory domain of HAI-1 and involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure, studies show that deletion of HAI-1 Kunitz domain 2 (KD2) and the extracellular region enhanced inhibition of matriptase. HAI-1 KD2 has been shown to have potent inhibitory activity against trypsin, but it cannot inhibit hepatocyte growth factor activator (HGFA), and matriptase. HAI-1 is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structure of KD2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438667 Cd Length: 61 Bit Score: 57.91 E-value: 2.87e-10
|
||||||||||||
Kunitz_papilin | cd22635 | Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in ... |
2174-2224 | 3.06e-10 | ||||||||
Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in human and mouse papilin, and similar proteins. Papilin is an extracellular matrix glycoprotein that has been found in many organisms to be involved in thin matrix layers during gastrulation, matrix associated with wandering, phagocytic hemocytes, basement membranes and space-filling matrix during Drosophila development. It is a multidomain protein that primarily occurs in basement membranes. Papilins interact with several extracellular matrix components and ADAMTS enzymes, influences cell rearrangements and may modulate metalloproteinases during organogenesis. Papilins exist in mammals and invertebrates as a set of related, though not necessarily identical proteins. Mammalian papilin contains a single Kunitz domain, while other papilins such as that from Caenorhabditis elegans, contains multiple Kunitz domains. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438678 Cd Length: 52 Bit Score: 57.66 E-value: 3.06e-10
|
||||||||||||
Kunitz_KTT | cd22620 | scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model ... |
1786-1840 | 3.23e-10 | ||||||||
scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model includes scorpion Kunitz-type toxin (KTT) such as Lychas mucronatus LmKTT-1a (also called Delta-KTx 2.1 or SdPII), Mesobuthus martensii BmKTT-1 (also called Delta-KTx 2.4) and BmKTT-2 (also called Delta-KTx 3.1), all expressed by the venom gland. LmKTT-1a, BmKTT-1 and BmKTT-2 are all dual-function toxins that completely inhibit trypsin activity but have no effect on chymotrypsin or elastase. They also inhibit mKv1.3/KCNA3 potassium channel currents. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor); however, they lack the conserved CysII-CysIV disulfide bond but contains 2 cysteine residues at the C-terminus that generate a new disulfide bond. Pssm-ID: 438663 Cd Length: 58 Bit Score: 57.96 E-value: 3.23e-10
|
||||||||||||
Kunitz_textilinin-like | cd22594 | venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins ... |
1974-2028 | 3.24e-10 | ||||||||
venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins isolated from snake venoms, such as textilinin, vestiginin, spermatin, mulgin, venom basic protease inhibitor IX (BF9), and protease inhibitor-like protein (PILP), among others. Pseudonaja textilis textilinin-1 is a Kunitz-type serine protease inhibitor that binds to and blocks the activity of a range of serine proteases, including plasmin and trypsin. Ability of testilinin to inhibit plasmin, a protease involved in fibrinolysis, raises the possibility that it may be used as an alternative to aprotinin (Trasylol), which is a systemic antibleeding agent in surgery. Also included is the Bungarus fasciatus fraction IX (BF9), a chymotrypsin inhibitor that binds chymotrypsin but not trypsin. Protease inhibitor-like proteins PILP-1 and PILP-2 show weak binding and inhibition of matrix metalloproteinase-2 (MMP-2) and show an activity in inhibiting migration and invasion of neuroblastoma; they do not inhibit chymotrypsin or trypsin. The structures of these toxins are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438637 Cd Length: 56 Bit Score: 57.71 E-value: 3.24e-10
|
||||||||||||
Kunitz_HAI1_2-like | cd22624 | Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes ... |
1675-1718 | 3.30e-10 | ||||||||
Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 1 (HAI-1 or HAI1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. While the Kunitz domain 1 (KD1) is the major inhibitory domain of HAI-1 and involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure, studies show that deletion of HAI-1 Kunitz domain 2 (KD2) and the extracellular region enhanced inhibition of matriptase. HAI-1 KD2 has been shown to have potent inhibitory activity against trypsin, but it cannot inhibit hepatocyte growth factor activator (HGFA), and matriptase. HAI-1 is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structure of KD2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438667 Cd Length: 61 Bit Score: 57.91 E-value: 3.30e-10
|
||||||||||||
Kunitz_amblin-like | cd22638 | Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration ... |
1786-1836 | 3.33e-10 | ||||||||
Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6), Amblyomma hebraeum amblin domain 1, and similar proteins; This model includes Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6) and domain 1 of Amblyomma hebraeum amblin, and similar proteins. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. Amblin contains two Kunitz-like domains and specifically inhibits thrombin. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438680 Cd Length: 51 Bit Score: 57.78 E-value: 3.33e-10
|
||||||||||||
Kunitz_amblin-like | cd22638 | Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration ... |
2174-2224 | 3.49e-10 | ||||||||
Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6), Amblyomma hebraeum amblin domain 1, and similar proteins; This model includes Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6) and domain 1 of Amblyomma hebraeum amblin, and similar proteins. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. Amblin contains two Kunitz-like domains and specifically inhibits thrombin. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438680 Cd Length: 51 Bit Score: 57.40 E-value: 3.49e-10
|
||||||||||||
PHA03255 | PHA03255 | BDLF3; Provisional |
1040-1185 | 3.74e-10 | ||||||||
BDLF3; Provisional Pssm-ID: 165513 [Multi-domain] Cd Length: 234 Bit Score: 62.61 E-value: 3.74e-10
|
||||||||||||
PHA03255 | PHA03255 | BDLF3; Provisional |
954-1106 | 3.74e-10 | ||||||||
BDLF3; Provisional Pssm-ID: 165513 [Multi-domain] Cd Length: 234 Bit Score: 62.61 E-value: 3.74e-10
|
||||||||||||
Kunitz_BPTI | cd22592 | bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor ... |
1908-1958 | 3.81e-10 | ||||||||
bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor (BPTI, also known as pancreatic Kunitz inhibitor, aprotinin, or trypsin-kallikrein inhibitor), a small protein that inhibits the action of the trypsin, and is thus a member of the serine protease family of inhibitors. This class of enzymes contains conserved cysteine residues that form 3 disulfide bonds to stabilize the three-dimensional structure. BPTI has a relatively broad specificity, inhibiting trypsin as well as chymotrypsin, and elastase-like serine (pro)enzymes capable of very different primary specificity. It reacts rapidly with serine proteases to form stable complexes, but the enzyme:inhibitor complex formation may involve several intermediates corresponding to discrete reaction steps. Furthermore, BPTI inhibits the nitric oxide synthase type-I and -II action, and impairs K+ transport by Ca2+-activated K+ channels. Clinically, BPTI is used in certain surgical interventions, such as cardiopulmonary surgery and orthotopic liver transplantation since it significantly reduces hemorrhagic complications. Pssm-ID: 438635 Cd Length: 52 Bit Score: 57.27 E-value: 3.81e-10
|
||||||||||||
Kunitz_boophilin_2-like | cd22600 | second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
1907-1959 | 3.89e-10 | ||||||||
second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438643 Cd Length: 54 Bit Score: 57.44 E-value: 3.89e-10
|
||||||||||||
Kunitz_TFPI1_1-like | cd22613 | Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor ... |
2243-2298 | 4.08e-10 | ||||||||
Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor (TFPI); This model represents the first Kunitz-type domain (K1 or KPI-1) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; The K1 domain of TFPI has been shown to bind and inhibit FVIIa while the K2 domain similarly inhibits FXa. Small peptide blocking inhibition of FXa and TF-FVIIa by TFPI shows that domain K1 is not only important for FVIIa inhibition but also for FXa inhibition, i.e. for the transition of the loose to the tight FXa-TFPI complex. The structure of the K1 domain is similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438656 Cd Length: 55 Bit Score: 57.36 E-value: 4.08e-10
|
||||||||||||
I-set | pfam07679 | Immunoglobulin I-set domain; |
2448-2527 | 4.20e-10 | ||||||||
Immunoglobulin I-set domain; Pssm-ID: 400151 [Multi-domain] Cd Length: 90 Bit Score: 58.42 E-value: 4.20e-10
|
||||||||||||
Kunitz_BmTI-like | cd22604 | Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group ... |
1903-1958 | 4.24e-10 | ||||||||
Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group includes Kunitz-type serine protease inhibitors 6 (BmTI-6) and A (BmTI-A), both of which inhibit bovine trypsin, bovine chymotrypsin, human plasmin, human plasma kallikrein and human neutrophil elastase, but not bovine thrombin, human factor Xa or porcine pancreatic kallikrein. They may play a role in blocking blood coagulation during the larvae fixation on cattle. This subfamily also includes Rhipicephalus microplus protease inhibitor carrapatin. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438647 [Multi-domain] Cd Length: 56 Bit Score: 57.46 E-value: 4.24e-10
|
||||||||||||
WAP | pfam00095 | WAP-type (Whey Acidic Protein) 'four-disulfide core'; WAP belongs to the group of Elafin or ... |
2384-2425 | 4.98e-10 | ||||||||
WAP-type (Whey Acidic Protein) 'four-disulfide core'; WAP belongs to the group of Elafin or elastase-specific inhibitors. Pssm-ID: 459672 [Multi-domain] Cd Length: 42 Bit Score: 56.66 E-value: 4.98e-10
|
||||||||||||
Kunitz_WFIKKN_2-like | cd22606 | second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
1978-2028 | 5.09e-10 | ||||||||
second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the second Kunitz (KU2) domain, which has been shown to inhibit trypsin, but not chymotrypsin, elastase, plasmin, pancreatic kallikrein, lung tryptase, plasma kallikrein, thrombin, urokinase or tissue plasminogen activator. However, the inhibition constant of this domain for bovine trypsin is about five orders of magnitudes lower than that of bovine pancreatic trypsin inhibitor (BPTI) for trypsin. This could be due to unfavorable side-chain conformation of a tryptophan at P2' site which is incompatible with a trypsin complex; typical trypsin inhibitors of the Kunitz family feature a tyrosine residue or other less bulky residues at this site. The structure of KU2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438649 Cd Length: 53 Bit Score: 56.98 E-value: 5.09e-10
|
||||||||||||
Kunitz_WFIKKN_2-like | cd22606 | second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
1668-1718 | 5.40e-10 | ||||||||
second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the second Kunitz (KU2) domain, which has been shown to inhibit trypsin, but not chymotrypsin, elastase, plasmin, pancreatic kallikrein, lung tryptase, plasma kallikrein, thrombin, urokinase or tissue plasminogen activator. However, the inhibition constant of this domain for bovine trypsin is about five orders of magnitudes lower than that of bovine pancreatic trypsin inhibitor (BPTI) for trypsin. This could be due to unfavorable side-chain conformation of a tryptophan at P2' site which is incompatible with a trypsin complex; typical trypsin inhibitors of the Kunitz family feature a tyrosine residue or other less bulky residues at this site. The structure of KU2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438649 Cd Length: 53 Bit Score: 56.98 E-value: 5.40e-10
|
||||||||||||
Kunitz_TFPI2_1-like | cd22616 | Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
1668-1718 | 5.46e-10 | ||||||||
Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1. The TFPI2 domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. Structure studies of KD1 complexed with proteases may help in the development of specific and potent KD1 domain protein that may have a large pharmacologic impact in preventing tumor metastasis, retinal degeneration, and degradation of collagen in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438659 Cd Length: 57 Bit Score: 57.25 E-value: 5.46e-10
|
||||||||||||
Kunitz_ixolaris_2 | cd22626 | Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second ... |
1786-1836 | 5.47e-10 | ||||||||
Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second Kunitz-type domain (K2) of ixolaris from the venomous organism Conus striatus. Ixolaris is a potent tick salivary anticoagulant that binds coagulation factor Xa (FXa) and zymogen FX, and forms a quaternary tissue factor (TF)/FVIIa/FX(a)/Ixolaris inhibitory complex. It blocks TF-induced coagulation and PAR2 (proteinase-activated receptor 2) signaling, and prevents thrombosis, tumor growth, and immune activation. Ixolaris consists of 2 Kunitz domains (K1 and K2), both of which recognize the heparin-binding (pro)exosite (HBE) on FX. This model contains K2, an extraordinarily dynamic domain that encompasses several residues involved in FX binding. Its backbone plasticity is critical for ixolaris biological activity. This domain contains 2 disulfide bonds instead of the 3 typical of Kunitz domain proteins. Pssm-ID: 438669 Cd Length: 51 Bit Score: 57.08 E-value: 5.47e-10
|
||||||||||||
Kunitz_TFPI1_1-like | cd22613 | Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor ... |
1786-1837 | 5.58e-10 | ||||||||
Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor (TFPI); This model represents the first Kunitz-type domain (K1 or KPI-1) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; The K1 domain of TFPI has been shown to bind and inhibit FVIIa while the K2 domain similarly inhibits FXa. Small peptide blocking inhibition of FXa and TF-FVIIa by TFPI shows that domain K1 is not only important for FVIIa inhibition but also for FXa inhibition, i.e. for the transition of the loose to the tight FXa-TFPI complex. The structure of the K1 domain is similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438656 Cd Length: 55 Bit Score: 56.98 E-value: 5.58e-10
|
||||||||||||
Kunitz_TFPI1_1-like | cd22613 | Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor ... |
1850-1900 | 5.75e-10 | ||||||||
Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor (TFPI); This model represents the first Kunitz-type domain (K1 or KPI-1) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; The K1 domain of TFPI has been shown to bind and inhibit FVIIa while the K2 domain similarly inhibits FXa. Small peptide blocking inhibition of FXa and TF-FVIIa by TFPI shows that domain K1 is not only important for FVIIa inhibition but also for FXa inhibition, i.e. for the transition of the loose to the tight FXa-TFPI complex. The structure of the K1 domain is similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438656 Cd Length: 55 Bit Score: 56.98 E-value: 5.75e-10
|
||||||||||||
Kunitz_SCI-I-like | cd22634 | chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin ... |
1786-1836 | 6.00e-10 | ||||||||
chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin inhibitors SCI-III and SCI-I, and similar proteins in insects. SCI-III and SCI-I inhibit chymotrypsin, avoiding the accidental chymotrypsin-mediated activation of prophenoloxidase. This enzyme is required by the insect immune system to produce melanin which is used to engulf foreign objects. This subfamily also includes Kunitz-type male accessory gland peptide with protease inhibitory activity, synthesized and secreted by male accessory glands of Drosophila funebris; it may play a role as an acrosin inhibitor involved in reproduction. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438677 Cd Length: 57 Bit Score: 57.14 E-value: 6.00e-10
|
||||||||||||
Kunitz_bikunin_2-like | cd22597 | second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal ... |
1666-1718 | 6.15e-10 | ||||||||
second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. Bikunin is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438640 Cd Length: 55 Bit Score: 57.01 E-value: 6.15e-10
|
||||||||||||
Kunitz_HAI1_2-like | cd22624 | Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes ... |
2174-2224 | 6.53e-10 | ||||||||
Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 1 (HAI-1 or HAI1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. While the Kunitz domain 1 (KD1) is the major inhibitory domain of HAI-1 and involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure, studies show that deletion of HAI-1 Kunitz domain 2 (KD2) and the extracellular region enhanced inhibition of matriptase. HAI-1 KD2 has been shown to have potent inhibitory activity against trypsin, but it cannot inhibit hepatocyte growth factor activator (HGFA), and matriptase. HAI-1 is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structure of KD2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438667 Cd Length: 61 Bit Score: 57.14 E-value: 6.53e-10
|
||||||||||||
Kunitz_amblin-like | cd22638 | Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration ... |
2035-2085 | 6.66e-10 | ||||||||
Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6), Amblyomma hebraeum amblin domain 1, and similar proteins; This model includes Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6) and domain 1 of Amblyomma hebraeum amblin, and similar proteins. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. Amblin contains two Kunitz-like domains and specifically inhibits thrombin. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438680 Cd Length: 51 Bit Score: 56.63 E-value: 6.66e-10
|
||||||||||||
Kunitz_bikunin_2-like | cd22597 | second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal ... |
1786-1836 | 7.27e-10 | ||||||||
second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. Bikunin is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438640 Cd Length: 55 Bit Score: 56.62 E-value: 7.27e-10
|
||||||||||||
Kunitz_PPTI-like | cd22608 | Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor ... |
2243-2297 | 7.74e-10 | ||||||||
Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor bitisilin, and similar proteins; This group contains Pseudocerastes persicus trypsin inhibitor (PPTI), Bitis gabonica Kunitz-type serine protease inhibitor bitisilin-1 (BG-11), -2 (BG-15) and -3 (two-Kunitz protease inhibitor), Oxyuranus scutellatus scutellatus taicatoxin, and serine protease inhibitor component (TSPI, also called venom protease inhibitor 1 or venom protease inhibitor 2), among others. PPTI from P. persicus venom shows inhibitory effect against trypsin proteolytic activity and has similarities to dendrotoxins (DTXs), with corresponding functionally important residues. Studies have shown the ability of PPTI to inhibit voltage-gated potassium channels, and consequently have dual functionality. Bitilisins 1, 2, and 3 are serine protease inhibitors expressed in snake venom glands; bitsilin-3 consists of two Kunitz protease inhibitor domains. Taicatoxin inhibits trypsin, tissue kallikrein, elastase, plasmin and factor Xa, and is also known to block the voltage-dependent L-type calcium channels from the heart, and the small conductance calcium-activated potassium channels (KCa) in chromaffin cells and in the brain. The structures of these Kunitz-type proteins are similar to other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438651 Cd Length: 54 Bit Score: 56.54 E-value: 7.74e-10
|
||||||||||||
Kunitz_ELP-like | cd22632 | early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This ... |
2113-2165 | 8.30e-10 | ||||||||
early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This model includes the Kunitz-type proteins, colostrum trypsin inhibitor (CTI, also called colostrum BPI) and early lactation protein (ELP). In marsupials, the ELP gene is expressed in the mammary gland and the protein is secreted into milk during early lactation. Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine CTI protein. Marsupial ELP and eutherian CTI both have a single Kunitz domain and are secreted only during the early lactation phases, suggesting that this protein may have an important role in the immunologically immature young of these species. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438675 Cd Length: 55 Bit Score: 56.67 E-value: 8.30e-10
|
||||||||||||
Kunitz_eppin | cd22611 | Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily ... |
1976-2028 | 8.49e-10 | ||||||||
Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily includes the Kunitz inhibitor domain protein eppin (also called Cancer/testis antigen 71 or CT71, epididymal protease inhibitor, protease inhibitor WAP7, serine protease inhibitor-like with Kunitz and WAP domains 1, or WAP four-disulfide core domain protein 7) as well as WAP four-disulfide core domain proteins 6A and 6B in mice, and similar proteins. Eppin is a serine protease inhibitor that plays an essential role in male reproduction and fertility. It modulates the hydrolysis of seminal fluid protein semenogelin 1 (SEMG1) by the serine protease kallikrein-related peptidase 3 (KLK3, PSA), provides antimicrobial protection for spermatozoa in the ejaculate coagulum, and binds SEMG1, thereby inhibiting sperm motility. Thus, eppin could potentially be used as a target for male contraception. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438654 Cd Length: 57 Bit Score: 56.64 E-value: 8.49e-10
|
||||||||||||
Kunitz_collagen_alpha6_VI | cd22630 | Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This ... |
2033-2087 | 8.56e-10 | ||||||||
Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain), encoded by COL6A6 gene, and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438673 Cd Length: 55 Bit Score: 56.46 E-value: 8.56e-10
|
||||||||||||
Kunitz_ixolaris_2 | cd22626 | Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second ... |
1668-1718 | 8.75e-10 | ||||||||
Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second Kunitz-type domain (K2) of ixolaris from the venomous organism Conus striatus. Ixolaris is a potent tick salivary anticoagulant that binds coagulation factor Xa (FXa) and zymogen FX, and forms a quaternary tissue factor (TF)/FVIIa/FX(a)/Ixolaris inhibitory complex. It blocks TF-induced coagulation and PAR2 (proteinase-activated receptor 2) signaling, and prevents thrombosis, tumor growth, and immune activation. Ixolaris consists of 2 Kunitz domains (K1 and K2), both of which recognize the heparin-binding (pro)exosite (HBE) on FX. This model contains K2, an extraordinarily dynamic domain that encompasses several residues involved in FX binding. Its backbone plasticity is critical for ixolaris biological activity. This domain contains 2 disulfide bonds instead of the 3 typical of Kunitz domain proteins. Pssm-ID: 438669 Cd Length: 51 Bit Score: 56.31 E-value: 8.75e-10
|
||||||||||||
Kunitz_boophilin_2-like | cd22600 | second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
2174-2226 | 8.85e-10 | ||||||||
second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438643 Cd Length: 54 Bit Score: 56.67 E-value: 8.85e-10
|
||||||||||||
Kunitz_TFPI2_2-like | cd22617 | Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
2114-2165 | 9.04e-10 | ||||||||
Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438660 Cd Length: 54 Bit Score: 56.62 E-value: 9.04e-10
|
||||||||||||
TSP1_ADAMTS | pfam19030 | Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found ... |
645-697 | 9.57e-10 | ||||||||
Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found in ADAMTS proteins. Pssm-ID: 465950 [Multi-domain] Cd Length: 55 Bit Score: 56.31 E-value: 9.57e-10
|
||||||||||||
Kunitz_WFIKKN_1-like | cd22605 | first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
1667-1718 | 1.00e-09 | ||||||||
first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the first Kunitz domain that is similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438648 Cd Length: 52 Bit Score: 56.21 E-value: 1.00e-09
|
||||||||||||
Kunitz_SmCI_1-like | cd22601 | first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
2172-2224 | 1.19e-09 | ||||||||
first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the first Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438644 Cd Length: 55 Bit Score: 56.36 E-value: 1.19e-09
|
||||||||||||
Kunitz_bikunin_1-like | cd22596 | first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal ... |
2115-2165 | 1.19e-09 | ||||||||
first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. It is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438639 Cd Length: 54 Bit Score: 56.11 E-value: 1.19e-09
|
||||||||||||
Kunitz_TKDP-like | cd22609 | trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the ... |
1908-1958 | 1.22e-09 | ||||||||
trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the trophoblast Kunitz domain protein 1 (TKDP-1) and splice variant TKDP-4, among others, which are Kunitz inhibitor domain proteins. TKDP-1 is expressed in the trophectoderm which forms the outer epithelial layer of the trophoblast, and may play a role in mediating maternal-conceptus interactions in the immediate preimplantation period. However, it does not appear to have proteinase inhibitory activity. These domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438652 Cd Length: 52 Bit Score: 55.92 E-value: 1.22e-09
|
||||||||||||
Kunitz_SmCI_3-like | cd22603 | third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
1667-1718 | 1.25e-09 | ||||||||
third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), Bombyx mori cocoon shell-associated trypsin inhibitor (CSTI), Bombus terrestris Kunitz-type serine protease inhibitor Bt-KTI, and similar domains. SmCI is a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. CSTI and Bt-KTI are single Kunitz domain proteins that inhibit trypsin; in addition, Bt-KTI also inhibits plasmin. This model contains the third Kunitz domain of SmCI which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438646 Cd Length: 53 Bit Score: 55.90 E-value: 1.25e-09
|
||||||||||||
Kunitz_BmTI-like | cd22604 | Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group ... |
1667-1718 | 1.26e-09 | ||||||||
Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group includes Kunitz-type serine protease inhibitors 6 (BmTI-6) and A (BmTI-A), both of which inhibit bovine trypsin, bovine chymotrypsin, human plasmin, human plasma kallikrein and human neutrophil elastase, but not bovine thrombin, human factor Xa or porcine pancreatic kallikrein. They may play a role in blocking blood coagulation during the larvae fixation on cattle. This subfamily also includes Rhipicephalus microplus protease inhibitor carrapatin. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438647 [Multi-domain] Cd Length: 56 Bit Score: 56.30 E-value: 1.26e-09
|
||||||||||||
Kunitz_SmCI_1-like | cd22601 | first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
2114-2166 | 1.28e-09 | ||||||||
first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the first Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438644 Cd Length: 55 Bit Score: 55.97 E-value: 1.28e-09
|
||||||||||||
Kunitz_boophilin_2-like | cd22600 | second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
2115-2165 | 1.30e-09 | ||||||||
second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438643 Cd Length: 54 Bit Score: 55.90 E-value: 1.30e-09
|
||||||||||||
Kunitz_bikunin_2-like | cd22597 | second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal ... |
1978-2029 | 1.40e-09 | ||||||||
second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. Bikunin is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438640 Cd Length: 55 Bit Score: 55.85 E-value: 1.40e-09
|
||||||||||||
Kunitz_collagen_alpha6_VI-like | cd22631 | Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This ... |
2174-2224 | 1.43e-09 | ||||||||
Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain) and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438674 [Multi-domain] Cd Length: 51 Bit Score: 55.70 E-value: 1.43e-09
|
||||||||||||
Kunitz_TFPI1_TFPI2_3-like | cd22615 | Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor ... |
2174-2224 | 1.45e-09 | ||||||||
Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor (TFPI) and TFPI2, and similar proteins; This model represents the third Kunitz-type domain (K3 or KPI-3) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI), and of TFPI2 (or TFPI-2). TFPI1 down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI1 complex that then slowly isomerizes to a tight FXa-TFPI1* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI1-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI1 consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; while the K1 domain of TFPI has been shown to bind and inhibit FVIIa and the K2 domain similarly inhibits FXa, the K3 domain has no known inhibitory function. However, Protein S, which functions as a cofactor for TFPI to efficiently enhance TFPI inhibition of FXa and FXa activated TF-VIIa, is dependent on direct interactions with two important residues within K3, a Glutamate and an Arginine. This model also includes TFPI2 Kunitz domain 3 (KD3). TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438658 Cd Length: 54 Bit Score: 55.76 E-value: 1.45e-09
|
||||||||||||
IgI_4_hemolin-like | cd20978 | Fourth immunoglobulin (Ig)-like domain of hemolin, and similar domains; a member of the I-set ... |
2721-2797 | 1.52e-09 | ||||||||
Fourth immunoglobulin (Ig)-like domain of hemolin, and similar domains; a member of the I-set of IgSF domains; The members here are composed of the fourth immunoglobulin (Ig)-like domain of hemolin and similar proteins. Hemolin, an insect immunoglobulin superfamily (IgSF) member containing four Ig-like domains, is a lipopolysaccharide-binding immune protein induced during bacterial infection. Hemolin shares significant sequence similarity with the first four Ig-like domains of the transmembrane cell adhesion molecules (CAMs) of the L1 family. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. The fourth Ig-like domain of hemolin is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set domains, members of the I-set have a discontinuous A strand but lack a C" strand. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409570 [Multi-domain] Cd Length: 88 Bit Score: 57.02 E-value: 1.52e-09
|
||||||||||||
Kunitz_collagen_alpha1_XXVIII | cd22628 | Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This ... |
1978-2028 | 1.57e-09 | ||||||||
Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type XXVIII collagen (collagen alpha-1(XXVIII) chain) and similar proteins. The zebrafish has four collagen XXVIII genes all of which are differentially expressed in the liver, thymus, muscle, intestine and skin; only the alpha1 chain contains the Kunitz domain which is often proteolytically processed. Mammals only contain the alpha1 collagen chain, expressed mostly in dorsal root ganglia and peripheral nerves. The Kunitz domain is found at the C-terminus, and is most related to Kunitz domains of papilin and alpha3(VI) collagen. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438671 Cd Length: 51 Bit Score: 55.75 E-value: 1.57e-09
|
||||||||||||
Kunitz_HAI2_1-like | cd22621 | Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
2172-2224 | 1.59e-09 | ||||||||
Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes the Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. HAI-2 Kunitz domain 1 (KD1) has been found to be the domain responsible for inhibition of hepatocyte growth factor (HGF) activator; activated HGF/scatter factor (HGF/SF) binds to its receptor tyrosine kinase MET to induce dimerization and initiate phosphorylation cascades leading to comprehensive cellular changes that, in the deregulated context of cancer, drive malignant transformation and progression. HAI-2 has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer; its loss leads to tumor growth and progression in part due to increased MET signaling. HAI-2 is also a specific substrate for mesotrypsin, which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in HGF/SF activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. The structures of these KD1 domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438664 Cd Length: 53 Bit Score: 55.56 E-value: 1.59e-09
|
||||||||||||
Ig_2 | pfam13895 | Immunoglobulin domain; This domain contains immunoglobulin-like domains. |
2722-2797 | 1.64e-09 | ||||||||
Immunoglobulin domain; This domain contains immunoglobulin-like domains. Pssm-ID: 464026 [Multi-domain] Cd Length: 79 Bit Score: 56.63 E-value: 1.64e-09
|
||||||||||||
Kunitz_collagen_alpha1_VII | cd22627 | Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This ... |
2033-2085 | 1.74e-09 | ||||||||
Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type VII collagen (collagen alpha-1(VII) chain also called long-chain collagen or LC collagen) and similar proteins. LC collagen, encoded by the COL7A1 gene, is a stratified squamous epithelial basement membrane protein that forms anchoring fibrils which may contribute to epithelial basement membrane organization and adherence by interacting with extracellular matrix (ECM) proteins such as type IV collagen. So far, over 800 COL7A1 mutations have been reported, including missense, nonsense, splicing, insertion, and deletion mutations which to varying degrees leads to deficiency of type VII collagen. Epidermolysis bullosa acquisita (EBA) is an autoimmune acquired blistering skin disease resulting from autoantibodies to type VII collagen. The COL7A1 protein contains a Kunitz domain, the deactivation of which induces tumorigenesis. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438670 Cd Length: 53 Bit Score: 55.72 E-value: 1.74e-09
|
||||||||||||
Kunitz_WFIKKN_2-like | cd22606 | second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
2173-2224 | 1.76e-09 | ||||||||
second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the second Kunitz (KU2) domain, which has been shown to inhibit trypsin, but not chymotrypsin, elastase, plasmin, pancreatic kallikrein, lung tryptase, plasma kallikrein, thrombin, urokinase or tissue plasminogen activator. However, the inhibition constant of this domain for bovine trypsin is about five orders of magnitudes lower than that of bovine pancreatic trypsin inhibitor (BPTI) for trypsin. This could be due to unfavorable side-chain conformation of a tryptophan at P2' site which is incompatible with a trypsin complex; typical trypsin inhibitors of the Kunitz family feature a tyrosine residue or other less bulky residues at this site. The structure of KU2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438649 Cd Length: 53 Bit Score: 55.44 E-value: 1.76e-09
|
||||||||||||
Kunitz_SCI-I-like | cd22634 | chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin ... |
1673-1718 | 1.85e-09 | ||||||||
chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin inhibitors SCI-III and SCI-I, and similar proteins in insects. SCI-III and SCI-I inhibit chymotrypsin, avoiding the accidental chymotrypsin-mediated activation of prophenoloxidase. This enzyme is required by the insect immune system to produce melanin which is used to engulf foreign objects. This subfamily also includes Kunitz-type male accessory gland peptide with protease inhibitory activity, synthesized and secreted by male accessory glands of Drosophila funebris; it may play a role as an acrosin inhibitor involved in reproduction. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438677 Cd Length: 57 Bit Score: 55.60 E-value: 1.85e-09
|
||||||||||||
Kunitz_collagen_alpha3_VI | cd22629 | Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This ... |
2244-2297 | 1.91e-09 | ||||||||
Kunitz-type domain from the alpha3 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha3 chain of type VI collagen (collagen alpha 3(VI) chain), encoded by COL6A3 gene. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. Mutations in the alpha1, alpha2, and alpha3 chains of collagen VI cause myopathies ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, including intermediate forms. Early onset isolated dystonia, a neurological disease, has been shown to be caused by mutations in the alpha3 chain. Findings also indicated potential associations between COL6A3 polymorphisms and lung cancer risk. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438672 Cd Length: 53 Bit Score: 55.45 E-value: 1.91e-09
|
||||||||||||
Kunitz_HAI1_2-like | cd22624 | Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes ... |
2035-2086 | 1.95e-09 | ||||||||
Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 1 (HAI-1 or HAI1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. While the Kunitz domain 1 (KD1) is the major inhibitory domain of HAI-1 and involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure, studies show that deletion of HAI-1 Kunitz domain 2 (KD2) and the extracellular region enhanced inhibition of matriptase. HAI-1 KD2 has been shown to have potent inhibitory activity against trypsin, but it cannot inhibit hepatocyte growth factor activator (HGFA), and matriptase. HAI-1 is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structure of KD2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438667 Cd Length: 61 Bit Score: 55.60 E-value: 1.95e-09
|
||||||||||||
Kunitz_SHPI | cd22618 | Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor ... |
2114-2166 | 2.09e-09 | ||||||||
Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor stichotoxin-Hcr2e, and similar proteins; This model includes Kunitz inhibitor protein ShPI-1, the major protease inhibitor from the sea anemone Stichodactyla helianthus, as well as protease inhibitor stichotoxin-Hcr2e (also called PI- stichotoxin-Hcr2e, PI-SHTX-Hcr2e, or Kunitz-type serine protease inhibitor InhVJ) and HCRG1 from Heteractis crispa. ShPI-1 has an unusually broad specificity toward several serine proteases, including trypsin, chymotrypsin, human neutrophil elastase, kallikrein and plasmin, and can also bind aspartic and cysteine proteases, such as pepsin and papain, respectively. PI-SHTX-Hcr2e and HCRG1 inhibit trypsin and chymotrypsin, but do not inhibit the serine proteases plasmin, thrombin, kallikrein, the cysteine proteinase papain, and the aspartic protease pepsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438661 Cd Length: 53 Bit Score: 55.24 E-value: 2.09e-09
|
||||||||||||
IgI_5_Dscam | cd20958 | Fifth immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; ... |
2725-2797 | 2.26e-09 | ||||||||
Fifth immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; a member of the I-set of IgSF domains; The members here are composed of the fifth immunoglobulin domain of the Drosophila melanogaster Down syndrome cell adhesion molecule (DSCAM) protein and similar proteins. Down syndrome cell adhesion molecule (DSCAM) is a cell adhesion molecule that plays critical roles in neural development, including axon guidance and branching, axon target recognition, self-avoidance and synaptic formation. DSCAM belongs to the immunoglobulin superfamily and contributes to defects in the central nervous system in Down syndrome patients. Vertebrate DSCAMs differ from Drosophila Dscam1 in that they lack the extensive alternative splicing that occurs in the insect gene. Drosophila melanogaster Dscam has 38,016 isoforms generated by the alternative splicing of four variable exon clusters, which allows every neuron in the fly to display a distinctive set of Dscam proteins on its cell surface. Drosophila Dscam1 is a cell-surface protein that plays important roles in neural development and axon tiling of neurons. It is shown that thousands of isoforms bind themselves through specific homophilic (self-binding) interactions, a process which mediates cellular self-recognition. Drosophila Dscam2 is also alternatively spliced and plays a key role in the development of two visual system neurons, monopolar cells L1 and L2. This group is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand but lack a C" strand. Pssm-ID: 409550 [Multi-domain] Cd Length: 89 Bit Score: 56.42 E-value: 2.26e-09
|
||||||||||||
MSCRAMM_ClfA | NF033609 | MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial ... |
699-1097 | 2.50e-09 | ||||||||
MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules). It is heavily studied in Staphylococcus aureus both for its biological role in adhesion and for its potential for vaccination. Features of the sequence, but also of other MSCRAMM adhesins, include a long run of Ser-Asp dipeptide repeats and a C-terminal cell wall anchoring LPXTG motif. Pssm-ID: 468110 [Multi-domain] Cd Length: 934 Bit Score: 63.39 E-value: 2.50e-09
|
||||||||||||
Kunitz_collagen_alpha1_VII | cd22627 | Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This ... |
1784-1836 | 2.53e-09 | ||||||||
Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type VII collagen (collagen alpha-1(VII) chain also called long-chain collagen or LC collagen) and similar proteins. LC collagen, encoded by the COL7A1 gene, is a stratified squamous epithelial basement membrane protein that forms anchoring fibrils which may contribute to epithelial basement membrane organization and adherence by interacting with extracellular matrix (ECM) proteins such as type IV collagen. So far, over 800 COL7A1 mutations have been reported, including missense, nonsense, splicing, insertion, and deletion mutations which to varying degrees leads to deficiency of type VII collagen. Epidermolysis bullosa acquisita (EBA) is an autoimmune acquired blistering skin disease resulting from autoantibodies to type VII collagen. The COL7A1 protein contains a Kunitz domain, the deactivation of which induces tumorigenesis. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438670 Cd Length: 53 Bit Score: 55.33 E-value: 2.53e-09
|
||||||||||||
Kunitz_huwentoxin | cd22598 | Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor ... |
1906-1958 | 2.65e-09 | ||||||||
Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor huwentoxin-XI, including U15-theraphotoxin-Hs1g (also called U15-TRTX-Hs1g or Huwentoxin HW11c39), and kappaPI-theraphotoxin-Hs1a (also called KappaPI-TRTX-Hs1a or Huwentoxin-HW11g8). Huwentoxin-XI is a bifunctional toxin that inhibits both serine proteases (trypsin) and voltage-gated potassium channels (Kv) via surfaces displayed on opposite faces of the toxin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438641 Cd Length: 53 Bit Score: 55.00 E-value: 2.65e-09
|
||||||||||||
Kunitz_bikunin_1-like | cd22596 | first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal ... |
1976-2028 | 2.74e-09 | ||||||||
first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. It is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438639 Cd Length: 54 Bit Score: 54.95 E-value: 2.74e-09
|
||||||||||||
Kunitz_BPTI | cd22592 | bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor ... |
1977-2028 | 2.75e-09 | ||||||||
bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor (BPTI, also known as pancreatic Kunitz inhibitor, aprotinin, or trypsin-kallikrein inhibitor), a small protein that inhibits the action of the trypsin, and is thus a member of the serine protease family of inhibitors. This class of enzymes contains conserved cysteine residues that form 3 disulfide bonds to stabilize the three-dimensional structure. BPTI has a relatively broad specificity, inhibiting trypsin as well as chymotrypsin, and elastase-like serine (pro)enzymes capable of very different primary specificity. It reacts rapidly with serine proteases to form stable complexes, but the enzyme:inhibitor complex formation may involve several intermediates corresponding to discrete reaction steps. Furthermore, BPTI inhibits the nitric oxide synthase type-I and -II action, and impairs K+ transport by Ca2+-activated K+ channels. Clinically, BPTI is used in certain surgical interventions, such as cardiopulmonary surgery and orthotopic liver transplantation since it significantly reduces hemorrhagic complications. Pssm-ID: 438635 Cd Length: 52 Bit Score: 54.96 E-value: 2.75e-09
|
||||||||||||
Kunitz_TFPI1_TFPI2_3-like | cd22615 | Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor ... |
1668-1718 | 2.77e-09 | ||||||||
Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor (TFPI) and TFPI2, and similar proteins; This model represents the third Kunitz-type domain (K3 or KPI-3) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI), and of TFPI2 (or TFPI-2). TFPI1 down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI1 complex that then slowly isomerizes to a tight FXa-TFPI1* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI1-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI1 consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; while the K1 domain of TFPI has been shown to bind and inhibit FVIIa and the K2 domain similarly inhibits FXa, the K3 domain has no known inhibitory function. However, Protein S, which functions as a cofactor for TFPI to efficiently enhance TFPI inhibition of FXa and FXa activated TF-VIIa, is dependent on direct interactions with two important residues within K3, a Glutamate and an Arginine. This model also includes TFPI2 Kunitz domain 3 (KD3). TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438658 Cd Length: 54 Bit Score: 54.99 E-value: 2.77e-09
|
||||||||||||
Kunitz_TFPI2_2-like | cd22617 | Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
1734-1777 | 2.79e-09 | ||||||||
Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438660 Cd Length: 54 Bit Score: 55.08 E-value: 2.79e-09
|
||||||||||||
Kunitz_TFPI1_TFPI2_3-like | cd22615 | Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor ... |
1975-2028 | 2.83e-09 | ||||||||
Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor (TFPI) and TFPI2, and similar proteins; This model represents the third Kunitz-type domain (K3 or KPI-3) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI), and of TFPI2 (or TFPI-2). TFPI1 down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI1 complex that then slowly isomerizes to a tight FXa-TFPI1* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI1-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI1 consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; while the K1 domain of TFPI has been shown to bind and inhibit FVIIa and the K2 domain similarly inhibits FXa, the K3 domain has no known inhibitory function. However, Protein S, which functions as a cofactor for TFPI to efficiently enhance TFPI inhibition of FXa and FXa activated TF-VIIa, is dependent on direct interactions with two important residues within K3, a Glutamate and an Arginine. This model also includes TFPI2 Kunitz domain 3 (KD3). TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438658 Cd Length: 54 Bit Score: 54.99 E-value: 2.83e-09
|
||||||||||||
Kunitz_ABPP-like | cd22607 | Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily ... |
1727-1777 | 2.83e-09 | ||||||||
Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily includes the amyloid-beta precursor protein (ABPP, also called APP, APPI, Alzheimer disease amyloid protein, amyloid-beta A4 protein, cerebral vascular amyloid peptide (CVAP), protease nexin II (PN2)), as well as amyloid-like protein 2 (APLP2, also called amyloid protein homolog or APPH), among others. ABPP/APPI is an inhibitor of serine proteases such as anionic and cationic trypsins. For example, APPI-4M is a variant that specifically inhibits Kallikrein (KLK)-related peptidase 6 (KLK6), which is highly upregulated in several types of cancer where its increased activity promotes cancer invasion and metastasis. Amyloid-like protein 2 (APLP2) inhibits trypsin, chymotrypsin, plasmin, factor XIA, and plasma and glandular kallikrein, and may play a role in the regulation of hemostasis. Proteins in this subfamily contain a single Kunitz domain, with a structure similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438650 Cd Length: 52 Bit Score: 55.12 E-value: 2.83e-09
|
||||||||||||
IgI_2_RPTP_IIa_LAR_like | cd05738 | Second immunoglobulin (Ig)-like domain of the receptor protein tyrosine phosphatase (RPTP)-F; ... |
2468-2538 | 2.96e-09 | ||||||||
Second immunoglobulin (Ig)-like domain of the receptor protein tyrosine phosphatase (RPTP)-F; member of the I-set of IgSF domains; The members here are composed of the second immunoglobulin (Ig)-like domain found in the receptor protein tyrosine phosphatase (RPTP)-F, also known as LAR. LAR belongs to the RPTP type IIa subfamily. Members of this subfamily are cell adhesion molecule-like proteins involved in central nervous system (CNS) development. They have large extracellular portions comprised of multiple Ig-like domains and two to nine fibronectin type III (FNIII) domains and a cytoplasmic portion having two tandem phosphatase domains. Pssm-ID: 409400 [Multi-domain] Cd Length: 91 Bit Score: 56.17 E-value: 2.96e-09
|
||||||||||||
Kunitz_amblin-like | cd22638 | Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration ... |
1978-2028 | 3.19e-09 | ||||||||
Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6), Amblyomma hebraeum amblin domain 1, and similar proteins; This model includes Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6) and domain 1 of Amblyomma hebraeum amblin, and similar proteins. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. Amblin contains two Kunitz-like domains and specifically inhibits thrombin. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438680 Cd Length: 51 Bit Score: 54.70 E-value: 3.19e-09
|
||||||||||||
Kunitz_PPTI-like | cd22608 | Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor ... |
1668-1718 | 3.23e-09 | ||||||||
Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor bitisilin, and similar proteins; This group contains Pseudocerastes persicus trypsin inhibitor (PPTI), Bitis gabonica Kunitz-type serine protease inhibitor bitisilin-1 (BG-11), -2 (BG-15) and -3 (two-Kunitz protease inhibitor), Oxyuranus scutellatus scutellatus taicatoxin, and serine protease inhibitor component (TSPI, also called venom protease inhibitor 1 or venom protease inhibitor 2), among others. PPTI from P. persicus venom shows inhibitory effect against trypsin proteolytic activity and has similarities to dendrotoxins (DTXs), with corresponding functionally important residues. Studies have shown the ability of PPTI to inhibit voltage-gated potassium channels, and consequently have dual functionality. Bitilisins 1, 2, and 3 are serine protease inhibitors expressed in snake venom glands; bitsilin-3 consists of two Kunitz protease inhibitor domains. Taicatoxin inhibits trypsin, tissue kallikrein, elastase, plasmin and factor Xa, and is also known to block the voltage-dependent L-type calcium channels from the heart, and the small conductance calcium-activated potassium channels (KCa) in chromaffin cells and in the brain. The structures of these Kunitz-type proteins are similar to other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438651 Cd Length: 54 Bit Score: 55.00 E-value: 3.23e-09
|
||||||||||||
Kunitz_HAI2_1-like | cd22621 | Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
2033-2085 | 3.29e-09 | ||||||||
Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes the Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. HAI-2 Kunitz domain 1 (KD1) has been found to be the domain responsible for inhibition of hepatocyte growth factor (HGF) activator; activated HGF/scatter factor (HGF/SF) binds to its receptor tyrosine kinase MET to induce dimerization and initiate phosphorylation cascades leading to comprehensive cellular changes that, in the deregulated context of cancer, drive malignant transformation and progression. HAI-2 has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer; its loss leads to tumor growth and progression in part due to increased MET signaling. HAI-2 is also a specific substrate for mesotrypsin, which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in HGF/SF activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. The structures of these KD1 domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438664 Cd Length: 53 Bit Score: 54.79 E-value: 3.29e-09
|
||||||||||||
Kunitz_TFPI1_1-like | cd22613 | Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor ... |
2035-2085 | 3.84e-09 | ||||||||
Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor (TFPI); This model represents the first Kunitz-type domain (K1 or KPI-1) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; The K1 domain of TFPI has been shown to bind and inhibit FVIIa while the K2 domain similarly inhibits FXa. Small peptide blocking inhibition of FXa and TF-FVIIa by TFPI shows that domain K1 is not only important for FVIIa inhibition but also for FXa inhibition, i.e. for the transition of the loose to the tight FXa-TFPI complex. The structure of the K1 domain is similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438656 Cd Length: 55 Bit Score: 54.67 E-value: 3.84e-09
|
||||||||||||
Kunitz_dendrotoxin | cd22595 | dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake ... |
2035-2085 | 3.86e-09 | ||||||||
dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake venoms, such as dendrotoxins (DTXs) I, K and B, mambaquaretin-1 (MQ-1) and calcicludine. The dendrotoxins have little or no anti-protease activity but have been shown to block certain subtypes of voltage dependent potassium channels in neurons. Dendroaspis angusticeps (green mamba) alpha-dendrotoxin is a neurotoxin that enhances acetylcholine release at neuromuscular junctions. Studies with cloned K(+) channels show that this toxin blocks Kv1.1, Kv1.2 and Kv1.6 channels in the nanomolar range, whereas Dendroaspis polylepis (black mamba) dendrotoxin K preferentially blocks Kv1.1 channels. Also, structural analogs of dendrotoxins have facilitated defining the molecular recognition properties of different types of K(+) channels, and therefore, dendrotoxins are widely used as probes for studying the function of K(+) channels in physiology and pathophysiology. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438638 Cd Length: 56 Bit Score: 54.75 E-value: 3.86e-09
|
||||||||||||
Kunitz_huwentoxin | cd22598 | Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor ... |
1668-1720 | 3.89e-09 | ||||||||
Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor huwentoxin-XI, including U15-theraphotoxin-Hs1g (also called U15-TRTX-Hs1g or Huwentoxin HW11c39), and kappaPI-theraphotoxin-Hs1a (also called KappaPI-TRTX-Hs1a or Huwentoxin-HW11g8). Huwentoxin-XI is a bifunctional toxin that inhibits both serine proteases (trypsin) and voltage-gated potassium channels (Kv) via surfaces displayed on opposite faces of the toxin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438641 Cd Length: 53 Bit Score: 54.61 E-value: 3.89e-09
|
||||||||||||
Kunitz_BPTI | cd22592 | bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor ... |
2115-2165 | 3.95e-09 | ||||||||
bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor (BPTI, also known as pancreatic Kunitz inhibitor, aprotinin, or trypsin-kallikrein inhibitor), a small protein that inhibits the action of the trypsin, and is thus a member of the serine protease family of inhibitors. This class of enzymes contains conserved cysteine residues that form 3 disulfide bonds to stabilize the three-dimensional structure. BPTI has a relatively broad specificity, inhibiting trypsin as well as chymotrypsin, and elastase-like serine (pro)enzymes capable of very different primary specificity. It reacts rapidly with serine proteases to form stable complexes, but the enzyme:inhibitor complex formation may involve several intermediates corresponding to discrete reaction steps. Furthermore, BPTI inhibits the nitric oxide synthase type-I and -II action, and impairs K+ transport by Ca2+-activated K+ channels. Clinically, BPTI is used in certain surgical interventions, such as cardiopulmonary surgery and orthotopic liver transplantation since it significantly reduces hemorrhagic complications. Pssm-ID: 438635 Cd Length: 52 Bit Score: 54.57 E-value: 3.95e-09
|
||||||||||||
Kunitz_actitoxin-like | cd22633 | Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This ... |
2035-2085 | 4.32e-09 | ||||||||
Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This model includes the Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l (also called U-AITX-Avd3l or AsKC9), Anthopleura elegantissima KappaPI-actitoxin-Ael3a (also called KappaPI-AITX-Ael3a or Kunitz-type serine protease inhibitor APEKTx1) and Anthopleura aff. xanthogrammica PI-actitoxin-Axm2b (also called PI-AITX-Axm2b or Kunitz-type proteinase inhibitor AXPI-II). U-AITX-Avd3l and KappaPI-AITX-Ael3a are dual-function toxins that inhibit both the serine protease trypsin and voltage-gated potassium channels Kv1.2/KCNA2. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438676 Cd Length: 55 Bit Score: 54.46 E-value: 4.32e-09
|
||||||||||||
Kunitz_HAI2_2-like | cd22622 | Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
2115-2165 | 4.47e-09 | ||||||||
Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. It has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer, the loss of which leads to tumor growth and progression attributable at least in part to increased MET signaling. HAI-2 is a specific substrate of mesotrypsin which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in hetatocyte growth factor/scatter factor (HGF/SF) activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. KD2 is similar to KD1, whose structure is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438665 Cd Length: 53 Bit Score: 54.29 E-value: 4.47e-09
|
||||||||||||
Kunitz_dendrotoxin | cd22595 | dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake ... |
2245-2298 | 4.65e-09 | ||||||||
dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake venoms, such as dendrotoxins (DTXs) I, K and B, mambaquaretin-1 (MQ-1) and calcicludine. The dendrotoxins have little or no anti-protease activity but have been shown to block certain subtypes of voltage dependent potassium channels in neurons. Dendroaspis angusticeps (green mamba) alpha-dendrotoxin is a neurotoxin that enhances acetylcholine release at neuromuscular junctions. Studies with cloned K(+) channels show that this toxin blocks Kv1.1, Kv1.2 and Kv1.6 channels in the nanomolar range, whereas Dendroaspis polylepis (black mamba) dendrotoxin K preferentially blocks Kv1.1 channels. Also, structural analogs of dendrotoxins have facilitated defining the molecular recognition properties of different types of K(+) channels, and therefore, dendrotoxins are widely used as probes for studying the function of K(+) channels in physiology and pathophysiology. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438638 Cd Length: 56 Bit Score: 54.37 E-value: 4.65e-09
|
||||||||||||
Kunitz_eppin | cd22611 | Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily ... |
1668-1722 | 4.85e-09 | ||||||||
Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily includes the Kunitz inhibitor domain protein eppin (also called Cancer/testis antigen 71 or CT71, epididymal protease inhibitor, protease inhibitor WAP7, serine protease inhibitor-like with Kunitz and WAP domains 1, or WAP four-disulfide core domain protein 7) as well as WAP four-disulfide core domain proteins 6A and 6B in mice, and similar proteins. Eppin is a serine protease inhibitor that plays an essential role in male reproduction and fertility. It modulates the hydrolysis of seminal fluid protein semenogelin 1 (SEMG1) by the serine protease kallikrein-related peptidase 3 (KLK3, PSA), provides antimicrobial protection for spermatozoa in the ejaculate coagulum, and binds SEMG1, thereby inhibiting sperm motility. Thus, eppin could potentially be used as a target for male contraception. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438654 Cd Length: 57 Bit Score: 54.33 E-value: 4.85e-09
|
||||||||||||
Kunitz_WFIKKN_2-like | cd22606 | second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
2034-2085 | 5.07e-09 | ||||||||
second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the second Kunitz (KU2) domain, which has been shown to inhibit trypsin, but not chymotrypsin, elastase, plasmin, pancreatic kallikrein, lung tryptase, plasma kallikrein, thrombin, urokinase or tissue plasminogen activator. However, the inhibition constant of this domain for bovine trypsin is about five orders of magnitudes lower than that of bovine pancreatic trypsin inhibitor (BPTI) for trypsin. This could be due to unfavorable side-chain conformation of a tryptophan at P2' site which is incompatible with a trypsin complex; typical trypsin inhibitors of the Kunitz family feature a tyrosine residue or other less bulky residues at this site. The structure of KU2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438649 Cd Length: 53 Bit Score: 54.29 E-value: 5.07e-09
|
||||||||||||
Kunitz_HAI1_1-like | cd22623 | Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes ... |
1976-2031 | 5.08e-09 | ||||||||
Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 1 (HAI1 or HAI-1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. KD1, the major inhibitory domain of HAI-1, is involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure; presence of the target protease causes changes in the HAI-1 structure to an extended conformation. HAI-1 has been shown to inhibit several serine proteases such as matripase, hepsin, trypsin, hepatocyte growth factor activator (HGFA), and prostasin. It is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438666 Cd Length: 59 Bit Score: 54.47 E-value: 5.08e-09
|
||||||||||||
Kunitz_dendrotoxin | cd22595 | dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake ... |
1668-1719 | 5.13e-09 | ||||||||
dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake venoms, such as dendrotoxins (DTXs) I, K and B, mambaquaretin-1 (MQ-1) and calcicludine. The dendrotoxins have little or no anti-protease activity but have been shown to block certain subtypes of voltage dependent potassium channels in neurons. Dendroaspis angusticeps (green mamba) alpha-dendrotoxin is a neurotoxin that enhances acetylcholine release at neuromuscular junctions. Studies with cloned K(+) channels show that this toxin blocks Kv1.1, Kv1.2 and Kv1.6 channels in the nanomolar range, whereas Dendroaspis polylepis (black mamba) dendrotoxin K preferentially blocks Kv1.1 channels. Also, structural analogs of dendrotoxins have facilitated defining the molecular recognition properties of different types of K(+) channels, and therefore, dendrotoxins are widely used as probes for studying the function of K(+) channels in physiology and pathophysiology. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438638 Cd Length: 56 Bit Score: 54.37 E-value: 5.13e-09
|
||||||||||||
Kunitz_eppin | cd22611 | Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily ... |
2172-2224 | 5.24e-09 | ||||||||
Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily includes the Kunitz inhibitor domain protein eppin (also called Cancer/testis antigen 71 or CT71, epididymal protease inhibitor, protease inhibitor WAP7, serine protease inhibitor-like with Kunitz and WAP domains 1, or WAP four-disulfide core domain protein 7) as well as WAP four-disulfide core domain proteins 6A and 6B in mice, and similar proteins. Eppin is a serine protease inhibitor that plays an essential role in male reproduction and fertility. It modulates the hydrolysis of seminal fluid protein semenogelin 1 (SEMG1) by the serine protease kallikrein-related peptidase 3 (KLK3, PSA), provides antimicrobial protection for spermatozoa in the ejaculate coagulum, and binds SEMG1, thereby inhibiting sperm motility. Thus, eppin could potentially be used as a target for male contraception. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438654 Cd Length: 57 Bit Score: 54.33 E-value: 5.24e-09
|
||||||||||||
Kunitz_SHPI | cd22618 | Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor ... |
1849-1900 | 5.29e-09 | ||||||||
Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor stichotoxin-Hcr2e, and similar proteins; This model includes Kunitz inhibitor protein ShPI-1, the major protease inhibitor from the sea anemone Stichodactyla helianthus, as well as protease inhibitor stichotoxin-Hcr2e (also called PI- stichotoxin-Hcr2e, PI-SHTX-Hcr2e, or Kunitz-type serine protease inhibitor InhVJ) and HCRG1 from Heteractis crispa. ShPI-1 has an unusually broad specificity toward several serine proteases, including trypsin, chymotrypsin, human neutrophil elastase, kallikrein and plasmin, and can also bind aspartic and cysteine proteases, such as pepsin and papain, respectively. PI-SHTX-Hcr2e and HCRG1 inhibit trypsin and chymotrypsin, but do not inhibit the serine proteases plasmin, thrombin, kallikrein, the cysteine proteinase papain, and the aspartic protease pepsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438661 Cd Length: 53 Bit Score: 54.47 E-value: 5.29e-09
|
||||||||||||
Kunitz_boophilin_1-like | cd22599 | first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
2244-2297 | 5.34e-09 | ||||||||
first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438642 Cd Length: 61 Bit Score: 54.40 E-value: 5.34e-09
|
||||||||||||
Kunitz_SHPI | cd22618 | Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor ... |
2244-2297 | 5.39e-09 | ||||||||
Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor stichotoxin-Hcr2e, and similar proteins; This model includes Kunitz inhibitor protein ShPI-1, the major protease inhibitor from the sea anemone Stichodactyla helianthus, as well as protease inhibitor stichotoxin-Hcr2e (also called PI- stichotoxin-Hcr2e, PI-SHTX-Hcr2e, or Kunitz-type serine protease inhibitor InhVJ) and HCRG1 from Heteractis crispa. ShPI-1 has an unusually broad specificity toward several serine proteases, including trypsin, chymotrypsin, human neutrophil elastase, kallikrein and plasmin, and can also bind aspartic and cysteine proteases, such as pepsin and papain, respectively. PI-SHTX-Hcr2e and HCRG1 inhibit trypsin and chymotrypsin, but do not inhibit the serine proteases plasmin, thrombin, kallikrein, the cysteine proteinase papain, and the aspartic protease pepsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438661 Cd Length: 53 Bit Score: 54.08 E-value: 5.39e-09
|
||||||||||||
Kunitz_SmCI_2-like | cd22602 | second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
1850-1900 | 5.42e-09 | ||||||||
second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the second Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438645 Cd Length: 51 Bit Score: 54.08 E-value: 5.42e-09
|
||||||||||||
Kunitz_ABPP-like | cd22607 | Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily ... |
1849-1900 | 5.68e-09 | ||||||||
Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily includes the amyloid-beta precursor protein (ABPP, also called APP, APPI, Alzheimer disease amyloid protein, amyloid-beta A4 protein, cerebral vascular amyloid peptide (CVAP), protease nexin II (PN2)), as well as amyloid-like protein 2 (APLP2, also called amyloid protein homolog or APPH), among others. ABPP/APPI is an inhibitor of serine proteases such as anionic and cationic trypsins. For example, APPI-4M is a variant that specifically inhibits Kallikrein (KLK)-related peptidase 6 (KLK6), which is highly upregulated in several types of cancer where its increased activity promotes cancer invasion and metastasis. Amyloid-like protein 2 (APLP2) inhibits trypsin, chymotrypsin, plasmin, factor XIA, and plasma and glandular kallikrein, and may play a role in the regulation of hemostasis. Proteins in this subfamily contain a single Kunitz domain, with a structure similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438650 Cd Length: 52 Bit Score: 53.97 E-value: 5.68e-09
|
||||||||||||
Kunitz_textilinin-like | cd22594 | venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins ... |
2245-2297 | 5.98e-09 | ||||||||
venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins isolated from snake venoms, such as textilinin, vestiginin, spermatin, mulgin, venom basic protease inhibitor IX (BF9), and protease inhibitor-like protein (PILP), among others. Pseudonaja textilis textilinin-1 is a Kunitz-type serine protease inhibitor that binds to and blocks the activity of a range of serine proteases, including plasmin and trypsin. Ability of testilinin to inhibit plasmin, a protease involved in fibrinolysis, raises the possibility that it may be used as an alternative to aprotinin (Trasylol), which is a systemic antibleeding agent in surgery. Also included is the Bungarus fasciatus fraction IX (BF9), a chymotrypsin inhibitor that binds chymotrypsin but not trypsin. Protease inhibitor-like proteins PILP-1 and PILP-2 show weak binding and inhibition of matrix metalloproteinase-2 (MMP-2) and show an activity in inhibiting migration and invasion of neuroblastoma; they do not inhibit chymotrypsin or trypsin. The structures of these toxins are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438637 Cd Length: 56 Bit Score: 54.24 E-value: 5.98e-09
|
||||||||||||
Kunitz_ixolaris_2 | cd22626 | Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second ... |
1908-1958 | 6.70e-09 | ||||||||
Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second Kunitz-type domain (K2) of ixolaris from the venomous organism Conus striatus. Ixolaris is a potent tick salivary anticoagulant that binds coagulation factor Xa (FXa) and zymogen FX, and forms a quaternary tissue factor (TF)/FVIIa/FX(a)/Ixolaris inhibitory complex. It blocks TF-induced coagulation and PAR2 (proteinase-activated receptor 2) signaling, and prevents thrombosis, tumor growth, and immune activation. Ixolaris consists of 2 Kunitz domains (K1 and K2), both of which recognize the heparin-binding (pro)exosite (HBE) on FX. This model contains K2, an extraordinarily dynamic domain that encompasses several residues involved in FX binding. Its backbone plasticity is critical for ixolaris biological activity. This domain contains 2 disulfide bonds instead of the 3 typical of Kunitz domain proteins. Pssm-ID: 438669 Cd Length: 51 Bit Score: 54.00 E-value: 6.70e-09
|
||||||||||||
Ig5_Contactin | cd04969 | Fifth immunoglobulin (Ig) domain of contactin; The members here are composed of the fifth ... |
2725-2792 | 6.90e-09 | ||||||||
Fifth immunoglobulin (Ig) domain of contactin; The members here are composed of the fifth immunoglobulin (Ig) domain of contactins. Contactins are neural cell adhesion molecules and are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. The first four Ig domains form the intermolecular binding fragment, which arranges as a compact U-shaped module via contacts between Ig domains 1 and 4, and between Ig domains 2 and 3. Contactin-2 (TAG-1, axonin-1) may play a part in the neuronal processes of neurite outgrowth, axon guidance and fasciculation, and neuronal migration. This group also includes contactin-1 and contactin-5. The different contactins show different expression patterns in the central nervous system. During development and in adulthood, contactin-2 is transiently expressed in subsets of central and peripheral neurons. Contactin-5 is expressed specifically in the rat postnatal nervous system, peaking at about 3 weeks postnatal, and a lack of contactin-5 (NB-2) results in an impairment of neuronal activity in the rat auditory system. Contactin-5 is highly expressed in the adult human brain in the occipital lobe and in the amygdala. Contactin-1 is differentially expressed in tumor tissues and may, through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. Pssm-ID: 409358 [Multi-domain] Cd Length: 89 Bit Score: 55.16 E-value: 6.90e-09
|
||||||||||||
Kunitz_ELP-like | cd22632 | early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This ... |
1727-1777 | 7.44e-09 | ||||||||
early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This model includes the Kunitz-type proteins, colostrum trypsin inhibitor (CTI, also called colostrum BPI) and early lactation protein (ELP). In marsupials, the ELP gene is expressed in the mammary gland and the protein is secreted into milk during early lactation. Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine CTI protein. Marsupial ELP and eutherian CTI both have a single Kunitz domain and are secreted only during the early lactation phases, suggesting that this protein may have an important role in the immunologically immature young of these species. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438675 Cd Length: 55 Bit Score: 53.97 E-value: 7.44e-09
|
||||||||||||
Kunitz_TFPI1_TFPI2_3-like | cd22615 | Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor ... |
1850-1900 | 7.83e-09 | ||||||||
Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor (TFPI) and TFPI2, and similar proteins; This model represents the third Kunitz-type domain (K3 or KPI-3) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI), and of TFPI2 (or TFPI-2). TFPI1 down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI1 complex that then slowly isomerizes to a tight FXa-TFPI1* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI1-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI1 consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; while the K1 domain of TFPI has been shown to bind and inhibit FVIIa and the K2 domain similarly inhibits FXa, the K3 domain has no known inhibitory function. However, Protein S, which functions as a cofactor for TFPI to efficiently enhance TFPI inhibition of FXa and FXa activated TF-VIIa, is dependent on direct interactions with two important residues within K3, a Glutamate and an Arginine. This model also includes TFPI2 Kunitz domain 3 (KD3). TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438658 Cd Length: 54 Bit Score: 53.83 E-value: 7.83e-09
|
||||||||||||
Kunitz_ABPP-like | cd22607 | Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily ... |
1668-1718 | 8.08e-09 | ||||||||
Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily includes the amyloid-beta precursor protein (ABPP, also called APP, APPI, Alzheimer disease amyloid protein, amyloid-beta A4 protein, cerebral vascular amyloid peptide (CVAP), protease nexin II (PN2)), as well as amyloid-like protein 2 (APLP2, also called amyloid protein homolog or APPH), among others. ABPP/APPI is an inhibitor of serine proteases such as anionic and cationic trypsins. For example, APPI-4M is a variant that specifically inhibits Kallikrein (KLK)-related peptidase 6 (KLK6), which is highly upregulated in several types of cancer where its increased activity promotes cancer invasion and metastasis. Amyloid-like protein 2 (APLP2) inhibits trypsin, chymotrypsin, plasmin, factor XIA, and plasma and glandular kallikrein, and may play a role in the regulation of hemostasis. Proteins in this subfamily contain a single Kunitz domain, with a structure similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438650 Cd Length: 52 Bit Score: 53.58 E-value: 8.08e-09
|
||||||||||||
Kunitz_bikunin_1-like | cd22596 | first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal ... |
2172-2220 | 8.12e-09 | ||||||||
first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. It is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438639 Cd Length: 54 Bit Score: 53.80 E-value: 8.12e-09
|
||||||||||||
Kunitz_conkunitzin | cd22593 | conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 ... |
1668-1718 | 8.30e-09 | ||||||||
conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 (Cs1) and -S2 (Cs2). Conkunitzins are pore-modulating toxins that block voltage-dependent potassium channels (Kvs) by exploiting inherent slow inactivation to block K+ channels. Cs1 binds to the channel turrets and disrupts the structural water hydrogen-bonding network, exposing the peripheral water pockets of ion channels and triggering an asymmetric collapse of the pore. Conus bullatus conkunitzin-B1, expressed in the venom duct, specifically blocks voltage-activated potassium channels (Kv) of the Shaker family. Members of this subfamily contain 2 disulfide bonds instead of the 3 present in most Kunitz domain proteins. Pssm-ID: 438636 Cd Length: 51 Bit Score: 53.77 E-value: 8.30e-09
|
||||||||||||
Kunitz_BmTI-like | cd22604 | Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group ... |
2172-2224 | 8.31e-09 | ||||||||
Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group includes Kunitz-type serine protease inhibitors 6 (BmTI-6) and A (BmTI-A), both of which inhibit bovine trypsin, bovine chymotrypsin, human plasmin, human plasma kallikrein and human neutrophil elastase, but not bovine thrombin, human factor Xa or porcine pancreatic kallikrein. They may play a role in blocking blood coagulation during the larvae fixation on cattle. This subfamily also includes Rhipicephalus microplus protease inhibitor carrapatin. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438647 [Multi-domain] Cd Length: 56 Bit Score: 53.99 E-value: 8.31e-09
|
||||||||||||
Kunitz_boophilin_2-like | cd22600 | second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
2245-2299 | 8.33e-09 | ||||||||
second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438643 Cd Length: 54 Bit Score: 53.59 E-value: 8.33e-09
|
||||||||||||
IgI_titin_I1-like | cd20951 | Immunoglobulin domain I1 of the titin I-band and similar proteins; a member of the I-set of ... |
2723-2797 | 8.44e-09 | ||||||||
Immunoglobulin domain I1 of the titin I-band and similar proteins; a member of the I-set of IgSF domains; The members here are composed of the immunoglobulin domain I1 of the titin I-band and similar proteins. Titin is a key component in the assembly and functioning of vertebrate striated muscles. By providing connections at the level of individual microfilaments, it contributes to the fine balance of forces between the two halves of the sarcomere. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. The two sheets are linked together by a conserved disulfide bond between B strand and F strand. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. The Ig I1 domain of the titin I-band is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand but lack a C" strand. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409543 [Multi-domain] Cd Length: 94 Bit Score: 55.12 E-value: 8.44e-09
|
||||||||||||
IgI_Lingo-1 | cd20969 | Immunoglobulin I-set domain of the Leucine-rich repeat and immunoglobin-like domain-containing ... |
2448-2533 | 8.80e-09 | ||||||||
Immunoglobulin I-set domain of the Leucine-rich repeat and immunoglobin-like domain-containing protein 1 (Lingo-1); The members here are composed of the immunoglobulin I-set (IgI) domain of the Leucine-rich repeat and immunoglobin-like domain-containing protein 1 (Lingo-1). Human Lingo-1 is a central nervous system-specific transmembrane glycoprotein also known as LERN-1, which functions as a negative regulator of neuronal survival, axonal regeneration, and oligodendrocyte differentiation and myelination. Lingo-1 is a key component of the Nogo receptor signaling complex (RTN4R/NGFR) in RhoA activation responsible for some inhibition of axonal regeneration by myelin-associated factors. The ligand-binding ectodomain of human Lingo-1 contains a bimodular, kinked structure composed of leucine-rich repeat (LRR) and immunoglobulin (Ig)-like modules. Diseases associated with Lingo-1 include mental retardation, autosomal recessive 64 and essential tremor. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Unlike the V-set, one of the distinctive features of I-set domains is the lack of a C" strand. The structure of the Lingo-1 lacks this strand and thus it belongs to the I-set of the IgSF. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409561 Cd Length: 92 Bit Score: 55.09 E-value: 8.80e-09
|
||||||||||||
Kunitz_textilinin-like | cd22594 | venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins ... |
2035-2085 | 9.67e-09 | ||||||||
venom Kunitz-type proteins such as textilinin, BF9 and PILP; This group includes toxins isolated from snake venoms, such as textilinin, vestiginin, spermatin, mulgin, venom basic protease inhibitor IX (BF9), and protease inhibitor-like protein (PILP), among others. Pseudonaja textilis textilinin-1 is a Kunitz-type serine protease inhibitor that binds to and blocks the activity of a range of serine proteases, including plasmin and trypsin. Ability of testilinin to inhibit plasmin, a protease involved in fibrinolysis, raises the possibility that it may be used as an alternative to aprotinin (Trasylol), which is a systemic antibleeding agent in surgery. Also included is the Bungarus fasciatus fraction IX (BF9), a chymotrypsin inhibitor that binds chymotrypsin but not trypsin. Protease inhibitor-like proteins PILP-1 and PILP-2 show weak binding and inhibition of matrix metalloproteinase-2 (MMP-2) and show an activity in inhibiting migration and invasion of neuroblastoma; they do not inhibit chymotrypsin or trypsin. The structures of these toxins are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438637 Cd Length: 56 Bit Score: 53.47 E-value: 9.67e-09
|
||||||||||||
Kunitz_ELP-like | cd22632 | early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This ... |
1848-1900 | 9.69e-09 | ||||||||
early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This model includes the Kunitz-type proteins, colostrum trypsin inhibitor (CTI, also called colostrum BPI) and early lactation protein (ELP). In marsupials, the ELP gene is expressed in the mammary gland and the protein is secreted into milk during early lactation. Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine CTI protein. Marsupial ELP and eutherian CTI both have a single Kunitz domain and are secreted only during the early lactation phases, suggesting that this protein may have an important role in the immunologically immature young of these species. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438675 Cd Length: 55 Bit Score: 53.59 E-value: 9.69e-09
|
||||||||||||
ser_rich_anae_1 | NF033849 | serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 ... |
1129-1255 | 9.88e-09 | ||||||||
serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 amino acids), which a highly serine-rich central region that averages over 300 aa in length. Species encoding members of this family of proteins tend to be anaerobic bacteria, including Gram-positive bacteria of the human gut microbiome and Chloroflexi from marine sediments. Pssm-ID: 468206 [Multi-domain] Cd Length: 1122 Bit Score: 61.17 E-value: 9.88e-09
|
||||||||||||
ADAMTS_CR_3 | pfam19236 | ADAMTS cysteine-rich domain; This cysteine rich domain is found in a variety of ADAMTS and ... |
118-215 | 9.89e-09 | ||||||||
ADAMTS cysteine-rich domain; This cysteine rich domain is found in a variety of ADAMTS and ADAMTS-like endopeptidases widely spread in animals. It is a well-conserved cysteine-rich sequence containing 10 cysteine residues. ADAM-TS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) is closely related to the ADAM family (A Disintegrin and Metalloproteinase, pfam08516) and consists of at least 20 members sharing a high degree of sequence similarity and conserved domain organization. Members of the ADAMTS family have been implicated in a range of diseases. Pssm-ID: 437068 Cd Length: 115 Bit Score: 55.49 E-value: 9.89e-09
|
||||||||||||
Kunitz_boophilin_1-like | cd22599 | first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
1849-1905 | 1.03e-08 | ||||||||
first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438642 Cd Length: 61 Bit Score: 53.63 E-value: 1.03e-08
|
||||||||||||
IgI_4_Dscam | cd20956 | Fourth immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; ... |
2719-2797 | 1.05e-08 | ||||||||
Fourth immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; a member of the I-set of IgSF domains; The members here are composed of the fourth immunoglobulin domain of the Drosophila melanogaster Down syndrome cell adhesion molecule (DSCAM) protein and similar proteins. Down syndrome cell adhesion molecule (DSCAM) is a cell adhesion molecule that plays critical roles in neural development, including axon guidance and branching, axon target recognition, self-avoidance and synaptic formation. DSCAM belongs to the immunoglobulin superfamily and contributes to defects in the central nervous system in Down syndrome patients. Vertebrate DSCAMs differ from Drosophila Dscam1 in that they lack the extensive alternative splicing that occurs in the insect gene. Drosophila melanogaster Dscam has 38,016 isoforms generated by the alternative splicing of four variable exon clusters, which allows every neuron in the fly to display a distinctive set of Dscam proteins on its cell surface. Drosophila Dscam1 is a cell-surface protein that plays important roles in neural development and axon tiling of neurons. It is shown that thousands of isoforms bind themselves through specific homophilic (self-binding) interactions, a process which mediates cellular self-recognition. Drosophila Dscam2 is also alternatively spliced and plays a key role in the development of two visual system neurons, monopolar cells L1 and L2. This group is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand but lack a C" strand. Pssm-ID: 409548 [Multi-domain] Cd Length: 96 Bit Score: 54.87 E-value: 1.05e-08
|
||||||||||||
Kunitz_amblin-like | cd22638 | Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration ... |
2245-2297 | 1.05e-08 | ||||||||
Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6), Amblyomma hebraeum amblin domain 1, and similar proteins; This model includes Caenorhabditis elegans Kunitz domain 11 of papilin (also called abnormal cell migration protein 6 or mig-6) and domain 1 of Amblyomma hebraeum amblin, and similar proteins. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. Amblin contains two Kunitz-like domains and specifically inhibits thrombin. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438680 Cd Length: 51 Bit Score: 53.16 E-value: 1.05e-08
|
||||||||||||
IgI_2_Titin_Z1z2-like | cd20972 | Second Ig-like domain of the giant muscle protein titin Z1z2 in the sarcomeric Z-disk, and ... |
2724-2797 | 1.09e-08 | ||||||||
Second Ig-like domain of the giant muscle protein titin Z1z2 in the sarcomeric Z-disk, and similar domains; a member of the I-set of IgSF domains; The members here are composed of the second immunoglobulin (Ig)-like domain of the giant muscle protein titin Z1z2 in the sarcomeric Z-disk and similar proteins. Titin is a key component in the assembly and functioning of vertebrate striated muscles. By providing connections at the level of individual microfilaments, it contributes to the fine balance of forces between the two halves of the sarcomere. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Unlike the V-set, one of the distinctive features of I-set domains is the lack of a C" strand. The structure of the titin Z1z2 lacks this strand and thus it belongs to the I-set of the IgSF. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409564 [Multi-domain] Cd Length: 91 Bit Score: 54.51 E-value: 1.09e-08
|
||||||||||||
IgI_5_Robo | cd20952 | Fifth Ig-like domain of Roundabout (Robo) homolog 1/2, and similar domains; a member of the ... |
2725-2797 | 1.14e-08 | ||||||||
Fifth Ig-like domain of Roundabout (Robo) homolog 1/2, and similar domains; a member of the I-set of IgSF domains; The members here are composed of the fifth Ig-like domain of Roundabout (Robo) homolog 1/2 and similar domains. Robo receptors play a role in the development of the central nervous system (CNS), and are receptors of Slit protein. Slit is a repellant secreted by the neural cells in the midline. Slit acts through Robo to prevent most neurons from crossing the midline from either side. Three mammalian Robo homologs (Robo1, -2, and -3), and three mammalian Slit homologs (Slit-1,-2, -3), have been identified. Commissural axons, which cross the midline, express low levels of Robo; longitudinal axons, which avoid the midline, express high levels of Robo. Robo1, -2, and -3 are expressed by commissural neurons in the vertebrate spinal cord and Slits 1, -2, -3 are expressed at the ventral midline. Robo-3 is a divergent member of the Robo family which instead of being a positive regulator of slit responsiveness, antagonizes slit responsiveness in precrossing axons. The Slit-Robo interaction is mediated by the second leucine-rich repeat (LRR) domain of Slit and the two N-terminal Ig domains of Robo, Ig1 and Ig2. The primary Robo binding site for Slit2 has been shown by surface plasmon resonance experiments and mutational analysis to be is the Ig1 domain, while the Ig2 domain has been proposed to harbor a weak secondary binding site. The fifth Ig-like domain of Robo 1 and 2 is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand but lack a C" strand. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors Pssm-ID: 409544 [Multi-domain] Cd Length: 87 Bit Score: 54.42 E-value: 1.14e-08
|
||||||||||||
Kunitz_B2B | cd22619 | Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; ... |
2113-2165 | 1.18e-08 | ||||||||
Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; This model includes the Kunitz inhibitor subunit of beta 2-bungarotoxin, a presynaptic neurotoxin of the Bungarus multicinctus venom. Beta-bungarotoxin is a heterodimeric neurotoxin consisting of a phospholipase subunit linked by a disulfide bond to the Kunitz protease inhibitor subunit; the latter subunit is homologous to venom basic protease inhibitors but has no protease inhibitor activity and is non-toxic. The beta-bungarotoxin Kunitz subunit serves to guide the toxin to its site of action on the presynaptic membrane by virtue of a high-affinity interaction with a specific subclass of voltage-sensitive potassium channels. This subfamily also includes Kunitz-type serine protease inhibitor homolog beta-bungarotoxin B1 chain and protease inhibitor-like protein 1 (PILP-1). The B1 chain also has no protease inhibitor activity but blocks voltage-gated potassium channels, while PILP-1 inhibits trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438662 Cd Length: 58 Bit Score: 53.33 E-value: 1.18e-08
|
||||||||||||
Kunitz_HAI2_1-like | cd22621 | Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
2115-2165 | 1.20e-08 | ||||||||
Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes the Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. HAI-2 Kunitz domain 1 (KD1) has been found to be the domain responsible for inhibition of hepatocyte growth factor (HGF) activator; activated HGF/scatter factor (HGF/SF) binds to its receptor tyrosine kinase MET to induce dimerization and initiate phosphorylation cascades leading to comprehensive cellular changes that, in the deregulated context of cancer, drive malignant transformation and progression. HAI-2 has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer; its loss leads to tumor growth and progression in part due to increased MET signaling. HAI-2 is also a specific substrate for mesotrypsin, which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in HGF/SF activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. The structures of these KD1 domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438664 Cd Length: 53 Bit Score: 53.25 E-value: 1.20e-08
|
||||||||||||
Kunitz_ABPP-like | cd22607 | Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily ... |
2114-2165 | 1.22e-08 | ||||||||
Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily includes the amyloid-beta precursor protein (ABPP, also called APP, APPI, Alzheimer disease amyloid protein, amyloid-beta A4 protein, cerebral vascular amyloid peptide (CVAP), protease nexin II (PN2)), as well as amyloid-like protein 2 (APLP2, also called amyloid protein homolog or APPH), among others. ABPP/APPI is an inhibitor of serine proteases such as anionic and cationic trypsins. For example, APPI-4M is a variant that specifically inhibits Kallikrein (KLK)-related peptidase 6 (KLK6), which is highly upregulated in several types of cancer where its increased activity promotes cancer invasion and metastasis. Amyloid-like protein 2 (APLP2) inhibits trypsin, chymotrypsin, plasmin, factor XIA, and plasma and glandular kallikrein, and may play a role in the regulation of hemostasis. Proteins in this subfamily contain a single Kunitz domain, with a structure similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438650 Cd Length: 52 Bit Score: 53.20 E-value: 1.22e-08
|
||||||||||||
Kunitz_TFPI2_1-like | cd22616 | Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
2241-2297 | 1.24e-08 | ||||||||
Kunitz domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 1 (KD1) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1. The TFPI2 domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. Structure studies of KD1 complexed with proteases may help in the development of specific and potent KD1 domain protein that may have a large pharmacologic impact in preventing tumor metastasis, retinal degeneration, and degradation of collagen in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438659 Cd Length: 57 Bit Score: 53.40 E-value: 1.24e-08
|
||||||||||||
ser_rich_anae_1 | NF033849 | serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 ... |
1084-1241 | 1.28e-08 | ||||||||
serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 amino acids), which a highly serine-rich central region that averages over 300 aa in length. Species encoding members of this family of proteins tend to be anaerobic bacteria, including Gram-positive bacteria of the human gut microbiome and Chloroflexi from marine sediments. Pssm-ID: 468206 [Multi-domain] Cd Length: 1122 Bit Score: 60.79 E-value: 1.28e-08
|
||||||||||||
Kunitz_PPTI-like | cd22608 | Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor ... |
2035-2085 | 1.30e-08 | ||||||||
Pseudocerastes persicus trypsin inhibitor (PPTI), Kunitz-type serine protease inhibitor bitisilin, and similar proteins; This group contains Pseudocerastes persicus trypsin inhibitor (PPTI), Bitis gabonica Kunitz-type serine protease inhibitor bitisilin-1 (BG-11), -2 (BG-15) and -3 (two-Kunitz protease inhibitor), Oxyuranus scutellatus scutellatus taicatoxin, and serine protease inhibitor component (TSPI, also called venom protease inhibitor 1 or venom protease inhibitor 2), among others. PPTI from P. persicus venom shows inhibitory effect against trypsin proteolytic activity and has similarities to dendrotoxins (DTXs), with corresponding functionally important residues. Studies have shown the ability of PPTI to inhibit voltage-gated potassium channels, and consequently have dual functionality. Bitilisins 1, 2, and 3 are serine protease inhibitors expressed in snake venom glands; bitsilin-3 consists of two Kunitz protease inhibitor domains. Taicatoxin inhibits trypsin, tissue kallikrein, elastase, plasmin and factor Xa, and is also known to block the voltage-dependent L-type calcium channels from the heart, and the small conductance calcium-activated potassium channels (KCa) in chromaffin cells and in the brain. The structures of these Kunitz-type proteins are similar to other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438651 Cd Length: 54 Bit Score: 53.07 E-value: 1.30e-08
|
||||||||||||
Kunitz_conkunitzin | cd22593 | conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 ... |
2174-2224 | 1.39e-08 | ||||||||
conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 (Cs1) and -S2 (Cs2). Conkunitzins are pore-modulating toxins that block voltage-dependent potassium channels (Kvs) by exploiting inherent slow inactivation to block K+ channels. Cs1 binds to the channel turrets and disrupts the structural water hydrogen-bonding network, exposing the peripheral water pockets of ion channels and triggering an asymmetric collapse of the pore. Conus bullatus conkunitzin-B1, expressed in the venom duct, specifically blocks voltage-activated potassium channels (Kv) of the Shaker family. Members of this subfamily contain 2 disulfide bonds instead of the 3 present in most Kunitz domain proteins. Pssm-ID: 438636 Cd Length: 51 Bit Score: 53.00 E-value: 1.39e-08
|
||||||||||||
Kunitz_KTT | cd22620 | scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model ... |
2115-2165 | 1.41e-08 | ||||||||
scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model includes scorpion Kunitz-type toxin (KTT) such as Lychas mucronatus LmKTT-1a (also called Delta-KTx 2.1 or SdPII), Mesobuthus martensii BmKTT-1 (also called Delta-KTx 2.4) and BmKTT-2 (also called Delta-KTx 3.1), all expressed by the venom gland. LmKTT-1a, BmKTT-1 and BmKTT-2 are all dual-function toxins that completely inhibit trypsin activity but have no effect on chymotrypsin or elastase. They also inhibit mKv1.3/KCNA3 potassium channel currents. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor); however, they lack the conserved CysII-CysIV disulfide bond but contains 2 cysteine residues at the C-terminus that generate a new disulfide bond. Pssm-ID: 438663 Cd Length: 58 Bit Score: 53.34 E-value: 1.41e-08
|
||||||||||||
Kunitz_dendrotoxin | cd22595 | dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake ... |
1847-1900 | 1.48e-08 | ||||||||
dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake venoms, such as dendrotoxins (DTXs) I, K and B, mambaquaretin-1 (MQ-1) and calcicludine. The dendrotoxins have little or no anti-protease activity but have been shown to block certain subtypes of voltage dependent potassium channels in neurons. Dendroaspis angusticeps (green mamba) alpha-dendrotoxin is a neurotoxin that enhances acetylcholine release at neuromuscular junctions. Studies with cloned K(+) channels show that this toxin blocks Kv1.1, Kv1.2 and Kv1.6 channels in the nanomolar range, whereas Dendroaspis polylepis (black mamba) dendrotoxin K preferentially blocks Kv1.1 channels. Also, structural analogs of dendrotoxins have facilitated defining the molecular recognition properties of different types of K(+) channels, and therefore, dendrotoxins are widely used as probes for studying the function of K(+) channels in physiology and pathophysiology. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438638 Cd Length: 56 Bit Score: 53.21 E-value: 1.48e-08
|
||||||||||||
Kunitz_HAI2_1-like | cd22621 | Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
1667-1718 | 1.51e-08 | ||||||||
Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes the Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. HAI-2 Kunitz domain 1 (KD1) has been found to be the domain responsible for inhibition of hepatocyte growth factor (HGF) activator; activated HGF/scatter factor (HGF/SF) binds to its receptor tyrosine kinase MET to induce dimerization and initiate phosphorylation cascades leading to comprehensive cellular changes that, in the deregulated context of cancer, drive malignant transformation and progression. HAI-2 has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer; its loss leads to tumor growth and progression in part due to increased MET signaling. HAI-2 is also a specific substrate for mesotrypsin, which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in HGF/SF activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. The structures of these KD1 domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438664 Cd Length: 53 Bit Score: 52.86 E-value: 1.51e-08
|
||||||||||||
Kunitz_HAI2_2-like | cd22622 | Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
1668-1718 | 1.52e-08 | ||||||||
Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. It has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer, the loss of which leads to tumor growth and progression attributable at least in part to increased MET signaling. HAI-2 is a specific substrate of mesotrypsin which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in hetatocyte growth factor/scatter factor (HGF/SF) activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. KD2 is similar to KD1, whose structure is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438665 Cd Length: 53 Bit Score: 53.13 E-value: 1.52e-08
|
||||||||||||
Kunitz_HAI2_2-like | cd22622 | Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
2035-2085 | 1.53e-08 | ||||||||
Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. It has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer, the loss of which leads to tumor growth and progression attributable at least in part to increased MET signaling. HAI-2 is a specific substrate of mesotrypsin which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in hetatocyte growth factor/scatter factor (HGF/SF) activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. KD2 is similar to KD1, whose structure is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438665 Cd Length: 53 Bit Score: 53.13 E-value: 1.53e-08
|
||||||||||||
Kunitz_BmTI-like | cd22604 | Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group ... |
2114-2165 | 1.60e-08 | ||||||||
Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group includes Kunitz-type serine protease inhibitors 6 (BmTI-6) and A (BmTI-A), both of which inhibit bovine trypsin, bovine chymotrypsin, human plasmin, human plasma kallikrein and human neutrophil elastase, but not bovine thrombin, human factor Xa or porcine pancreatic kallikrein. They may play a role in blocking blood coagulation during the larvae fixation on cattle. This subfamily also includes Rhipicephalus microplus protease inhibitor carrapatin. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438647 [Multi-domain] Cd Length: 56 Bit Score: 52.84 E-value: 1.60e-08
|
||||||||||||
Kunitz_SmCI_1-like | cd22601 | first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
2033-2085 | 1.61e-08 | ||||||||
first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the first Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438644 Cd Length: 55 Bit Score: 52.89 E-value: 1.61e-08
|
||||||||||||
Kunitz_collagen_alpha1_XXVIII | cd22628 | Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This ... |
2035-2085 | 1.64e-08 | ||||||||
Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type XXVIII collagen (collagen alpha-1(XXVIII) chain) and similar proteins. The zebrafish has four collagen XXVIII genes all of which are differentially expressed in the liver, thymus, muscle, intestine and skin; only the alpha1 chain contains the Kunitz domain which is often proteolytically processed. Mammals only contain the alpha1 collagen chain, expressed mostly in dorsal root ganglia and peripheral nerves. The Kunitz domain is found at the C-terminus, and is most related to Kunitz domains of papilin and alpha3(VI) collagen. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438671 Cd Length: 51 Bit Score: 52.67 E-value: 1.64e-08
|
||||||||||||
PHA03255 | PHA03255 | BDLF3; Provisional |
928-1081 | 1.65e-08 | ||||||||
BDLF3; Provisional Pssm-ID: 165513 [Multi-domain] Cd Length: 234 Bit Score: 57.99 E-value: 1.65e-08
|
||||||||||||
Kunitz_SHPI | cd22618 | Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor ... |
1908-1959 | 1.85e-08 | ||||||||
Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor stichotoxin-Hcr2e, and similar proteins; This model includes Kunitz inhibitor protein ShPI-1, the major protease inhibitor from the sea anemone Stichodactyla helianthus, as well as protease inhibitor stichotoxin-Hcr2e (also called PI- stichotoxin-Hcr2e, PI-SHTX-Hcr2e, or Kunitz-type serine protease inhibitor InhVJ) and HCRG1 from Heteractis crispa. ShPI-1 has an unusually broad specificity toward several serine proteases, including trypsin, chymotrypsin, human neutrophil elastase, kallikrein and plasmin, and can also bind aspartic and cysteine proteases, such as pepsin and papain, respectively. PI-SHTX-Hcr2e and HCRG1 inhibit trypsin and chymotrypsin, but do not inhibit the serine proteases plasmin, thrombin, kallikrein, the cysteine proteinase papain, and the aspartic protease pepsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438661 Cd Length: 53 Bit Score: 52.93 E-value: 1.85e-08
|
||||||||||||
Kunitz_SmCI_1-like | cd22601 | first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
1976-2029 | 1.90e-08 | ||||||||
first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the first Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438644 Cd Length: 55 Bit Score: 52.89 E-value: 1.90e-08
|
||||||||||||
Kunitz_eppin | cd22611 | Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily ... |
2114-2167 | 2.04e-08 | ||||||||
Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily includes the Kunitz inhibitor domain protein eppin (also called Cancer/testis antigen 71 or CT71, epididymal protease inhibitor, protease inhibitor WAP7, serine protease inhibitor-like with Kunitz and WAP domains 1, or WAP four-disulfide core domain protein 7) as well as WAP four-disulfide core domain proteins 6A and 6B in mice, and similar proteins. Eppin is a serine protease inhibitor that plays an essential role in male reproduction and fertility. It modulates the hydrolysis of seminal fluid protein semenogelin 1 (SEMG1) by the serine protease kallikrein-related peptidase 3 (KLK3, PSA), provides antimicrobial protection for spermatozoa in the ejaculate coagulum, and binds SEMG1, thereby inhibiting sperm motility. Thus, eppin could potentially be used as a target for male contraception. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438654 Cd Length: 57 Bit Score: 52.79 E-value: 2.04e-08
|
||||||||||||
Kunitz_HAI1_2-like | cd22624 | Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes ... |
2245-2297 | 2.07e-08 | ||||||||
Kunitz domain 2 of hepatocyte growth factor activator inhibitor-1 (HAI1); This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 1 (HAI-1 or HAI1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. While the Kunitz domain 1 (KD1) is the major inhibitory domain of HAI-1 and involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure, studies show that deletion of HAI-1 Kunitz domain 2 (KD2) and the extracellular region enhanced inhibition of matriptase. HAI-1 KD2 has been shown to have potent inhibitory activity against trypsin, but it cannot inhibit hepatocyte growth factor activator (HGFA), and matriptase. HAI-1 is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structure of KD2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438667 Cd Length: 61 Bit Score: 52.90 E-value: 2.07e-08
|
||||||||||||
Kunitz_SmCI_2-like | cd22602 | second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
1727-1777 | 2.09e-08 | ||||||||
second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the second Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438645 Cd Length: 51 Bit Score: 52.54 E-value: 2.09e-08
|
||||||||||||
Kunitz_SCI-I-like | cd22634 | chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin ... |
2035-2085 | 2.13e-08 | ||||||||
chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin inhibitors SCI-III and SCI-I, and similar proteins in insects. SCI-III and SCI-I inhibit chymotrypsin, avoiding the accidental chymotrypsin-mediated activation of prophenoloxidase. This enzyme is required by the insect immune system to produce melanin which is used to engulf foreign objects. This subfamily also includes Kunitz-type male accessory gland peptide with protease inhibitory activity, synthesized and secreted by male accessory glands of Drosophila funebris; it may play a role as an acrosin inhibitor involved in reproduction. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438677 Cd Length: 57 Bit Score: 52.51 E-value: 2.13e-08
|
||||||||||||
Kunitz_WFIKKN_1-like | cd22605 | first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
1978-2028 | 2.14e-08 | ||||||||
first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the first Kunitz domain that is similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438648 Cd Length: 52 Bit Score: 52.36 E-value: 2.14e-08
|
||||||||||||
IgI_1_Neogenin_like | cd05722 | First immunoglobulin (Ig)-like domain in neogenin, and similar domains; member of the I-set of ... |
2456-2525 | 2.24e-08 | ||||||||
First immunoglobulin (Ig)-like domain in neogenin, and similar domains; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the first immunoglobulin (Ig)-like domain in neogenin and related proteins. Neogenin is a cell surface protein which is expressed in the developing nervous system of vertebrate embryos in the growing nerve cells. It is also expressed in other embryonic tissues and may play a general role in developmental processes such as cell migration, cell-cell recognition, and tissue growth regulation. Included in this group is the tumor suppressor protein DCC which is deleted in colorectal carcinoma. DCC and neogenin each have four Ig-like domains followed by six fibronectin type III domains, a transmembrane domain, and an intracellular domain. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409387 Cd Length: 97 Bit Score: 54.02 E-value: 2.24e-08
|
||||||||||||
Kunitz_boophilin_2-like | cd22600 | second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
1850-1900 | 2.31e-08 | ||||||||
second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438643 Cd Length: 54 Bit Score: 52.43 E-value: 2.31e-08
|
||||||||||||
Kunitz_TFPI1_1-like | cd22613 | Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor ... |
1977-2028 | 2.42e-08 | ||||||||
Kunitz protease inhibitor (KPI) domain 1 (KPI-1 or K1) of tissue factor pathway inhibitor (TFPI); This model represents the first Kunitz-type domain (K1 or KPI-1) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; The K1 domain of TFPI has been shown to bind and inhibit FVIIa while the K2 domain similarly inhibits FXa. Small peptide blocking inhibition of FXa and TF-FVIIa by TFPI shows that domain K1 is not only important for FVIIa inhibition but also for FXa inhibition, i.e. for the transition of the loose to the tight FXa-TFPI complex. The structure of the K1 domain is similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438656 Cd Length: 55 Bit Score: 52.36 E-value: 2.42e-08
|
||||||||||||
Kunitz_bikunin_2-like | cd22597 | second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal ... |
2172-2224 | 2.56e-08 | ||||||||
second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. Bikunin is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438640 Cd Length: 55 Bit Score: 52.39 E-value: 2.56e-08
|
||||||||||||
Kunitz_bikunin_2-like | cd22597 | second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal ... |
2114-2166 | 2.85e-08 | ||||||||
second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. Bikunin is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438640 Cd Length: 55 Bit Score: 52.39 E-value: 2.85e-08
|
||||||||||||
Kunitz_KTT | cd22620 | scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model ... |
1908-1958 | 3.00e-08 | ||||||||
scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model includes scorpion Kunitz-type toxin (KTT) such as Lychas mucronatus LmKTT-1a (also called Delta-KTx 2.1 or SdPII), Mesobuthus martensii BmKTT-1 (also called Delta-KTx 2.4) and BmKTT-2 (also called Delta-KTx 3.1), all expressed by the venom gland. LmKTT-1a, BmKTT-1 and BmKTT-2 are all dual-function toxins that completely inhibit trypsin activity but have no effect on chymotrypsin or elastase. They also inhibit mKv1.3/KCNA3 potassium channel currents. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor); however, they lack the conserved CysII-CysIV disulfide bond but contains 2 cysteine residues at the C-terminus that generate a new disulfide bond. Pssm-ID: 438663 Cd Length: 58 Bit Score: 52.19 E-value: 3.00e-08
|
||||||||||||
Kunitz_huwentoxin | cd22598 | Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor ... |
1784-1836 | 3.04e-08 | ||||||||
Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor huwentoxin-XI, including U15-theraphotoxin-Hs1g (also called U15-TRTX-Hs1g or Huwentoxin HW11c39), and kappaPI-theraphotoxin-Hs1a (also called KappaPI-TRTX-Hs1a or Huwentoxin-HW11g8). Huwentoxin-XI is a bifunctional toxin that inhibits both serine proteases (trypsin) and voltage-gated potassium channels (Kv) via surfaces displayed on opposite faces of the toxin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438641 Cd Length: 53 Bit Score: 52.30 E-value: 3.04e-08
|
||||||||||||
Kunitz_huwentoxin | cd22598 | Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor ... |
1725-1777 | 3.04e-08 | ||||||||
Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor huwentoxin-XI, including U15-theraphotoxin-Hs1g (also called U15-TRTX-Hs1g or Huwentoxin HW11c39), and kappaPI-theraphotoxin-Hs1a (also called KappaPI-TRTX-Hs1a or Huwentoxin-HW11g8). Huwentoxin-XI is a bifunctional toxin that inhibits both serine proteases (trypsin) and voltage-gated potassium channels (Kv) via surfaces displayed on opposite faces of the toxin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438641 Cd Length: 53 Bit Score: 52.30 E-value: 3.04e-08
|
||||||||||||
Ig_3 | pfam13927 | Immunoglobulin domain; This family contains immunoglobulin-like domains. |
2552-2621 | 3.23e-08 | ||||||||
Immunoglobulin domain; This family contains immunoglobulin-like domains. Pssm-ID: 464046 [Multi-domain] Cd Length: 78 Bit Score: 52.95 E-value: 3.23e-08
|
||||||||||||
Kunitz_huwentoxin | cd22598 | Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor ... |
2114-2167 | 3.38e-08 | ||||||||
Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor huwentoxin-XI, including U15-theraphotoxin-Hs1g (also called U15-TRTX-Hs1g or Huwentoxin HW11c39), and kappaPI-theraphotoxin-Hs1a (also called KappaPI-TRTX-Hs1a or Huwentoxin-HW11g8). Huwentoxin-XI is a bifunctional toxin that inhibits both serine proteases (trypsin) and voltage-gated potassium channels (Kv) via surfaces displayed on opposite faces of the toxin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438641 Cd Length: 53 Bit Score: 51.92 E-value: 3.38e-08
|
||||||||||||
PLAC | pfam08686 | PLAC (protease and lacunin) domain; The PLAC (protease and lacunin) domain is a short ... |
2806-2838 | 3.78e-08 | ||||||||
PLAC (protease and lacunin) domain; The PLAC (protease and lacunin) domain is a short six-cysteine region that is usually found at the C terminal of proteins. It is found in a range of proteins including PACE4 (paired basic amino acid cleaving enzyme 4) and the extracellular matrix protein lacunin. Pssm-ID: 462560 Cd Length: 31 Bit Score: 51.38 E-value: 3.78e-08
|
||||||||||||
Kunitz_papilin_lacunin-like | cd22639 | Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr ... |
2035-2085 | 3.94e-08 | ||||||||
Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr proteins; This model includes Drosophila melanogaster Kunitz domain 1 of papilin and Manduca sexta Kunitz domain 1 of lacunin, and similar proteins. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinase action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. M. sexta lacunin is a large multidomain ECM containing several domains including several Kunitz-type protease inhibitors, thrombospondin type I, immunoglobulin-like and others. It exerts multiple effects on a variety of cell behaviors associated with the complex phenomenon of epithelial morphogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438681 Cd Length: 52 Bit Score: 51.81 E-value: 3.94e-08
|
||||||||||||
Kunitz_conkunitzin | cd22593 | conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 ... |
1727-1777 | 3.94e-08 | ||||||||
conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 (Cs1) and -S2 (Cs2). Conkunitzins are pore-modulating toxins that block voltage-dependent potassium channels (Kvs) by exploiting inherent slow inactivation to block K+ channels. Cs1 binds to the channel turrets and disrupts the structural water hydrogen-bonding network, exposing the peripheral water pockets of ion channels and triggering an asymmetric collapse of the pore. Conus bullatus conkunitzin-B1, expressed in the venom duct, specifically blocks voltage-activated potassium channels (Kv) of the Shaker family. Members of this subfamily contain 2 disulfide bonds instead of the 3 present in most Kunitz domain proteins. Pssm-ID: 438636 Cd Length: 51 Bit Score: 51.84 E-value: 3.94e-08
|
||||||||||||
Kunitz_TKDP-like | cd22609 | trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the ... |
1850-1900 | 4.04e-08 | ||||||||
trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the trophoblast Kunitz domain protein 1 (TKDP-1) and splice variant TKDP-4, among others, which are Kunitz inhibitor domain proteins. TKDP-1 is expressed in the trophectoderm which forms the outer epithelial layer of the trophoblast, and may play a role in mediating maternal-conceptus interactions in the immediate preimplantation period. However, it does not appear to have proteinase inhibitory activity. These domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438652 Cd Length: 52 Bit Score: 51.68 E-value: 4.04e-08
|
||||||||||||
Kunitz_B2B | cd22619 | Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; ... |
1855-1900 | 4.21e-08 | ||||||||
Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; This model includes the Kunitz inhibitor subunit of beta 2-bungarotoxin, a presynaptic neurotoxin of the Bungarus multicinctus venom. Beta-bungarotoxin is a heterodimeric neurotoxin consisting of a phospholipase subunit linked by a disulfide bond to the Kunitz protease inhibitor subunit; the latter subunit is homologous to venom basic protease inhibitors but has no protease inhibitor activity and is non-toxic. The beta-bungarotoxin Kunitz subunit serves to guide the toxin to its site of action on the presynaptic membrane by virtue of a high-affinity interaction with a specific subclass of voltage-sensitive potassium channels. This subfamily also includes Kunitz-type serine protease inhibitor homolog beta-bungarotoxin B1 chain and protease inhibitor-like protein 1 (PILP-1). The B1 chain also has no protease inhibitor activity but blocks voltage-gated potassium channels, while PILP-1 inhibits trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438662 Cd Length: 58 Bit Score: 51.79 E-value: 4.21e-08
|
||||||||||||
COG4625 | COG4625 | Uncharacterized conserved protein, contains a C-terminal beta-barrel porin domain [Function ... |
732-1228 | 4.21e-08 | ||||||||
Uncharacterized conserved protein, contains a C-terminal beta-barrel porin domain [Function unknown]; Pssm-ID: 443664 [Multi-domain] Cd Length: 900 Bit Score: 59.02 E-value: 4.21e-08
|
||||||||||||
Kunitz_ixolaris_2 | cd22626 | Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second ... |
1850-1900 | 4.22e-08 | ||||||||
Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second Kunitz-type domain (K2) of ixolaris from the venomous organism Conus striatus. Ixolaris is a potent tick salivary anticoagulant that binds coagulation factor Xa (FXa) and zymogen FX, and forms a quaternary tissue factor (TF)/FVIIa/FX(a)/Ixolaris inhibitory complex. It blocks TF-induced coagulation and PAR2 (proteinase-activated receptor 2) signaling, and prevents thrombosis, tumor growth, and immune activation. Ixolaris consists of 2 Kunitz domains (K1 and K2), both of which recognize the heparin-binding (pro)exosite (HBE) on FX. This model contains K2, an extraordinarily dynamic domain that encompasses several residues involved in FX binding. Its backbone plasticity is critical for ixolaris biological activity. This domain contains 2 disulfide bonds instead of the 3 typical of Kunitz domain proteins. Pssm-ID: 438669 Cd Length: 51 Bit Score: 51.69 E-value: 4.22e-08
|
||||||||||||
Kunitz_ABPP-like | cd22607 | Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily ... |
1786-1836 | 4.27e-08 | ||||||||
Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily includes the amyloid-beta precursor protein (ABPP, also called APP, APPI, Alzheimer disease amyloid protein, amyloid-beta A4 protein, cerebral vascular amyloid peptide (CVAP), protease nexin II (PN2)), as well as amyloid-like protein 2 (APLP2, also called amyloid protein homolog or APPH), among others. ABPP/APPI is an inhibitor of serine proteases such as anionic and cationic trypsins. For example, APPI-4M is a variant that specifically inhibits Kallikrein (KLK)-related peptidase 6 (KLK6), which is highly upregulated in several types of cancer where its increased activity promotes cancer invasion and metastasis. Amyloid-like protein 2 (APLP2) inhibits trypsin, chymotrypsin, plasmin, factor XIA, and plasma and glandular kallikrein, and may play a role in the regulation of hemostasis. Proteins in this subfamily contain a single Kunitz domain, with a structure similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438650 Cd Length: 52 Bit Score: 51.66 E-value: 4.27e-08
|
||||||||||||
Kunitz_collagen_alpha1_VII | cd22627 | Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This ... |
2172-2224 | 4.28e-08 | ||||||||
Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type VII collagen (collagen alpha-1(VII) chain also called long-chain collagen or LC collagen) and similar proteins. LC collagen, encoded by the COL7A1 gene, is a stratified squamous epithelial basement membrane protein that forms anchoring fibrils which may contribute to epithelial basement membrane organization and adherence by interacting with extracellular matrix (ECM) proteins such as type IV collagen. So far, over 800 COL7A1 mutations have been reported, including missense, nonsense, splicing, insertion, and deletion mutations which to varying degrees leads to deficiency of type VII collagen. Epidermolysis bullosa acquisita (EBA) is an autoimmune acquired blistering skin disease resulting from autoantibodies to type VII collagen. The COL7A1 protein contains a Kunitz domain, the deactivation of which induces tumorigenesis. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438670 Cd Length: 53 Bit Score: 51.48 E-value: 4.28e-08
|
||||||||||||
IgI_3_Robo | cd05725 | Third immunoglobulin (Ig)-like domain in Robo (roundabout) receptors; member of the I-set of ... |
2467-2527 | 4.58e-08 | ||||||||
Third immunoglobulin (Ig)-like domain in Robo (roundabout) receptors; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the third immunoglobulin (Ig)-like domain in Robo (roundabout) receptors. Robo receptors play a role in the development of the central nervous system (CNS), and are receptors of Slit protein. Slit is a repellant secreted by the neural cells in the midline. Slit acts through Robo to prevent most neurons from crossing the midline from either side. Three mammalian Robo homologs (Robo1, Robo2, Robo3), and three mammalian Slit homologs (Slit-1,Slit-2, Slit-3), have been identified. Commissural axons, which cross the midline, express low levels of Robo; longitudinal axons, which avoid the midline, express high levels of Robo. Robo1, Robo2, and Robo3 are expressed by commissural neurons in the vertebrate spinal cord and Slit-1, Slit-2, and Slit-3 are expressed at the ventral midline. Robo-3 is a divergent member of the Robo family which instead of being a positive regulator of Slit responsiveness, antagonizes Slit responsiveness in precrossing axons. The Slit-Robo interaction is mediated by the second leucine-rich repeat (LRR) domain of Slit and the two N-terminal Ig domains of Robo, Ig1 and Ig2. The primary Robo binding site for Slit2 has been shown by surface plasmon resonance experiments and mutational analysis to be the Ig1 domain, while the Ig2 domain has been proposed to harbor a weak secondary binding site. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409390 [Multi-domain] Cd Length: 83 Bit Score: 52.78 E-value: 4.58e-08
|
||||||||||||
Kunitz_bikunin_2-like | cd22597 | second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal ... |
1906-1958 | 4.89e-08 | ||||||||
second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. Bikunin is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438640 Cd Length: 55 Bit Score: 51.62 E-value: 4.89e-08
|
||||||||||||
Kunitz_collagen_alpha1_XXVIII | cd22628 | Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This ... |
2174-2224 | 5.02e-08 | ||||||||
Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type XXVIII collagen (collagen alpha-1(XXVIII) chain) and similar proteins. The zebrafish has four collagen XXVIII genes all of which are differentially expressed in the liver, thymus, muscle, intestine and skin; only the alpha1 chain contains the Kunitz domain which is often proteolytically processed. Mammals only contain the alpha1 collagen chain, expressed mostly in dorsal root ganglia and peripheral nerves. The Kunitz domain is found at the C-terminus, and is most related to Kunitz domains of papilin and alpha3(VI) collagen. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438671 Cd Length: 51 Bit Score: 51.51 E-value: 5.02e-08
|
||||||||||||
Kunitz_collagen_alpha1_VII | cd22627 | Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This ... |
2244-2297 | 5.20e-08 | ||||||||
Kunitz-type domain from the alpha1 chain of type VII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type VII collagen (collagen alpha-1(VII) chain also called long-chain collagen or LC collagen) and similar proteins. LC collagen, encoded by the COL7A1 gene, is a stratified squamous epithelial basement membrane protein that forms anchoring fibrils which may contribute to epithelial basement membrane organization and adherence by interacting with extracellular matrix (ECM) proteins such as type IV collagen. So far, over 800 COL7A1 mutations have been reported, including missense, nonsense, splicing, insertion, and deletion mutations which to varying degrees leads to deficiency of type VII collagen. Epidermolysis bullosa acquisita (EBA) is an autoimmune acquired blistering skin disease resulting from autoantibodies to type VII collagen. The COL7A1 protein contains a Kunitz domain, the deactivation of which induces tumorigenesis. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438670 Cd Length: 53 Bit Score: 51.48 E-value: 5.20e-08
|
||||||||||||
PHA03255 | PHA03255 | BDLF3; Provisional |
979-1148 | 5.36e-08 | ||||||||
BDLF3; Provisional Pssm-ID: 165513 [Multi-domain] Cd Length: 234 Bit Score: 56.45 E-value: 5.36e-08
|
||||||||||||
Kunitz_HAI2_2-like | cd22622 | Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
2245-2297 | 5.48e-08 | ||||||||
Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. It has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer, the loss of which leads to tumor growth and progression attributable at least in part to increased MET signaling. HAI-2 is a specific substrate of mesotrypsin which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in hetatocyte growth factor/scatter factor (HGF/SF) activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. KD2 is similar to KD1, whose structure is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438665 Cd Length: 53 Bit Score: 51.20 E-value: 5.48e-08
|
||||||||||||
Kunitz_boophilin_2-like | cd22600 | second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
1978-2028 | 5.73e-08 | ||||||||
second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438643 Cd Length: 54 Bit Score: 51.27 E-value: 5.73e-08
|
||||||||||||
Kunitz_TFPI1_TFPI2_3-like | cd22615 | Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor ... |
2035-2085 | 5.77e-08 | ||||||||
Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor (TFPI) and TFPI2, and similar proteins; This model represents the third Kunitz-type domain (K3 or KPI-3) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI), and of TFPI2 (or TFPI-2). TFPI1 down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI1 complex that then slowly isomerizes to a tight FXa-TFPI1* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI1-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI1 consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; while the K1 domain of TFPI has been shown to bind and inhibit FVIIa and the K2 domain similarly inhibits FXa, the K3 domain has no known inhibitory function. However, Protein S, which functions as a cofactor for TFPI to efficiently enhance TFPI inhibition of FXa and FXa activated TF-VIIa, is dependent on direct interactions with two important residues within K3, a Glutamate and an Arginine. This model also includes TFPI2 Kunitz domain 3 (KD3). TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438658 Cd Length: 54 Bit Score: 51.52 E-value: 5.77e-08
|
||||||||||||
Kunitz_collagen_alpha1_XXVIII | cd22628 | Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This ... |
2245-2297 | 6.11e-08 | ||||||||
Kunitz-type domain from the alpha1 chain of type XXVIII collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha1 chain of type XXVIII collagen (collagen alpha-1(XXVIII) chain) and similar proteins. The zebrafish has four collagen XXVIII genes all of which are differentially expressed in the liver, thymus, muscle, intestine and skin; only the alpha1 chain contains the Kunitz domain which is often proteolytically processed. Mammals only contain the alpha1 collagen chain, expressed mostly in dorsal root ganglia and peripheral nerves. The Kunitz domain is found at the C-terminus, and is most related to Kunitz domains of papilin and alpha3(VI) collagen. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438671 Cd Length: 51 Bit Score: 51.13 E-value: 6.11e-08
|
||||||||||||
PHA03255 | PHA03255 | BDLF3; Provisional |
875-1028 | 6.16e-08 | ||||||||
BDLF3; Provisional Pssm-ID: 165513 [Multi-domain] Cd Length: 234 Bit Score: 56.07 E-value: 6.16e-08
|
||||||||||||
Kunitz_TFPI2_2-like | cd22617 | Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
1975-2028 | 6.21e-08 | ||||||||
Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438660 Cd Length: 54 Bit Score: 51.23 E-value: 6.21e-08
|
||||||||||||
IgI_2_FGFRL1-like | cd05856 | Second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor_like-1 ... |
2464-2527 | 6.30e-08 | ||||||||
Second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor_like-1(FGFRL1); member of the I-set of IgSF domains; The members here are composed of the second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor like-1(FGFRL1). FGFRL1 is comprised of a signal peptide, three extracellular Ig-like modules, a transmembrane segment, and a short intracellular domain. FGFRL1 is expressed preferentially in skeletal tissues. Similar to FGF receptors, the expressed protein interacts specifically with heparin and with FGF2. FGFRL1 does not have a protein tyrosine kinase domain at its C-terminus; neither does its cytoplasmic domain appear to interact with a signaling partner. It has been suggested that FGFRL1 may not have any direct signaling function, but instead acts as a decoy receptor trapping FGFs and preventing them from binding other receptors. Pssm-ID: 409442 Cd Length: 92 Bit Score: 52.55 E-value: 6.30e-08
|
||||||||||||
Kunitz_BPTI | cd22592 | bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor ... |
1727-1777 | 6.44e-08 | ||||||||
bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor (BPTI, also known as pancreatic Kunitz inhibitor, aprotinin, or trypsin-kallikrein inhibitor), a small protein that inhibits the action of the trypsin, and is thus a member of the serine protease family of inhibitors. This class of enzymes contains conserved cysteine residues that form 3 disulfide bonds to stabilize the three-dimensional structure. BPTI has a relatively broad specificity, inhibiting trypsin as well as chymotrypsin, and elastase-like serine (pro)enzymes capable of very different primary specificity. It reacts rapidly with serine proteases to form stable complexes, but the enzyme:inhibitor complex formation may involve several intermediates corresponding to discrete reaction steps. Furthermore, BPTI inhibits the nitric oxide synthase type-I and -II action, and impairs K+ transport by Ca2+-activated K+ channels. Clinically, BPTI is used in certain surgical interventions, such as cardiopulmonary surgery and orthotopic liver transplantation since it significantly reduces hemorrhagic complications. Pssm-ID: 438635 Cd Length: 52 Bit Score: 51.10 E-value: 6.44e-08
|
||||||||||||
Kunitz_SmCI_3-like | cd22603 | third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
2245-2297 | 6.99e-08 | ||||||||
third Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), Bombyx mori cocoon shell-associated trypsin inhibitor (CSTI), Bombus terrestris Kunitz-type serine protease inhibitor Bt-KTI, and similar domains. SmCI is a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. CSTI and Bt-KTI are single Kunitz domain proteins that inhibit trypsin; in addition, Bt-KTI also inhibits plasmin. This model contains the third Kunitz domain of SmCI which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438646 Cd Length: 53 Bit Score: 51.28 E-value: 6.99e-08
|
||||||||||||
Kunitz_papilin_mig6-like | cd22637 | Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of ... |
2035-2085 | 7.34e-08 | ||||||||
Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, and similar domains; This model includes Kunitz domains from papilins with multiple Kunitz domains, such as Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, among others. Papilins are essential for embryonic development. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinases action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438679 Cd Length: 51 Bit Score: 50.82 E-value: 7.34e-08
|
||||||||||||
Kunitz_HAI2_2-like | cd22622 | Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
1976-2028 | 7.35e-08 | ||||||||
Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. It has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer, the loss of which leads to tumor growth and progression attributable at least in part to increased MET signaling. HAI-2 is a specific substrate of mesotrypsin which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in hetatocyte growth factor/scatter factor (HGF/SF) activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. KD2 is similar to KD1, whose structure is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438665 Cd Length: 53 Bit Score: 51.20 E-value: 7.35e-08
|
||||||||||||
Kunitz_ELP-like | cd22632 | early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This ... |
1668-1718 | 7.43e-08 | ||||||||
early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This model includes the Kunitz-type proteins, colostrum trypsin inhibitor (CTI, also called colostrum BPI) and early lactation protein (ELP). In marsupials, the ELP gene is expressed in the mammary gland and the protein is secreted into milk during early lactation. Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine CTI protein. Marsupial ELP and eutherian CTI both have a single Kunitz domain and are secreted only during the early lactation phases, suggesting that this protein may have an important role in the immunologically immature young of these species. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438675 Cd Length: 55 Bit Score: 50.89 E-value: 7.43e-08
|
||||||||||||
Kunitz_KTT | cd22620 | scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model ... |
1727-1777 | 7.45e-08 | ||||||||
scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model includes scorpion Kunitz-type toxin (KTT) such as Lychas mucronatus LmKTT-1a (also called Delta-KTx 2.1 or SdPII), Mesobuthus martensii BmKTT-1 (also called Delta-KTx 2.4) and BmKTT-2 (also called Delta-KTx 3.1), all expressed by the venom gland. LmKTT-1a, BmKTT-1 and BmKTT-2 are all dual-function toxins that completely inhibit trypsin activity but have no effect on chymotrypsin or elastase. They also inhibit mKv1.3/KCNA3 potassium channel currents. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor); however, they lack the conserved CysII-CysIV disulfide bond but contains 2 cysteine residues at the C-terminus that generate a new disulfide bond. Pssm-ID: 438663 Cd Length: 58 Bit Score: 51.03 E-value: 7.45e-08
|
||||||||||||
Kunitz_papilin_mig6-like | cd22637 | Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of ... |
2245-2297 | 8.34e-08 | ||||||||
Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, and similar domains; This model includes Kunitz domains from papilins with multiple Kunitz domains, such as Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, among others. Papilins are essential for embryonic development. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinases action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438679 Cd Length: 51 Bit Score: 50.82 E-value: 8.34e-08
|
||||||||||||
Kunitz_ELP-like | cd22632 | early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This ... |
2035-2086 | 8.69e-08 | ||||||||
early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This model includes the Kunitz-type proteins, colostrum trypsin inhibitor (CTI, also called colostrum BPI) and early lactation protein (ELP). In marsupials, the ELP gene is expressed in the mammary gland and the protein is secreted into milk during early lactation. Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine CTI protein. Marsupial ELP and eutherian CTI both have a single Kunitz domain and are secreted only during the early lactation phases, suggesting that this protein may have an important role in the immunologically immature young of these species. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438675 Cd Length: 55 Bit Score: 50.89 E-value: 8.69e-08
|
||||||||||||
Kunitz_B2B | cd22619 | Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; ... |
1786-1837 | 9.59e-08 | ||||||||
Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; This model includes the Kunitz inhibitor subunit of beta 2-bungarotoxin, a presynaptic neurotoxin of the Bungarus multicinctus venom. Beta-bungarotoxin is a heterodimeric neurotoxin consisting of a phospholipase subunit linked by a disulfide bond to the Kunitz protease inhibitor subunit; the latter subunit is homologous to venom basic protease inhibitors but has no protease inhibitor activity and is non-toxic. The beta-bungarotoxin Kunitz subunit serves to guide the toxin to its site of action on the presynaptic membrane by virtue of a high-affinity interaction with a specific subclass of voltage-sensitive potassium channels. This subfamily also includes Kunitz-type serine protease inhibitor homolog beta-bungarotoxin B1 chain and protease inhibitor-like protein 1 (PILP-1). The B1 chain also has no protease inhibitor activity but blocks voltage-gated potassium channels, while PILP-1 inhibits trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438662 Cd Length: 58 Bit Score: 51.02 E-value: 9.59e-08
|
||||||||||||
Kunitz_dendrotoxin | cd22595 | dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake ... |
1786-1837 | 9.97e-08 | ||||||||
dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake venoms, such as dendrotoxins (DTXs) I, K and B, mambaquaretin-1 (MQ-1) and calcicludine. The dendrotoxins have little or no anti-protease activity but have been shown to block certain subtypes of voltage dependent potassium channels in neurons. Dendroaspis angusticeps (green mamba) alpha-dendrotoxin is a neurotoxin that enhances acetylcholine release at neuromuscular junctions. Studies with cloned K(+) channels show that this toxin blocks Kv1.1, Kv1.2 and Kv1.6 channels in the nanomolar range, whereas Dendroaspis polylepis (black mamba) dendrotoxin K preferentially blocks Kv1.1 channels. Also, structural analogs of dendrotoxins have facilitated defining the molecular recognition properties of different types of K(+) channels, and therefore, dendrotoxins are widely used as probes for studying the function of K(+) channels in physiology and pathophysiology. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438638 Cd Length: 56 Bit Score: 50.90 E-value: 9.97e-08
|
||||||||||||
IgI_4_Dscam | cd20956 | Fourth immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; ... |
2462-2527 | 1.04e-07 | ||||||||
Fourth immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; a member of the I-set of IgSF domains; The members here are composed of the fourth immunoglobulin domain of the Drosophila melanogaster Down syndrome cell adhesion molecule (DSCAM) protein and similar proteins. Down syndrome cell adhesion molecule (DSCAM) is a cell adhesion molecule that plays critical roles in neural development, including axon guidance and branching, axon target recognition, self-avoidance and synaptic formation. DSCAM belongs to the immunoglobulin superfamily and contributes to defects in the central nervous system in Down syndrome patients. Vertebrate DSCAMs differ from Drosophila Dscam1 in that they lack the extensive alternative splicing that occurs in the insect gene. Drosophila melanogaster Dscam has 38,016 isoforms generated by the alternative splicing of four variable exon clusters, which allows every neuron in the fly to display a distinctive set of Dscam proteins on its cell surface. Drosophila Dscam1 is a cell-surface protein that plays important roles in neural development and axon tiling of neurons. It is shown that thousands of isoforms bind themselves through specific homophilic (self-binding) interactions, a process which mediates cellular self-recognition. Drosophila Dscam2 is also alternatively spliced and plays a key role in the development of two visual system neurons, monopolar cells L1 and L2. This group is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand but lack a C" strand. Pssm-ID: 409548 [Multi-domain] Cd Length: 96 Bit Score: 51.79 E-value: 1.04e-07
|
||||||||||||
Kunitz_WFIKKN_1-like | cd22605 | first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
2115-2165 | 1.10e-07 | ||||||||
first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the first Kunitz domain that is similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438648 Cd Length: 52 Bit Score: 50.44 E-value: 1.10e-07
|
||||||||||||
Kunitz_SmCI_2-like | cd22602 | second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
1668-1718 | 1.16e-07 | ||||||||
second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the second Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438645 Cd Length: 51 Bit Score: 50.23 E-value: 1.16e-07
|
||||||||||||
Kunitz_collagen_alpha6_VI-like | cd22631 | Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This ... |
1786-1836 | 1.20e-07 | ||||||||
Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain) and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438674 [Multi-domain] Cd Length: 51 Bit Score: 50.30 E-value: 1.20e-07
|
||||||||||||
IgC_1_Robo | cd07693 | First immunoglobulin (Ig)-like constant domain in Robo (roundabout) receptors, and similar ... |
2448-2527 | 1.21e-07 | ||||||||
First immunoglobulin (Ig)-like constant domain in Robo (roundabout) receptors, and similar domains; The members here are composed of the first immunoglobulin (Ig)-like domain in Roundabout (Robo) receptors. Robo receptors play a role in the development of the central nervous system (CNS), and are receptors of Slit protein. Slit is a repellant secreted by the neural cells in the midline. Slit acts through Robo to prevent most neurons from crossing the midline from either side. Three mammalian Robo homologs (Robo1, Robo2, and Robo3), and three mammalian Slit homologs (Slit1, Slit2, Slit3), have been identified. Commissural axons, which cross the midline, express low levels of Robo; longitudinal axons, which avoid the midline, express high levels of Robo. Robo1, Robo2, and Robo3 are expressed by commissural neurons in the vertebrate spinal cord and Slit1, Slit2,and Slit3 are expressed at the ventral midline. Robo3 is a divergent member of the Robo family which instead of being a positive regulator of Slit responsiveness, antagonizes Slit responsiveness in precrossing axons. The Slit-Robo interaction is mediated by the second leucine-rich repeat (LRR) domain of Slit and the two N-terminal Ig domains of Robo, Ig1 and Ig2. The primary Robo binding site for Slit2 has been shown by surface plasmon resonance experiments and mutational analysis to be is the Ig1 domain, while the Ig2 domain has been proposed to harbor a weak secondary binding site. Pssm-ID: 409490 [Multi-domain] Cd Length: 99 Bit Score: 51.78 E-value: 1.21e-07
|
||||||||||||
Kunitz_TKDP-like | cd22609 | trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the ... |
2115-2165 | 1.21e-07 | ||||||||
trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the trophoblast Kunitz domain protein 1 (TKDP-1) and splice variant TKDP-4, among others, which are Kunitz inhibitor domain proteins. TKDP-1 is expressed in the trophectoderm which forms the outer epithelial layer of the trophoblast, and may play a role in mediating maternal-conceptus interactions in the immediate preimplantation period. However, it does not appear to have proteinase inhibitory activity. These domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438652 Cd Length: 52 Bit Score: 50.52 E-value: 1.21e-07
|
||||||||||||
Kunitz_conkunitzin | cd22593 | conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 ... |
2035-2085 | 1.24e-07 | ||||||||
conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 (Cs1) and -S2 (Cs2). Conkunitzins are pore-modulating toxins that block voltage-dependent potassium channels (Kvs) by exploiting inherent slow inactivation to block K+ channels. Cs1 binds to the channel turrets and disrupts the structural water hydrogen-bonding network, exposing the peripheral water pockets of ion channels and triggering an asymmetric collapse of the pore. Conus bullatus conkunitzin-B1, expressed in the venom duct, specifically blocks voltage-activated potassium channels (Kv) of the Shaker family. Members of this subfamily contain 2 disulfide bonds instead of the 3 present in most Kunitz domain proteins. Pssm-ID: 438636 Cd Length: 51 Bit Score: 50.30 E-value: 1.24e-07
|
||||||||||||
Kunitz_KTT | cd22620 | scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model ... |
1667-1722 | 1.24e-07 | ||||||||
scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model includes scorpion Kunitz-type toxin (KTT) such as Lychas mucronatus LmKTT-1a (also called Delta-KTx 2.1 or SdPII), Mesobuthus martensii BmKTT-1 (also called Delta-KTx 2.4) and BmKTT-2 (also called Delta-KTx 3.1), all expressed by the venom gland. LmKTT-1a, BmKTT-1 and BmKTT-2 are all dual-function toxins that completely inhibit trypsin activity but have no effect on chymotrypsin or elastase. They also inhibit mKv1.3/KCNA3 potassium channel currents. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor); however, they lack the conserved CysII-CysIV disulfide bond but contains 2 cysteine residues at the C-terminus that generate a new disulfide bond. Pssm-ID: 438663 Cd Length: 58 Bit Score: 50.64 E-value: 1.24e-07
|
||||||||||||
Kunitz_papilin_lacunin-like | cd22639 | Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr ... |
2245-2297 | 1.35e-07 | ||||||||
Drosophila melanogaster Kunitz domain 1, Manduca sexta lacunin Kunitz domain 1, and simialr proteins; This model includes Drosophila melanogaster Kunitz domain 1 of papilin and Manduca sexta Kunitz domain 1 of lacunin, and similar proteins. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinase action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. M. sexta lacunin is a large multidomain ECM containing several domains including several Kunitz-type protease inhibitors, thrombospondin type I, immunoglobulin-like and others. It exerts multiple effects on a variety of cell behaviors associated with the complex phenomenon of epithelial morphogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438681 Cd Length: 52 Bit Score: 50.27 E-value: 1.35e-07
|
||||||||||||
Kunitz_TKDP-like | cd22609 | trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the ... |
1977-2028 | 1.40e-07 | ||||||||
trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the trophoblast Kunitz domain protein 1 (TKDP-1) and splice variant TKDP-4, among others, which are Kunitz inhibitor domain proteins. TKDP-1 is expressed in the trophectoderm which forms the outer epithelial layer of the trophoblast, and may play a role in mediating maternal-conceptus interactions in the immediate preimplantation period. However, it does not appear to have proteinase inhibitory activity. These domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438652 Cd Length: 52 Bit Score: 50.14 E-value: 1.40e-07
|
||||||||||||
Ig4_Contactin-2-like | cd05728 | Fourth Ig domain of the neural cell adhesion molecule contactin-2, and similar domains; The ... |
2708-2797 | 1.41e-07 | ||||||||
Fourth Ig domain of the neural cell adhesion molecule contactin-2, and similar domains; The members here are composed of the fourth Ig domain of the neural cell adhesion molecule contactin-2. Contactins are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. Contactin-2 (also called TAG-1, axonin-1) facilitates cell adhesion by homophilic binding between molecules in apposed membranes. The first four Ig domains form the intermolecular binding fragment which arranges as a compact U-shaped module by contacts between Ig domains 1 and 4, and domains 2 and 3. It has been proposed that a linear zipper-like array forms, from contactin-2 molecules alternatively provided by the two apposed membranes. Pssm-ID: 143205 [Multi-domain] Cd Length: 85 Bit Score: 51.45 E-value: 1.41e-07
|
||||||||||||
SSP160 | pfam06933 | Special lobe-specific silk protein SSP160; This family consists of several special ... |
990-1228 | 1.42e-07 | ||||||||
Special lobe-specific silk protein SSP160; This family consists of several special lobe-specific silk protein SSP160 sequences which appear to be specific to Chironomus (Midge) species. Pssm-ID: 115579 [Multi-domain] Cd Length: 758 Bit Score: 57.48 E-value: 1.42e-07
|
||||||||||||
Ig4_L1-NrCAM_like | cd04978 | Fourth immunoglobulin (Ig)-like domain of L1, Ng-CAM (Neuron-glia CAM cell adhesion molecule), ... |
2462-2528 | 1.45e-07 | ||||||||
Fourth immunoglobulin (Ig)-like domain of L1, Ng-CAM (Neuron-glia CAM cell adhesion molecule), and NrCAM (Ng-CAM-related); The members here are composed of the fourth immunoglobulin (Ig)-like domain of L1, Ng-CAM (Neuron-glia CAM cell adhesion molecule), and NrCAM (Ng-CAM-related). These proteins belong to the L1 subfamily of cell adhesion molecules (CAMs) and are comprised of an extracellular region having six Ig-like domains and five fibronectin type III domains, a transmembrane region and an intracellular domain. These molecules are primarily expressed in the nervous system. L1 is associated with an X-linked recessive disorder, X-linked hydrocephalus, MASA syndrome, or spastic paraplegia type 1, that involves abnormalities of axonal growth. Pssm-ID: 409367 [Multi-domain] Cd Length: 89 Bit Score: 51.30 E-value: 1.45e-07
|
||||||||||||
ser_rich_anae_1 | NF033849 | serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 ... |
1120-1255 | 1.49e-07 | ||||||||
serine-rich protein; This serine-rich protein belongs to a family with large size (over 1000 amino acids), which a highly serine-rich central region that averages over 300 aa in length. Species encoding members of this family of proteins tend to be anaerobic bacteria, including Gram-positive bacteria of the human gut microbiome and Chloroflexi from marine sediments. Pssm-ID: 468206 [Multi-domain] Cd Length: 1122 Bit Score: 57.32 E-value: 1.49e-07
|
||||||||||||
Kunitz_SCI-I-like | cd22634 | chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin ... |
1915-1958 | 1.56e-07 | ||||||||
chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin inhibitors SCI-III and SCI-I, and similar proteins in insects. SCI-III and SCI-I inhibit chymotrypsin, avoiding the accidental chymotrypsin-mediated activation of prophenoloxidase. This enzyme is required by the insect immune system to produce melanin which is used to engulf foreign objects. This subfamily also includes Kunitz-type male accessory gland peptide with protease inhibitory activity, synthesized and secreted by male accessory glands of Drosophila funebris; it may play a role as an acrosin inhibitor involved in reproduction. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438677 Cd Length: 57 Bit Score: 50.20 E-value: 1.56e-07
|
||||||||||||
Kunitz_HAI2_2-like | cd22622 | Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
2181-2224 | 1.63e-07 | ||||||||
Kunitz-type domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes Kunitz domain 2 (KD2) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. It has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer, the loss of which leads to tumor growth and progression attributable at least in part to increased MET signaling. HAI-2 is a specific substrate of mesotrypsin which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in hetatocyte growth factor/scatter factor (HGF/SF) activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. KD2 is similar to KD1, whose structure is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438665 Cd Length: 53 Bit Score: 50.05 E-value: 1.63e-07
|
||||||||||||
Kunitz_SmCI_2-like | cd22602 | second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
2115-2165 | 1.67e-07 | ||||||||
second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the second Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438645 Cd Length: 51 Bit Score: 49.85 E-value: 1.67e-07
|
||||||||||||
Kunitz_TFPI1_2-like | cd22614 | Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor ... |
2033-2085 | 1.76e-07 | ||||||||
Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor (TFPI); This model represents the second Kunitz-type domain (K2 or KPI-2) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; the K2 domain is exposed on functionally active TFPI pools in circulation in blood, in platelets, and attached to the endothelium. While the K1 (or KPI-1) domain of TFPI has been shown to bind and inhibit FVIIa, the K2 domain inhibits FXa by binding directly to the active site and forming a FXa:TFPI complex. A close interaction between the TFPI K2 domain and the FXa active site is essential for the FXa inhibitory action of TFPI and for the formation of an inactive TF/FVIIa/FXa/TFPI complex which then prevents FXa generation. Thus, blockage of K2 would prevent TFPI binding to both FXa and FVIIa/TF, and fully abolish TFPI inhibition of the coagulation cascade. The structure of the K2 domain is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438657 Cd Length: 56 Bit Score: 50.00 E-value: 1.76e-07
|
||||||||||||
Kunitz_SmCI_2-like | cd22602 | second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
2035-2085 | 1.81e-07 | ||||||||
second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the second Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438645 Cd Length: 51 Bit Score: 49.85 E-value: 1.81e-07
|
||||||||||||
Kunitz_BPTI | cd22592 | bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor ... |
1857-1900 | 2.03e-07 | ||||||||
bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor (BPTI, also known as pancreatic Kunitz inhibitor, aprotinin, or trypsin-kallikrein inhibitor), a small protein that inhibits the action of the trypsin, and is thus a member of the serine protease family of inhibitors. This class of enzymes contains conserved cysteine residues that form 3 disulfide bonds to stabilize the three-dimensional structure. BPTI has a relatively broad specificity, inhibiting trypsin as well as chymotrypsin, and elastase-like serine (pro)enzymes capable of very different primary specificity. It reacts rapidly with serine proteases to form stable complexes, but the enzyme:inhibitor complex formation may involve several intermediates corresponding to discrete reaction steps. Furthermore, BPTI inhibits the nitric oxide synthase type-I and -II action, and impairs K+ transport by Ca2+-activated K+ channels. Clinically, BPTI is used in certain surgical interventions, such as cardiopulmonary surgery and orthotopic liver transplantation since it significantly reduces hemorrhagic complications. Pssm-ID: 438635 Cd Length: 52 Bit Score: 49.56 E-value: 2.03e-07
|
||||||||||||
IgI_3_NCAM-1 | cd05730 | Third immunoglobulin (Ig)-like domain of Neural Cell Adhesion Molecule 1 (NCAM-1); member of ... |
2448-2527 | 2.09e-07 | ||||||||
Third immunoglobulin (Ig)-like domain of Neural Cell Adhesion Molecule 1 (NCAM-1); member of the I-set of IgSF domains; The members here are composed of the third immunoglobulin (Ig)-like domain of Neural Cell Adhesion Molecule (NCAM-1). NCAM plays important roles in the development and regeneration of the central nervous system, in synaptogenesis and neural migration. NCAM mediates cell-cell and cell-substratum recognition and adhesion via homophilic (NCAM-NCAM), and heterophilic (NCAM-non-NCAM), interactions. NCAM is expressed as three major isoforms having different intracellular extensions. The extracellular portion of NCAM has five N-terminal Ig-like domains and two fibronectin type III domains. The double zipper adhesion complex model for NCAM homophilic binding involves Ig1, Ig2, and Ig3. By this model, Ig1 and Ig2 mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), and Ig3 domains mediate interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions) through binding to the Ig1 and Ig2 domains. The adhesive ability of NCAM is modulated by the addition of polysialic acid chains to the fifth Ig-like domain. Pssm-ID: 143207 [Multi-domain] Cd Length: 95 Bit Score: 51.09 E-value: 2.09e-07
|
||||||||||||
Ig | cd00096 | Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found ... |
2564-2628 | 2.12e-07 | ||||||||
Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found in the Ig superfamily. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. Members of this group are components of immunoglobulin, neuroglia, cell surface glycoproteins, including T-cell receptors, CD2, CD4, CD8, and membrane glycoproteins, including butyrophilin and chondroitin sulfate proteoglycan core protein. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. Ig superfamily (IgSF) domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Typically, the V-set domains have A, B, E, and D strands in one sheet and A', G, F, C, C' and C" in the other. The structures in C1-set are smaller than those in the V-set; they have one beta sheet that is formed by strands A, B, E, and D and the other by strands G, F, C, and C'. Moreover, a C1-set Ig domain contains a short C' strand (three residues) and lacks A' and C" strand. Unlike other Ig domain sets, C2-set structures do not have a D strand. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409353 [Multi-domain] Cd Length: 70 Bit Score: 50.41 E-value: 2.12e-07
|
||||||||||||
Kunitz_ixolaris_2 | cd22626 | Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second ... |
2115-2165 | 2.15e-07 | ||||||||
Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second Kunitz-type domain (K2) of ixolaris from the venomous organism Conus striatus. Ixolaris is a potent tick salivary anticoagulant that binds coagulation factor Xa (FXa) and zymogen FX, and forms a quaternary tissue factor (TF)/FVIIa/FX(a)/Ixolaris inhibitory complex. It blocks TF-induced coagulation and PAR2 (proteinase-activated receptor 2) signaling, and prevents thrombosis, tumor growth, and immune activation. Ixolaris consists of 2 Kunitz domains (K1 and K2), both of which recognize the heparin-binding (pro)exosite (HBE) on FX. This model contains K2, an extraordinarily dynamic domain that encompasses several residues involved in FX binding. Its backbone plasticity is critical for ixolaris biological activity. This domain contains 2 disulfide bonds instead of the 3 typical of Kunitz domain proteins. Pssm-ID: 438669 Cd Length: 51 Bit Score: 49.77 E-value: 2.15e-07
|
||||||||||||
Kunitz_ABPP-like | cd22607 | Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily ... |
2244-2297 | 2.30e-07 | ||||||||
Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily includes the amyloid-beta precursor protein (ABPP, also called APP, APPI, Alzheimer disease amyloid protein, amyloid-beta A4 protein, cerebral vascular amyloid peptide (CVAP), protease nexin II (PN2)), as well as amyloid-like protein 2 (APLP2, also called amyloid protein homolog or APPH), among others. ABPP/APPI is an inhibitor of serine proteases such as anionic and cationic trypsins. For example, APPI-4M is a variant that specifically inhibits Kallikrein (KLK)-related peptidase 6 (KLK6), which is highly upregulated in several types of cancer where its increased activity promotes cancer invasion and metastasis. Amyloid-like protein 2 (APLP2) inhibits trypsin, chymotrypsin, plasmin, factor XIA, and plasma and glandular kallikrein, and may play a role in the regulation of hemostasis. Proteins in this subfamily contain a single Kunitz domain, with a structure similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438650 Cd Length: 52 Bit Score: 49.73 E-value: 2.30e-07
|
||||||||||||
Kunitz_papilin | cd22635 | Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in ... |
2262-2297 | 2.48e-07 | ||||||||
Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in human and mouse papilin, and similar proteins. Papilin is an extracellular matrix glycoprotein that has been found in many organisms to be involved in thin matrix layers during gastrulation, matrix associated with wandering, phagocytic hemocytes, basement membranes and space-filling matrix during Drosophila development. It is a multidomain protein that primarily occurs in basement membranes. Papilins interact with several extracellular matrix components and ADAMTS enzymes, influences cell rearrangements and may modulate metalloproteinases during organogenesis. Papilins exist in mammals and invertebrates as a set of related, though not necessarily identical proteins. Mammalian papilin contains a single Kunitz domain, while other papilins such as that from Caenorhabditis elegans, contains multiple Kunitz domains. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438678 Cd Length: 52 Bit Score: 49.57 E-value: 2.48e-07
|
||||||||||||
TSP1_ADAMTS | pfam19030 | Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found ... |
584-636 | 2.51e-07 | ||||||||
Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found in ADAMTS proteins. Pssm-ID: 465950 [Multi-domain] Cd Length: 55 Bit Score: 49.76 E-value: 2.51e-07
|
||||||||||||
Kunitz_TFPI2_2-like | cd22617 | Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
1668-1718 | 2.60e-07 | ||||||||
Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438660 Cd Length: 54 Bit Score: 49.69 E-value: 2.60e-07
|
||||||||||||
Kunitz_boophilin_1-like | cd22599 | first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
1974-2029 | 2.61e-07 | ||||||||
first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438642 Cd Length: 61 Bit Score: 49.78 E-value: 2.61e-07
|
||||||||||||
Kunitz_SmCI_1-like | cd22601 | first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
1665-1718 | 2.63e-07 | ||||||||
first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the first Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438644 Cd Length: 55 Bit Score: 49.42 E-value: 2.63e-07
|
||||||||||||
IgI_2_FGFR_like | cd05729 | Second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor, and similar ... |
2723-2797 | 2.63e-07 | ||||||||
Second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor, and similar domains; member of the I-set of IgSF domains; The members here are composed of the second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor. FGF receptors bind FGF signaling polypeptides. FGFs participate in multiple processes such as morphogenesis, development, and angiogenesis. FGFs bind to four FGF receptor tyrosine kinases (FGFR1, FGFR2, FGFR3, FGFR4). Receptor diversity is controlled by alternative splicing producing splice variants with different ligand binding characteristics and different expression patterns. FGFRs have an extracellular region comprised of three Ig-like domains, a single transmembrane helix, and an intracellular tyrosine kinase domain. Ligand binding and specificity reside in the Ig-like domains 2 and 3, and the linker region that connects these two. FGFR activation and signaling depend on FGF-induced dimerization, a process involving cell surface heparin or heparin sulfate proteoglycans. This group also contains fibroblast growth factor (FGF) receptor like-1(FGFRL1). FGFRL1 does not have a protein tyrosine kinase domain at its C-terminus; neither does its cytoplasmic domain appear to interact with a signaling partner. It has been suggested that FGFRL1 may not have any direct signaling function, but instead acts as a decoy receptor trapping FGFs and preventing them from binding other receptors. Pssm-ID: 409393 [Multi-domain] Cd Length: 95 Bit Score: 50.68 E-value: 2.63e-07
|
||||||||||||
Ig3_Peroxidasin | cd05745 | Third immunoglobulin (Ig)-like domain of peroxidasin; The members here are composed of the ... |
2463-2538 | 2.73e-07 | ||||||||
Third immunoglobulin (Ig)-like domain of peroxidasin; The members here are composed of the third immunoglobulin (Ig)-like domain in peroxidasin. Peroxidasin has a peroxidase domain and interacting extracellular motifs containing four Ig-like domains. It has been suggested that peroxidasin is secreted and has functions related to the stabilization of the extracellular matrix. It may play a part in various other important processes such as removal and destruction of cells which have undergone programmed cell death and protection of the organism against non-self. Pssm-ID: 143222 [Multi-domain] Cd Length: 74 Bit Score: 50.32 E-value: 2.73e-07
|
||||||||||||
Kunitz_KTT | cd22620 | scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model ... |
1850-1900 | 2.80e-07 | ||||||||
scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model includes scorpion Kunitz-type toxin (KTT) such as Lychas mucronatus LmKTT-1a (also called Delta-KTx 2.1 or SdPII), Mesobuthus martensii BmKTT-1 (also called Delta-KTx 2.4) and BmKTT-2 (also called Delta-KTx 3.1), all expressed by the venom gland. LmKTT-1a, BmKTT-1 and BmKTT-2 are all dual-function toxins that completely inhibit trypsin activity but have no effect on chymotrypsin or elastase. They also inhibit mKv1.3/KCNA3 potassium channel currents. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor); however, they lack the conserved CysII-CysIV disulfide bond but contains 2 cysteine residues at the C-terminus that generate a new disulfide bond. Pssm-ID: 438663 Cd Length: 58 Bit Score: 49.49 E-value: 2.80e-07
|
||||||||||||
PRK15319 | PRK15319 | fibronectin-binding autotransporter adhesin ShdA; |
810-1221 | 2.93e-07 | ||||||||
fibronectin-binding autotransporter adhesin ShdA; Pssm-ID: 185219 [Multi-domain] Cd Length: 2039 Bit Score: 56.63 E-value: 2.93e-07
|
||||||||||||
SSP160 | pfam06933 | Special lobe-specific silk protein SSP160; This family consists of several special ... |
971-1205 | 2.94e-07 | ||||||||
Special lobe-specific silk protein SSP160; This family consists of several special lobe-specific silk protein SSP160 sequences which appear to be specific to Chironomus (Midge) species. Pssm-ID: 115579 [Multi-domain] Cd Length: 758 Bit Score: 56.32 E-value: 2.94e-07
|
||||||||||||
IG_like | smart00410 | Immunoglobulin like; IG domains that cannot be classified into one of IGv1, IGc1, IGc2, IG. |
2555-2624 | 3.13e-07 | ||||||||
Immunoglobulin like; IG domains that cannot be classified into one of IGv1, IGc1, IGc2, IG. Pssm-ID: 214653 [Multi-domain] Cd Length: 85 Bit Score: 50.20 E-value: 3.13e-07
|
||||||||||||
Kunitz_collagen_alpha6_VI-like | cd22631 | Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This ... |
2245-2297 | 3.16e-07 | ||||||||
Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain) and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438674 [Multi-domain] Cd Length: 51 Bit Score: 49.15 E-value: 3.16e-07
|
||||||||||||
TSP1 | smart00209 | Thrombospondin type 1 repeats; Type 1 repeats in thrombospondin-1 bind and activate TGF-beta. |
62-113 | 3.22e-07 | ||||||||
Thrombospondin type 1 repeats; Type 1 repeats in thrombospondin-1 bind and activate TGF-beta. Pssm-ID: 214559 [Multi-domain] Cd Length: 53 Bit Score: 49.12 E-value: 3.22e-07
|
||||||||||||
IgI_SALM5_like | cd05764 | Immunoglobulin domain of human Synaptic Adhesion-Like Molecule 5 (SALM5) and similar proteins; ... |
2457-2527 | 3.33e-07 | ||||||||
Immunoglobulin domain of human Synaptic Adhesion-Like Molecule 5 (SALM5) and similar proteins; member of the I-set of IgSF domains; This group contains the immunoglobulin domain of human Synaptic Adhesion-Like Molecule 5 (SALM5) and similar proteins. The SALM (for synaptic adhesion-like molecules; also known as Lrfn for leucine-rich repeat and fibronectin type III domain containing) family of adhesion molecules consists of five known members: SALM1/Lrfn2, SALM2/Lrfn1, SALM3/Lrfn4, SALM4/Lrfn3, and SALM5/Lrfn5. SALMs share a similar domain structure, containing leucine-rich repeats (LRRs), an immunoglobulin (Ig) domain, and a fibronectin III (FNIII) domain, followed by a transmembrane domain and a C-terminal PDZ-binding motif. SALM5 is implicated in autism spectrum disorders (ASDs) and schizophrenia, induces presynaptic differentiation in contacting axons. SALM5 interacts with the Ig domains of LAR (Leukocyte common Antigen-Related) family receptor protein tyrosine phosphatases (LAR-RPTPs; LAR, PTPdelta, and PTPsigma). In addition, PTPdelta is implicated in ASDs, ADHD, bipolar disorder, and restless leg syndrome. Studies have shown that LAR-RPTPs are novel and splicing-dependent presynaptic ligands for SALM5, and that they mediate SALM5-dependent presynaptic differentiation. Furthermore, SALM5 maintains AMPA receptor (AMPAR)-mediated excitatory synaptic transmission through mechanisms involving the interaction of SALM5 with LAR-RPTPs. This group belongs to the I-set of immunoglobulin superfamily (IgSF) domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand but lack a C" strand. Pssm-ID: 409421 [Multi-domain] Cd Length: 88 Bit Score: 50.17 E-value: 3.33e-07
|
||||||||||||
FhaB | COG3210 | Large exoprotein involved in heme utilization or adhesion [Intracellular trafficking, ... |
743-1220 | 3.39e-07 | ||||||||
Large exoprotein involved in heme utilization or adhesion [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442443 [Multi-domain] Cd Length: 1698 Bit Score: 56.31 E-value: 3.39e-07
|
||||||||||||
IgI_1_MuSK | cd20970 | agrin-responsive first immunoglobulin-like domains (Ig1) of the MuSK ectodomain; a member of ... |
2537-2634 | 3.41e-07 | ||||||||
agrin-responsive first immunoglobulin-like domains (Ig1) of the MuSK ectodomain; a member of the I-set of IgSF domains; The members here are composed of the first immunoglobulin-like domains (Ig1) of the Muscle-specific kinase (MuSK). MuSK is a receptor tyrosine kinase specifically expressed in skeletal muscle, where it plays a central role in the formation and maintenance of the neuromuscular junction (NMJ). MuSK is activated by agrin, a neuron-derived heparan sulfate proteoglycan. The activation of MUSK in myotubes regulates the formation of NMJs through the regulation of different processes including the specific expression of genes in subsynaptic nuclei, the reorganization of the actin cytoskeleton and the clustering of the acetylcholine receptors (AChR) in the postsynaptic membrane. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Unlike the V-set, one of the distinctive features of I-set domains is the lack of a C" strand. The structure of the MuSK lacks this strand and thus it belongs to the I-set of the IgSF. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409562 [Multi-domain] Cd Length: 92 Bit Score: 50.58 E-value: 3.41e-07
|
||||||||||||
Kunitz_KTT | cd22620 | scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model ... |
2174-2224 | 3.47e-07 | ||||||||
scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model includes scorpion Kunitz-type toxin (KTT) such as Lychas mucronatus LmKTT-1a (also called Delta-KTx 2.1 or SdPII), Mesobuthus martensii BmKTT-1 (also called Delta-KTx 2.4) and BmKTT-2 (also called Delta-KTx 3.1), all expressed by the venom gland. LmKTT-1a, BmKTT-1 and BmKTT-2 are all dual-function toxins that completely inhibit trypsin activity but have no effect on chymotrypsin or elastase. They also inhibit mKv1.3/KCNA3 potassium channel currents. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor); however, they lack the conserved CysII-CysIV disulfide bond but contains 2 cysteine residues at the C-terminus that generate a new disulfide bond. Pssm-ID: 438663 Cd Length: 58 Bit Score: 49.49 E-value: 3.47e-07
|
||||||||||||
Kunitz_TKDP-like | cd22609 | trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the ... |
1727-1777 | 3.53e-07 | ||||||||
trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the trophoblast Kunitz domain protein 1 (TKDP-1) and splice variant TKDP-4, among others, which are Kunitz inhibitor domain proteins. TKDP-1 is expressed in the trophectoderm which forms the outer epithelial layer of the trophoblast, and may play a role in mediating maternal-conceptus interactions in the immediate preimplantation period. However, it does not appear to have proteinase inhibitory activity. These domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438652 Cd Length: 52 Bit Score: 48.98 E-value: 3.53e-07
|
||||||||||||
Kunitz_boophilin_1-like | cd22599 | first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
1786-1836 | 3.64e-07 | ||||||||
first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438642 Cd Length: 61 Bit Score: 49.39 E-value: 3.64e-07
|
||||||||||||
IgI_telokin-like | cd20973 | immunoglobulin-like domain of telokin and similar proteins; a member of the I-set of IgSF ... |
2722-2797 | 3.67e-07 | ||||||||
immunoglobulin-like domain of telokin and similar proteins; a member of the I-set of IgSF domains; The members here are composed of the immunoglobulin (Ig) domain in telokin, the C-terminal domain of myosin light chain kinase which is identical to telokin, and similar proteins. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Unlike the V-set, one of the distinctive features of I-set domains is the lack of a C" strand. The structure of the telokin Ig domain lacks this strand and thus it belongs to the I-set of the IgSF. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409565 [Multi-domain] Cd Length: 88 Bit Score: 50.27 E-value: 3.67e-07
|
||||||||||||
IgI_2_Robo | cd05724 | Second immunoglobulin (Ig)-like domain in Robo (roundabout) receptors; member of the I-set of ... |
2736-2784 | 4.03e-07 | ||||||||
Second immunoglobulin (Ig)-like domain in Robo (roundabout) receptors; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the second immunoglobulin (Ig)-like domain in Robo (roundabout) receptors. Robo receptors play a role in the development of the central nervous system (CNS), and are receptors of the Slit protein. Slit is a repellant secreted by the neural cells in the midline. Slit acts through Robo to prevent most neurons from crossing the midline from either side. Three mammalian Robo homologs (Robo1, Robo2, and Robo3), and three mammalian Slit homologs (Slit-1,Slit-2, Slit-3), have been identified. Commissural axons, which cross the midline, express low levels of Robo; longitudinal axons, which avoid the midline, express high levels of Robo. Robo1, Robo2, and Robo3 are expressed by commissural neurons in the vertebrate spinal cord and Slit-1, Slit-2, Slit-3 are expressed at the ventral midline. Robo-3 is a divergent member of the Robo family which instead of being a positive regulator of Slit responsiveness, antagonizes Slit responsiveness in precrossing axons. The Slit-Robo interaction is mediated by the second leucine-rich repeat (LRR) domain of Slit and the two N-terminal Ig domains of Robo, Ig1 and Ig2. The primary Robo binding site for Slit-2 has been shown by surface plasmon resonance experiments and mutational analysis to be the Ig1 domain, while the Ig2 domain has been proposed to harbor a weak secondary binding site. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409389 [Multi-domain] Cd Length: 87 Bit Score: 50.09 E-value: 4.03e-07
|
||||||||||||
IgI_Twitchin_like | cd20949 | C-terminal immunoglobulin-like domain of the myosin-associated giant protein kinase Twitchin, ... |
2724-2797 | 4.07e-07 | ||||||||
C-terminal immunoglobulin-like domain of the myosin-associated giant protein kinase Twitchin, and similar domains; member of the I-set IgSF domains; The members here are composed of the C-terminal immunoglobulin-like domain of the myosin-associated giant protein kinase Twitchin and similar proteins, including Caenorhabditis elegans and Aplysia californica Twitchin, Drosophila melanogaster Projectin, and similar proteins. These are very large muscle proteins containing multiple immunoglobulin (Ig)-like and fibronectin type III (FN3) domains and a single kinase domain near the C-terminus. In humans these proteins are called Titin. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. The Ig-like domain of the Twitchin is a member of the I-set IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand but lack a C" strand. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins (titin, telokin, and twitchin), the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D. Pssm-ID: 409541 [Multi-domain] Cd Length: 89 Bit Score: 50.02 E-value: 4.07e-07
|
||||||||||||
PRK15319 | PRK15319 | fibronectin-binding autotransporter adhesin ShdA; |
969-1234 | 4.10e-07 | ||||||||
fibronectin-binding autotransporter adhesin ShdA; Pssm-ID: 185219 [Multi-domain] Cd Length: 2039 Bit Score: 56.25 E-value: 4.10e-07
|
||||||||||||
IgC_1_Robo | cd07693 | First immunoglobulin (Ig)-like constant domain in Robo (roundabout) receptors, and similar ... |
2547-2634 | 4.13e-07 | ||||||||
First immunoglobulin (Ig)-like constant domain in Robo (roundabout) receptors, and similar domains; The members here are composed of the first immunoglobulin (Ig)-like domain in Roundabout (Robo) receptors. Robo receptors play a role in the development of the central nervous system (CNS), and are receptors of Slit protein. Slit is a repellant secreted by the neural cells in the midline. Slit acts through Robo to prevent most neurons from crossing the midline from either side. Three mammalian Robo homologs (Robo1, Robo2, and Robo3), and three mammalian Slit homologs (Slit1, Slit2, Slit3), have been identified. Commissural axons, which cross the midline, express low levels of Robo; longitudinal axons, which avoid the midline, express high levels of Robo. Robo1, Robo2, and Robo3 are expressed by commissural neurons in the vertebrate spinal cord and Slit1, Slit2,and Slit3 are expressed at the ventral midline. Robo3 is a divergent member of the Robo family which instead of being a positive regulator of Slit responsiveness, antagonizes Slit responsiveness in precrossing axons. The Slit-Robo interaction is mediated by the second leucine-rich repeat (LRR) domain of Slit and the two N-terminal Ig domains of Robo, Ig1 and Ig2. The primary Robo binding site for Slit2 has been shown by surface plasmon resonance experiments and mutational analysis to be is the Ig1 domain, while the Ig2 domain has been proposed to harbor a weak secondary binding site. Pssm-ID: 409490 [Multi-domain] Cd Length: 99 Bit Score: 50.24 E-value: 4.13e-07
|
||||||||||||
Kunitz_SHPI | cd22618 | Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor ... |
2035-2086 | 4.84e-07 | ||||||||
Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor stichotoxin-Hcr2e, and similar proteins; This model includes Kunitz inhibitor protein ShPI-1, the major protease inhibitor from the sea anemone Stichodactyla helianthus, as well as protease inhibitor stichotoxin-Hcr2e (also called PI- stichotoxin-Hcr2e, PI-SHTX-Hcr2e, or Kunitz-type serine protease inhibitor InhVJ) and HCRG1 from Heteractis crispa. ShPI-1 has an unusually broad specificity toward several serine proteases, including trypsin, chymotrypsin, human neutrophil elastase, kallikrein and plasmin, and can also bind aspartic and cysteine proteases, such as pepsin and papain, respectively. PI-SHTX-Hcr2e and HCRG1 inhibit trypsin and chymotrypsin, but do not inhibit the serine proteases plasmin, thrombin, kallikrein, the cysteine proteinase papain, and the aspartic protease pepsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438661 Cd Length: 53 Bit Score: 48.69 E-value: 4.84e-07
|
||||||||||||
Kunitz_ixolaris_2 | cd22626 | Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second ... |
1978-2028 | 4.99e-07 | ||||||||
Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second Kunitz-type domain (K2) of ixolaris from the venomous organism Conus striatus. Ixolaris is a potent tick salivary anticoagulant that binds coagulation factor Xa (FXa) and zymogen FX, and forms a quaternary tissue factor (TF)/FVIIa/FX(a)/Ixolaris inhibitory complex. It blocks TF-induced coagulation and PAR2 (proteinase-activated receptor 2) signaling, and prevents thrombosis, tumor growth, and immune activation. Ixolaris consists of 2 Kunitz domains (K1 and K2), both of which recognize the heparin-binding (pro)exosite (HBE) on FX. This model contains K2, an extraordinarily dynamic domain that encompasses several residues involved in FX binding. Its backbone plasticity is critical for ixolaris biological activity. This domain contains 2 disulfide bonds instead of the 3 typical of Kunitz domain proteins. Pssm-ID: 438669 Cd Length: 51 Bit Score: 48.61 E-value: 4.99e-07
|
||||||||||||
Kunitz_huwentoxin | cd22598 | Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor ... |
2244-2297 | 5.11e-07 | ||||||||
Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor huwentoxin-XI, including U15-theraphotoxin-Hs1g (also called U15-TRTX-Hs1g or Huwentoxin HW11c39), and kappaPI-theraphotoxin-Hs1a (also called KappaPI-TRTX-Hs1a or Huwentoxin-HW11g8). Huwentoxin-XI is a bifunctional toxin that inhibits both serine proteases (trypsin) and voltage-gated potassium channels (Kv) via surfaces displayed on opposite faces of the toxin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438641 Cd Length: 53 Bit Score: 48.84 E-value: 5.11e-07
|
||||||||||||
Kunitz_SmCI_2-like | cd22602 | second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
1908-1958 | 5.11e-07 | ||||||||
second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the second Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438645 Cd Length: 51 Bit Score: 48.69 E-value: 5.11e-07
|
||||||||||||
Kunitz_conkunitzin | cd22593 | conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 ... |
1978-2028 | 5.13e-07 | ||||||||
conkunitzin-S1 and -S2, and similar proteins; This model includes Kunitz-type conkunitzin-S1 (Cs1) and -S2 (Cs2). Conkunitzins are pore-modulating toxins that block voltage-dependent potassium channels (Kvs) by exploiting inherent slow inactivation to block K+ channels. Cs1 binds to the channel turrets and disrupts the structural water hydrogen-bonding network, exposing the peripheral water pockets of ion channels and triggering an asymmetric collapse of the pore. Conus bullatus conkunitzin-B1, expressed in the venom duct, specifically blocks voltage-activated potassium channels (Kv) of the Shaker family. Members of this subfamily contain 2 disulfide bonds instead of the 3 present in most Kunitz domain proteins. Pssm-ID: 438636 Cd Length: 51 Bit Score: 48.37 E-value: 5.13e-07
|
||||||||||||
PRK12688 | PRK12688 | flagellin; Reviewed |
933-1239 | 5.20e-07 | ||||||||
flagellin; Reviewed Pssm-ID: 171664 [Multi-domain] Cd Length: 751 Bit Score: 55.65 E-value: 5.20e-07
|
||||||||||||
IgI_3_NCAM-1 | cd05730 | Third immunoglobulin (Ig)-like domain of Neural Cell Adhesion Molecule 1 (NCAM-1); member of ... |
2725-2797 | 5.44e-07 | ||||||||
Third immunoglobulin (Ig)-like domain of Neural Cell Adhesion Molecule 1 (NCAM-1); member of the I-set of IgSF domains; The members here are composed of the third immunoglobulin (Ig)-like domain of Neural Cell Adhesion Molecule (NCAM-1). NCAM plays important roles in the development and regeneration of the central nervous system, in synaptogenesis and neural migration. NCAM mediates cell-cell and cell-substratum recognition and adhesion via homophilic (NCAM-NCAM), and heterophilic (NCAM-non-NCAM), interactions. NCAM is expressed as three major isoforms having different intracellular extensions. The extracellular portion of NCAM has five N-terminal Ig-like domains and two fibronectin type III domains. The double zipper adhesion complex model for NCAM homophilic binding involves Ig1, Ig2, and Ig3. By this model, Ig1 and Ig2 mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), and Ig3 domains mediate interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions) through binding to the Ig1 and Ig2 domains. The adhesive ability of NCAM is modulated by the addition of polysialic acid chains to the fifth Ig-like domain. Pssm-ID: 143207 [Multi-domain] Cd Length: 95 Bit Score: 49.93 E-value: 5.44e-07
|
||||||||||||
Kunitz_SCI-I-like | cd22634 | chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin ... |
2244-2297 | 5.80e-07 | ||||||||
chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin inhibitors SCI-III and SCI-I, and similar proteins in insects. SCI-III and SCI-I inhibit chymotrypsin, avoiding the accidental chymotrypsin-mediated activation of prophenoloxidase. This enzyme is required by the insect immune system to produce melanin which is used to engulf foreign objects. This subfamily also includes Kunitz-type male accessory gland peptide with protease inhibitory activity, synthesized and secreted by male accessory glands of Drosophila funebris; it may play a role as an acrosin inhibitor involved in reproduction. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438677 Cd Length: 57 Bit Score: 48.66 E-value: 5.80e-07
|
||||||||||||
Kunitz_HAI1_1-like | cd22623 | Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes ... |
1668-1718 | 6.36e-07 | ||||||||
Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 1 (HAI1 or HAI-1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. KD1, the major inhibitory domain of HAI-1, is involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure; presence of the target protease causes changes in the HAI-1 structure to an extended conformation. HAI-1 has been shown to inhibit several serine proteases such as matripase, hepsin, trypsin, hepatocyte growth factor activator (HGFA), and prostasin. It is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438666 Cd Length: 59 Bit Score: 48.69 E-value: 6.36e-07
|
||||||||||||
FhaB | COG3210 | Large exoprotein involved in heme utilization or adhesion [Intracellular trafficking, ... |
817-1262 | 6.88e-07 | ||||||||
Large exoprotein involved in heme utilization or adhesion [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442443 [Multi-domain] Cd Length: 1698 Bit Score: 55.54 E-value: 6.88e-07
|
||||||||||||
IgI_7_Dscam | cd20954 | Seventh immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar ... |
2725-2785 | 6.93e-07 | ||||||||
Seventh immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; a member of the I-set of IgSF domains; The members here are composed of the seventh immunoglobulin domain of the Drosophila melanogaster Down syndrome cell adhesion molecule (DSCAM) protein and similar proteins. Down syndrome cell adhesion molecule (DSCAM) is a cell adhesion molecule that plays critical roles in neural development, including axon guidance and branching, axon target recognition, self-avoidance and synaptic formation. DSCAM belongs to the immunoglobulin superfamily and contributes to defects in the central nervous system in Down syndrome patients. Vertebrate DSCAMs differ from Drosophila Dscam1 in that they lack the extensive alternative splicing that occurs in the insect gene. Drosophila melanogaster Dscam has 38,016 isoforms generated by the alternative splicing of four variable exon clusters, which allows every neuron in the fly to display a distinctive set of Dscam proteins on its cell surface. Drosophila Dscam1 is a cell-surface protein that plays important roles in neural development and axon tiling of neurons. It is shown that thousands of isoforms bind themselves through specific homophilic (self-binding) interactions, a process which mediates cellular self-recognition. Drosophila Dscam2 is also alternatively spliced and plays a key role in the development of two visual system neurons, monopolar cells L1 and L2. This group is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand but lack a C" strand. Pssm-ID: 409546 [Multi-domain] Cd Length: 96 Bit Score: 49.62 E-value: 6.93e-07
|
||||||||||||
Kunitz_collagen_alpha6_VI-like | cd22631 | Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This ... |
2035-2085 | 7.00e-07 | ||||||||
Kunitz-type domain from the alpha6 chain of fish type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain) and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438674 [Multi-domain] Cd Length: 51 Bit Score: 47.99 E-value: 7.00e-07
|
||||||||||||
Kunitz_ELP-like | cd22632 | early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This ... |
2243-2297 | 7.29e-07 | ||||||||
early lactation protein (ELP), colostrum trypsin inhibitor (CTI), and similar proteins; This model includes the Kunitz-type proteins, colostrum trypsin inhibitor (CTI, also called colostrum BPI) and early lactation protein (ELP). In marsupials, the ELP gene is expressed in the mammary gland and the protein is secreted into milk during early lactation. Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine CTI protein. Marsupial ELP and eutherian CTI both have a single Kunitz domain and are secreted only during the early lactation phases, suggesting that this protein may have an important role in the immunologically immature young of these species. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438675 Cd Length: 55 Bit Score: 48.20 E-value: 7.29e-07
|
||||||||||||
Kunitz_collagen_alpha6_VI | cd22630 | Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This ... |
2244-2299 | 7.89e-07 | ||||||||
Kunitz-type domain from the alpha6 chain of human type VI collagen, and similar proteins; This model includes the Kunitz-type domain from the alpha6 chain of type VI collagen (collagen alpha 6(VI) chain), encoded by COL6A6 gene, and similar proteins. Collagen VI is a widely expressed member of the triple helix-containing protein superfamily of collagens and forms beaded microfibrils that anchor large interstitial structures. Immediately after fibril formation, the Kunitz domain can be cleaved off. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438673 Cd Length: 55 Bit Score: 47.98 E-value: 7.89e-07
|
||||||||||||
Kunitz_SmCI_1-like | cd22601 | first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
2243-2297 | 8.19e-07 | ||||||||
first Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the first Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438644 Cd Length: 55 Bit Score: 48.27 E-value: 8.19e-07
|
||||||||||||
Ig5_Contactin-1 | cd05852 | Fifth immunoglobulin (Ig) domain of contactin-1; The members here are composed of the fifth ... |
2724-2792 | 8.54e-07 | ||||||||
Fifth immunoglobulin (Ig) domain of contactin-1; The members here are composed of the fifth immunoglobulin (Ig) domain of the neural cell adhesion molecule contactin-1. Contactins are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. Contactin-1 is differentially expressed in tumor tissues and may through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. Pssm-ID: 409438 Cd Length: 89 Bit Score: 49.23 E-value: 8.54e-07
|
||||||||||||
Kunitz_BmTI-like | cd22604 | Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group ... |
1976-2028 | 8.90e-07 | ||||||||
Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group includes Kunitz-type serine protease inhibitors 6 (BmTI-6) and A (BmTI-A), both of which inhibit bovine trypsin, bovine chymotrypsin, human plasmin, human plasma kallikrein and human neutrophil elastase, but not bovine thrombin, human factor Xa or porcine pancreatic kallikrein. They may play a role in blocking blood coagulation during the larvae fixation on cattle. This subfamily also includes Rhipicephalus microplus protease inhibitor carrapatin. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438647 [Multi-domain] Cd Length: 56 Bit Score: 48.21 E-value: 8.90e-07
|
||||||||||||
Kunitz_bikunin_1-like | cd22596 | first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal ... |
2033-2086 | 9.04e-07 | ||||||||
first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. It is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438639 Cd Length: 54 Bit Score: 48.02 E-value: 9.04e-07
|
||||||||||||
Kunitz_SHPI | cd22618 | Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor ... |
2181-2224 | 9.51e-07 | ||||||||
Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor stichotoxin-Hcr2e, and similar proteins; This model includes Kunitz inhibitor protein ShPI-1, the major protease inhibitor from the sea anemone Stichodactyla helianthus, as well as protease inhibitor stichotoxin-Hcr2e (also called PI- stichotoxin-Hcr2e, PI-SHTX-Hcr2e, or Kunitz-type serine protease inhibitor InhVJ) and HCRG1 from Heteractis crispa. ShPI-1 has an unusually broad specificity toward several serine proteases, including trypsin, chymotrypsin, human neutrophil elastase, kallikrein and plasmin, and can also bind aspartic and cysteine proteases, such as pepsin and papain, respectively. PI-SHTX-Hcr2e and HCRG1 inhibit trypsin and chymotrypsin, but do not inhibit the serine proteases plasmin, thrombin, kallikrein, the cysteine proteinase papain, and the aspartic protease pepsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438661 Cd Length: 53 Bit Score: 47.92 E-value: 9.51e-07
|
||||||||||||
Kunitz_SmCI_2-like | cd22602 | second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
2174-2224 | 9.57e-07 | ||||||||
second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the second Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438645 Cd Length: 51 Bit Score: 47.92 E-value: 9.57e-07
|
||||||||||||
Kunitz_ABPP-like | cd22607 | Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily ... |
2173-2224 | 9.73e-07 | ||||||||
Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily includes the amyloid-beta precursor protein (ABPP, also called APP, APPI, Alzheimer disease amyloid protein, amyloid-beta A4 protein, cerebral vascular amyloid peptide (CVAP), protease nexin II (PN2)), as well as amyloid-like protein 2 (APLP2, also called amyloid protein homolog or APPH), among others. ABPP/APPI is an inhibitor of serine proteases such as anionic and cationic trypsins. For example, APPI-4M is a variant that specifically inhibits Kallikrein (KLK)-related peptidase 6 (KLK6), which is highly upregulated in several types of cancer where its increased activity promotes cancer invasion and metastasis. Amyloid-like protein 2 (APLP2) inhibits trypsin, chymotrypsin, plasmin, factor XIA, and plasma and glandular kallikrein, and may play a role in the regulation of hemostasis. Proteins in this subfamily contain a single Kunitz domain, with a structure similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438650 Cd Length: 52 Bit Score: 47.81 E-value: 9.73e-07
|
||||||||||||
Kunitz_WFIKKN_1-like | cd22605 | first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
2245-2297 | 9.98e-07 | ||||||||
first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the first Kunitz domain that is similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438648 Cd Length: 52 Bit Score: 47.74 E-value: 9.98e-07
|
||||||||||||
Kunitz_papilin_mig6-like | cd22637 | Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of ... |
2174-2224 | 1.07e-06 | ||||||||
Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, and similar domains; This model includes Kunitz domains from papilins with multiple Kunitz domains, such as Drosophila melanogaster Kunitz domains 5, 6, 7, and Caenorhabditis elegans Kunitz domain 5 of papilin, among others. Papilins are essential for embryonic development. D. melanogaster papilin is an essential extracellular matrix (ECM) protein that influences cell rearrangements. It may act by modulating metalloproteinases action during organogenesis and is able to non-competitively inhibit procollagen N-proteinase, an ADAMTS metalloproteinase. C. elegans papilin (also called abnormal cell migration protein 6) mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of distal tip cell (DTC) migration and both isoforms have an N-terminal papilin cassette, lagrin repeats and six C-terminal Kunitz-type serine proteinase inhibitory domains. It plays a role in embryogenesis, the second phase of distal cell tip migration and is required for distribution of the metalloproteinase, mig-17, during organogenesis. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438679 Cd Length: 51 Bit Score: 47.74 E-value: 1.07e-06
|
||||||||||||
Ig4_Peroxidasin | cd05746 | Fourth immunoglobulin (Ig)-like domain of peroxidasin; The members here are composed of the ... |
2467-2527 | 1.08e-06 | ||||||||
Fourth immunoglobulin (Ig)-like domain of peroxidasin; The members here are composed of the fourth immunoglobulin (Ig)-like domain in peroxidasin. Peroxidasin has a peroxidase domain and interacting extracellular motifs containing four Ig-like domains. It has been suggested that peroxidasin is secreted, and has functions related to the stabilization of the extracellular matrix. It may play a part in various other important processes such as removal and destruction of cells which have undergone programmed cell death and protection of the organism against non-self. Pssm-ID: 143223 Cd Length: 69 Bit Score: 48.33 E-value: 1.08e-06
|
||||||||||||
Kunitz_B2B | cd22619 | Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; ... |
1727-1777 | 1.14e-06 | ||||||||
Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; This model includes the Kunitz inhibitor subunit of beta 2-bungarotoxin, a presynaptic neurotoxin of the Bungarus multicinctus venom. Beta-bungarotoxin is a heterodimeric neurotoxin consisting of a phospholipase subunit linked by a disulfide bond to the Kunitz protease inhibitor subunit; the latter subunit is homologous to venom basic protease inhibitors but has no protease inhibitor activity and is non-toxic. The beta-bungarotoxin Kunitz subunit serves to guide the toxin to its site of action on the presynaptic membrane by virtue of a high-affinity interaction with a specific subclass of voltage-sensitive potassium channels. This subfamily also includes Kunitz-type serine protease inhibitor homolog beta-bungarotoxin B1 chain and protease inhibitor-like protein 1 (PILP-1). The B1 chain also has no protease inhibitor activity but blocks voltage-gated potassium channels, while PILP-1 inhibits trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438662 Cd Length: 58 Bit Score: 47.94 E-value: 1.14e-06
|
||||||||||||
Kunitz_dendrotoxin | cd22595 | dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake ... |
1908-1958 | 1.17e-06 | ||||||||
dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake venoms, such as dendrotoxins (DTXs) I, K and B, mambaquaretin-1 (MQ-1) and calcicludine. The dendrotoxins have little or no anti-protease activity but have been shown to block certain subtypes of voltage dependent potassium channels in neurons. Dendroaspis angusticeps (green mamba) alpha-dendrotoxin is a neurotoxin that enhances acetylcholine release at neuromuscular junctions. Studies with cloned K(+) channels show that this toxin blocks Kv1.1, Kv1.2 and Kv1.6 channels in the nanomolar range, whereas Dendroaspis polylepis (black mamba) dendrotoxin K preferentially blocks Kv1.1 channels. Also, structural analogs of dendrotoxins have facilitated defining the molecular recognition properties of different types of K(+) channels, and therefore, dendrotoxins are widely used as probes for studying the function of K(+) channels in physiology and pathophysiology. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438638 Cd Length: 56 Bit Score: 47.82 E-value: 1.17e-06
|
||||||||||||
IgI_3_Contactin-1 | cd05851 | Third immunoglobulin (Ig) domain of contactin-1; member of the I-set of Ig superfamily (IgSF) ... |
2459-2524 | 1.25e-06 | ||||||||
Third immunoglobulin (Ig) domain of contactin-1; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the third immunoglobulin (Ig) domain of the neural cell adhesion molecule contactin-1. Contactins are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. Contactin-1 is differentially expressed in tumor tissues and may through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. This group belongs to the I-set of IgSF domains. Pssm-ID: 143259 Cd Length: 88 Bit Score: 48.86 E-value: 1.25e-06
|
||||||||||||
Kunitz_BPTI | cd22592 | bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor ... |
2181-2224 | 1.29e-06 | ||||||||
bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor (BPTI, also known as pancreatic Kunitz inhibitor, aprotinin, or trypsin-kallikrein inhibitor), a small protein that inhibits the action of the trypsin, and is thus a member of the serine protease family of inhibitors. This class of enzymes contains conserved cysteine residues that form 3 disulfide bonds to stabilize the three-dimensional structure. BPTI has a relatively broad specificity, inhibiting trypsin as well as chymotrypsin, and elastase-like serine (pro)enzymes capable of very different primary specificity. It reacts rapidly with serine proteases to form stable complexes, but the enzyme:inhibitor complex formation may involve several intermediates corresponding to discrete reaction steps. Furthermore, BPTI inhibits the nitric oxide synthase type-I and -II action, and impairs K+ transport by Ca2+-activated K+ channels. Clinically, BPTI is used in certain surgical interventions, such as cardiopulmonary surgery and orthotopic liver transplantation since it significantly reduces hemorrhagic complications. Pssm-ID: 438635 Cd Length: 52 Bit Score: 47.64 E-value: 1.29e-06
|
||||||||||||
MSCRAMM_ClfA | NF033609 | MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial ... |
834-1024 | 1.38e-06 | ||||||||
MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules). It is heavily studied in Staphylococcus aureus both for its biological role in adhesion and for its potential for vaccination. Features of the sequence, but also of other MSCRAMM adhesins, include a long run of Ser-Asp dipeptide repeats and a C-terminal cell wall anchoring LPXTG motif. Pssm-ID: 468110 [Multi-domain] Cd Length: 934 Bit Score: 54.14 E-value: 1.38e-06
|
||||||||||||
Kunitz_B2B | cd22619 | Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; ... |
1907-1958 | 1.41e-06 | ||||||||
Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; This model includes the Kunitz inhibitor subunit of beta 2-bungarotoxin, a presynaptic neurotoxin of the Bungarus multicinctus venom. Beta-bungarotoxin is a heterodimeric neurotoxin consisting of a phospholipase subunit linked by a disulfide bond to the Kunitz protease inhibitor subunit; the latter subunit is homologous to venom basic protease inhibitors but has no protease inhibitor activity and is non-toxic. The beta-bungarotoxin Kunitz subunit serves to guide the toxin to its site of action on the presynaptic membrane by virtue of a high-affinity interaction with a specific subclass of voltage-sensitive potassium channels. This subfamily also includes Kunitz-type serine protease inhibitor homolog beta-bungarotoxin B1 chain and protease inhibitor-like protein 1 (PILP-1). The B1 chain also has no protease inhibitor activity but blocks voltage-gated potassium channels, while PILP-1 inhibits trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438662 Cd Length: 58 Bit Score: 47.55 E-value: 1.41e-06
|
||||||||||||
IgI_4_MYLK-like | cd20976 | Fourth Ig-like domain from smooth muscle myosin light chain kinase and similar domains ; a ... |
2457-2527 | 1.43e-06 | ||||||||
Fourth Ig-like domain from smooth muscle myosin light chain kinase and similar domains ; a member of the I-set of IgSF domains; The members here are composed of the fourth immunoglobulin (Ig)-like domain from smooth muscle myosin light chain kinase (MYLK) and similar domains. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Unlike the V-set, one of the distinctive features of I-set domains is the lack of a C" strand. The structure of this group shows that the fourth Ig-like domain from myosin light chain kinase lacks this strand and thus belongs to the I-set of the IgSF. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409568 [Multi-domain] Cd Length: 90 Bit Score: 48.79 E-value: 1.43e-06
|
||||||||||||
IgI_4_MYLK-like | cd20976 | Fourth Ig-like domain from smooth muscle myosin light chain kinase and similar domains ; a ... |
2724-2797 | 1.47e-06 | ||||||||
Fourth Ig-like domain from smooth muscle myosin light chain kinase and similar domains ; a member of the I-set of IgSF domains; The members here are composed of the fourth immunoglobulin (Ig)-like domain from smooth muscle myosin light chain kinase (MYLK) and similar domains. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Unlike the V-set, one of the distinctive features of I-set domains is the lack of a C" strand. The structure of this group shows that the fourth Ig-like domain from myosin light chain kinase lacks this strand and thus belongs to the I-set of the IgSF. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409568 [Multi-domain] Cd Length: 90 Bit Score: 48.40 E-value: 1.47e-06
|
||||||||||||
Kunitz_BPTI | cd22592 | bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor ... |
2245-2297 | 1.48e-06 | ||||||||
bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor (BPTI, also known as pancreatic Kunitz inhibitor, aprotinin, or trypsin-kallikrein inhibitor), a small protein that inhibits the action of the trypsin, and is thus a member of the serine protease family of inhibitors. This class of enzymes contains conserved cysteine residues that form 3 disulfide bonds to stabilize the three-dimensional structure. BPTI has a relatively broad specificity, inhibiting trypsin as well as chymotrypsin, and elastase-like serine (pro)enzymes capable of very different primary specificity. It reacts rapidly with serine proteases to form stable complexes, but the enzyme:inhibitor complex formation may involve several intermediates corresponding to discrete reaction steps. Furthermore, BPTI inhibits the nitric oxide synthase type-I and -II action, and impairs K+ transport by Ca2+-activated K+ channels. Clinically, BPTI is used in certain surgical interventions, such as cardiopulmonary surgery and orthotopic liver transplantation since it significantly reduces hemorrhagic complications. Pssm-ID: 438635 Cd Length: 52 Bit Score: 47.25 E-value: 1.48e-06
|
||||||||||||
Kunitz_BPTI | cd22592 | bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor ... |
1675-1718 | 1.53e-06 | ||||||||
bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor (BPTI, also known as pancreatic Kunitz inhibitor, aprotinin, or trypsin-kallikrein inhibitor), a small protein that inhibits the action of the trypsin, and is thus a member of the serine protease family of inhibitors. This class of enzymes contains conserved cysteine residues that form 3 disulfide bonds to stabilize the three-dimensional structure. BPTI has a relatively broad specificity, inhibiting trypsin as well as chymotrypsin, and elastase-like serine (pro)enzymes capable of very different primary specificity. It reacts rapidly with serine proteases to form stable complexes, but the enzyme:inhibitor complex formation may involve several intermediates corresponding to discrete reaction steps. Furthermore, BPTI inhibits the nitric oxide synthase type-I and -II action, and impairs K+ transport by Ca2+-activated K+ channels. Clinically, BPTI is used in certain surgical interventions, such as cardiopulmonary surgery and orthotopic liver transplantation since it significantly reduces hemorrhagic complications. Pssm-ID: 438635 Cd Length: 52 Bit Score: 47.25 E-value: 1.53e-06
|
||||||||||||
IgI_1_MuSK | cd20970 | agrin-responsive first immunoglobulin-like domains (Ig1) of the MuSK ectodomain; a member of ... |
2724-2784 | 1.53e-06 | ||||||||
agrin-responsive first immunoglobulin-like domains (Ig1) of the MuSK ectodomain; a member of the I-set of IgSF domains; The members here are composed of the first immunoglobulin-like domains (Ig1) of the Muscle-specific kinase (MuSK). MuSK is a receptor tyrosine kinase specifically expressed in skeletal muscle, where it plays a central role in the formation and maintenance of the neuromuscular junction (NMJ). MuSK is activated by agrin, a neuron-derived heparan sulfate proteoglycan. The activation of MUSK in myotubes regulates the formation of NMJs through the regulation of different processes including the specific expression of genes in subsynaptic nuclei, the reorganization of the actin cytoskeleton and the clustering of the acetylcholine receptors (AChR) in the postsynaptic membrane. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Unlike the V-set, one of the distinctive features of I-set domains is the lack of a C" strand. The structure of the MuSK lacks this strand and thus it belongs to the I-set of the IgSF. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409562 [Multi-domain] Cd Length: 92 Bit Score: 48.66 E-value: 1.53e-06
|
||||||||||||
Kunitz_SHPI | cd22618 | Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor ... |
1668-1718 | 1.57e-06 | ||||||||
Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor stichotoxin-Hcr2e, and similar proteins; This model includes Kunitz inhibitor protein ShPI-1, the major protease inhibitor from the sea anemone Stichodactyla helianthus, as well as protease inhibitor stichotoxin-Hcr2e (also called PI- stichotoxin-Hcr2e, PI-SHTX-Hcr2e, or Kunitz-type serine protease inhibitor InhVJ) and HCRG1 from Heteractis crispa. ShPI-1 has an unusually broad specificity toward several serine proteases, including trypsin, chymotrypsin, human neutrophil elastase, kallikrein and plasmin, and can also bind aspartic and cysteine proteases, such as pepsin and papain, respectively. PI-SHTX-Hcr2e and HCRG1 inhibit trypsin and chymotrypsin, but do not inhibit the serine proteases plasmin, thrombin, kallikrein, the cysteine proteinase papain, and the aspartic protease pepsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438661 Cd Length: 53 Bit Score: 47.15 E-value: 1.57e-06
|
||||||||||||
IgI_7_Dscam | cd20954 | Seventh immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar ... |
2551-2628 | 1.70e-06 | ||||||||
Seventh immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; a member of the I-set of IgSF domains; The members here are composed of the seventh immunoglobulin domain of the Drosophila melanogaster Down syndrome cell adhesion molecule (DSCAM) protein and similar proteins. Down syndrome cell adhesion molecule (DSCAM) is a cell adhesion molecule that plays critical roles in neural development, including axon guidance and branching, axon target recognition, self-avoidance and synaptic formation. DSCAM belongs to the immunoglobulin superfamily and contributes to defects in the central nervous system in Down syndrome patients. Vertebrate DSCAMs differ from Drosophila Dscam1 in that they lack the extensive alternative splicing that occurs in the insect gene. Drosophila melanogaster Dscam has 38,016 isoforms generated by the alternative splicing of four variable exon clusters, which allows every neuron in the fly to display a distinctive set of Dscam proteins on its cell surface. Drosophila Dscam1 is a cell-surface protein that plays important roles in neural development and axon tiling of neurons. It is shown that thousands of isoforms bind themselves through specific homophilic (self-binding) interactions, a process which mediates cellular self-recognition. Drosophila Dscam2 is also alternatively spliced and plays a key role in the development of two visual system neurons, monopolar cells L1 and L2. This group is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand but lack a C" strand. Pssm-ID: 409546 [Multi-domain] Cd Length: 96 Bit Score: 48.46 E-value: 1.70e-06
|
||||||||||||
TSP1_ADAMTS | pfam19030 | Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found ... |
467-521 | 1.70e-06 | ||||||||
Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found in ADAMTS proteins. Pssm-ID: 465950 [Multi-domain] Cd Length: 55 Bit Score: 47.06 E-value: 1.70e-06
|
||||||||||||
FhaB | COG3210 | Large exoprotein involved in heme utilization or adhesion [Intracellular trafficking, ... |
812-1255 | 1.73e-06 | ||||||||
Large exoprotein involved in heme utilization or adhesion [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442443 [Multi-domain] Cd Length: 1698 Bit Score: 54.00 E-value: 1.73e-06
|
||||||||||||
Kunitz_HAI1_1-like | cd22623 | Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes ... |
2115-2165 | 1.81e-06 | ||||||||
Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 1 (HAI1 or HAI-1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. KD1, the major inhibitory domain of HAI-1, is involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure; presence of the target protease causes changes in the HAI-1 structure to an extended conformation. HAI-1 has been shown to inhibit several serine proteases such as matripase, hepsin, trypsin, hepatocyte growth factor activator (HGFA), and prostasin. It is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438666 Cd Length: 59 Bit Score: 47.15 E-value: 1.81e-06
|
||||||||||||
MDN1 | COG5271 | Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal ... |
823-1252 | 1.86e-06 | ||||||||
Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal structure and biogenesis]; Pssm-ID: 444083 [Multi-domain] Cd Length: 1028 Bit Score: 53.87 E-value: 1.86e-06
|
||||||||||||
IgI_1_Contactin | cd04967 | First immunoglobulin (Ig) domain of contactin; member of the I-set of (Ig) superfamily domains; ... |
2447-2536 | 1.88e-06 | ||||||||
First immunoglobulin (Ig) domain of contactin; member of the I-set of (Ig) superfamily domains; The members here are composed of the first immunoglobulin (Ig) domain of contactins. Contactins are neural cell adhesion molecules and are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. The first four Ig domains form the intermolecular binding fragment, which arranges as a compact U-shaped module via contacts between Ig domains 1 and 4, and between Ig domains 2 and 3. Contactin-2 (TAG-1, axonin-1) may play a part in the neuronal processes of neurite outgrowth, axon guidance and fasciculation, and neuronal migration. This group also includes contactin-1 and contactin-5. The different contactins show different expression patterns in the central nervous system. During development and in adulthood, contactin-2 is transiently expressed in subsets of central and peripheral neurons. Contactin-5 is expressed specifically in the rat postnatal nervous system, peaking at about 3 weeks postnatal, and a lack of contactin-5 (NB-2) results in an impairment of neuronal activity in the rat auditory system. Contactin-5 is highly expressed in the adult human brain in the occipital lobe and in the amygdala. Contactin-1 is differentially expressed in tumor tissues and may, through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. This group belongs to the I-set of IgSF domains. Pssm-ID: 409356 [Multi-domain] Cd Length: 96 Bit Score: 48.39 E-value: 1.88e-06
|
||||||||||||
Kunitz_TKDP-like | cd22609 | trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the ... |
1668-1718 | 1.92e-06 | ||||||||
trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the trophoblast Kunitz domain protein 1 (TKDP-1) and splice variant TKDP-4, among others, which are Kunitz inhibitor domain proteins. TKDP-1 is expressed in the trophectoderm which forms the outer epithelial layer of the trophoblast, and may play a role in mediating maternal-conceptus interactions in the immediate preimplantation period. However, it does not appear to have proteinase inhibitory activity. These domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438652 Cd Length: 52 Bit Score: 47.06 E-value: 1.92e-06
|
||||||||||||
Kunitz_TFPI1_TFPI2_3-like | cd22615 | Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor ... |
1727-1777 | 1.95e-06 | ||||||||
Kunitz protease inhibitor (KPI) domain 3 (KPI-3 or K3) of tissue factor pathway inhibitor (TFPI) and TFPI2, and similar proteins; This model represents the third Kunitz-type domain (K3 or KPI-3) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI), and of TFPI2 (or TFPI-2). TFPI1 down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI1 complex that then slowly isomerizes to a tight FXa-TFPI1* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI1-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI1 consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; while the K1 domain of TFPI has been shown to bind and inhibit FVIIa and the K2 domain similarly inhibits FXa, the K3 domain has no known inhibitory function. However, Protein S, which functions as a cofactor for TFPI to efficiently enhance TFPI inhibition of FXa and FXa activated TF-VIIa, is dependent on direct interactions with two important residues within K3, a Glutamate and an Arginine. This model also includes TFPI2 Kunitz domain 3 (KD3). TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. The structure of this domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438658 Cd Length: 54 Bit Score: 46.90 E-value: 1.95e-06
|
||||||||||||
Kunitz_actitoxin-like | cd22633 | Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This ... |
2243-2297 | 1.96e-06 | ||||||||
Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l, and similar proteins; This model includes the Kunitz-type actitoxins such as Anemonia viridis U-actitoxin-Avd3l (also called U-AITX-Avd3l or AsKC9), Anthopleura elegantissima KappaPI-actitoxin-Ael3a (also called KappaPI-AITX-Ael3a or Kunitz-type serine protease inhibitor APEKTx1) and Anthopleura aff. xanthogrammica PI-actitoxin-Axm2b (also called PI-AITX-Axm2b or Kunitz-type proteinase inhibitor AXPI-II). U-AITX-Avd3l and KappaPI-AITX-Ael3a are dual-function toxins that inhibit both the serine protease trypsin and voltage-gated potassium channels Kv1.2/KCNA2. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438676 Cd Length: 55 Bit Score: 47.14 E-value: 1.96e-06
|
||||||||||||
WAP | cd00199 | whey acidic protein-type four-disulfide core domains. Members of the family include whey ... |
2374-2425 | 2.06e-06 | ||||||||
whey acidic protein-type four-disulfide core domains. Members of the family include whey acidic protein, elafin (elastase-specific inhibitor), caltrin-like protein (a calcium transport inhibitor) and other extracellular proteinase inhibitors. A group of proteins containing 8 characteristically-spaced cysteine residuesforming disulphide bonds, have been termed '4-disulphide core' proteins. Protease inhibition occurs by insertion of the inhibitory loop into the active site pocket and interference with the catalytic residues of the protease. Pssm-ID: 238120 [Multi-domain] Cd Length: 60 Bit Score: 47.06 E-value: 2.06e-06
|
||||||||||||
Kunitz_HAI2_1-like | cd22621 | Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and ... |
2245-2297 | 2.14e-06 | ||||||||
Kunitz-type domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2), and similar proteins; This model includes the Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 2 (HAI-2 or HAI2, also known as placental bikunin or Kunitz-type protease inhibitor 2). HAI-2 is composed of two Kunitz domains that strongly inhibit many serine proteases with sub-nanomolar affinities. HAI-2 Kunitz domain 1 (KD1) has been found to be the domain responsible for inhibition of hepatocyte growth factor (HGF) activator; activated HGF/scatter factor (HGF/SF) binds to its receptor tyrosine kinase MET to induce dimerization and initiate phosphorylation cascades leading to comprehensive cellular changes that, in the deregulated context of cancer, drive malignant transformation and progression. HAI-2 has been found to be a natural tumor suppressor in renal cell carcinoma, breast cancer and prostate cancer; its loss leads to tumor growth and progression in part due to increased MET signaling. HAI-2 is also a specific substrate for mesotrypsin, which is up-regulated with progression in prostate cancers and shown to contribute to invasion and metastasis; these activities of mesotrypsin may in part be mediated through cleavage and inactivation of HAI-2, resulting in increases in HGF/SF activation and MET signaling. HAI-2 is a physiological inhibitor of hepsin and matriptase, two type II transmembrane serine proteases that, like HGF activator, can convert latent pro-HGF/SF into the two-chain active signaling heterodimer. The structures of these KD1 domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438664 Cd Length: 53 Bit Score: 47.08 E-value: 2.14e-06
|
||||||||||||
Ig3_L1-CAM | cd05876 | Third immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM); The members here ... |
2461-2538 | 2.14e-06 | ||||||||
Third immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM); The members here are composed of the third immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM). L1 belongs to the L1 subfamily of cell adhesion molecules (CAMs) and is comprised of an extracellular region having six Ig-like domains, five fibronectin type III domains, a transmembrane region and an intracellular domain. L1 is primarily expressed in the nervous system and is involved in its development and function. L1 is associated with an X-linked recessive disorder, X-linked hydrocephalus, MASA syndrome, or spastic paraplegia type 1, that involves abnormalities of axonal growth. This group also contains the chicken neuron-glia cell adhesion molecule, Ng-CAM. Pssm-ID: 409460 [Multi-domain] Cd Length: 83 Bit Score: 47.98 E-value: 2.14e-06
|
||||||||||||
Kunitz_WFIKKN_1-like | cd22605 | first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
1736-1777 | 2.19e-06 | ||||||||
first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the first Kunitz domain that is similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438648 Cd Length: 52 Bit Score: 46.97 E-value: 2.19e-06
|
||||||||||||
Kunitz_TKDP-like | cd22609 | trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the ... |
2245-2297 | 2.32e-06 | ||||||||
trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the trophoblast Kunitz domain protein 1 (TKDP-1) and splice variant TKDP-4, among others, which are Kunitz inhibitor domain proteins. TKDP-1 is expressed in the trophectoderm which forms the outer epithelial layer of the trophoblast, and may play a role in mediating maternal-conceptus interactions in the immediate preimplantation period. However, it does not appear to have proteinase inhibitory activity. These domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438652 Cd Length: 52 Bit Score: 46.67 E-value: 2.32e-06
|
||||||||||||
DMP1 | pfam07263 | Dentin matrix protein 1 (DMP1); This family consists of several mammalian dentin matrix ... |
853-1250 | 2.35e-06 | ||||||||
Dentin matrix protein 1 (DMP1); This family consists of several mammalian dentin matrix protein 1 (DMP1) sequences. The dentin matrix acidic phosphoprotein 1 (DMP1) gene has been mapped to human chromosome 4q21. DMP1 is a bone and teeth specific protein initially identified from mineralized dentin. DMP1 is primarily localized in the nuclear compartment of undifferentiated osteoblasts. In the nucleus, DMP1 acts as a transcriptional component for activation of osteoblast-specific genes like osteocalcin. During the early phase of osteoblast maturation, Ca(2+) surges into the nucleus from the cytoplasm, triggering the phosphorylation of DMP1 by a nuclear isoform of casein kinase II. This phosphorylated DMP1 is then exported out into the extracellular matrix, where it regulates nucleation of hydroxyapatite. DMP1 is a unique molecule that initiates osteoblast differentiation by transcription in the nucleus and orchestrates mineralized matrix formation extracellularly, at later stages of osteoblast maturation. The DMP1 gene has been found to be ectopically expressed in lung cancer although the reason for this is unknown. Pssm-ID: 462128 [Multi-domain] Cd Length: 519 Bit Score: 53.01 E-value: 2.35e-06
|
||||||||||||
Kunitz_TKDP-like | cd22609 | trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the ... |
2035-2085 | 2.85e-06 | ||||||||
trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the trophoblast Kunitz domain protein 1 (TKDP-1) and splice variant TKDP-4, among others, which are Kunitz inhibitor domain proteins. TKDP-1 is expressed in the trophectoderm which forms the outer epithelial layer of the trophoblast, and may play a role in mediating maternal-conceptus interactions in the immediate preimplantation period. However, it does not appear to have proteinase inhibitory activity. These domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438652 Cd Length: 52 Bit Score: 46.67 E-value: 2.85e-06
|
||||||||||||
Kunitz_papilin | cd22635 | Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in ... |
2042-2085 | 2.85e-06 | ||||||||
Kunitz domain of papilin, and similar proteins; This model includes the Kunitz domain found in human and mouse papilin, and similar proteins. Papilin is an extracellular matrix glycoprotein that has been found in many organisms to be involved in thin matrix layers during gastrulation, matrix associated with wandering, phagocytic hemocytes, basement membranes and space-filling matrix during Drosophila development. It is a multidomain protein that primarily occurs in basement membranes. Papilins interact with several extracellular matrix components and ADAMTS enzymes, influences cell rearrangements and may modulate metalloproteinases during organogenesis. Papilins exist in mammals and invertebrates as a set of related, though not necessarily identical proteins. Mammalian papilin contains a single Kunitz domain, while other papilins such as that from Caenorhabditis elegans, contains multiple Kunitz domains. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438678 Cd Length: 52 Bit Score: 46.49 E-value: 2.85e-06
|
||||||||||||
IgI_Myotilin_C_like | cd05744 | Immunoglobulin (Ig)-like domain of myotilin, palladin, and myopalladin; member of the I-set of ... |
2448-2538 | 2.99e-06 | ||||||||
Immunoglobulin (Ig)-like domain of myotilin, palladin, and myopalladin; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin (Ig)-like domain in myotilin, palladin, and myopalladin. Myotilin, palladin, and myopalladin function as scaffolds that regulate actin organization. Myotilin and myopalladin are most abundant in skeletal and cardiac muscle; palladin is ubiquitously expressed in the organs of developing vertebrates and plays a key role in cellular morphogenesis. The three family members each interact with specific molecular partners with all three binding to alpha-actinin; In addition, palladin also binds to vasodilator-stimulated phosphoprotein (VASP) and ezrin, myotilin binds to filamin and actin, and myopalladin also binds to nebulin and cardiac ankyrin repeat protein (CARP). This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409405 [Multi-domain] Cd Length: 91 Bit Score: 47.88 E-value: 2.99e-06
|
||||||||||||
SEEEED | pfam14797 | Serine-rich region of AP3B1, clathrin-adaptor complex; This short low-complexity, highly ... |
1125-1230 | 3.00e-06 | ||||||||
Serine-rich region of AP3B1, clathrin-adaptor complex; This short low-complexity, highly serine-rich region lies on clathrin-adaptor complex 3 beta-1 subunit proteins, between family Adaptin_N, pfam01602 and a C-terminal domain, AP3B1_C,pfam14796. Pssm-ID: 434218 [Multi-domain] Cd Length: 111 Bit Score: 48.39 E-value: 3.00e-06
|
||||||||||||
IgI_4_hemolin-like | cd20978 | Fourth immunoglobulin (Ig)-like domain of hemolin, and similar domains; a member of the I-set ... |
2547-2628 | 3.09e-06 | ||||||||
Fourth immunoglobulin (Ig)-like domain of hemolin, and similar domains; a member of the I-set of IgSF domains; The members here are composed of the fourth immunoglobulin (Ig)-like domain of hemolin and similar proteins. Hemolin, an insect immunoglobulin superfamily (IgSF) member containing four Ig-like domains, is a lipopolysaccharide-binding immune protein induced during bacterial infection. Hemolin shares significant sequence similarity with the first four Ig-like domains of the transmembrane cell adhesion molecules (CAMs) of the L1 family. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. The fourth Ig-like domain of hemolin is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set domains, members of the I-set have a discontinuous A strand but lack a C" strand. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409570 [Multi-domain] Cd Length: 88 Bit Score: 47.39 E-value: 3.09e-06
|
||||||||||||
Kunitz_BmTI-like | cd22604 | Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group ... |
2042-2085 | 3.09e-06 | ||||||||
Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group includes Kunitz-type serine protease inhibitors 6 (BmTI-6) and A (BmTI-A), both of which inhibit bovine trypsin, bovine chymotrypsin, human plasmin, human plasma kallikrein and human neutrophil elastase, but not bovine thrombin, human factor Xa or porcine pancreatic kallikrein. They may play a role in blocking blood coagulation during the larvae fixation on cattle. This subfamily also includes Rhipicephalus microplus protease inhibitor carrapatin. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438647 [Multi-domain] Cd Length: 56 Bit Score: 46.67 E-value: 3.09e-06
|
||||||||||||
PRK12688 | PRK12688 | flagellin; Reviewed |
1056-1239 | 3.14e-06 | ||||||||
flagellin; Reviewed Pssm-ID: 171664 [Multi-domain] Cd Length: 751 Bit Score: 52.96 E-value: 3.14e-06
|
||||||||||||
Kunitz_SCI-I-like | cd22634 | chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin ... |
1994-2028 | 3.23e-06 | ||||||||
chymotrypsin inhibitor SCI-I_III-like; This model includes the Kunitz-type chymotrypsin inhibitors SCI-III and SCI-I, and similar proteins in insects. SCI-III and SCI-I inhibit chymotrypsin, avoiding the accidental chymotrypsin-mediated activation of prophenoloxidase. This enzyme is required by the insect immune system to produce melanin which is used to engulf foreign objects. This subfamily also includes Kunitz-type male accessory gland peptide with protease inhibitory activity, synthesized and secreted by male accessory glands of Drosophila funebris; it may play a role as an acrosin inhibitor involved in reproduction. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438677 Cd Length: 57 Bit Score: 46.35 E-value: 3.23e-06
|
||||||||||||
Kunitz_B2B | cd22619 | Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; ... |
2174-2225 | 3.33e-06 | ||||||||
Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; This model includes the Kunitz inhibitor subunit of beta 2-bungarotoxin, a presynaptic neurotoxin of the Bungarus multicinctus venom. Beta-bungarotoxin is a heterodimeric neurotoxin consisting of a phospholipase subunit linked by a disulfide bond to the Kunitz protease inhibitor subunit; the latter subunit is homologous to venom basic protease inhibitors but has no protease inhibitor activity and is non-toxic. The beta-bungarotoxin Kunitz subunit serves to guide the toxin to its site of action on the presynaptic membrane by virtue of a high-affinity interaction with a specific subclass of voltage-sensitive potassium channels. This subfamily also includes Kunitz-type serine protease inhibitor homolog beta-bungarotoxin B1 chain and protease inhibitor-like protein 1 (PILP-1). The B1 chain also has no protease inhibitor activity but blocks voltage-gated potassium channels, while PILP-1 inhibits trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438662 Cd Length: 58 Bit Score: 46.40 E-value: 3.33e-06
|
||||||||||||
Kunitz_ixolaris_2 | cd22626 | Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second ... |
2174-2224 | 3.35e-06 | ||||||||
Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second Kunitz-type domain (K2) of ixolaris from the venomous organism Conus striatus. Ixolaris is a potent tick salivary anticoagulant that binds coagulation factor Xa (FXa) and zymogen FX, and forms a quaternary tissue factor (TF)/FVIIa/FX(a)/Ixolaris inhibitory complex. It blocks TF-induced coagulation and PAR2 (proteinase-activated receptor 2) signaling, and prevents thrombosis, tumor growth, and immune activation. Ixolaris consists of 2 Kunitz domains (K1 and K2), both of which recognize the heparin-binding (pro)exosite (HBE) on FX. This model contains K2, an extraordinarily dynamic domain that encompasses several residues involved in FX binding. Its backbone plasticity is critical for ixolaris biological activity. This domain contains 2 disulfide bonds instead of the 3 typical of Kunitz domain proteins. Pssm-ID: 438669 Cd Length: 51 Bit Score: 46.30 E-value: 3.35e-06
|
||||||||||||
IgI_1_NCAM-1_like | cd04977 | First immunoglobulin (Ig)-like domain of neural cell adhesion molecule NCAM-1, and similar ... |
2709-2792 | 3.44e-06 | ||||||||
First immunoglobulin (Ig)-like domain of neural cell adhesion molecule NCAM-1, and similar domains; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the first immunoglobulin (Ig)-like domain of neural cell adhesion molecule NCAM-1. NCAM-1 plays important roles in the development and regeneration of the central nervous system, in synaptogenesis and neural migration. NCAM mediates cell-cell and cell-substratum recognition and adhesion via homophilic (NCAM-NCAM) and heterophilic (NCAM-nonNCAM) interactions. NCAM is expressed as three major isoforms having different intracellular extensions. The extracellular portion of NCAM has five N-terminal Ig-like domains and two fibronectin type III domains. The double zipper adhesion complex model for NCAM homophilic binding involves the Ig1, Ig2, and Ig3 domains. By this model, Ig1 and Ig2 mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), and Ig3 domains mediate interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions), through binding to the Ig1 and Ig2 domains. The adhesive ability of NCAM is modulated by the addition of polysialic acid chains to the fifth Ig-like domain. Also included in this group is NCAM-2 (also known as OCAM/mamFas II and RNCAM). NCAM-2 is differentially expressed in the developing and mature olfactory epithelium (OE). This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409366 Cd Length: 95 Bit Score: 47.63 E-value: 3.44e-06
|
||||||||||||
ig | pfam00047 | Immunoglobulin domain; Members of the immunoglobulin superfamily are found in hundreds of ... |
2454-2532 | 3.45e-06 | ||||||||
Immunoglobulin domain; Members of the immunoglobulin superfamily are found in hundreds of proteins of different functions. Examples include antibodies, the giant muscle kinase titin and receptor tyrosine kinases. Immunoglobulin-like domains may be involved in protein-protein and protein-ligand interactions. Pssm-ID: 395002 Cd Length: 86 Bit Score: 47.57 E-value: 3.45e-06
|
||||||||||||
IgI_hCEACAM_2_4_6_like | cd05740 | Immunoglobulin (Ig)-like domain of human carcinoembryonic antigen (CEA) related cell adhesion ... |
2712-2797 | 3.45e-06 | ||||||||
Immunoglobulin (Ig)-like domain of human carcinoembryonic antigen (CEA) related cell adhesion molecule (CEACAM) domains 2, 4, and 6, and similar domains; The members here are composed of the second, fourth, and sixth immunoglobulin (Ig)-like domains in human carcinoembryonic antigen (CEA) related cell adhesion molecule (CEACAM) protein subfamily. The CEA family is a group of anchored or secreted glycoproteins expressed by epithelial cells, leukocytes, endothelial cells, and placenta. The CEA family is divided into the CEACAM and pregnancy-specific glycoprotein (PSG) subfamilies. This group represents the CEACAM subfamily. CEACAM1 has many important cellular functions; it is a cell adhesion molecule and a signaling molecule that regulates the growth of tumor cells, an angiogenic factor, and a receptor for bacterial and viral pathogens, including mouse hepatitis virus (MHV). In mice, four isoforms of CEACAM1 generated by alternative splicing have either two [D1, D4] or four [D1-D4] Ig-like domains on the cell surface. Pssm-ID: 409402 [Multi-domain] Cd Length: 89 Bit Score: 47.39 E-value: 3.45e-06
|
||||||||||||
Ig3_L1-CAM_like | cd05731 | Third immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM), and similar ... |
2725-2797 | 3.88e-06 | ||||||||
Third immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM), and similar domains; The members here are composed of the third immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM). L1 belongs to the L1 subfamily of cell adhesion molecules (CAMs) and is comprised of an extracellular region having six Ig-like domains and five fibronectin type III domains, a transmembrane region and an intracellular domain. L1 is primarily expressed in the nervous system and is involved in its development and function. L1 is associated with an X-linked recessive disorder, X-linked hydrocephalus, MASA syndrome, and spastic paraplegia type 1, that involves abnormalities of axonal growth. This group also contains the chicken neuron-glia cell adhesion molecule, Ng-CAM and human neurofascin. Pssm-ID: 409394 [Multi-domain] Cd Length: 83 Bit Score: 47.02 E-value: 3.88e-06
|
||||||||||||
Kunitz_huwentoxin | cd22598 | Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor ... |
1976-2028 | 4.05e-06 | ||||||||
Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor huwentoxin-XI, including U15-theraphotoxin-Hs1g (also called U15-TRTX-Hs1g or Huwentoxin HW11c39), and kappaPI-theraphotoxin-Hs1a (also called KappaPI-TRTX-Hs1a or Huwentoxin-HW11g8). Huwentoxin-XI is a bifunctional toxin that inhibits both serine proteases (trypsin) and voltage-gated potassium channels (Kv) via surfaces displayed on opposite faces of the toxin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438641 Cd Length: 53 Bit Score: 46.14 E-value: 4.05e-06
|
||||||||||||
IgC2_3_Dscam | cd20957 | Third immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; ... |
2453-2524 | 4.14e-06 | ||||||||
Third immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; a member of the Constant 2 (C2)-set of IgSF domains; The members here are composed of the third immunoglobulin domain of the Drosophila melanogaster Down syndrome cell adhesion molecule (DSCAM) protein and similar proteins. Down syndrome cell adhesion molecule (DSCAM) is a cell adhesion molecule that plays critical roles in neural development, including axon guidance and branching, axon target recognition, self-avoidance and synaptic formation. DSCAM belongs to the immunoglobulin superfamily and contributes to defects in the central nervous system in Down syndrome patients. Vertebrate DSCAMs differ from Drosophila Dscam1 in that they lack the extensive alternative splicing that occurs in the insect gene. Drosophila melanogaster Dscam has 38,016 isoforms generated by the alternative splicing of four variable exon clusters, which allows every neuron in the fly to display a distinctive set of Dscam proteins on its cell surface. Drosophila Dscam1 is a cell-surface protein that plays important roles in neural development and axon tiling of neurons. It is shown that thousands of isoforms bind themselves through specific homophilic (self-binding) interactions, a process which mediates cellular self-recognition. Drosophila Dscam2 is also alternatively spliced and plays a key role in the development of two visual system neurons, monopolar cells L1 and L2. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. This group belongs to the C2-set of IgSF domains, having A, B, and E strands in one beta-sheet and A', G, F, C, and C' in the other. Unlike other Ig domain sets, the C2-set lacks the D strand. Pssm-ID: 409549 [Multi-domain] Cd Length: 88 Bit Score: 47.14 E-value: 4.14e-06
|
||||||||||||
PRK13914 | PRK13914 | invasion associated endopeptidase; |
930-1222 | 4.16e-06 | ||||||||
invasion associated endopeptidase; Pssm-ID: 237555 [Multi-domain] Cd Length: 481 Bit Score: 52.11 E-value: 4.16e-06
|
||||||||||||
Kunitz_bikunin_2-like | cd22597 | second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal ... |
2035-2085 | 4.27e-06 | ||||||||
second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. Bikunin is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438640 Cd Length: 55 Bit Score: 46.22 E-value: 4.27e-06
|
||||||||||||
IgI_1_Contactin-5 | cd05848 | First immunoglobulin (Ig) domain of contactin-5; member of the I-set of Ig superfamily domains; ... |
2448-2527 | 4.55e-06 | ||||||||
First immunoglobulin (Ig) domain of contactin-5; member of the I-set of Ig superfamily domains; The members here are composed of the first immunoglobulin (Ig) domain of the neural cell adhesion molecule contactin-5. Contactins are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains, anchored to the membrane by glycosylphosphatidylinositol. The different contactins show different expression patterns in the central nervous system. In rats, a lack of contactin-5 (NB-2) results in an impairment of the neuronal activity in the auditory system. Contactin-5 is expressed specifically in the postnatal nervous system, peaking at about 3 weeks postnatal. Contactin-5 is highly expressed in the adult human brain in the occipital lobe and in the amygdala; lower levels of expression have been detected in the corpus callosum, caudate nucleus, and spinal cord. This group belongs to the I-set of IgSF domains. Pssm-ID: 409435 Cd Length: 96 Bit Score: 47.24 E-value: 4.55e-06
|
||||||||||||
IgI_2_Follistatin_like | cd05736 | Second immunoglobulin (Ig)-like domain of a Follistatin-related protein 5, and similar domains; ... |
2725-2791 | 4.61e-06 | ||||||||
Second immunoglobulin (Ig)-like domain of a Follistatin-related protein 5, and similar domains; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the second immunoglobulin (Ig)-like domain found in human Follistatin-related protein 5 (FSTL5) and a follistatin-like molecule encoded by the CNS-related Mahya gene. Mahya genes have been retained in certain Bilaterian branches during evolution. They are conserved in Hymenoptera and Deuterostomes, but are absent from other metazoan species such as fruit fly and nematode. Mahya proteins are secretory, with a follistatin-like domain (Kazal-type serine/threonine protease inhibitor domain and EF-hand calcium-binding domain), two Ig-like domains, and a novel C-terminal domain. Mahya may be involved in learning and memory and in processing of sensory information in Hymenoptera and vertebrates. Follistatin is a secreted, multidomain protein that binds activins with high affinity and antagonizes their signaling. Pssm-ID: 409399 [Multi-domain] Cd Length: 93 Bit Score: 47.26 E-value: 4.61e-06
|
||||||||||||
IgI_1_NCAM-2 | cd05866 | First immunoglobulin (Ig)-like domain of neural cell adhesion molecule NCAM-2; member of the ... |
2711-2784 | 4.62e-06 | ||||||||
First immunoglobulin (Ig)-like domain of neural cell adhesion molecule NCAM-2; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the first immunoglobulin (Ig)-like domain of neural cell adhesion molecule NCAM-2 (OCAM/mamFas II, RNCAM). NCAM-2 is organized similarly to NCAM-1, including five N-terminal Ig-like domains and two fibronectin type III domains. NCAM-2 is differentially expressed in the developing and mature olfactory epithelium (OE), and may function like NCAM, as an adhesion molecule. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409452 Cd Length: 93 Bit Score: 47.35 E-value: 4.62e-06
|
||||||||||||
IgI_2_Follistatin_like | cd05736 | Second immunoglobulin (Ig)-like domain of a Follistatin-related protein 5, and similar domains; ... |
2442-2527 | 4.94e-06 | ||||||||
Second immunoglobulin (Ig)-like domain of a Follistatin-related protein 5, and similar domains; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the second immunoglobulin (Ig)-like domain found in human Follistatin-related protein 5 (FSTL5) and a follistatin-like molecule encoded by the CNS-related Mahya gene. Mahya genes have been retained in certain Bilaterian branches during evolution. They are conserved in Hymenoptera and Deuterostomes, but are absent from other metazoan species such as fruit fly and nematode. Mahya proteins are secretory, with a follistatin-like domain (Kazal-type serine/threonine protease inhibitor domain and EF-hand calcium-binding domain), two Ig-like domains, and a novel C-terminal domain. Mahya may be involved in learning and memory and in processing of sensory information in Hymenoptera and vertebrates. Follistatin is a secreted, multidomain protein that binds activins with high affinity and antagonizes their signaling. Pssm-ID: 409399 [Multi-domain] Cd Length: 93 Bit Score: 47.26 E-value: 4.94e-06
|
||||||||||||
IgI_2_FGFRL1-like | cd05856 | Second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor_like-1 ... |
2539-2625 | 5.50e-06 | ||||||||
Second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor_like-1(FGFRL1); member of the I-set of IgSF domains; The members here are composed of the second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor like-1(FGFRL1). FGFRL1 is comprised of a signal peptide, three extracellular Ig-like modules, a transmembrane segment, and a short intracellular domain. FGFRL1 is expressed preferentially in skeletal tissues. Similar to FGF receptors, the expressed protein interacts specifically with heparin and with FGF2. FGFRL1 does not have a protein tyrosine kinase domain at its C-terminus; neither does its cytoplasmic domain appear to interact with a signaling partner. It has been suggested that FGFRL1 may not have any direct signaling function, but instead acts as a decoy receptor trapping FGFs and preventing them from binding other receptors. Pssm-ID: 409442 Cd Length: 92 Bit Score: 47.16 E-value: 5.50e-06
|
||||||||||||
Kunitz_bikunin_1-like | cd22596 | first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal ... |
2245-2297 | 5.83e-06 | ||||||||
first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. It is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438639 Cd Length: 54 Bit Score: 45.71 E-value: 5.83e-06
|
||||||||||||
Kunitz_eppin | cd22611 | Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily ... |
2244-2297 | 5.90e-06 | ||||||||
Kunitz domain of epididymal protease inhibitor eppin and similar proteins; This subfamily includes the Kunitz inhibitor domain protein eppin (also called Cancer/testis antigen 71 or CT71, epididymal protease inhibitor, protease inhibitor WAP7, serine protease inhibitor-like with Kunitz and WAP domains 1, or WAP four-disulfide core domain protein 7) as well as WAP four-disulfide core domain proteins 6A and 6B in mice, and similar proteins. Eppin is a serine protease inhibitor that plays an essential role in male reproduction and fertility. It modulates the hydrolysis of seminal fluid protein semenogelin 1 (SEMG1) by the serine protease kallikrein-related peptidase 3 (KLK3, PSA), provides antimicrobial protection for spermatozoa in the ejaculate coagulum, and binds SEMG1, thereby inhibiting sperm motility. Thus, eppin could potentially be used as a target for male contraception. These domains are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438654 Cd Length: 57 Bit Score: 45.86 E-value: 5.90e-06
|
||||||||||||
KLF18_N | cd21575 | N-terminal domain of Kruppel-like factor 18; Kruppel-like factor 18 (KLF18), or Krueppel-like ... |
977-1115 | 6.20e-06 | ||||||||
N-terminal domain of Kruppel-like factor 18; Kruppel-like factor 18 (KLF18), or Krueppel-like factor 18, is a product of a chromosomal neighbor of the KLF17 gene and is likely a product of its duplication. Phylogenetic analyses revealed that mammalian predicted KLF18 proteins and KLF17 proteins experienced elevated rates of evolution and are grouped with KLF1/KLF2/KLF4 and non-mammalian KLF17. KLF18 has been found in the human testis, though it was previously hypothesized to be a pseudogene in extant placental mammals. Mouse KLF18 expression data indicates that it may function in early embryonic development. It belongs to a family of proteins, called the Specificity Protein (SP)/KLF family, characterized by a C-terminal DNA-binding domain of 81 amino acids consisting of three Kruppel-like C2H2 zinc fingers. These factors bind to a loose consensus motif, namely NNRCRCCYY (where N is any nucleotide; R is A/G, and Y is C/T), such as the recurring motifs in GC and GT boxes (5'-GGGGCGGGG-3' and 5-GGTGTGGGG-3') that are present in promoters and more distal regulatory elements of mammalian genes. Members of the KLF family can act as activators or repressors of transcription depending on cell and promoter context. KLFs regulate various cellular functions, such as proliferation, differentiation, and apoptosis, as well as the development and homeostasis of several types of tissue. In addition to the C-terminal DNA-binding domain, each KLF also has a unique N-terminal activation/repression domain that confers specificity and allows it to bind specifically to a certain partner, leading to distinct activities in vivo. This model represents the N-terminal domain of KLF18. Some KLF18 isoforms have duplicated N-terminal domains. Pssm-ID: 410566 [Multi-domain] Cd Length: 276 Bit Score: 50.46 E-value: 6.20e-06
|
||||||||||||
2A1904 | TIGR00927 | K+-dependent Na+/Ca+ exchanger; [Transport and binding proteins, Cations and iron carrying ... |
968-1253 | 6.23e-06 | ||||||||
K+-dependent Na+/Ca+ exchanger; [Transport and binding proteins, Cations and iron carrying compounds] Pssm-ID: 273344 [Multi-domain] Cd Length: 1096 Bit Score: 52.31 E-value: 6.23e-06
|
||||||||||||
Kunitz_huwentoxin | cd22598 | Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor ... |
2172-2224 | 6.23e-06 | ||||||||
Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor huwentoxin-XI, including U15-theraphotoxin-Hs1g (also called U15-TRTX-Hs1g or Huwentoxin HW11c39), and kappaPI-theraphotoxin-Hs1a (also called KappaPI-TRTX-Hs1a or Huwentoxin-HW11g8). Huwentoxin-XI is a bifunctional toxin that inhibits both serine proteases (trypsin) and voltage-gated potassium channels (Kv) via surfaces displayed on opposite faces of the toxin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438641 Cd Length: 53 Bit Score: 45.75 E-value: 6.23e-06
|
||||||||||||
Kunitz_boophilin_2-like | cd22600 | second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
2035-2086 | 6.93e-06 | ||||||||
second Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438643 Cd Length: 54 Bit Score: 45.50 E-value: 6.93e-06
|
||||||||||||
MSCRAMM_ClfA | NF033609 | MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial ... |
811-980 | 7.28e-06 | ||||||||
MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules). It is heavily studied in Staphylococcus aureus both for its biological role in adhesion and for its potential for vaccination. Features of the sequence, but also of other MSCRAMM adhesins, include a long run of Ser-Asp dipeptide repeats and a C-terminal cell wall anchoring LPXTG motif. Pssm-ID: 468110 [Multi-domain] Cd Length: 934 Bit Score: 51.83 E-value: 7.28e-06
|
||||||||||||
Kunitz_KTT | cd22620 | scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model ... |
2245-2299 | 7.55e-06 | ||||||||
scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model includes scorpion Kunitz-type toxin (KTT) such as Lychas mucronatus LmKTT-1a (also called Delta-KTx 2.1 or SdPII), Mesobuthus martensii BmKTT-1 (also called Delta-KTx 2.4) and BmKTT-2 (also called Delta-KTx 3.1), all expressed by the venom gland. LmKTT-1a, BmKTT-1 and BmKTT-2 are all dual-function toxins that completely inhibit trypsin activity but have no effect on chymotrypsin or elastase. They also inhibit mKv1.3/KCNA3 potassium channel currents. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor); however, they lack the conserved CysII-CysIV disulfide bond but contains 2 cysteine residues at the C-terminus that generate a new disulfide bond. Pssm-ID: 438663 Cd Length: 58 Bit Score: 45.64 E-value: 7.55e-06
|
||||||||||||
Kunitz_boophilin_1-like | cd22599 | first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group ... |
2035-2086 | 8.15e-06 | ||||||||
first Kunitz domain of Rhipicephalus microplus boophilin and similar proteins; This group includes venom serine protease inhibitors such as Rhipicephalus microplus and Ixodes scapularis boofilin, among others. Boophilin prevents blood clot formation to allow successful feeding and digestion through its inhibition activity of thrombin and other host anticoagulating factors like kallikrein, coagulation factor VII, or plasmin; it interacts with the host thrombin and trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Rhipicephalus microplus boophilin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438642 Cd Length: 61 Bit Score: 45.54 E-value: 8.15e-06
|
||||||||||||
PHA03255 | PHA03255 | BDLF3; Provisional |
924-1058 | 8.66e-06 | ||||||||
BDLF3; Provisional Pssm-ID: 165513 [Multi-domain] Cd Length: 234 Bit Score: 49.90 E-value: 8.66e-06
|
||||||||||||
IgI_1_Contactin-2 | cd05850 | First immunoglobulin (Ig) domain of contactin-2; member of the I-set of Ig superfamily domains; ... |
2447-2536 | 8.74e-06 | ||||||||
First immunoglobulin (Ig) domain of contactin-2; member of the I-set of Ig superfamily domains; The members here are composed of the first immunoglobulin (Ig) domain of the neural cell adhesion molecule contactin-2-like. Contactins are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. Contactin-2 (TAG-1, axonin-1) facilitates cell adhesion by homophilic binding between molecules in apposed membranes. It may play a part in the neuronal processes of neurite outgrowth, axon guidance and fasciculation, and neuronal migration. The first four Ig domains form the intermolecular binding fragment, which arranges as a compact U-shaped module by contacts between IG domains 1 and 4, and domains 2 and 3. The different contactins show different expression patterns in the central nervous system. During development and in adulthood, contactin-2 is transiently expressed in subsets of central and peripheral neurons. Contactin-2 is also expressed in retinal amacrine cells in the developing chick retina, corresponding to the period of formation and maturation of AC processes. This group belongs to the I-set of IgSF domains. Pssm-ID: 409437 [Multi-domain] Cd Length: 97 Bit Score: 46.46 E-value: 8.74e-06
|
||||||||||||
WAP | smart00217 | Four-disulfide core domains; |
2384-2426 | 8.86e-06 | ||||||||
Four-disulfide core domains; Pssm-ID: 197580 [Multi-domain] Cd Length: 47 Bit Score: 45.05 E-value: 8.86e-06
|
||||||||||||
Kunitz_WFIKKN_1-like | cd22605 | first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
2174-2224 | 9.17e-06 | ||||||||
first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the first Kunitz domain that is similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438648 Cd Length: 52 Bit Score: 45.04 E-value: 9.17e-06
|
||||||||||||
IgI_Myotilin_C | cd05892 | C-terminal immunoglobulin (Ig)-like domain of myotilin; member of the I-set of Ig superfamily ... |
2724-2790 | 9.28e-06 | ||||||||
C-terminal immunoglobulin (Ig)-like domain of myotilin; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the C-terminal immunoglobulin (Ig)-like domain of myotilin. Mytolin belongs to the palladin-myotilin-myopalladin family. Proteins belonging to the latter family contain multiple Ig-like domains and function as scaffolds, modulating the actin cytoskeleton. Myotilin is most abundant in skeletal and cardiac muscle and is involved in maintaining sarcomere integrity. It binds to alpha-actinin, filamin, and actin. Mutations in myotilin lead to muscle disorders. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409473 Cd Length: 92 Bit Score: 46.30 E-value: 9.28e-06
|
||||||||||||
IgI_2_FGFR_like | cd05729 | Second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor, and similar ... |
2443-2527 | 9.33e-06 | ||||||||
Second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor, and similar domains; member of the I-set of IgSF domains; The members here are composed of the second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor. FGF receptors bind FGF signaling polypeptides. FGFs participate in multiple processes such as morphogenesis, development, and angiogenesis. FGFs bind to four FGF receptor tyrosine kinases (FGFR1, FGFR2, FGFR3, FGFR4). Receptor diversity is controlled by alternative splicing producing splice variants with different ligand binding characteristics and different expression patterns. FGFRs have an extracellular region comprised of three Ig-like domains, a single transmembrane helix, and an intracellular tyrosine kinase domain. Ligand binding and specificity reside in the Ig-like domains 2 and 3, and the linker region that connects these two. FGFR activation and signaling depend on FGF-induced dimerization, a process involving cell surface heparin or heparin sulfate proteoglycans. This group also contains fibroblast growth factor (FGF) receptor like-1(FGFRL1). FGFRL1 does not have a protein tyrosine kinase domain at its C-terminus; neither does its cytoplasmic domain appear to interact with a signaling partner. It has been suggested that FGFRL1 may not have any direct signaling function, but instead acts as a decoy receptor trapping FGFs and preventing them from binding other receptors. Pssm-ID: 409393 [Multi-domain] Cd Length: 95 Bit Score: 46.44 E-value: 9.33e-06
|
||||||||||||
Kunitz_TFPI2_2-like | cd22617 | Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This ... |
2244-2297 | 9.78e-06 | ||||||||
Kunitz domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2) and similar proteins; This model represents the Kunitz-type domain 2 (KD2) of tissue factor pathway inhibitor 2 (TFPI2 or TFPI-2) and similar proteins. TFPI2 exhibits inhibitory activity primarily toward trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor (TF) via its KD1. It is believed to be the major inhibitor of plasmin in the extracellular matrix (ECM) but has little inhibitory activity toward urokinase-type plasminogen activator, tissue-type plasminogen activator, or thrombin. While TFPI2 specifically inhibits the proteases via the P1 arginine residue in KD1, domains KD2 and KD3 appear to have no discernible inhibitory activity and may serve to bind to nearby proteins to localize TFPI2 in the ECM. This domain is similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438660 Cd Length: 54 Bit Score: 45.07 E-value: 9.78e-06
|
||||||||||||
Kunitz_KTT | cd22620 | scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model ... |
1978-2028 | 9.84e-06 | ||||||||
scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model includes scorpion Kunitz-type toxin (KTT) such as Lychas mucronatus LmKTT-1a (also called Delta-KTx 2.1 or SdPII), Mesobuthus martensii BmKTT-1 (also called Delta-KTx 2.4) and BmKTT-2 (also called Delta-KTx 3.1), all expressed by the venom gland. LmKTT-1a, BmKTT-1 and BmKTT-2 are all dual-function toxins that completely inhibit trypsin activity but have no effect on chymotrypsin or elastase. They also inhibit mKv1.3/KCNA3 potassium channel currents. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor); however, they lack the conserved CysII-CysIV disulfide bond but contains 2 cysteine residues at the C-terminus that generate a new disulfide bond. Pssm-ID: 438663 Cd Length: 58 Bit Score: 45.25 E-value: 9.84e-06
|
||||||||||||
Kunitz_SmCI_2-like | cd22602 | second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
2245-2297 | 1.10e-05 | ||||||||
second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the second Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438645 Cd Length: 51 Bit Score: 44.84 E-value: 1.10e-05
|
||||||||||||
Ig4_Contactin-2-like | cd05728 | Fourth Ig domain of the neural cell adhesion molecule contactin-2, and similar domains; The ... |
2471-2527 | 1.19e-05 | ||||||||
Fourth Ig domain of the neural cell adhesion molecule contactin-2, and similar domains; The members here are composed of the fourth Ig domain of the neural cell adhesion molecule contactin-2. Contactins are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. Contactin-2 (also called TAG-1, axonin-1) facilitates cell adhesion by homophilic binding between molecules in apposed membranes. The first four Ig domains form the intermolecular binding fragment which arranges as a compact U-shaped module by contacts between Ig domains 1 and 4, and domains 2 and 3. It has been proposed that a linear zipper-like array forms, from contactin-2 molecules alternatively provided by the two apposed membranes. Pssm-ID: 143205 [Multi-domain] Cd Length: 85 Bit Score: 45.67 E-value: 1.19e-05
|
||||||||||||
Ig_2 | pfam13895 | Immunoglobulin domain; This domain contains immunoglobulin-like domains. |
2463-2538 | 1.27e-05 | ||||||||
Immunoglobulin domain; This domain contains immunoglobulin-like domains. Pssm-ID: 464026 [Multi-domain] Cd Length: 79 Bit Score: 45.46 E-value: 1.27e-05
|
||||||||||||
TSP1 | smart00209 | Thrombospondin type 1 repeats; Type 1 repeats in thrombospondin-1 bind and activate TGF-beta. |
643-698 | 1.28e-05 | ||||||||
Thrombospondin type 1 repeats; Type 1 repeats in thrombospondin-1 bind and activate TGF-beta. Pssm-ID: 214559 [Multi-domain] Cd Length: 53 Bit Score: 44.89 E-value: 1.28e-05
|
||||||||||||
IgI_2_Dscam | cd20953 | Second immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; ... |
2708-2794 | 1.45e-05 | ||||||||
Second immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; a member of the I-set of IgSF domains; The members here are composed of the second immunoglobulin domain of the Drosophila melanogaster Down syndrome cell adhesion molecule (DSCAM) protein and similar proteins. DSCAM is a cell adhesion molecule that plays critical roles in neural development, including axon guidance and branching, axon target recognition, self-avoidance and synaptic formation. DSCAM belongs to the immunoglobulin superfamily and contributes to defects in the central nervous system in Down syndrome patients. Vertebrate DSCAMs differ from Drosophila Dscam1 in that they lack the extensive alternative splicing that occurs in the insect gene. Drosophila melanogaster Dscam has 38,016 isoforms generated by the alternative splicing of four variable exon clusters, which allows every neuron in the fly to display a distinctive set of Dscam proteins on its cell surface. Drosophila Dscam1 is a cell-surface protein that plays important roles in neural development and axon tiling of neurons. It is shown that thousands of isoforms bind themselves through specific homophilic (self-binding) interactions, a process which mediates cellular self-recognition. Drosophila Dscam2 is also alternatively spliced and plays a key role in the development of two visual system neurons, monopolar cells L1 and L2. This group is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand but lack a C" strand. Pssm-ID: 409545 Cd Length: 95 Bit Score: 46.00 E-value: 1.45e-05
|
||||||||||||
Kunitz_SHPI | cd22618 | Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor ... |
1978-2029 | 1.54e-05 | ||||||||
Stichodactyla helianthus Kunitz inhibitor protein ShPI-1, Heteractis crispa protease inhibitor stichotoxin-Hcr2e, and similar proteins; This model includes Kunitz inhibitor protein ShPI-1, the major protease inhibitor from the sea anemone Stichodactyla helianthus, as well as protease inhibitor stichotoxin-Hcr2e (also called PI- stichotoxin-Hcr2e, PI-SHTX-Hcr2e, or Kunitz-type serine protease inhibitor InhVJ) and HCRG1 from Heteractis crispa. ShPI-1 has an unusually broad specificity toward several serine proteases, including trypsin, chymotrypsin, human neutrophil elastase, kallikrein and plasmin, and can also bind aspartic and cysteine proteases, such as pepsin and papain, respectively. PI-SHTX-Hcr2e and HCRG1 inhibit trypsin and chymotrypsin, but do not inhibit the serine proteases plasmin, thrombin, kallikrein, the cysteine proteinase papain, and the aspartic protease pepsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438661 Cd Length: 53 Bit Score: 44.45 E-value: 1.54e-05
|
||||||||||||
Kunitz_TFPI1_2-like | cd22614 | Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor ... |
2243-2297 | 1.56e-05 | ||||||||
Kunitz protease inhibitor (KPI) domain 2 (KPI-2 or K2) of tissue factor pathway inhibitor (TFPI); This model represents the second Kunitz-type domain (K2 or KPI-2) of tissue factor pathway inhibitor (TFPI or TFPI1), also known as extrinsic pathway inhibitor (EPI) or lipoprotein-associated coagulation inhibitor (LACI). TFPI down-regulates the extrinsic coagulation pathway via inhibition of activated factor X (FXa or Xa) and FVIIa (VIIa). It inhibits activated FXa via a "slow-tight binding mechanism", i.e. rapid formation of a loose FXa-TFPI complex that then slowly isomerizes to a tight FXa-TFPI* complex. Subsequent inhibition of FVIIa is facilitated by the presence of tissue factor (TF) and FXa, which together rapidly and efficiently form a quaternary FXa-TFPI-TF-FVIIa complex in which the activity of FXa and FVIIa are inhibited. TFPI consists of 3 Kunitz-type protease inhibitor (KPI) domains in a tandem arrangement; the K2 domain is exposed on functionally active TFPI pools in circulation in blood, in platelets, and attached to the endothelium. While the K1 (or KPI-1) domain of TFPI has been shown to bind and inhibit FVIIa, the K2 domain inhibits FXa by binding directly to the active site and forming a FXa:TFPI complex. A close interaction between the TFPI K2 domain and the FXa active site is essential for the FXa inhibitory action of TFPI and for the formation of an inactive TF/FVIIa/FXa/TFPI complex which then prevents FXa generation. Thus, blockage of K2 would prevent TFPI binding to both FXa and FVIIa/TF, and fully abolish TFPI inhibition of the coagulation cascade. The structure of the K2 domain is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438657 Cd Length: 56 Bit Score: 44.61 E-value: 1.56e-05
|
||||||||||||
MSCRAMM_ClfA | NF033609 | MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial ... |
934-1072 | 1.63e-05 | ||||||||
MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules). It is heavily studied in Staphylococcus aureus both for its biological role in adhesion and for its potential for vaccination. Features of the sequence, but also of other MSCRAMM adhesins, include a long run of Ser-Asp dipeptide repeats and a C-terminal cell wall anchoring LPXTG motif. Pssm-ID: 468110 [Multi-domain] Cd Length: 934 Bit Score: 50.68 E-value: 1.63e-05
|
||||||||||||
Kunitz_HAI1_1-like | cd22623 | Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes ... |
2033-2086 | 1.63e-05 | ||||||||
Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 1 (HAI1 or HAI-1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. KD1, the major inhibitory domain of HAI-1, is involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure; presence of the target protease causes changes in the HAI-1 structure to an extended conformation. HAI-1 has been shown to inhibit several serine proteases such as matripase, hepsin, trypsin, hepatocyte growth factor activator (HGFA), and prostasin. It is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438666 Cd Length: 59 Bit Score: 44.46 E-value: 1.63e-05
|
||||||||||||
Kunitz_WFIKKN_1-like | cd22605 | first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
1786-1836 | 1.74e-05 | ||||||||
first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the first Kunitz domain that is similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438648 Cd Length: 52 Bit Score: 44.27 E-value: 1.74e-05
|
||||||||||||
IgI_2_FGFRL1-like | cd05856 | Second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor_like-1 ... |
2723-2784 | 1.90e-05 | ||||||||
Second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor_like-1(FGFRL1); member of the I-set of IgSF domains; The members here are composed of the second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor like-1(FGFRL1). FGFRL1 is comprised of a signal peptide, three extracellular Ig-like modules, a transmembrane segment, and a short intracellular domain. FGFRL1 is expressed preferentially in skeletal tissues. Similar to FGF receptors, the expressed protein interacts specifically with heparin and with FGF2. FGFRL1 does not have a protein tyrosine kinase domain at its C-terminus; neither does its cytoplasmic domain appear to interact with a signaling partner. It has been suggested that FGFRL1 may not have any direct signaling function, but instead acts as a decoy receptor trapping FGFs and preventing them from binding other receptors. Pssm-ID: 409442 Cd Length: 92 Bit Score: 45.62 E-value: 1.90e-05
|
||||||||||||
Kunitz_WFIKKN_1-like | cd22605 | first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
1908-1958 | 2.07e-05 | ||||||||
first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the first Kunitz domain that is similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438648 Cd Length: 52 Bit Score: 43.89 E-value: 2.07e-05
|
||||||||||||
motB | PRK12799 | flagellar motor protein MotB; Reviewed |
1117-1233 | 2.10e-05 | ||||||||
flagellar motor protein MotB; Reviewed Pssm-ID: 183756 [Multi-domain] Cd Length: 421 Bit Score: 49.71 E-value: 2.10e-05
|
||||||||||||
ig | pfam00047 | Immunoglobulin domain; Members of the immunoglobulin superfamily are found in hundreds of ... |
2722-2784 | 2.12e-05 | ||||||||
Immunoglobulin domain; Members of the immunoglobulin superfamily are found in hundreds of proteins of different functions. Examples include antibodies, the giant muscle kinase titin and receptor tyrosine kinases. Immunoglobulin-like domains may be involved in protein-protein and protein-ligand interactions. Pssm-ID: 395002 Cd Length: 86 Bit Score: 45.26 E-value: 2.12e-05
|
||||||||||||
IgI_2_Titin_Z1z2-like | cd20972 | Second Ig-like domain of the giant muscle protein titin Z1z2 in the sarcomeric Z-disk, and ... |
2448-2527 | 2.21e-05 | ||||||||
Second Ig-like domain of the giant muscle protein titin Z1z2 in the sarcomeric Z-disk, and similar domains; a member of the I-set of IgSF domains; The members here are composed of the second immunoglobulin (Ig)-like domain of the giant muscle protein titin Z1z2 in the sarcomeric Z-disk and similar proteins. Titin is a key component in the assembly and functioning of vertebrate striated muscles. By providing connections at the level of individual microfilaments, it contributes to the fine balance of forces between the two halves of the sarcomere. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Unlike the V-set, one of the distinctive features of I-set domains is the lack of a C" strand. The structure of the titin Z1z2 lacks this strand and thus it belongs to the I-set of the IgSF. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409564 [Multi-domain] Cd Length: 91 Bit Score: 45.27 E-value: 2.21e-05
|
||||||||||||
Ig4_Peroxidasin | cd05746 | Fourth immunoglobulin (Ig)-like domain of peroxidasin; The members here are composed of the ... |
2728-2793 | 2.28e-05 | ||||||||
Fourth immunoglobulin (Ig)-like domain of peroxidasin; The members here are composed of the fourth immunoglobulin (Ig)-like domain in peroxidasin. Peroxidasin has a peroxidase domain and interacting extracellular motifs containing four Ig-like domains. It has been suggested that peroxidasin is secreted, and has functions related to the stabilization of the extracellular matrix. It may play a part in various other important processes such as removal and destruction of cells which have undergone programmed cell death and protection of the organism against non-self. Pssm-ID: 143223 Cd Length: 69 Bit Score: 44.48 E-value: 2.28e-05
|
||||||||||||
IgI_Myotilin_C_like | cd05744 | Immunoglobulin (Ig)-like domain of myotilin, palladin, and myopalladin; member of the I-set of ... |
2724-2797 | 2.37e-05 | ||||||||
Immunoglobulin (Ig)-like domain of myotilin, palladin, and myopalladin; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin (Ig)-like domain in myotilin, palladin, and myopalladin. Myotilin, palladin, and myopalladin function as scaffolds that regulate actin organization. Myotilin and myopalladin are most abundant in skeletal and cardiac muscle; palladin is ubiquitously expressed in the organs of developing vertebrates and plays a key role in cellular morphogenesis. The three family members each interact with specific molecular partners with all three binding to alpha-actinin; In addition, palladin also binds to vasodilator-stimulated phosphoprotein (VASP) and ezrin, myotilin binds to filamin and actin, and myopalladin also binds to nebulin and cardiac ankyrin repeat protein (CARP). This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409405 [Multi-domain] Cd Length: 91 Bit Score: 45.18 E-value: 2.37e-05
|
||||||||||||
IgI_3_Robo | cd05725 | Third immunoglobulin (Ig)-like domain in Robo (roundabout) receptors; member of the I-set of ... |
2708-2797 | 2.37e-05 | ||||||||
Third immunoglobulin (Ig)-like domain in Robo (roundabout) receptors; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the third immunoglobulin (Ig)-like domain in Robo (roundabout) receptors. Robo receptors play a role in the development of the central nervous system (CNS), and are receptors of Slit protein. Slit is a repellant secreted by the neural cells in the midline. Slit acts through Robo to prevent most neurons from crossing the midline from either side. Three mammalian Robo homologs (Robo1, Robo2, Robo3), and three mammalian Slit homologs (Slit-1,Slit-2, Slit-3), have been identified. Commissural axons, which cross the midline, express low levels of Robo; longitudinal axons, which avoid the midline, express high levels of Robo. Robo1, Robo2, and Robo3 are expressed by commissural neurons in the vertebrate spinal cord and Slit-1, Slit-2, and Slit-3 are expressed at the ventral midline. Robo-3 is a divergent member of the Robo family which instead of being a positive regulator of Slit responsiveness, antagonizes Slit responsiveness in precrossing axons. The Slit-Robo interaction is mediated by the second leucine-rich repeat (LRR) domain of Slit and the two N-terminal Ig domains of Robo, Ig1 and Ig2. The primary Robo binding site for Slit2 has been shown by surface plasmon resonance experiments and mutational analysis to be the Ig1 domain, while the Ig2 domain has been proposed to harbor a weak secondary binding site. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409390 [Multi-domain] Cd Length: 83 Bit Score: 45.08 E-value: 2.37e-05
|
||||||||||||
Ig5_Contactin | cd04969 | Fifth immunoglobulin (Ig) domain of contactin; The members here are composed of the fifth ... |
2564-2628 | 2.42e-05 | ||||||||
Fifth immunoglobulin (Ig) domain of contactin; The members here are composed of the fifth immunoglobulin (Ig) domain of contactins. Contactins are neural cell adhesion molecules and are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. The first four Ig domains form the intermolecular binding fragment, which arranges as a compact U-shaped module via contacts between Ig domains 1 and 4, and between Ig domains 2 and 3. Contactin-2 (TAG-1, axonin-1) may play a part in the neuronal processes of neurite outgrowth, axon guidance and fasciculation, and neuronal migration. This group also includes contactin-1 and contactin-5. The different contactins show different expression patterns in the central nervous system. During development and in adulthood, contactin-2 is transiently expressed in subsets of central and peripheral neurons. Contactin-5 is expressed specifically in the rat postnatal nervous system, peaking at about 3 weeks postnatal, and a lack of contactin-5 (NB-2) results in an impairment of neuronal activity in the rat auditory system. Contactin-5 is highly expressed in the adult human brain in the occipital lobe and in the amygdala. Contactin-1 is differentially expressed in tumor tissues and may, through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. Pssm-ID: 409358 [Multi-domain] Cd Length: 89 Bit Score: 45.14 E-value: 2.42e-05
|
||||||||||||
IgI_4_Neogenin_like | cd05723 | Fourth immunoglobulin (Ig)-like domain in neogenin, and similar domains; member of the I-set ... |
2459-2538 | 2.73e-05 | ||||||||
Fourth immunoglobulin (Ig)-like domain in neogenin, and similar domains; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the fourth immunoglobulin (Ig)-like domain in neogenin and related proteins. Neogenin is a cell surface protein which is expressed in the developing nervous system of vertebrate embryos in the growing nerve cells. It is also expressed in other embryonic tissues, and may play a general role in developmental processes such as cell migration, cell-cell recognition, and tissue growth regulation. Included in this group is the tumor suppressor protein DCC which is deleted in colorectal carcinoma. DCC and neogenin each have four Ig-like domains followed by six fibronectin type III domains, a transmembrane domain, and an intracellular domain. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409388 Cd Length: 84 Bit Score: 44.88 E-value: 2.73e-05
|
||||||||||||
Kunitz_ABPP-like | cd22607 | Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily ... |
1977-2028 | 2.79e-05 | ||||||||
Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily includes the amyloid-beta precursor protein (ABPP, also called APP, APPI, Alzheimer disease amyloid protein, amyloid-beta A4 protein, cerebral vascular amyloid peptide (CVAP), protease nexin II (PN2)), as well as amyloid-like protein 2 (APLP2, also called amyloid protein homolog or APPH), among others. ABPP/APPI is an inhibitor of serine proteases such as anionic and cationic trypsins. For example, APPI-4M is a variant that specifically inhibits Kallikrein (KLK)-related peptidase 6 (KLK6), which is highly upregulated in several types of cancer where its increased activity promotes cancer invasion and metastasis. Amyloid-like protein 2 (APLP2) inhibits trypsin, chymotrypsin, plasmin, factor XIA, and plasma and glandular kallikrein, and may play a role in the regulation of hemostasis. Proteins in this subfamily contain a single Kunitz domain, with a structure similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438650 Cd Length: 52 Bit Score: 43.57 E-value: 2.79e-05
|
||||||||||||
Ig_DSCAM | cd05734 | Immunoglobulin (Ig)-like domain of Down Syndrome Cell Adhesion molecule (DSCAM); The members ... |
2448-2527 | 2.87e-05 | ||||||||
Immunoglobulin (Ig)-like domain of Down Syndrome Cell Adhesion molecule (DSCAM); The members here are composed of the immunoglobulin (Ig)-like domain of Down Syndrome Cell Adhesion molecule (DSCAM). DSCAM is a cell adhesion molecule expressed largely in the developing nervous system. The gene encoding DSCAM is located at human chromosome 21q22, the locus associated with the intellectual disability phenotype of Down Syndrome. DSCAM is predicted to be the largest member of the IG superfamily. It has been demonstrated that DSCAM can mediate cation-independent homophilic intercellular adhesion. Pssm-ID: 409397 [Multi-domain] Cd Length: 97 Bit Score: 45.18 E-value: 2.87e-05
|
||||||||||||
I-set | pfam07679 | Immunoglobulin I-set domain; |
2556-2626 | 2.91e-05 | ||||||||
Immunoglobulin I-set domain; Pssm-ID: 400151 [Multi-domain] Cd Length: 90 Bit Score: 44.94 E-value: 2.91e-05
|
||||||||||||
Kunitz_B2B | cd22619 | Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; ... |
1974-2028 | 3.13e-05 | ||||||||
Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; This model includes the Kunitz inhibitor subunit of beta 2-bungarotoxin, a presynaptic neurotoxin of the Bungarus multicinctus venom. Beta-bungarotoxin is a heterodimeric neurotoxin consisting of a phospholipase subunit linked by a disulfide bond to the Kunitz protease inhibitor subunit; the latter subunit is homologous to venom basic protease inhibitors but has no protease inhibitor activity and is non-toxic. The beta-bungarotoxin Kunitz subunit serves to guide the toxin to its site of action on the presynaptic membrane by virtue of a high-affinity interaction with a specific subclass of voltage-sensitive potassium channels. This subfamily also includes Kunitz-type serine protease inhibitor homolog beta-bungarotoxin B1 chain and protease inhibitor-like protein 1 (PILP-1). The B1 chain also has no protease inhibitor activity but blocks voltage-gated potassium channels, while PILP-1 inhibits trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438662 Cd Length: 58 Bit Score: 43.70 E-value: 3.13e-05
|
||||||||||||
Kunitz_TKDP-like | cd22609 | trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the ... |
2181-2224 | 3.19e-05 | ||||||||
trophoblast Kunitz domain protein (TKDP) and similar proteins; This model contains the trophoblast Kunitz domain protein 1 (TKDP-1) and splice variant TKDP-4, among others, which are Kunitz inhibitor domain proteins. TKDP-1 is expressed in the trophectoderm which forms the outer epithelial layer of the trophoblast, and may play a role in mediating maternal-conceptus interactions in the immediate preimplantation period. However, it does not appear to have proteinase inhibitory activity. These domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438652 Cd Length: 52 Bit Score: 43.59 E-value: 3.19e-05
|
||||||||||||
Kunitz_KTT | cd22620 | scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model ... |
2035-2086 | 3.26e-05 | ||||||||
scorpion venom Kunitz-type toxin (KTT) such as LmKTT-1a, BmKTT-1, and BmKTT-2; This model includes scorpion Kunitz-type toxin (KTT) such as Lychas mucronatus LmKTT-1a (also called Delta-KTx 2.1 or SdPII), Mesobuthus martensii BmKTT-1 (also called Delta-KTx 2.4) and BmKTT-2 (also called Delta-KTx 3.1), all expressed by the venom gland. LmKTT-1a, BmKTT-1 and BmKTT-2 are all dual-function toxins that completely inhibit trypsin activity but have no effect on chymotrypsin or elastase. They also inhibit mKv1.3/KCNA3 potassium channel currents. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor); however, they lack the conserved CysII-CysIV disulfide bond but contains 2 cysteine residues at the C-terminus that generate a new disulfide bond. Pssm-ID: 438663 Cd Length: 58 Bit Score: 43.71 E-value: 3.26e-05
|
||||||||||||
Kunitz_B2B | cd22619 | Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; ... |
2245-2298 | 3.38e-05 | ||||||||
Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; This model includes the Kunitz inhibitor subunit of beta 2-bungarotoxin, a presynaptic neurotoxin of the Bungarus multicinctus venom. Beta-bungarotoxin is a heterodimeric neurotoxin consisting of a phospholipase subunit linked by a disulfide bond to the Kunitz protease inhibitor subunit; the latter subunit is homologous to venom basic protease inhibitors but has no protease inhibitor activity and is non-toxic. The beta-bungarotoxin Kunitz subunit serves to guide the toxin to its site of action on the presynaptic membrane by virtue of a high-affinity interaction with a specific subclass of voltage-sensitive potassium channels. This subfamily also includes Kunitz-type serine protease inhibitor homolog beta-bungarotoxin B1 chain and protease inhibitor-like protein 1 (PILP-1). The B1 chain also has no protease inhibitor activity but blocks voltage-gated potassium channels, while PILP-1 inhibits trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438662 Cd Length: 58 Bit Score: 43.70 E-value: 3.38e-05
|
||||||||||||
IgI_1_Titin_Z1z2-like | cd20974 | First Ig-like domain of the giant muscle protein titin Z1z2 in the sarcomeric Z-disk and ... |
2724-2797 | 3.50e-05 | ||||||||
First Ig-like domain of the giant muscle protein titin Z1z2 in the sarcomeric Z-disk and similar proteins; a member of the I-set of IgSF domains; The members here are composed of the first immunoglobulin (Ig)-like domain of the giant muscle protein titin Z1z2 in the sarcomeric Z-disk and similar proteins. Titin is a key component in the assembly and functioning of vertebrate striated muscles. By providing connections at the level of individual microfilaments, it contributes to the fine balance of forces between the two halves of the sarcomere. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Unlike the V-set, one of the distinctive features of I-set domains is the lack of a C" strand. The structure of the titin Z1z2 lacks this strand and thus it belongs to the I-set of the IgSF. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409566 [Multi-domain] Cd Length: 93 Bit Score: 44.65 E-value: 3.50e-05
|
||||||||||||
Ig_Pro_neuregulin | cd05750 | Immunoglobulin (Ig)-like domain in neuregulins; The members here are composed of the ... |
2724-2797 | 3.80e-05 | ||||||||
Immunoglobulin (Ig)-like domain in neuregulins; The members here are composed of the immunoglobulin (Ig)-like domain in neuregulins (NRGs). NRGs are signaling molecules which participate in cell-cell interactions in the nervous system, breast, heart, and other organ systems, and are implicated in the pathology of diseases including schizophrenia, multiple sclerosis, and breast cancer. There are four members of the neuregulin gene family (NRG-1, NRG-2, NRG-3, and NRG-4). The NRG-1 protein, binds to and activates the tyrosine kinases receptors ErbB3 and ErbB4, initiating signaling cascades. The other NRGs proteins bind one or the other or both of these ErbBs. NRG-1 has multiple functions: in the brain it regulates various processes such as radial glia formation and neuronal migration, dendritic development, and expression of neurotransmitters receptors, while in the peripheral nervous system NRG-1 regulates processes such as target cell differentiation, and Schwann cell survival. There are many NRG-1 isoforms which arise from the alternative splicing of mRNA. Less is known of the functions of the other NRGs. NRG-2 and NRG-3 are expressed predominantly in the nervous system. NRG-2 is expressed by motor neurons and terminal Schwann cells, and is concentrated near synaptic sites and may be a signal that regulates synaptic differentiation. NRG-4 has been shown to direct pancreatic islet cell development towards the delta-cell lineage. Pssm-ID: 409408 [Multi-domain] Cd Length: 92 Bit Score: 44.81 E-value: 3.80e-05
|
||||||||||||
IgI_3_Robo | cd05725 | Third immunoglobulin (Ig)-like domain in Robo (roundabout) receptors; member of the I-set of ... |
2556-2632 | 4.10e-05 | ||||||||
Third immunoglobulin (Ig)-like domain in Robo (roundabout) receptors; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the third immunoglobulin (Ig)-like domain in Robo (roundabout) receptors. Robo receptors play a role in the development of the central nervous system (CNS), and are receptors of Slit protein. Slit is a repellant secreted by the neural cells in the midline. Slit acts through Robo to prevent most neurons from crossing the midline from either side. Three mammalian Robo homologs (Robo1, Robo2, Robo3), and three mammalian Slit homologs (Slit-1,Slit-2, Slit-3), have been identified. Commissural axons, which cross the midline, express low levels of Robo; longitudinal axons, which avoid the midline, express high levels of Robo. Robo1, Robo2, and Robo3 are expressed by commissural neurons in the vertebrate spinal cord and Slit-1, Slit-2, and Slit-3 are expressed at the ventral midline. Robo-3 is a divergent member of the Robo family which instead of being a positive regulator of Slit responsiveness, antagonizes Slit responsiveness in precrossing axons. The Slit-Robo interaction is mediated by the second leucine-rich repeat (LRR) domain of Slit and the two N-terminal Ig domains of Robo, Ig1 and Ig2. The primary Robo binding site for Slit2 has been shown by surface plasmon resonance experiments and mutational analysis to be the Ig1 domain, while the Ig2 domain has been proposed to harbor a weak secondary binding site. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409390 [Multi-domain] Cd Length: 83 Bit Score: 44.31 E-value: 4.10e-05
|
||||||||||||
IgI_2_Follistatin_like | cd05736 | Second immunoglobulin (Ig)-like domain of a Follistatin-related protein 5, and similar domains; ... |
2565-2624 | 4.44e-05 | ||||||||
Second immunoglobulin (Ig)-like domain of a Follistatin-related protein 5, and similar domains; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the second immunoglobulin (Ig)-like domain found in human Follistatin-related protein 5 (FSTL5) and a follistatin-like molecule encoded by the CNS-related Mahya gene. Mahya genes have been retained in certain Bilaterian branches during evolution. They are conserved in Hymenoptera and Deuterostomes, but are absent from other metazoan species such as fruit fly and nematode. Mahya proteins are secretory, with a follistatin-like domain (Kazal-type serine/threonine protease inhibitor domain and EF-hand calcium-binding domain), two Ig-like domains, and a novel C-terminal domain. Mahya may be involved in learning and memory and in processing of sensory information in Hymenoptera and vertebrates. Follistatin is a secreted, multidomain protein that binds activins with high affinity and antagonizes their signaling. Pssm-ID: 409399 [Multi-domain] Cd Length: 93 Bit Score: 44.56 E-value: 4.44e-05
|
||||||||||||
SEEEED | pfam14797 | Serine-rich region of AP3B1, clathrin-adaptor complex; This short low-complexity, highly ... |
1146-1241 | 4.50e-05 | ||||||||
Serine-rich region of AP3B1, clathrin-adaptor complex; This short low-complexity, highly serine-rich region lies on clathrin-adaptor complex 3 beta-1 subunit proteins, between family Adaptin_N, pfam01602 and a C-terminal domain, AP3B1_C,pfam14796. Pssm-ID: 434218 [Multi-domain] Cd Length: 111 Bit Score: 44.92 E-value: 4.50e-05
|
||||||||||||
Kunitz_SmCI_2-like | cd22602 | second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group ... |
1978-2028 | 4.72e-05 | ||||||||
second Kunitz domain of Carboxypeptidase Inhibitor SmCI and similar domains; This group includes Sabellastarte magnifica carboxypeptidase inhibitor (SmCI), a tri-domain BPTI-Kunitz inhibitor capable of inhibiting serine proteases and A-like metallocarboxypeptidases. While the BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases, SmCI is the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. Binding studies show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), thus becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes. This model contains the second Kunitz domain of SmCI, which has a structure similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438645 Cd Length: 51 Bit Score: 42.91 E-value: 4.72e-05
|
||||||||||||
Kunitz_huwentoxin | cd22598 | Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor ... |
2033-2087 | 5.00e-05 | ||||||||
Kunitz-type toxin huwentoxin-XI; This model contains Kunitz-type serine protease inhibitor huwentoxin-XI, including U15-theraphotoxin-Hs1g (also called U15-TRTX-Hs1g or Huwentoxin HW11c39), and kappaPI-theraphotoxin-Hs1a (also called KappaPI-TRTX-Hs1a or Huwentoxin-HW11g8). Huwentoxin-XI is a bifunctional toxin that inhibits both serine proteases (trypsin) and voltage-gated potassium channels (Kv) via surfaces displayed on opposite faces of the toxin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438641 Cd Length: 53 Bit Score: 43.06 E-value: 5.00e-05
|
||||||||||||
IgI_NCAM-1_like | cd05732 | Immunoglobulin (Ig)-like I-set domain of Neural Cell Adhesion Molecule 1 (NCAM-1) and similar ... |
2459-2527 | 5.11e-05 | ||||||||
Immunoglobulin (Ig)-like I-set domain of Neural Cell Adhesion Molecule 1 (NCAM-1) and similar proteins; The members here are composed of the fourth immunoglobulin (Ig)-like domain of Neural Cell Adhesion Molecule (NCAM-1). NCAM plays important roles in the development and regeneration of the central nervous system, in synaptogenesis and neural migration. NCAM mediates cell-cell and cell-substratum recognition and adhesion via homophilic (NCAM-NCAM), and heterophilic (NCAM-non-NCAM), interactions. NCAM is expressed as three major isoforms having different intracellular extensions. The extracellular portion of NCAM has five N-terminal Ig-like domains and two fibronectin type III domains. The double zipper adhesion complex model for NCAM homophilic binding involves Ig1, Ig2, and Ig3. By this model, Ig1 and Ig2 mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), and Ig3 domains mediate interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions), through binding to the Ig1 and Ig2 domains. The adhesive ability of NCAM is modulated by the addition of polysialic acid chains to the fifth Ig-like domain. Also included in this group is NCAM-2 (also known as OCAM/mamFas II and RNCAM) NCAM-2 is differentially expressed in the developing and mature olfactory epithelium (OE). One of the unique features of I-set domains is the lack of a C" strand. The structures of this group show that the Ig domain lacks this strand and thus is a member of the I-set of Ig domains. Pssm-ID: 409395 [Multi-domain] Cd Length: 96 Bit Score: 44.44 E-value: 5.11e-05
|
||||||||||||
IgI_titin_I1-like | cd20951 | Immunoglobulin domain I1 of the titin I-band and similar proteins; a member of the I-set of ... |
2557-2628 | 5.48e-05 | ||||||||
Immunoglobulin domain I1 of the titin I-band and similar proteins; a member of the I-set of IgSF domains; The members here are composed of the immunoglobulin domain I1 of the titin I-band and similar proteins. Titin is a key component in the assembly and functioning of vertebrate striated muscles. By providing connections at the level of individual microfilaments, it contributes to the fine balance of forces between the two halves of the sarcomere. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. The two sheets are linked together by a conserved disulfide bond between B strand and F strand. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. The Ig I1 domain of the titin I-band is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand but lack a C" strand. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409543 [Multi-domain] Cd Length: 94 Bit Score: 44.33 E-value: 5.48e-05
|
||||||||||||
Kunitz_bikunin_1-like | cd22596 | first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal ... |
1666-1718 | 5.69e-05 | ||||||||
first Kunitz domain of bikunin and similar proteins; This subfamily includes the N-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. It is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the first repeat. Pssm-ID: 438639 Cd Length: 54 Bit Score: 43.01 E-value: 5.69e-05
|
||||||||||||
IgI_7_Dscam | cd20954 | Seventh immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar ... |
2456-2528 | 5.80e-05 | ||||||||
Seventh immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; a member of the I-set of IgSF domains; The members here are composed of the seventh immunoglobulin domain of the Drosophila melanogaster Down syndrome cell adhesion molecule (DSCAM) protein and similar proteins. Down syndrome cell adhesion molecule (DSCAM) is a cell adhesion molecule that plays critical roles in neural development, including axon guidance and branching, axon target recognition, self-avoidance and synaptic formation. DSCAM belongs to the immunoglobulin superfamily and contributes to defects in the central nervous system in Down syndrome patients. Vertebrate DSCAMs differ from Drosophila Dscam1 in that they lack the extensive alternative splicing that occurs in the insect gene. Drosophila melanogaster Dscam has 38,016 isoforms generated by the alternative splicing of four variable exon clusters, which allows every neuron in the fly to display a distinctive set of Dscam proteins on its cell surface. Drosophila Dscam1 is a cell-surface protein that plays important roles in neural development and axon tiling of neurons. It is shown that thousands of isoforms bind themselves through specific homophilic (self-binding) interactions, a process which mediates cellular self-recognition. Drosophila Dscam2 is also alternatively spliced and plays a key role in the development of two visual system neurons, monopolar cells L1 and L2. This group is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand but lack a C" strand. Pssm-ID: 409546 [Multi-domain] Cd Length: 96 Bit Score: 44.23 E-value: 5.80e-05
|
||||||||||||
dermokine | cd21118 | dermokine; Dermokine, also known as epidermis-specific secreted protein SK30/SK89, is a ... |
1074-1235 | 5.85e-05 | ||||||||
dermokine; Dermokine, also known as epidermis-specific secreted protein SK30/SK89, is a skin-specific glycoprotein that may play a regulatory role in the crosstalk between barrier dysfunction and inflammation, and therefore play a role in inflammatory diseases such as psoriasis. Dermokine is one of the most highly expressed proteins in differentiating keratinocytes, found mainly in the spinous and granular layers of the epidermis, but also in the epithelia of the small intestine, macrophages of the lung, and endothelial cells of the lung. Mouse dermokine has been reported to be encoded by 22 exons, and its expression leads to alpha, beta, and gamma transcripts. Pssm-ID: 411053 [Multi-domain] Cd Length: 495 Bit Score: 48.46 E-value: 5.85e-05
|
||||||||||||
MDN1 | COG5271 | Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal ... |
731-1247 | 5.97e-05 | ||||||||
Midasin, AAA ATPase with vWA domain, involved in ribosome maturation [Translation, ribosomal structure and biogenesis]; Pssm-ID: 444083 [Multi-domain] Cd Length: 1028 Bit Score: 48.86 E-value: 5.97e-05
|
||||||||||||
PHA03255 | PHA03255 | BDLF3; Provisional |
849-986 | 6.12e-05 | ||||||||
BDLF3; Provisional Pssm-ID: 165513 [Multi-domain] Cd Length: 234 Bit Score: 47.21 E-value: 6.12e-05
|
||||||||||||
IgI_5_Dscam | cd20958 | Fifth immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; ... |
2457-2538 | 6.42e-05 | ||||||||
Fifth immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; a member of the I-set of IgSF domains; The members here are composed of the fifth immunoglobulin domain of the Drosophila melanogaster Down syndrome cell adhesion molecule (DSCAM) protein and similar proteins. Down syndrome cell adhesion molecule (DSCAM) is a cell adhesion molecule that plays critical roles in neural development, including axon guidance and branching, axon target recognition, self-avoidance and synaptic formation. DSCAM belongs to the immunoglobulin superfamily and contributes to defects in the central nervous system in Down syndrome patients. Vertebrate DSCAMs differ from Drosophila Dscam1 in that they lack the extensive alternative splicing that occurs in the insect gene. Drosophila melanogaster Dscam has 38,016 isoforms generated by the alternative splicing of four variable exon clusters, which allows every neuron in the fly to display a distinctive set of Dscam proteins on its cell surface. Drosophila Dscam1 is a cell-surface protein that plays important roles in neural development and axon tiling of neurons. It is shown that thousands of isoforms bind themselves through specific homophilic (self-binding) interactions, a process which mediates cellular self-recognition. Drosophila Dscam2 is also alternatively spliced and plays a key role in the development of two visual system neurons, monopolar cells L1 and L2. This group is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand but lack a C" strand. Pssm-ID: 409550 [Multi-domain] Cd Length: 89 Bit Score: 43.71 E-value: 6.42e-05
|
||||||||||||
PRK08026 | PRK08026 | FliC/FljB family flagellin; |
954-1221 | 6.68e-05 | ||||||||
FliC/FljB family flagellin; Pssm-ID: 236140 [Multi-domain] Cd Length: 529 Bit Score: 48.20 E-value: 6.68e-05
|
||||||||||||
MSCRAMM_ClfA | NF033609 | MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial ... |
1050-1237 | 6.77e-05 | ||||||||
MSCRAMM family adhesin clumping factor ClfA; Clumping factor A is an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules). It is heavily studied in Staphylococcus aureus both for its biological role in adhesion and for its potential for vaccination. Features of the sequence, but also of other MSCRAMM adhesins, include a long run of Ser-Asp dipeptide repeats and a C-terminal cell wall anchoring LPXTG motif. Pssm-ID: 468110 [Multi-domain] Cd Length: 934 Bit Score: 48.75 E-value: 6.77e-05
|
||||||||||||
IgI_L1-CAM_like | cd05733 | Immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM) and similar proteins; ... |
2727-2789 | 7.50e-05 | ||||||||
Immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM) and similar proteins; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the first immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM). L1 belongs to the L1 subfamily of cell adhesion molecules (CAMs) and is comprised of an extracellular region having six Ig-like domains and five fibronectin type III domains, a transmembrane region and an intracellular domain. L1 is primarily expressed in the nervous system and is involved in its development and function. L1 is associated with an X-linked recessive disorder, X-linked hydrocephalus, MASA syndrome, or spastic paraplegia type 1, that involves abnormalities of axonal growth. This group also contains NrCAM [Ng(neuronglia)CAM-related cell adhesion molecule], which is primarily expressed in the nervous system, and human neurofascin. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lacks a C" strand. Pssm-ID: 409396 [Multi-domain] Cd Length: 94 Bit Score: 43.93 E-value: 7.50e-05
|
||||||||||||
DUF5585 | pfam17823 | Family of unknown function (DUF5585); This is a family of unknown function found in chordata. |
732-1092 | 7.80e-05 | ||||||||
Family of unknown function (DUF5585); This is a family of unknown function found in chordata. Pssm-ID: 465521 [Multi-domain] Cd Length: 506 Bit Score: 48.03 E-value: 7.80e-05
|
||||||||||||
PHA03169 | PHA03169 | hypothetical protein; Provisional |
1051-1242 | 9.40e-05 | ||||||||
hypothetical protein; Provisional Pssm-ID: 223003 [Multi-domain] Cd Length: 413 Bit Score: 47.66 E-value: 9.40e-05
|
||||||||||||
Kunitz_WFIKKN_1-like | cd22605 | first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
2044-2085 | 9.88e-05 | ||||||||
first Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the first Kunitz domain that is similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438648 Cd Length: 52 Bit Score: 41.96 E-value: 9.88e-05
|
||||||||||||
IgI_1_Contactin-1 | cd05849 | First immunoglobulin (Ig) domain of contactin-1; member of the I-set of Ig superfamily domains; ... |
2425-2527 | 9.89e-05 | ||||||||
First immunoglobulin (Ig) domain of contactin-1; member of the I-set of Ig superfamily domains; The members here are composed of the first immunoglobulin (Ig) domain of the neural cell adhesion molecule contactin-1. Contactins are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. Contactin-1 is differentially expressed in tumor tissues and may, through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. This group belongs to the I-set of IgSF domains. Pssm-ID: 409436 [Multi-domain] Cd Length: 95 Bit Score: 43.40 E-value: 9.89e-05
|
||||||||||||
dermokine | cd21118 | dermokine; Dermokine, also known as epidermis-specific secreted protein SK30/SK89, is a ... |
1060-1219 | 1.00e-04 | ||||||||
dermokine; Dermokine, also known as epidermis-specific secreted protein SK30/SK89, is a skin-specific glycoprotein that may play a regulatory role in the crosstalk between barrier dysfunction and inflammation, and therefore play a role in inflammatory diseases such as psoriasis. Dermokine is one of the most highly expressed proteins in differentiating keratinocytes, found mainly in the spinous and granular layers of the epidermis, but also in the epithelia of the small intestine, macrophages of the lung, and endothelial cells of the lung. Mouse dermokine has been reported to be encoded by 22 exons, and its expression leads to alpha, beta, and gamma transcripts. Pssm-ID: 411053 [Multi-domain] Cd Length: 495 Bit Score: 47.69 E-value: 1.00e-04
|
||||||||||||
DUF5585 | pfam17823 | Family of unknown function (DUF5585); This is a family of unknown function found in chordata. |
1072-1265 | 1.07e-04 | ||||||||
Family of unknown function (DUF5585); This is a family of unknown function found in chordata. Pssm-ID: 465521 [Multi-domain] Cd Length: 506 Bit Score: 47.65 E-value: 1.07e-04
|
||||||||||||
IgI_5_Robo | cd20952 | Fifth Ig-like domain of Roundabout (Robo) homolog 1/2, and similar domains; a member of the ... |
2556-2633 | 1.09e-04 | ||||||||
Fifth Ig-like domain of Roundabout (Robo) homolog 1/2, and similar domains; a member of the I-set of IgSF domains; The members here are composed of the fifth Ig-like domain of Roundabout (Robo) homolog 1/2 and similar domains. Robo receptors play a role in the development of the central nervous system (CNS), and are receptors of Slit protein. Slit is a repellant secreted by the neural cells in the midline. Slit acts through Robo to prevent most neurons from crossing the midline from either side. Three mammalian Robo homologs (Robo1, -2, and -3), and three mammalian Slit homologs (Slit-1,-2, -3), have been identified. Commissural axons, which cross the midline, express low levels of Robo; longitudinal axons, which avoid the midline, express high levels of Robo. Robo1, -2, and -3 are expressed by commissural neurons in the vertebrate spinal cord and Slits 1, -2, -3 are expressed at the ventral midline. Robo-3 is a divergent member of the Robo family which instead of being a positive regulator of slit responsiveness, antagonizes slit responsiveness in precrossing axons. The Slit-Robo interaction is mediated by the second leucine-rich repeat (LRR) domain of Slit and the two N-terminal Ig domains of Robo, Ig1 and Ig2. The primary Robo binding site for Slit2 has been shown by surface plasmon resonance experiments and mutational analysis to be is the Ig1 domain, while the Ig2 domain has been proposed to harbor a weak secondary binding site. The fifth Ig-like domain of Robo 1 and 2 is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand but lack a C" strand. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors Pssm-ID: 409544 [Multi-domain] Cd Length: 87 Bit Score: 43.25 E-value: 1.09e-04
|
||||||||||||
Ig3_L1-CAM_like | cd05731 | Third immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM), and similar ... |
2464-2527 | 1.13e-04 | ||||||||
Third immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM), and similar domains; The members here are composed of the third immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM). L1 belongs to the L1 subfamily of cell adhesion molecules (CAMs) and is comprised of an extracellular region having six Ig-like domains and five fibronectin type III domains, a transmembrane region and an intracellular domain. L1 is primarily expressed in the nervous system and is involved in its development and function. L1 is associated with an X-linked recessive disorder, X-linked hydrocephalus, MASA syndrome, and spastic paraplegia type 1, that involves abnormalities of axonal growth. This group also contains the chicken neuron-glia cell adhesion molecule, Ng-CAM and human neurofascin. Pssm-ID: 409394 [Multi-domain] Cd Length: 83 Bit Score: 43.17 E-value: 1.13e-04
|
||||||||||||
PHA03169 | PHA03169 | hypothetical protein; Provisional |
941-1180 | 1.28e-04 | ||||||||
hypothetical protein; Provisional Pssm-ID: 223003 [Multi-domain] Cd Length: 413 Bit Score: 47.27 E-value: 1.28e-04
|
||||||||||||
Kunitz_BmTI-like | cd22604 | Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group ... |
2245-2297 | 1.32e-04 | ||||||||
Kunitz-type serine protease inhibitor 6 (BmTI-6), A (BmTI-A), and similar proteins; This group includes Kunitz-type serine protease inhibitors 6 (BmTI-6) and A (BmTI-A), both of which inhibit bovine trypsin, bovine chymotrypsin, human plasmin, human plasma kallikrein and human neutrophil elastase, but not bovine thrombin, human factor Xa or porcine pancreatic kallikrein. They may play a role in blocking blood coagulation during the larvae fixation on cattle. This subfamily also includes Rhipicephalus microplus protease inhibitor carrapatin. These proteins are similar to Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor) that shows an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438647 [Multi-domain] Cd Length: 56 Bit Score: 42.05 E-value: 1.32e-04
|
||||||||||||
IgI_L1-CAM_like | cd05733 | Immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM) and similar proteins; ... |
2467-2537 | 1.35e-04 | ||||||||
Immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM) and similar proteins; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the first immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM). L1 belongs to the L1 subfamily of cell adhesion molecules (CAMs) and is comprised of an extracellular region having six Ig-like domains and five fibronectin type III domains, a transmembrane region and an intracellular domain. L1 is primarily expressed in the nervous system and is involved in its development and function. L1 is associated with an X-linked recessive disorder, X-linked hydrocephalus, MASA syndrome, or spastic paraplegia type 1, that involves abnormalities of axonal growth. This group also contains NrCAM [Ng(neuronglia)CAM-related cell adhesion molecule], which is primarily expressed in the nervous system, and human neurofascin. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lacks a C" strand. Pssm-ID: 409396 [Multi-domain] Cd Length: 94 Bit Score: 43.16 E-value: 1.35e-04
|
||||||||||||
SEEEED | pfam14797 | Serine-rich region of AP3B1, clathrin-adaptor complex; This short low-complexity, highly ... |
1069-1174 | 1.36e-04 | ||||||||
Serine-rich region of AP3B1, clathrin-adaptor complex; This short low-complexity, highly serine-rich region lies on clathrin-adaptor complex 3 beta-1 subunit proteins, between family Adaptin_N, pfam01602 and a C-terminal domain, AP3B1_C,pfam14796. Pssm-ID: 434218 [Multi-domain] Cd Length: 111 Bit Score: 43.76 E-value: 1.36e-04
|
||||||||||||
IgI_NCAM-1 | cd05869 | Immunoglobulin (Ig)-like I-set domain of Neural Cell Adhesion Molecule 1 (NCAM-1); The members ... |
2467-2534 | 1.37e-04 | ||||||||
Immunoglobulin (Ig)-like I-set domain of Neural Cell Adhesion Molecule 1 (NCAM-1); The members here are composed of the fourth Ig domain of Neural Cell Adhesion Molecule 1(NCAM-1). NCAM plays important roles in the development and regeneration of the central nervous system, in synaptogenesis and neural migration. NCAM mediates cell-cell and cell-substratum recognition and adhesion via homophilic (NCAM-NCAM) and heterophilic (NCAM-non-NCAM) interactions. NCAM is expressed as three major isoforms having different intracellular extensions. The extracellular portion of NCAM has five N-terminal Ig-like domains and two fibronectin type III domains. The double zipper adhesion complex model for NCAM homophilic binding involves Ig1, Ig2, and Ig3. By this model, Ig1 and Ig2 mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), and Ig3 domains mediate interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions), through binding to the Ig1 and Ig2 domains. The adhesive ability of NCAM is modulated by the addition of polysialic acid chains to the fifth Ig-like domain. One of the unique features of I-set domains is the lack of a C" strand. The structures of this group show that the Ig domain lacks this strand and thus is a member of the I-set of Ig domains. Pssm-ID: 143277 [Multi-domain] Cd Length: 97 Bit Score: 43.04 E-value: 1.37e-04
|
||||||||||||
IgI_Myomesin_like_C | cd05737 | C-terminal immunoglobulin (Ig)-like domain of myomesin and M-protein; member of the I-set of ... |
2724-2797 | 1.44e-04 | ||||||||
C-terminal immunoglobulin (Ig)-like domain of myomesin and M-protein; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the C-terminal immunoglobulin (Ig)-like domain of myomesin and M-protein (also known as myomesin-2). Myomesin and M-protein are both structural proteins localized to the M-band, a transverse structure in the center of the sarcomere, and are candidates for M-band bridges. Both proteins are modular, consisting mainly of repetitive Ig-like and fibronectin type III (FnIII) domains. Myomesin is expressed in all types of vertebrate striated muscle; M-protein has a muscle-type specific expression pattern. Myomesin is present in both slow and fast fibers; M-protein is present only in fast fibers. It has been suggested that myomesin acts as a molecular spring with alternative splicing as a means of modifying its elasticity. Pssm-ID: 319300 Cd Length: 92 Bit Score: 42.96 E-value: 1.44e-04
|
||||||||||||
Ig_DSCAM | cd05734 | Immunoglobulin (Ig)-like domain of Down Syndrome Cell Adhesion molecule (DSCAM); The members ... |
2725-2788 | 1.59e-04 | ||||||||
Immunoglobulin (Ig)-like domain of Down Syndrome Cell Adhesion molecule (DSCAM); The members here are composed of the immunoglobulin (Ig)-like domain of Down Syndrome Cell Adhesion molecule (DSCAM). DSCAM is a cell adhesion molecule expressed largely in the developing nervous system. The gene encoding DSCAM is located at human chromosome 21q22, the locus associated with the intellectual disability phenotype of Down Syndrome. DSCAM is predicted to be the largest member of the IG superfamily. It has been demonstrated that DSCAM can mediate cation-independent homophilic intercellular adhesion. Pssm-ID: 409397 [Multi-domain] Cd Length: 97 Bit Score: 42.86 E-value: 1.59e-04
|
||||||||||||
PRK13914 | PRK13914 | invasion associated endopeptidase; |
842-1084 | 1.60e-04 | ||||||||
invasion associated endopeptidase; Pssm-ID: 237555 [Multi-domain] Cd Length: 481 Bit Score: 47.10 E-value: 1.60e-04
|
||||||||||||
PHA03169 | PHA03169 | hypothetical protein; Provisional |
1069-1251 | 1.60e-04 | ||||||||
hypothetical protein; Provisional Pssm-ID: 223003 [Multi-domain] Cd Length: 413 Bit Score: 46.89 E-value: 1.60e-04
|
||||||||||||
IgI_1_NCAM-1 | cd05865 | First immunoglobulin (Ig)-like domain of neural cell adhesion molecule (NCAM-1); member of the ... |
2709-2797 | 1.66e-04 | ||||||||
First immunoglobulin (Ig)-like domain of neural cell adhesion molecule (NCAM-1); member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the first immunoglobulin (Ig)-like domain of neural cell adhesion molecule (NCAM-1). NCAM-1 plays important roles in the development and regeneration of the central nervous system, in synaptogenesis and neural migration. NCAM mediates cell-cell and cell-substratum recognition and adhesion via homophilic (NCAM-NCAM), and heterophilic (NCAM-nonNCAM), interactions. NCAM is expressed as three major isoforms having different intracellular extensions. The extracellular portion of NCAM has five N-terminal Ig-like domains and two fibronectin type III domains. The double zipper adhesion complex model for NCAM homophilic binding involves the Ig1, Ig2, and Ig3 domains. By this model, Ig1 and Ig2 mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), and Ig3 domains mediate interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions), through binding to the Ig1 and Ig2 domains. The adhesive ability of NCAM is modulated by the addition of polysialic acid chains to the fifth Ig-like domain. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409451 Cd Length: 97 Bit Score: 43.11 E-value: 1.66e-04
|
||||||||||||
Kunitz_HAI1_1-like | cd22623 | Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes ... |
2245-2297 | 1.66e-04 | ||||||||
Kunitz domain 1 of hepatocyte growth factor activator inhibitor-1 (HAI-1); This model includes Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 1 (HAI1 or HAI-1, also known as Kunitz-type protease inhibitor 1), a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development. HAI-1 contains an extracellular region and several internal domains that include two Kunitz domains separated in sequence but spatially closed to each other, and their interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. KD1, the major inhibitory domain of HAI-1, is involved in auto-inhibition of the extracellular region via steric blockage of its active site in the HAI-1 compact tertiary structure; presence of the target protease causes changes in the HAI-1 structure to an extended conformation. HAI-1 has been shown to inhibit several serine proteases such as matripase, hepsin, trypsin, hepatocyte growth factor activator (HGFA), and prostasin. It is also important in maintaining postnatal homeostasis in many tissues, including keratinization of the epidermis, hair development, colonic epithelium integrity, proliferation and cell fate of neural progenitor cells, and tissue injury and repair. The interaction between HAI-1 and matriptase is critical for tissue morphogenesis and cellular biology. HAI-1:matriptase ratio imbalance results in tumorigenesis; slight overexpression of matriptase relative to HAI-1 causes spontaneous squamous cell carcinoma, a phenotype that can be effectively reversed back to wild type by additional expression of HAI-1, indicating the need for a tight functional relationship between the two to maintain homeostasis. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438666 Cd Length: 59 Bit Score: 41.76 E-value: 1.66e-04
|
||||||||||||
Ig2_IL1R-like | cd05757 | Second immunoglobulin (Ig)-like domain of interleukin-1 receptor (IL1R), and similar domains; ... |
2719-2783 | 1.73e-04 | ||||||||
Second immunoglobulin (Ig)-like domain of interleukin-1 receptor (IL1R), and similar domains; The members here are composed of the second immunoglobulin (Ig)-like domain of interleukin-1 receptor (IL1R; also known as cluster of differentiation (CD) 121). IL-1 alpha and IL-1 beta are cytokines which participate in the regulation of inflammation, immune responses, and hematopoiesis. These cytokines bind to the IL-1 receptor type 1 (IL1R1), which is activated on additional association with interleukin-1 receptor accessory protein (IL1RAP). IL-1 also binds a second receptor designated type II (IL1R2). Mature IL1R1 consists of three IG-like domains, a transmembrane domain, and a large cytoplasmic domain. Mature IL1R2 is organized similarly except that it has a short cytoplasmic domain. The latter does not initiate signal transduction. A naturally occurring cytokine IL-1RA (IL-1 receptor antagonist) is widely expressed and binds to IL-1 receptors, inhibiting the binding of IL-1 alpha and IL-1 beta. This group also contains ILIR-like 1 (IL1R1L) which maps to the same chromosomal location as IL1R1 and IL1R2. Pssm-ID: 409415 Cd Length: 92 Bit Score: 42.70 E-value: 1.73e-04
|
||||||||||||
IgI_APEG-1_like | cd20975 | Immunoglobulin-like domain of human Aortic Preferentially Expressed Protein-1 (APEG-1) and ... |
2460-2527 | 1.80e-04 | ||||||||
Immunoglobulin-like domain of human Aortic Preferentially Expressed Protein-1 (APEG-1) and similar proteins; a member of the I-set of IgSF domains; The members here are composed of the immunoglobulin I-set (IgI) domain of the Human Aortic Preferentially Expressed Protein-1 (APEG-1) and similar proteins. APEG-1 is a novel specific smooth muscle differentiation marker predicted to play a role in the growth and differentiation of arterial smooth muscle cells (SMCs). The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Unlike the V-set, one of the distinctive features of I-set domains is the lack of a C" strand. The structure of the human APEG-1 lacks this strand and thus it belongs to the I-set of the IgSF. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409567 Cd Length: 91 Bit Score: 42.84 E-value: 1.80e-04
|
||||||||||||
ClfA | COG4932 | Clumping factor A-related surface protein, MSCRAMM (microbial surface components recognizing ... |
799-977 | 1.85e-04 | ||||||||
Clumping factor A-related surface protein, MSCRAMM (microbial surface components recognizing adhesive matrix molecules) family, DEv-IgG fold [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 443959 [Multi-domain] Cd Length: 689 Bit Score: 47.27 E-value: 1.85e-04
|
||||||||||||
PHA03169 | PHA03169 | hypothetical protein; Provisional |
1022-1240 | 1.86e-04 | ||||||||
hypothetical protein; Provisional Pssm-ID: 223003 [Multi-domain] Cd Length: 413 Bit Score: 46.89 E-value: 1.86e-04
|
||||||||||||
IgI_LRIG1-like | cd05763 | Immunoglobulin (Ig)-like ectodomain of the LRIG1 (Leucine-rich Repeats And Immunoglobulin-like ... |
2459-2527 | 1.96e-04 | ||||||||
Immunoglobulin (Ig)-like ectodomain of the LRIG1 (Leucine-rich Repeats And Immunoglobulin-like Domains Protein 1) and similar proteins; member of the I-set of IgSF domains; The members here are composed of subgroup of the immunoglobulin (Ig) domain found in the Ig superfamily. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. The ectodomain of LRIG1 has two distinct regions: the proposed 15 LRRs and three Ig-like domains closer to the membrane. LRIG1 has been reported to interact with many receptor tyrosine kinases, GDNF/c-Ret, E-cadherin, JAK/STAT, c-Met, and the EGFR family signaling systems. Immunoglobulin Superfamily (IgSF) domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. The structure of the LRIG1 extracellular Ig domain lacks a C" strand and thus is better described as a member of the I-set of IgSF domains. Pssm-ID: 409420 [Multi-domain] Cd Length: 91 Bit Score: 42.61 E-value: 1.96e-04
|
||||||||||||
TSP1 | smart00209 | Thrombospondin type 1 repeats; Type 1 repeats in thrombospondin-1 bind and activate TGF-beta. |
350-399 | 2.04e-04 | ||||||||
Thrombospondin type 1 repeats; Type 1 repeats in thrombospondin-1 bind and activate TGF-beta. Pssm-ID: 214559 [Multi-domain] Cd Length: 53 Bit Score: 41.42 E-value: 2.04e-04
|
||||||||||||
PRK15319 | PRK15319 | fibronectin-binding autotransporter adhesin ShdA; |
824-1232 | 2.25e-04 | ||||||||
fibronectin-binding autotransporter adhesin ShdA; Pssm-ID: 185219 [Multi-domain] Cd Length: 2039 Bit Score: 47.00 E-value: 2.25e-04
|
||||||||||||
Metaviral_G | pfam09595 | Metaviral_G glycoprotein; This is a viral attachment glycoprotein from region G of metaviruses. ... |
856-1015 | 2.26e-04 | ||||||||
Metaviral_G glycoprotein; This is a viral attachment glycoprotein from region G of metaviruses. It is high in serine and threonine suggesting it is highly glycosylated. Pssm-ID: 462833 [Multi-domain] Cd Length: 183 Bit Score: 44.56 E-value: 2.26e-04
|
||||||||||||
Kunitz_WFIKKN_2-like | cd22606 | second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; ... |
2244-2297 | 2.32e-04 | ||||||||
second Kunitz domain of WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing proteins; This subfamily includes WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 (WFIKKN1, WFKN1), WFIKKN2 (WFKN2), and similar proteins. WFIKKN proteins are protease inhibitors that contain two distinct Kunitz-type protease inhibitor domains. They may have serine protease- and metalloprotease-inhibitor activity. This model represents the second Kunitz (KU2) domain, which has been shown to inhibit trypsin, but not chymotrypsin, elastase, plasmin, pancreatic kallikrein, lung tryptase, plasma kallikrein, thrombin, urokinase or tissue plasminogen activator. However, the inhibition constant of this domain for bovine trypsin is about five orders of magnitudes lower than that of bovine pancreatic trypsin inhibitor (BPTI) for trypsin. This could be due to unfavorable side-chain conformation of a tryptophan at P2' site which is incompatible with a trypsin complex; typical trypsin inhibitors of the Kunitz family feature a tyrosine residue or other less bulky residues at this site. The structure of KU2 is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438649 Cd Length: 53 Bit Score: 41.19 E-value: 2.32e-04
|
||||||||||||
IgI_3_Contactin | cd04968 | Third immunoglobulin (Ig) domain of contactin; member of the I-set of Ig superfamily (IgSF) ... |
2721-2784 | 2.41e-04 | ||||||||
Third immunoglobulin (Ig) domain of contactin; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the third immunoglobulin (Ig) domain of contactins. Contactins are neural cell adhesion molecules and are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. The first four Ig domains form the intermolecular binding fragment, which arranges as a compact U-shaped module via contacts between Ig domains 1 and 4, and between Ig domains 2 and 3. Contactin-2 (TAG-1, axonin-1) may play a part in the neuronal processes of neurite outgrowth, axon guidance and fasciculation, and neuronal migration. This group also includes contactin-1 and contactin-5. The different contactins show different expression patterns in the central nervous system. During development and in adulthood, contactin-2 is transiently expressed in subsets of central and peripheral neurons. Contactin-5 is expressed specifically in the rat postnatal nervous system, peaking at about 3 weeks postnatal, and a lack of contactin-5 (NB-2) results in an impairment of neuronal activity in the rat auditory system. Contactin-5 is highly expressed in the adult human brain in the occipital lobe and in the amygdala. Contactin-1 is differentially expressed in tumor tissues and may, through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. This group belongs to the I-set of IgSF domains. Pssm-ID: 409357 [Multi-domain] Cd Length: 88 Bit Score: 42.15 E-value: 2.41e-04
|
||||||||||||
IgI_3_Contactin-1 | cd05851 | Third immunoglobulin (Ig) domain of contactin-1; member of the I-set of Ig superfamily (IgSF) ... |
2560-2625 | 2.44e-04 | ||||||||
Third immunoglobulin (Ig) domain of contactin-1; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the third immunoglobulin (Ig) domain of the neural cell adhesion molecule contactin-1. Contactins are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. Contactin-1 is differentially expressed in tumor tissues and may through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. This group belongs to the I-set of IgSF domains. Pssm-ID: 143259 Cd Length: 88 Bit Score: 42.32 E-value: 2.44e-04
|
||||||||||||
IgI_Titin_like | cd05747 | Immunoglobulin (Ig)-like domain of human titin C terminus and similar proteins; member of the ... |
2448-2539 | 2.78e-04 | ||||||||
Immunoglobulin (Ig)-like domain of human titin C terminus and similar proteins; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the fifth immunoglobulin (Ig)-like domain from the C-terminus of human titin x and similar proteins. Titin (also called connectin) is a fibrous sarcomeric protein specifically found in vertebrate striated muscle. Titin is gigantic; depending on isoform composition it ranges from 2970 to 3700 kDa, and is of a length that spans half a sarcomere. Titin largely consists of multiple repeats of Ig-like and fibronectin type 3 (FN-III)-like domains. Titin connects the ends of myosin thick filaments to Z disks and extends along the thick filament to the H zone and appears to function similar to an elastic band, keeping the myosin filaments centered in the sarcomere during muscle contraction or stretching. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 143224 [Multi-domain] Cd Length: 92 Bit Score: 42.34 E-value: 2.78e-04
|
||||||||||||
PRK12495 | PRK12495 | hypothetical protein; Provisional |
1134-1236 | 2.88e-04 | ||||||||
hypothetical protein; Provisional Pssm-ID: 183558 [Multi-domain] Cd Length: 226 Bit Score: 44.86 E-value: 2.88e-04
|
||||||||||||
Ig3_Peroxidasin | cd05745 | Third immunoglobulin (Ig)-like domain of peroxidasin; The members here are composed of the ... |
2564-2624 | 2.92e-04 | ||||||||
Third immunoglobulin (Ig)-like domain of peroxidasin; The members here are composed of the third immunoglobulin (Ig)-like domain in peroxidasin. Peroxidasin has a peroxidase domain and interacting extracellular motifs containing four Ig-like domains. It has been suggested that peroxidasin is secreted and has functions related to the stabilization of the extracellular matrix. It may play a part in various other important processes such as removal and destruction of cells which have undergone programmed cell death and protection of the organism against non-self. Pssm-ID: 143222 [Multi-domain] Cd Length: 74 Bit Score: 41.46 E-value: 2.92e-04
|
||||||||||||
PRK15319 | PRK15319 | fibronectin-binding autotransporter adhesin ShdA; |
821-1246 | 3.07e-04 | ||||||||
fibronectin-binding autotransporter adhesin ShdA; Pssm-ID: 185219 [Multi-domain] Cd Length: 2039 Bit Score: 46.62 E-value: 3.07e-04
|
||||||||||||
IgI_Lingo-1 | cd20969 | Immunoglobulin I-set domain of the Leucine-rich repeat and immunoglobin-like domain-containing ... |
2553-2626 | 3.36e-04 | ||||||||
Immunoglobulin I-set domain of the Leucine-rich repeat and immunoglobin-like domain-containing protein 1 (Lingo-1); The members here are composed of the immunoglobulin I-set (IgI) domain of the Leucine-rich repeat and immunoglobin-like domain-containing protein 1 (Lingo-1). Human Lingo-1 is a central nervous system-specific transmembrane glycoprotein also known as LERN-1, which functions as a negative regulator of neuronal survival, axonal regeneration, and oligodendrocyte differentiation and myelination. Lingo-1 is a key component of the Nogo receptor signaling complex (RTN4R/NGFR) in RhoA activation responsible for some inhibition of axonal regeneration by myelin-associated factors. The ligand-binding ectodomain of human Lingo-1 contains a bimodular, kinked structure composed of leucine-rich repeat (LRR) and immunoglobulin (Ig)-like modules. Diseases associated with Lingo-1 include mental retardation, autosomal recessive 64 and essential tremor. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Unlike the V-set, one of the distinctive features of I-set domains is the lack of a C" strand. The structure of the Lingo-1 lacks this strand and thus it belongs to the I-set of the IgSF. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409561 Cd Length: 92 Bit Score: 41.99 E-value: 3.36e-04
|
||||||||||||
PRK12495 | PRK12495 | hypothetical protein; Provisional |
1135-1249 | 3.49e-04 | ||||||||
hypothetical protein; Provisional Pssm-ID: 183558 [Multi-domain] Cd Length: 226 Bit Score: 44.86 E-value: 3.49e-04
|
||||||||||||
Kunitz_bikunin_2-like | cd22597 | second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal ... |
2245-2297 | 3.55e-04 | ||||||||
second Kunitz domain of bikunin and similar proteins; This subfamily includes the C-terminal domain of bikunin (also known as inter-alpha-trypsin inhibitor light chain (ITI-LC) or urinary trypsin inhibitor), a plasma protease inhibitor, that is associated with inflammation and stabilizes the extracellular matrix. Bikunin is encoded together with alpha-1-microglobulin (A1M) by an alpha-1-microglobulin/bikunin precursor (AMBP) gene that is tightly controlled by several hepatocyte-enriched nuclear (HEN) factors, and cleaved by a furin-like protease that releases the two mature molecules. Bikunin is a Kunitz-type serine protease inhibitor, found in vertebrate serum and urine, modified by a chondroitin sulfate (CS) chain. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Bikunin contains two Kunitz domains; this model represents the second repeat. Pssm-ID: 438640 Cd Length: 55 Bit Score: 40.83 E-value: 3.55e-04
|
||||||||||||
PRK11907 | PRK11907 | bifunctional 2',3'-cyclic-nucleotide 2'-phosphodiesterase/3'-nucleotidase; |
929-1023 | 3.64e-04 | ||||||||
bifunctional 2',3'-cyclic-nucleotide 2'-phosphodiesterase/3'-nucleotidase; Pssm-ID: 237019 [Multi-domain] Cd Length: 814 Bit Score: 46.38 E-value: 3.64e-04
|
||||||||||||
Ig4_PDGFR | cd05859 | Fourth immunoglobulin (Ig)-like domain of platelet-derived growth factor receptor (PDGFR); The ... |
2711-2797 | 3.92e-04 | ||||||||
Fourth immunoglobulin (Ig)-like domain of platelet-derived growth factor receptor (PDGFR); The members here are composed of the fourth immunoglobulin (Ig)-like domain of platelet-derived growth factor receptor (PDGFR; also known as cluster of differentiation (CD) 140a) alpha and beta. PDGF is a potent mitogen for connective tissue cells. PDGF-stimulated processes are mediated by three different PDGFs (PDGF-A,PDGF-B, and PDGF-C). PDGFR alpha binds to all three PDGFs, whereas the PDGFR beta binds only to PDGF-B. PDGF alpha is organized as an extracellular component having five Ig-like domains, a transmembrane segment, and a cytoplasmic portion having protein tyrosine kinase activity. In mice, PDGFR alpha and PDGFR beta are essential for normal development. Pssm-ID: 409445 Cd Length: 101 Bit Score: 42.16 E-value: 3.92e-04
|
||||||||||||
IgI_2_Axl_Tyro3_like | cd05749 | Second immunoglobulin (Ig)-like domain of Axl/Tyro3 family receptor tyrosine kinases (RTKs); ... |
2556-2633 | 4.11e-04 | ||||||||
Second immunoglobulin (Ig)-like domain of Axl/Tyro3 family receptor tyrosine kinases (RTKs); member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the second immunoglobulin (Ig)-like domain in the Axl/Tyro3 family of receptor tyrosine kinases (RTKs). This family includes Axl (also known as Ark, Ufo, and Tyro7), Tyro3 (also known as Sky, Rse, Brt, Dtk, and Tif), and Mer (also known as Nyk, c-Eyk, and Tyro12). Axl/Tyro3 family receptors have an extracellular portion with two Ig-like domains followed by two fibronectin-types III (FNIII) domains, a membrane-spanning single helix, and a cytoplasmic tyrosine kinase domain. Axl, Tyro3, and Mer are widely expressed in adult tissues, though they show higher expression in the brain, lymphatic and vascular systems, and testis. Axl, Tyro3, and Mer bind the vitamin K dependent protein Gas6 with high affinity, and in doing so activate their tyrosine kinase activity. Axl/Gas6 signaling may play a part in cell adhesion processes, prevention of apoptosis, and cell proliferation. Pssm-ID: 409407 Cd Length: 82 Bit Score: 41.30 E-value: 4.11e-04
|
||||||||||||
IgI_2_RPTP_IIa_LAR_like | cd05738 | Second immunoglobulin (Ig)-like domain of the receptor protein tyrosine phosphatase (RPTP)-F; ... |
2730-2788 | 4.11e-04 | ||||||||
Second immunoglobulin (Ig)-like domain of the receptor protein tyrosine phosphatase (RPTP)-F; member of the I-set of IgSF domains; The members here are composed of the second immunoglobulin (Ig)-like domain found in the receptor protein tyrosine phosphatase (RPTP)-F, also known as LAR. LAR belongs to the RPTP type IIa subfamily. Members of this subfamily are cell adhesion molecule-like proteins involved in central nervous system (CNS) development. They have large extracellular portions comprised of multiple Ig-like domains and two to nine fibronectin type III (FNIII) domains and a cytoplasmic portion having two tandem phosphatase domains. Pssm-ID: 409400 [Multi-domain] Cd Length: 91 Bit Score: 41.54 E-value: 4.11e-04
|
||||||||||||
dermokine | cd21118 | dermokine; Dermokine, also known as epidermis-specific secreted protein SK30/SK89, is a ... |
1079-1223 | 4.37e-04 | ||||||||
dermokine; Dermokine, also known as epidermis-specific secreted protein SK30/SK89, is a skin-specific glycoprotein that may play a regulatory role in the crosstalk between barrier dysfunction and inflammation, and therefore play a role in inflammatory diseases such as psoriasis. Dermokine is one of the most highly expressed proteins in differentiating keratinocytes, found mainly in the spinous and granular layers of the epidermis, but also in the epithelia of the small intestine, macrophages of the lung, and endothelial cells of the lung. Mouse dermokine has been reported to be encoded by 22 exons, and its expression leads to alpha, beta, and gamma transcripts. Pssm-ID: 411053 [Multi-domain] Cd Length: 495 Bit Score: 45.76 E-value: 4.37e-04
|
||||||||||||
IgI_2_MuSK | cd20968 | agrin-responsive second immunoglobulin-like domains (Ig2) of the Muscle-specific kinase (MuSK) ... |
2552-2633 | 4.48e-04 | ||||||||
agrin-responsive second immunoglobulin-like domains (Ig2) of the Muscle-specific kinase (MuSK) ectodomain; a member of the I-set of Ig superfamily domains; The members here are composed of the second immunoglobulin-like (Ig) domains of the Muscle-specific kinase (MuSK) ectodomain. MuSK is a receptor tyrosine kinase specifically expressed in skeletal muscle, where it plays a central role in the formation and maintenance of the neuromuscular junction (NMJ). MuSK is activated by agrin, a neuron-derived heparan sulfate proteoglycan. The activation of MUSK in myotubes regulates the formation of NMJs through the regulation of different processes including the specific expression of genes in subsynaptic nuclei, the reorganization of the actin cytoskeleton and the clustering of the acetylcholine receptors (AChR) in the postsynaptic membrane. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Unlike the V-set, one of the distinctive features of I-set domains is the lack of a C" strand. The structure of the MuSK lacks this strand and thus it belongs to the I-set of the IgSF. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409560 [Multi-domain] Cd Length: 88 Bit Score: 41.46 E-value: 4.48e-04
|
||||||||||||
Ig_Perlecan_like | cd05743 | Immunoglobulin (Ig)-like domain of the human basement membrane heparan sulfate proteoglycan ... |
2464-2558 | 4.52e-04 | ||||||||
Immunoglobulin (Ig)-like domain of the human basement membrane heparan sulfate proteoglycan perlecan and similar proteins; The members here are composed of the immunoglobulin (Ig)-like domain of the human basement membrane heparan sulfate proteoglycan perlecan, also known as HSPG2, and similar proteins. Perlecan consists of five domains: domain I has three putative heparan sulfate attachment sites, domain II has four LDL receptor-like repeats, and one Ig-like repeat, domain III resembles the short arm of laminin chains, domain IV has multiple Ig-like repeats (21 repeats in human perlecan), and domain V resembles the globular G domain of the laminin A chain and internal repeats of EGF. Perlecan may participate in a variety of biological functions including cell binding, LDL-metabolism, basement membrane assembly and selective permeability, calcium binding, and growth- and neurite-promoting activities. Pssm-ID: 143220 Cd Length: 78 Bit Score: 41.32 E-value: 4.52e-04
|
||||||||||||
IgI_3_Contactin | cd04968 | Third immunoglobulin (Ig) domain of contactin; member of the I-set of Ig superfamily (IgSF) ... |
2560-2625 | 4.83e-04 | ||||||||
Third immunoglobulin (Ig) domain of contactin; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the third immunoglobulin (Ig) domain of contactins. Contactins are neural cell adhesion molecules and are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. The first four Ig domains form the intermolecular binding fragment, which arranges as a compact U-shaped module via contacts between Ig domains 1 and 4, and between Ig domains 2 and 3. Contactin-2 (TAG-1, axonin-1) may play a part in the neuronal processes of neurite outgrowth, axon guidance and fasciculation, and neuronal migration. This group also includes contactin-1 and contactin-5. The different contactins show different expression patterns in the central nervous system. During development and in adulthood, contactin-2 is transiently expressed in subsets of central and peripheral neurons. Contactin-5 is expressed specifically in the rat postnatal nervous system, peaking at about 3 weeks postnatal, and a lack of contactin-5 (NB-2) results in an impairment of neuronal activity in the rat auditory system. Contactin-5 is highly expressed in the adult human brain in the occipital lobe and in the amygdala. Contactin-1 is differentially expressed in tumor tissues and may, through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. This group belongs to the I-set of IgSF domains. Pssm-ID: 409357 [Multi-domain] Cd Length: 88 Bit Score: 41.38 E-value: 4.83e-04
|
||||||||||||
IgI_M-protein_C | cd05891 | C-terminal immunoglobulin (Ig)-like domain of M-protein; member of the I-set of Ig superfamily ... |
2724-2798 | 4.98e-04 | ||||||||
C-terminal immunoglobulin (Ig)-like domain of M-protein; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the C-terminal immunoglobulin (Ig)-like domain of M-protein (also known as myomesin-2). M-protein is a structural protein localized to the M-band, a transverse structure in the center of the sarcomere, and is a candidate for M-band bridges. M-protein is modular consisting mainly of repetitive IG-like and fibronectin type III (FnIII) domains and has a muscle-type specific expression pattern. M-protein is present in fast fibers. Pssm-ID: 143299 Cd Length: 92 Bit Score: 41.43 E-value: 4.98e-04
|
||||||||||||
IgI_1_Contactin | cd04967 | First immunoglobulin (Ig) domain of contactin; member of the I-set of (Ig) superfamily domains; ... |
2722-2788 | 5.60e-04 | ||||||||
First immunoglobulin (Ig) domain of contactin; member of the I-set of (Ig) superfamily domains; The members here are composed of the first immunoglobulin (Ig) domain of contactins. Contactins are neural cell adhesion molecules and are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. The first four Ig domains form the intermolecular binding fragment, which arranges as a compact U-shaped module via contacts between Ig domains 1 and 4, and between Ig domains 2 and 3. Contactin-2 (TAG-1, axonin-1) may play a part in the neuronal processes of neurite outgrowth, axon guidance and fasciculation, and neuronal migration. This group also includes contactin-1 and contactin-5. The different contactins show different expression patterns in the central nervous system. During development and in adulthood, contactin-2 is transiently expressed in subsets of central and peripheral neurons. Contactin-5 is expressed specifically in the rat postnatal nervous system, peaking at about 3 weeks postnatal, and a lack of contactin-5 (NB-2) results in an impairment of neuronal activity in the rat auditory system. Contactin-5 is highly expressed in the adult human brain in the occipital lobe and in the amygdala. Contactin-1 is differentially expressed in tumor tissues and may, through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. This group belongs to the I-set of IgSF domains. Pssm-ID: 409356 [Multi-domain] Cd Length: 96 Bit Score: 41.46 E-value: 5.60e-04
|
||||||||||||
Ig4_L1-NrCAM_like | cd04978 | Fourth immunoglobulin (Ig)-like domain of L1, Ng-CAM (Neuron-glia CAM cell adhesion molecule), ... |
2724-2803 | 6.08e-04 | ||||||||
Fourth immunoglobulin (Ig)-like domain of L1, Ng-CAM (Neuron-glia CAM cell adhesion molecule), and NrCAM (Ng-CAM-related); The members here are composed of the fourth immunoglobulin (Ig)-like domain of L1, Ng-CAM (Neuron-glia CAM cell adhesion molecule), and NrCAM (Ng-CAM-related). These proteins belong to the L1 subfamily of cell adhesion molecules (CAMs) and are comprised of an extracellular region having six Ig-like domains and five fibronectin type III domains, a transmembrane region and an intracellular domain. These molecules are primarily expressed in the nervous system. L1 is associated with an X-linked recessive disorder, X-linked hydrocephalus, MASA syndrome, or spastic paraplegia type 1, that involves abnormalities of axonal growth. Pssm-ID: 409367 [Multi-domain] Cd Length: 89 Bit Score: 41.28 E-value: 6.08e-04
|
||||||||||||
SEEEED | pfam14797 | Serine-rich region of AP3B1, clathrin-adaptor complex; This short low-complexity, highly ... |
1166-1225 | 6.24e-04 | ||||||||
Serine-rich region of AP3B1, clathrin-adaptor complex; This short low-complexity, highly serine-rich region lies on clathrin-adaptor complex 3 beta-1 subunit proteins, between family Adaptin_N, pfam01602 and a C-terminal domain, AP3B1_C,pfam14796. Pssm-ID: 434218 [Multi-domain] Cd Length: 111 Bit Score: 41.84 E-value: 6.24e-04
|
||||||||||||
Kunitz_BPTI | cd22592 | bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor ... |
2035-2085 | 6.61e-04 | ||||||||
bovine pancreatic trypsin inhibitor; This model contains bovine pancreatic trypsin inhibitor (BPTI, also known as pancreatic Kunitz inhibitor, aprotinin, or trypsin-kallikrein inhibitor), a small protein that inhibits the action of the trypsin, and is thus a member of the serine protease family of inhibitors. This class of enzymes contains conserved cysteine residues that form 3 disulfide bonds to stabilize the three-dimensional structure. BPTI has a relatively broad specificity, inhibiting trypsin as well as chymotrypsin, and elastase-like serine (pro)enzymes capable of very different primary specificity. It reacts rapidly with serine proteases to form stable complexes, but the enzyme:inhibitor complex formation may involve several intermediates corresponding to discrete reaction steps. Furthermore, BPTI inhibits the nitric oxide synthase type-I and -II action, and impairs K+ transport by Ca2+-activated K+ channels. Clinically, BPTI is used in certain surgical interventions, such as cardiopulmonary surgery and orthotopic liver transplantation since it significantly reduces hemorrhagic complications. Pssm-ID: 438635 Cd Length: 52 Bit Score: 39.93 E-value: 6.61e-04
|
||||||||||||
PLN02217 | PLN02217 | probable pectinesterase/pectinesterase inhibitor |
834-969 | 6.89e-04 | ||||||||
probable pectinesterase/pectinesterase inhibitor Pssm-ID: 215130 [Multi-domain] Cd Length: 670 Bit Score: 45.08 E-value: 6.89e-04
|
||||||||||||
Kunitz_dendrotoxin | cd22595 | dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake ... |
1975-2028 | 7.34e-04 | ||||||||
dendrotoxins I, K, B and similar proteins; This group includes toxins isolated from snake venoms, such as dendrotoxins (DTXs) I, K and B, mambaquaretin-1 (MQ-1) and calcicludine. The dendrotoxins have little or no anti-protease activity but have been shown to block certain subtypes of voltage dependent potassium channels in neurons. Dendroaspis angusticeps (green mamba) alpha-dendrotoxin is a neurotoxin that enhances acetylcholine release at neuromuscular junctions. Studies with cloned K(+) channels show that this toxin blocks Kv1.1, Kv1.2 and Kv1.6 channels in the nanomolar range, whereas Dendroaspis polylepis (black mamba) dendrotoxin K preferentially blocks Kv1.1 channels. Also, structural analogs of dendrotoxins have facilitated defining the molecular recognition properties of different types of K(+) channels, and therefore, dendrotoxins are widely used as probes for studying the function of K(+) channels in physiology and pathophysiology. The structures of these toxins are similar to that of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438638 Cd Length: 56 Bit Score: 39.73 E-value: 7.34e-04
|
||||||||||||
IgI_APEG-1_like | cd20975 | Immunoglobulin-like domain of human Aortic Preferentially Expressed Protein-1 (APEG-1) and ... |
2715-2786 | 7.48e-04 | ||||||||
Immunoglobulin-like domain of human Aortic Preferentially Expressed Protein-1 (APEG-1) and similar proteins; a member of the I-set of IgSF domains; The members here are composed of the immunoglobulin I-set (IgI) domain of the Human Aortic Preferentially Expressed Protein-1 (APEG-1) and similar proteins. APEG-1 is a novel specific smooth muscle differentiation marker predicted to play a role in the growth and differentiation of arterial smooth muscle cells (SMCs). The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Unlike the V-set, one of the distinctive features of I-set domains is the lack of a C" strand. The structure of the human APEG-1 lacks this strand and thus it belongs to the I-set of the IgSF. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409567 Cd Length: 91 Bit Score: 40.92 E-value: 7.48e-04
|
||||||||||||
IgI_4_Neogenin_like | cd05723 | Fourth immunoglobulin (Ig)-like domain in neogenin, and similar domains; member of the I-set ... |
2724-2797 | 7.53e-04 | ||||||||
Fourth immunoglobulin (Ig)-like domain in neogenin, and similar domains; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the fourth immunoglobulin (Ig)-like domain in neogenin and related proteins. Neogenin is a cell surface protein which is expressed in the developing nervous system of vertebrate embryos in the growing nerve cells. It is also expressed in other embryonic tissues, and may play a general role in developmental processes such as cell migration, cell-cell recognition, and tissue growth regulation. Included in this group is the tumor suppressor protein DCC which is deleted in colorectal carcinoma. DCC and neogenin each have four Ig-like domains followed by six fibronectin type III domains, a transmembrane domain, and an intracellular domain. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409388 Cd Length: 84 Bit Score: 40.64 E-value: 7.53e-04
|
||||||||||||
IgI_2_KIRREL3-like | cd05759 | Second immunoglobulin (Ig)-like domain of Kirrel (kin of irregular chiasm-like) 3, and similar ... |
2457-2524 | 7.69e-04 | ||||||||
Second immunoglobulin (Ig)-like domain of Kirrel (kin of irregular chiasm-like) 3, and similar domains; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the second immunoglobulin (Ig)-like domain of Kirrel (kin of irregular chiasm-like) 3 (also known as Neph2). This protein has five Ig-like domains, one transmembrane domain, and a cytoplasmic tail. Included in this group is mammalian Kirrel (Neph1), Kirrel2 (Neph3), and Drosophila RST (irregular chiasm C-roughest) protein. These proteins contain multiple Ig domains, have properties of cell adhesion molecules, and are important in organ development. Pssm-ID: 409416 Cd Length: 98 Bit Score: 40.90 E-value: 7.69e-04
|
||||||||||||
PTZ00473 | PTZ00473 | Plasmodium Vir superfamily; Provisional |
1132-1241 | 8.12e-04 | ||||||||
Plasmodium Vir superfamily; Provisional Pssm-ID: 240430 [Multi-domain] Cd Length: 420 Bit Score: 44.84 E-value: 8.12e-04
|
||||||||||||
Chi1 | COG3469 | Chitinase [Carbohydrate transport and metabolism]; |
1105-1255 | 8.33e-04 | ||||||||
Chitinase [Carbohydrate transport and metabolism]; Pssm-ID: 442692 [Multi-domain] Cd Length: 534 Bit Score: 44.74 E-value: 8.33e-04
|
||||||||||||
IgI_1_Neogenin_like | cd05722 | First immunoglobulin (Ig)-like domain in neogenin, and similar domains; member of the I-set of ... |
2725-2785 | 8.45e-04 | ||||||||
First immunoglobulin (Ig)-like domain in neogenin, and similar domains; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the first immunoglobulin (Ig)-like domain in neogenin and related proteins. Neogenin is a cell surface protein which is expressed in the developing nervous system of vertebrate embryos in the growing nerve cells. It is also expressed in other embryonic tissues and may play a general role in developmental processes such as cell migration, cell-cell recognition, and tissue growth regulation. Included in this group is the tumor suppressor protein DCC which is deleted in colorectal carcinoma. DCC and neogenin each have four Ig-like domains followed by six fibronectin type III domains, a transmembrane domain, and an intracellular domain. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409387 Cd Length: 97 Bit Score: 40.92 E-value: 8.45e-04
|
||||||||||||
IgI_5_Dscam | cd20958 | Fifth immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; ... |
2556-2634 | 8.81e-04 | ||||||||
Fifth immunoglobulin domain of the Drosophila melanogaster Dscam protein, and similar domains; a member of the I-set of IgSF domains; The members here are composed of the fifth immunoglobulin domain of the Drosophila melanogaster Down syndrome cell adhesion molecule (DSCAM) protein and similar proteins. Down syndrome cell adhesion molecule (DSCAM) is a cell adhesion molecule that plays critical roles in neural development, including axon guidance and branching, axon target recognition, self-avoidance and synaptic formation. DSCAM belongs to the immunoglobulin superfamily and contributes to defects in the central nervous system in Down syndrome patients. Vertebrate DSCAMs differ from Drosophila Dscam1 in that they lack the extensive alternative splicing that occurs in the insect gene. Drosophila melanogaster Dscam has 38,016 isoforms generated by the alternative splicing of four variable exon clusters, which allows every neuron in the fly to display a distinctive set of Dscam proteins on its cell surface. Drosophila Dscam1 is a cell-surface protein that plays important roles in neural development and axon tiling of neurons. It is shown that thousands of isoforms bind themselves through specific homophilic (self-binding) interactions, a process which mediates cellular self-recognition. Drosophila Dscam2 is also alternatively spliced and plays a key role in the development of two visual system neurons, monopolar cells L1 and L2. This group is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand but lack a C" strand. Pssm-ID: 409550 [Multi-domain] Cd Length: 89 Bit Score: 40.63 E-value: 8.81e-04
|
||||||||||||
PHA03255 | PHA03255 | BDLF3; Provisional |
813-940 | 8.85e-04 | ||||||||
BDLF3; Provisional Pssm-ID: 165513 [Multi-domain] Cd Length: 234 Bit Score: 43.74 E-value: 8.85e-04
|
||||||||||||
Chi1 | COG3469 | Chitinase [Carbohydrate transport and metabolism]; |
969-1173 | 8.92e-04 | ||||||||
Chitinase [Carbohydrate transport and metabolism]; Pssm-ID: 442692 [Multi-domain] Cd Length: 534 Bit Score: 44.74 E-value: 8.92e-04
|
||||||||||||
PTZ00473 | PTZ00473 | Plasmodium Vir superfamily; Provisional |
1126-1232 | 9.48e-04 | ||||||||
Plasmodium Vir superfamily; Provisional Pssm-ID: 240430 [Multi-domain] Cd Length: 420 Bit Score: 44.45 E-value: 9.48e-04
|
||||||||||||
Kunitz_B2B | cd22619 | Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; ... |
2035-2085 | 9.66e-04 | ||||||||
Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; This model includes the Kunitz inhibitor subunit of beta 2-bungarotoxin, a presynaptic neurotoxin of the Bungarus multicinctus venom. Beta-bungarotoxin is a heterodimeric neurotoxin consisting of a phospholipase subunit linked by a disulfide bond to the Kunitz protease inhibitor subunit; the latter subunit is homologous to venom basic protease inhibitors but has no protease inhibitor activity and is non-toxic. The beta-bungarotoxin Kunitz subunit serves to guide the toxin to its site of action on the presynaptic membrane by virtue of a high-affinity interaction with a specific subclass of voltage-sensitive potassium channels. This subfamily also includes Kunitz-type serine protease inhibitor homolog beta-bungarotoxin B1 chain and protease inhibitor-like protein 1 (PILP-1). The B1 chain also has no protease inhibitor activity but blocks voltage-gated potassium channels, while PILP-1 inhibits trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438662 Cd Length: 58 Bit Score: 39.46 E-value: 9.66e-04
|
||||||||||||
IgI_4_Robo | cd05726 | Fourth immunoglobulin (Ig)-like domain in Robo (roundabout) receptors; member of the I-set of ... |
2464-2540 | 9.81e-04 | ||||||||
Fourth immunoglobulin (Ig)-like domain in Robo (roundabout) receptors; member of the I-set of Ig superfamily (IgSF) domains; Members here are composed the fourth immunoglobulin (Ig)-like domain in Robo (roundabout) receptors. Robo receptors play a role in the development of the central nervous system (CNS), and are receptors of Slit protein. Slit is a repellant secreted by the neural cells in the midline. Slit acts through Robo to prevent most neurons from crossing the midline from either side. Three mammalian Robo homologs (Robo1, Robo2, Robo3), and three mammalian Slit homologs (Slit-1, Slit-2, Slit-3), have been identified. Commissural axons, which cross the midline, express low levels of Robo; longitudinal axons, which avoid the midline, express high levels of Robo. Robo1, Robo2, and Robo3 are expressed by commissural neurons in the vertebrate spinal cord and Slit-1, Slit-2, and Slit-3 are expressed at the ventral midline. Robo-3 is a divergent member of the Robo family which instead of being a positive regulator of Slit responsiveness, antagonizes Slit responsiveness in precrossing axons. The Slit-Robo interaction is mediated by the second leucine-rich repeat (LRR) domain of Slit and the two N-terminal Ig domains of Robo, Ig1 and Ig2. The primary Robo binding site for Slit2 has been shown by surface plasmon resonance experiments and mutational analysis to be the Ig1 domain, while the Ig2 domain has been proposed to harbor a weak secondary binding site. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409391 [Multi-domain] Cd Length: 98 Bit Score: 40.71 E-value: 9.81e-04
|
||||||||||||
Ig3_Peroxidasin | cd05745 | Third immunoglobulin (Ig)-like domain of peroxidasin; The members here are composed of the ... |
2724-2797 | 1.08e-03 | ||||||||
Third immunoglobulin (Ig)-like domain of peroxidasin; The members here are composed of the third immunoglobulin (Ig)-like domain in peroxidasin. Peroxidasin has a peroxidase domain and interacting extracellular motifs containing four Ig-like domains. It has been suggested that peroxidasin is secreted and has functions related to the stabilization of the extracellular matrix. It may play a part in various other important processes such as removal and destruction of cells which have undergone programmed cell death and protection of the organism against non-self. Pssm-ID: 143222 [Multi-domain] Cd Length: 74 Bit Score: 39.92 E-value: 1.08e-03
|
||||||||||||
PHA02826 | PHA02826 | IL-1 receptor-like protein; Provisional |
2721-2780 | 1.09e-03 | ||||||||
IL-1 receptor-like protein; Provisional Pssm-ID: 165173 [Multi-domain] Cd Length: 227 Bit Score: 43.36 E-value: 1.09e-03
|
||||||||||||
34 | PHA02584 | long tail fiber, proximal subunit; Provisional |
990-1262 | 1.16e-03 | ||||||||
long tail fiber, proximal subunit; Provisional Pssm-ID: 222890 [Multi-domain] Cd Length: 1229 Bit Score: 44.75 E-value: 1.16e-03
|
||||||||||||
PRK11907 | PRK11907 | bifunctional 2',3'-cyclic-nucleotide 2'-phosphodiesterase/3'-nucleotidase; |
1127-1227 | 1.24e-03 | ||||||||
bifunctional 2',3'-cyclic-nucleotide 2'-phosphodiesterase/3'-nucleotidase; Pssm-ID: 237019 [Multi-domain] Cd Length: 814 Bit Score: 44.46 E-value: 1.24e-03
|
||||||||||||
TSP1_ADAMTS | pfam19030 | Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found ... |
402-443 | 1.25e-03 | ||||||||
Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found in ADAMTS proteins. Pssm-ID: 465950 [Multi-domain] Cd Length: 55 Bit Score: 38.97 E-value: 1.25e-03
|
||||||||||||
IgC_1_Robo | cd07693 | First immunoglobulin (Ig)-like constant domain in Robo (roundabout) receptors, and similar ... |
2723-2798 | 1.25e-03 | ||||||||
First immunoglobulin (Ig)-like constant domain in Robo (roundabout) receptors, and similar domains; The members here are composed of the first immunoglobulin (Ig)-like domain in Roundabout (Robo) receptors. Robo receptors play a role in the development of the central nervous system (CNS), and are receptors of Slit protein. Slit is a repellant secreted by the neural cells in the midline. Slit acts through Robo to prevent most neurons from crossing the midline from either side. Three mammalian Robo homologs (Robo1, Robo2, and Robo3), and three mammalian Slit homologs (Slit1, Slit2, Slit3), have been identified. Commissural axons, which cross the midline, express low levels of Robo; longitudinal axons, which avoid the midline, express high levels of Robo. Robo1, Robo2, and Robo3 are expressed by commissural neurons in the vertebrate spinal cord and Slit1, Slit2,and Slit3 are expressed at the ventral midline. Robo3 is a divergent member of the Robo family which instead of being a positive regulator of Slit responsiveness, antagonizes Slit responsiveness in precrossing axons. The Slit-Robo interaction is mediated by the second leucine-rich repeat (LRR) domain of Slit and the two N-terminal Ig domains of Robo, Ig1 and Ig2. The primary Robo binding site for Slit2 has been shown by surface plasmon resonance experiments and mutational analysis to be is the Ig1 domain, while the Ig2 domain has been proposed to harbor a weak secondary binding site. Pssm-ID: 409490 [Multi-domain] Cd Length: 99 Bit Score: 40.61 E-value: 1.25e-03
|
||||||||||||
Ig_2 | pfam13895 | Immunoglobulin domain; This domain contains immunoglobulin-like domains. |
2557-2633 | 1.33e-03 | ||||||||
Immunoglobulin domain; This domain contains immunoglobulin-like domains. Pssm-ID: 464026 [Multi-domain] Cd Length: 79 Bit Score: 39.69 E-value: 1.33e-03
|
||||||||||||
IgI_Myotilin_C | cd05892 | C-terminal immunoglobulin (Ig)-like domain of myotilin; member of the I-set of Ig superfamily ... |
2448-2527 | 1.35e-03 | ||||||||
C-terminal immunoglobulin (Ig)-like domain of myotilin; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the C-terminal immunoglobulin (Ig)-like domain of myotilin. Mytolin belongs to the palladin-myotilin-myopalladin family. Proteins belonging to the latter family contain multiple Ig-like domains and function as scaffolds, modulating the actin cytoskeleton. Myotilin is most abundant in skeletal and cardiac muscle and is involved in maintaining sarcomere integrity. It binds to alpha-actinin, filamin, and actin. Mutations in myotilin lead to muscle disorders. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409473 Cd Length: 92 Bit Score: 40.14 E-value: 1.35e-03
|
||||||||||||
Kunitz_B2B | cd22619 | Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; ... |
1667-1718 | 1.42e-03 | ||||||||
Kunitz-type serine protease inhibitor subunit of beta 2-bungarotoxin, and similar proteins; This model includes the Kunitz inhibitor subunit of beta 2-bungarotoxin, a presynaptic neurotoxin of the Bungarus multicinctus venom. Beta-bungarotoxin is a heterodimeric neurotoxin consisting of a phospholipase subunit linked by a disulfide bond to the Kunitz protease inhibitor subunit; the latter subunit is homologous to venom basic protease inhibitors but has no protease inhibitor activity and is non-toxic. The beta-bungarotoxin Kunitz subunit serves to guide the toxin to its site of action on the presynaptic membrane by virtue of a high-affinity interaction with a specific subclass of voltage-sensitive potassium channels. This subfamily also includes Kunitz-type serine protease inhibitor homolog beta-bungarotoxin B1 chain and protease inhibitor-like protein 1 (PILP-1). The B1 chain also has no protease inhibitor activity but blocks voltage-gated potassium channels, while PILP-1 inhibits trypsin. The structures of these domains are similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438662 Cd Length: 58 Bit Score: 39.08 E-value: 1.42e-03
|
||||||||||||
PHA03307 | PHA03307 | transcriptional regulator ICP4; Provisional |
798-1212 | 1.47e-03 | ||||||||
transcriptional regulator ICP4; Provisional Pssm-ID: 223039 [Multi-domain] Cd Length: 1352 Bit Score: 44.39 E-value: 1.47e-03
|
||||||||||||
Ig0_BSG1 | cd20940 | Immunoglobulin-like Ig0 domain of basigin-1 (BSG1) and similar proteins; The members here are ... |
2717-2785 | 1.64e-03 | ||||||||
Immunoglobulin-like Ig0 domain of basigin-1 (BSG1) and similar proteins; The members here are composed of the immunoglobulin (Ig) domain of the collagenase stimulatory factor, basigin-1 (BSG1; also known as Cluster of Differentiation 147 (CD147) and Extracellular Matrix Metalloproteinase Inducer (EMMPRIN)) and similar proteins. CD147 is a transmembrane glycoprotein that belongs to the immunoglobulin superfamily. It is expressed in nearly all cells including platelets and fibroblasts and is involved in inflammatory diseases, and cancer progression. CD147 is highly expressed in several cancers and used as a prognostic marker. The two primary isoforms of CD147 that are related to cancer progression have been identified: CD147 Ig1-Ig2 (also called Basigin-2) that is ubiquitously expressed in most tissues and CD147 Ig0-Ig1-Ig2 (also called Basigin-1) that is retinal specific and implicated in retinoblastoma. Studies showed that CD147 Ig0 domain is a potent stimulator of interleukin-6 and suggest that the CD147 Ig0 dimer is the functional unit required for activity. Pssm-ID: 409534 Cd Length: 116 Bit Score: 40.72 E-value: 1.64e-03
|
||||||||||||
IgI_LRIG1-like | cd05763 | Immunoglobulin (Ig)-like ectodomain of the LRIG1 (Leucine-rich Repeats And Immunoglobulin-like ... |
2725-2797 | 1.65e-03 | ||||||||
Immunoglobulin (Ig)-like ectodomain of the LRIG1 (Leucine-rich Repeats And Immunoglobulin-like Domains Protein 1) and similar proteins; member of the I-set of IgSF domains; The members here are composed of subgroup of the immunoglobulin (Ig) domain found in the Ig superfamily. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. The ectodomain of LRIG1 has two distinct regions: the proposed 15 LRRs and three Ig-like domains closer to the membrane. LRIG1 has been reported to interact with many receptor tyrosine kinases, GDNF/c-Ret, E-cadherin, JAK/STAT, c-Met, and the EGFR family signaling systems. Immunoglobulin Superfamily (IgSF) domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. The structure of the LRIG1 extracellular Ig domain lacks a C" strand and thus is better described as a member of the I-set of IgSF domains. Pssm-ID: 409420 [Multi-domain] Cd Length: 91 Bit Score: 39.91 E-value: 1.65e-03
|
||||||||||||
IgI_Twitchin_like | cd20949 | C-terminal immunoglobulin-like domain of the myosin-associated giant protein kinase Twitchin, ... |
2459-2524 | 1.73e-03 | ||||||||
C-terminal immunoglobulin-like domain of the myosin-associated giant protein kinase Twitchin, and similar domains; member of the I-set IgSF domains; The members here are composed of the C-terminal immunoglobulin-like domain of the myosin-associated giant protein kinase Twitchin and similar proteins, including Caenorhabditis elegans and Aplysia californica Twitchin, Drosophila melanogaster Projectin, and similar proteins. These are very large muscle proteins containing multiple immunoglobulin (Ig)-like and fibronectin type III (FN3) domains and a single kinase domain near the C-terminus. In humans these proteins are called Titin. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. The Ig-like domain of the Twitchin is a member of the I-set IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand but lack a C" strand. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins (titin, telokin, and twitchin), the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D. Pssm-ID: 409541 [Multi-domain] Cd Length: 89 Bit Score: 40.01 E-value: 1.73e-03
|
||||||||||||
TSP1_ADAMTS | pfam19030 | Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found ... |
526-574 | 1.82e-03 | ||||||||
Thrombospondin type 1 domain; This subfamily of thrombospondin type 1 repeats are mainly found in ADAMTS proteins. Pssm-ID: 465950 [Multi-domain] Cd Length: 55 Bit Score: 38.59 E-value: 1.82e-03
|
||||||||||||
Kunitz_ixolaris_2 | cd22626 | Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second ... |
2260-2297 | 2.05e-03 | ||||||||
Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second Kunitz-type domain (K2) of ixolaris from the venomous organism Conus striatus. Ixolaris is a potent tick salivary anticoagulant that binds coagulation factor Xa (FXa) and zymogen FX, and forms a quaternary tissue factor (TF)/FVIIa/FX(a)/Ixolaris inhibitory complex. It blocks TF-induced coagulation and PAR2 (proteinase-activated receptor 2) signaling, and prevents thrombosis, tumor growth, and immune activation. Ixolaris consists of 2 Kunitz domains (K1 and K2), both of which recognize the heparin-binding (pro)exosite (HBE) on FX. This model contains K2, an extraordinarily dynamic domain that encompasses several residues involved in FX binding. Its backbone plasticity is critical for ixolaris biological activity. This domain contains 2 disulfide bonds instead of the 3 typical of Kunitz domain proteins. Pssm-ID: 438669 Cd Length: 51 Bit Score: 38.60 E-value: 2.05e-03
|
||||||||||||
SSP160 | pfam06933 | Special lobe-specific silk protein SSP160; This family consists of several special ... |
1087-1184 | 2.16e-03 | ||||||||
Special lobe-specific silk protein SSP160; This family consists of several special lobe-specific silk protein SSP160 sequences which appear to be specific to Chironomus (Midge) species. Pssm-ID: 115579 [Multi-domain] Cd Length: 758 Bit Score: 43.61 E-value: 2.16e-03
|
||||||||||||
YjdB | COG5492 | Uncharacterized conserved protein YjdB, contains Ig-like domain [General function prediction ... |
924-1233 | 2.27e-03 | ||||||||
Uncharacterized conserved protein YjdB, contains Ig-like domain [General function prediction only]; Pssm-ID: 444243 [Multi-domain] Cd Length: 613 Bit Score: 43.53 E-value: 2.27e-03
|
||||||||||||
SEEEED | pfam14797 | Serine-rich region of AP3B1, clathrin-adaptor complex; This short low-complexity, highly ... |
1051-1150 | 2.29e-03 | ||||||||
Serine-rich region of AP3B1, clathrin-adaptor complex; This short low-complexity, highly serine-rich region lies on clathrin-adaptor complex 3 beta-1 subunit proteins, between family Adaptin_N, pfam01602 and a C-terminal domain, AP3B1_C,pfam14796. Pssm-ID: 434218 [Multi-domain] Cd Length: 111 Bit Score: 40.30 E-value: 2.29e-03
|
||||||||||||
SEEEED | pfam14797 | Serine-rich region of AP3B1, clathrin-adaptor complex; This short low-complexity, highly ... |
1092-1192 | 2.31e-03 | ||||||||
Serine-rich region of AP3B1, clathrin-adaptor complex; This short low-complexity, highly serine-rich region lies on clathrin-adaptor complex 3 beta-1 subunit proteins, between family Adaptin_N, pfam01602 and a C-terminal domain, AP3B1_C,pfam14796. Pssm-ID: 434218 [Multi-domain] Cd Length: 111 Bit Score: 40.30 E-value: 2.31e-03
|
||||||||||||
PTZ00473 | PTZ00473 | Plasmodium Vir superfamily; Provisional |
1113-1201 | 2.42e-03 | ||||||||
Plasmodium Vir superfamily; Provisional Pssm-ID: 240430 [Multi-domain] Cd Length: 420 Bit Score: 43.30 E-value: 2.42e-03
|
||||||||||||
IgI_2_Palladin_C | cd20990 | Second C-terminal immunoglobulin (Ig)-like domain of palladin; member of the I-set of Ig ... |
2448-2527 | 2.42e-03 | ||||||||
Second C-terminal immunoglobulin (Ig)-like domain of palladin; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the C-terminal immunoglobulin (Ig)-like domain of palladin. Palladin belongs to the palladin-myotilin-myopalladin family. Proteins belonging to this family contain multiple Ig-like domains and function as scaffolds, modulating actin cytoskeleton. Palladin binds to alpha-actinin ezrin, vasodilator-stimulated phosphoprotein VASP, SPIN90 (also known as DIP or mDia interacting protein), and Src. Palladin also binds F-actin directly, via its Ig3 domain. Palladin is expressed as several alternatively spliced isoforms, having various combinations of Ig-like domains, in a cell-type-specific manner. It has been suggested that palladin's different Ig-like domains may be specialized for distinct functions. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409582 Cd Length: 91 Bit Score: 39.70 E-value: 2.42e-03
|
||||||||||||
SEEEED | pfam14797 | Serine-rich region of AP3B1, clathrin-adaptor complex; This short low-complexity, highly ... |
983-1090 | 2.59e-03 | ||||||||
Serine-rich region of AP3B1, clathrin-adaptor complex; This short low-complexity, highly serine-rich region lies on clathrin-adaptor complex 3 beta-1 subunit proteins, between family Adaptin_N, pfam01602 and a C-terminal domain, AP3B1_C,pfam14796. Pssm-ID: 434218 [Multi-domain] Cd Length: 111 Bit Score: 39.91 E-value: 2.59e-03
|
||||||||||||
Kunitz_ABPP-like | cd22607 | Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily ... |
2035-2085 | 2.63e-03 | ||||||||
Kunitz domain found in the amyloid-beta precursor protein (ABPP) subfamily; This subfamily includes the amyloid-beta precursor protein (ABPP, also called APP, APPI, Alzheimer disease amyloid protein, amyloid-beta A4 protein, cerebral vascular amyloid peptide (CVAP), protease nexin II (PN2)), as well as amyloid-like protein 2 (APLP2, also called amyloid protein homolog or APPH), among others. ABPP/APPI is an inhibitor of serine proteases such as anionic and cationic trypsins. For example, APPI-4M is a variant that specifically inhibits Kallikrein (KLK)-related peptidase 6 (KLK6), which is highly upregulated in several types of cancer where its increased activity promotes cancer invasion and metastasis. Amyloid-like protein 2 (APLP2) inhibits trypsin, chymotrypsin, plasmin, factor XIA, and plasma and glandular kallikrein, and may play a role in the regulation of hemostasis. Proteins in this subfamily contain a single Kunitz domain, with a structure similar to those of other Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438650 Cd Length: 52 Bit Score: 38.18 E-value: 2.63e-03
|
||||||||||||
IgI_1_Palladin_C | cd05893 | First C-terminal immunoglobulin (Ig)-like domain of palladin; member of the I-set of Ig ... |
2463-2527 | 2.74e-03 | ||||||||
First C-terminal immunoglobulin (Ig)-like domain of palladin; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the C-terminal immunoglobulin (Ig)-like domain of palladin. Palladin belongs to the palladin-myotilin-myopalladin family. Proteins belonging to this family contain multiple Ig-like domains and function as scaffolds, modulating actin cytoskeleton. Palladin binds to alpha-actinin ezrin, vasodilator-stimulated phosphoprotein VASP, SPIN90 (also known as DIP or mDia interacting protein), and Src. Palladin also binds F-actin directly, via its Ig3 domain. Palladin is expressed as several alternatively spliced isoforms, having various combinations of Ig-like domains, in a cell-type-specific manner. It has been suggested that palladin's different Ig-like domains may be specialized for distinct functions. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409474 Cd Length: 92 Bit Score: 39.31 E-value: 2.74e-03
|
||||||||||||
IgI_NCAM-2 | cd05870 | Immunoglobulin (Ig)-like I-set domain of Neural Cell Adhesion Molecule 2 (NCAM-2); The members ... |
2724-2782 | 3.17e-03 | ||||||||
Immunoglobulin (Ig)-like I-set domain of Neural Cell Adhesion Molecule 2 (NCAM-2); The members here are composed of the fourth Ig domain of Neural Cell Adhesion Molecule NCAM-2 (also known as OCAM/mamFas II and RNCAM). NCAM-2 is organized similarly to NCAM, including five N-terminal Ig-like domains and two fibronectin type III domains. NCAM-2 is differentially expressed in the developing and mature olfactory epithelium (OE), and may function like NCAM, as an adhesion molecule. One of the unique features of I-set domains is the lack of a C" strand. The structures of this group show that the Ig domain lacks this strand and thus is a member of the I-set of Ig domains. Pssm-ID: 143278 [Multi-domain] Cd Length: 98 Bit Score: 39.19 E-value: 3.17e-03
|
||||||||||||
PTZ00473 | PTZ00473 | Plasmodium Vir superfamily; Provisional |
1024-1121 | 3.44e-03 | ||||||||
Plasmodium Vir superfamily; Provisional Pssm-ID: 240430 [Multi-domain] Cd Length: 420 Bit Score: 42.53 E-value: 3.44e-03
|
||||||||||||
Kunitz_ixolaris_2 | cd22626 | Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second ... |
2035-2085 | 3.71e-03 | ||||||||
Kunitz-type domain 2 (K2) of Ixolaris, and similar proteins; This model includes the second Kunitz-type domain (K2) of ixolaris from the venomous organism Conus striatus. Ixolaris is a potent tick salivary anticoagulant that binds coagulation factor Xa (FXa) and zymogen FX, and forms a quaternary tissue factor (TF)/FVIIa/FX(a)/Ixolaris inhibitory complex. It blocks TF-induced coagulation and PAR2 (proteinase-activated receptor 2) signaling, and prevents thrombosis, tumor growth, and immune activation. Ixolaris consists of 2 Kunitz domains (K1 and K2), both of which recognize the heparin-binding (pro)exosite (HBE) on FX. This model contains K2, an extraordinarily dynamic domain that encompasses several residues involved in FX binding. Its backbone plasticity is critical for ixolaris biological activity. This domain contains 2 disulfide bonds instead of the 3 typical of Kunitz domain proteins. Pssm-ID: 438669 Cd Length: 51 Bit Score: 37.82 E-value: 3.71e-03
|
||||||||||||
IgI_3_RPTP_IIa_LAR_like | cd05739 | Third immunoglobulin (Ig)-like domain of the receptor protein tyrosine phosphatase (RPTP)-F ... |
2464-2527 | 3.83e-03 | ||||||||
Third immunoglobulin (Ig)-like domain of the receptor protein tyrosine phosphatase (RPTP)-F (also known as LAR), type IIa; member of the I-set of IgSF domains; The members here are composed of the third immunoglobulin (Ig)-like domain found in the receptor protein tyrosine phosphatase (RPTP)-F, also known as LAR. LAR belongs to the RPTP type IIa subfamily. Members of this subfamily are cell adhesion molecule-like proteins involved in central nervous system (CNS) development. They have large extracellular portions comprised of multiple Ig-like domains and two to nine fibronectin type III (FNIII) domains and a cytoplasmic portion having two tandem phosphatase domains. Included in this group is Drosophila LAR (DLAR). Pssm-ID: 409401 Cd Length: 82 Bit Score: 38.73 E-value: 3.83e-03
|
||||||||||||
COG3291 | COG3291 | Uncharacterized conserved protein, PKD repeat domain [Function unknown]; |
814-1136 | 3.94e-03 | ||||||||
Uncharacterized conserved protein, PKD repeat domain [Function unknown]; Pssm-ID: 442520 [Multi-domain] Cd Length: 333 Bit Score: 42.35 E-value: 3.94e-03
|
||||||||||||
IgI_1_Contactin-1 | cd05849 | First immunoglobulin (Ig) domain of contactin-1; member of the I-set of Ig superfamily domains; ... |
2722-2788 | 4.19e-03 | ||||||||
First immunoglobulin (Ig) domain of contactin-1; member of the I-set of Ig superfamily domains; The members here are composed of the first immunoglobulin (Ig) domain of the neural cell adhesion molecule contactin-1. Contactins are comprised of six Ig domains followed by four fibronectin type III (FnIII) domains anchored to the membrane by glycosylphosphatidylinositol. Contactin-1 is differentially expressed in tumor tissues and may, through a RhoA mechanism, facilitate invasion and metastasis of human lung adenocarcinoma. This group belongs to the I-set of IgSF domains. Pssm-ID: 409436 [Multi-domain] Cd Length: 95 Bit Score: 38.78 E-value: 4.19e-03
|
||||||||||||
Ig_LP_like | cd05877 | Immunoglobulin (Ig)-like domain of human cartilage link protein (LP), and similar domains; The ... |
2765-2800 | 4.55e-03 | ||||||||
Immunoglobulin (Ig)-like domain of human cartilage link protein (LP), and similar domains; The members here are composed of the immunoglobulin (Ig)-like domain similar to that found in human cartilage link protein (LP; also called hyaluronan and proteoglycan link protein). In cartilage, chondroitin-keratan sulfate proteoglycan (CSPG), aggrecan, forms cartilage link protein stabilized aggregates with hyaluronan (HA). These aggregates contribute to the tissue's load bearing properties. Aggregates having other CSPGs substituting for aggrecan may contribute to the structural integrity of many different tissues. Members of the vertebrate HPLN (hyaluronan/HA and proteoglycan binding link) protein family are physically linked adjacent to CSPG genes. Pssm-ID: 409461 Cd Length: 117 Bit Score: 39.23 E-value: 4.55e-03
|
||||||||||||
IgI_3_WFIKKN-like | cd05765 | Third immunoglobulin-like domain of the human WFIKKN (WAP, follistatin, immunoglobulin, Kunitz ... |
2448-2538 | 4.85e-03 | ||||||||
Third immunoglobulin-like domain of the human WFIKKN (WAP, follistatin, immunoglobulin, Kunitz and NTR domain-containing protein), and similar domains; member of the I-set of Ig superfamily (IgSF) domains; The members here are composed of the third immunoglobulin-like domain of the human WFIKKN (WAP, follistatin, immunoglobulin, Kunitz and NTR domain-containing protein) and similar proteins. WFIKKN is a secreted protein that consists of multiple types of protease inhibitory modules, including two tandem Kunitz-type protease inhibitor-domains. The Ig superfamily is a heterogenous group of proteins built on a common fold comprised of a sandwich of two beta sheets. Members of the Ig superfamily are components of immunoglobulin, neuroglia, cell surface glycoproteins, such as T-cell receptors, CD2, CD4, CD8, and membrane glycoproteins, such as butyrophilin and chondroitin sulfate proteoglycan core protein. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. This group belongs to the I-set of IgSF domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. Pssm-ID: 409422 [Multi-domain] Cd Length: 95 Bit Score: 38.68 E-value: 4.85e-03
|
||||||||||||
PTZ00473 | PTZ00473 | Plasmodium Vir superfamily; Provisional |
994-1087 | 4.86e-03 | ||||||||
Plasmodium Vir superfamily; Provisional Pssm-ID: 240430 [Multi-domain] Cd Length: 420 Bit Score: 42.14 E-value: 4.86e-03
|
||||||||||||
Ig2_PTK7 | cd05760 | Second immunoglobulin (Ig)-like domain of protein tyrosine kinase (PTK) 7; The members here ... |
2548-2628 | 4.99e-03 | ||||||||
Second immunoglobulin (Ig)-like domain of protein tyrosine kinase (PTK) 7; The members here are composed of the second immunoglobulin (Ig)-like domain in protein tyrosine kinase (PTK) 7, also known as CCK4. PTK7 is a subfamily of the receptor protein tyrosine kinase family, and is referred to as an RPTK-like molecule. RPTKs transduce extracellular signals across the cell membrane and play important roles in regulating cell proliferation, migration, and differentiation. PTK7 is organized as an extracellular portion having seven Ig-like domains, a single transmembrane region, and a cytoplasmic tyrosine kinase-like domain. PTK7 is considered a pseudokinase as it has several unusual residues in some of the highly conserved tyrosine kinase (TK) motifs; it is predicted to lack TK activity. PTK7 may function as a cell-adhesion molecule. PTK7 mRNA is expressed at high levels in placenta, melanocytes, liver, lung, pancreas, and kidney. PTK7 is overexpressed in several cancers, including melanoma and colon cancer lines. Pssm-ID: 409417 Cd Length: 95 Bit Score: 38.76 E-value: 4.99e-03
|
||||||||||||
PRK08581 | PRK08581 | amidase domain-containing protein; |
799-1021 | 5.12e-03 | ||||||||
amidase domain-containing protein; Pssm-ID: 236304 [Multi-domain] Cd Length: 619 Bit Score: 42.47 E-value: 5.12e-03
|
||||||||||||
IgI_telokin-like | cd20973 | immunoglobulin-like domain of telokin and similar proteins; a member of the I-set of IgSF ... |
2463-2527 | 5.31e-03 | ||||||||
immunoglobulin-like domain of telokin and similar proteins; a member of the I-set of IgSF domains; The members here are composed of the immunoglobulin (Ig) domain in telokin, the C-terminal domain of myosin light chain kinase which is identical to telokin, and similar proteins. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Unlike the V-set, one of the distinctive features of I-set domains is the lack of a C" strand. The structure of the telokin Ig domain lacks this strand and thus it belongs to the I-set of the IgSF. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409565 [Multi-domain] Cd Length: 88 Bit Score: 38.32 E-value: 5.31e-03
|
||||||||||||
IgI_NCAM-1_like | cd05732 | Immunoglobulin (Ig)-like I-set domain of Neural Cell Adhesion Molecule 1 (NCAM-1) and similar ... |
2724-2784 | 6.19e-03 | ||||||||
Immunoglobulin (Ig)-like I-set domain of Neural Cell Adhesion Molecule 1 (NCAM-1) and similar proteins; The members here are composed of the fourth immunoglobulin (Ig)-like domain of Neural Cell Adhesion Molecule (NCAM-1). NCAM plays important roles in the development and regeneration of the central nervous system, in synaptogenesis and neural migration. NCAM mediates cell-cell and cell-substratum recognition and adhesion via homophilic (NCAM-NCAM), and heterophilic (NCAM-non-NCAM), interactions. NCAM is expressed as three major isoforms having different intracellular extensions. The extracellular portion of NCAM has five N-terminal Ig-like domains and two fibronectin type III domains. The double zipper adhesion complex model for NCAM homophilic binding involves Ig1, Ig2, and Ig3. By this model, Ig1 and Ig2 mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), and Ig3 domains mediate interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions), through binding to the Ig1 and Ig2 domains. The adhesive ability of NCAM is modulated by the addition of polysialic acid chains to the fifth Ig-like domain. Also included in this group is NCAM-2 (also known as OCAM/mamFas II and RNCAM) NCAM-2 is differentially expressed in the developing and mature olfactory epithelium (OE). One of the unique features of I-set domains is the lack of a C" strand. The structures of this group show that the Ig domain lacks this strand and thus is a member of the I-set of Ig domains. Pssm-ID: 409395 [Multi-domain] Cd Length: 96 Bit Score: 38.27 E-value: 6.19e-03
|
||||||||||||
Kunitz_MitTx | cd22610 | Micrurus tener tener Kunitz-type neurotoxin MitTx-alpha; Micrurus tener tener Kunitz-type ... |
1677-1718 | 6.38e-03 | ||||||||
Micrurus tener tener Kunitz-type neurotoxin MitTx-alpha; Micrurus tener tener Kunitz-type neurotoxin MitTx-alpha is a subunit of the pain-inducing, heterodimeric polypeptide toxin that activates acid sensing ion channel a (ASIC1a) at nanomolar concentrations in a pH-independent manner. Acid sensing ion channels (ASICs) are sodium-selective, voltage-independent and amiloride-blockable ion channels that detect extracellular protons produced during inflammation or ischemic injury, and belong to the superfamily of degenerin/epithelial sodium channels. Subtype ASICa is expressed by primary afferent sensory neurons and is activated by MitTx. MitTx consists of two, non-covalently associated alpha and beta subunits that resemble Kunitz and phospholipase-A2 proteins, respectively, and together they function as a potent and selective ASIC1a agonist. The MitTx-alpha structures is similar to those of Kunitz-type proteinase inhibitors such as BPTI (bovine pancreatic trypsin inhibitor), showing an alpha/beta fold with irregular secondary structure stabilized by three disulfide bonds. Pssm-ID: 438653 Cd Length: 59 Bit Score: 37.31 E-value: 6.38e-03
|
||||||||||||
auto_AIDA-I | NF033176 | autotransporter adhesin AIDA-I; |
1003-1233 | 6.81e-03 | ||||||||
autotransporter adhesin AIDA-I; Pssm-ID: 380183 [Multi-domain] Cd Length: 1287 Bit Score: 42.34 E-value: 6.81e-03
|
||||||||||||
Ig_C5_MyBP-C | cd05894 | C5 immunoglobulin (Ig) domain of cardiac myosin binding protein C (MyBP-C); The members here ... |
2736-2797 | 6.92e-03 | ||||||||
C5 immunoglobulin (Ig) domain of cardiac myosin binding protein C (MyBP-C); The members here are composed of the C5 immunoglobulin (Ig) domain of cardiac myosin binding protein C (MyBP-C). MyBP-C consists of repeated domains, Ig and fibronectin type 3, and various linkers. Three isoforms of MYBP-C exist: slow-skeletal (ssMyBP-C), fast-skeletal (fsMyBP-C), and cardiac (cMyBP-C). cMYBP-C has insertions between and inside domains and an additional cardiac-specific Ig domain at the N-terminus. For cMYBP_C an interaction has been demonstrated between this C5 domain and the Ig C8 domain. Pssm-ID: 409475 Cd Length: 86 Bit Score: 37.90 E-value: 6.92e-03
|
||||||||||||
IgI_2_JAM1 | cd20950 | Second Ig-like domain of Junctional adhesion molecule-1 (JAM1); a member of the I-set of IgSF ... |
2460-2533 | 7.51e-03 | ||||||||
Second Ig-like domain of Junctional adhesion molecule-1 (JAM1); a member of the I-set of IgSF domains; The members here are composed of the second Ig-like domain of Junctional adhesion molecule-1 (JAM1). JAM1 is an immunoglobulin superfamily (IgSF) protein with two Ig-like domains in its extracellular region; it plays a role in the formation of endothelial and epithelial tight junction and acts as a receptor for mammalian reovirus sigma-1. The IgSF is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. The two sheets are linked together by a conserved disulfide bond between B strand and F strand. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. The second Ig-like domain of JAM1 is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, the A strand of the I-set is discontinuous but lacks a C" strand. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors. Pssm-ID: 409542 Cd Length: 97 Bit Score: 38.45 E-value: 7.51e-03
|
||||||||||||
IgI_2_FGFR_like | cd05729 | Second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor, and similar ... |
2539-2624 | 7.67e-03 | ||||||||
Second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor, and similar domains; member of the I-set of IgSF domains; The members here are composed of the second immunoglobulin (Ig)-like domain of fibroblast growth factor (FGF) receptor. FGF receptors bind FGF signaling polypeptides. FGFs participate in multiple processes such as morphogenesis, development, and angiogenesis. FGFs bind to four FGF receptor tyrosine kinases (FGFR1, FGFR2, FGFR3, FGFR4). Receptor diversity is controlled by alternative splicing producing splice variants with different ligand binding characteristics and different expression patterns. FGFRs have an extracellular region comprised of three Ig-like domains, a single transmembrane helix, and an intracellular tyrosine kinase domain. Ligand binding and specificity reside in the Ig-like domains 2 and 3, and the linker region that connects these two. FGFR activation and signaling depend on FGF-induced dimerization, a process involving cell surface heparin or heparin sulfate proteoglycans. This group also contains fibroblast growth factor (FGF) receptor like-1(FGFRL1). FGFRL1 does not have a protein tyrosine kinase domain at its C-terminus; neither does its cytoplasmic domain appear to interact with a signaling partner. It has been suggested that FGFRL1 may not have any direct signaling function, but instead acts as a decoy receptor trapping FGFs and preventing them from binding other receptors. Pssm-ID: 409393 [Multi-domain] Cd Length: 95 Bit Score: 38.35 E-value: 7.67e-03
|
||||||||||||
SEEEED | pfam14797 | Serine-rich region of AP3B1, clathrin-adaptor complex; This short low-complexity, highly ... |
963-1066 | 8.71e-03 | ||||||||
Serine-rich region of AP3B1, clathrin-adaptor complex; This short low-complexity, highly serine-rich region lies on clathrin-adaptor complex 3 beta-1 subunit proteins, between family Adaptin_N, pfam01602 and a C-terminal domain, AP3B1_C,pfam14796. Pssm-ID: 434218 [Multi-domain] Cd Length: 111 Bit Score: 38.37 E-value: 8.71e-03
|
||||||||||||
Ig_DSCAM | cd05734 | Immunoglobulin (Ig)-like domain of Down Syndrome Cell Adhesion molecule (DSCAM); The members ... |
2566-2633 | 9.20e-03 | ||||||||
Immunoglobulin (Ig)-like domain of Down Syndrome Cell Adhesion molecule (DSCAM); The members here are composed of the immunoglobulin (Ig)-like domain of Down Syndrome Cell Adhesion molecule (DSCAM). DSCAM is a cell adhesion molecule expressed largely in the developing nervous system. The gene encoding DSCAM is located at human chromosome 21q22, the locus associated with the intellectual disability phenotype of Down Syndrome. DSCAM is predicted to be the largest member of the IG superfamily. It has been demonstrated that DSCAM can mediate cation-independent homophilic intercellular adhesion. Pssm-ID: 409397 [Multi-domain] Cd Length: 97 Bit Score: 37.86 E-value: 9.20e-03
|
||||||||||||
Ig3_L1-CAM | cd05876 | Third immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM); The members here ... |
2724-2789 | 9.32e-03 | ||||||||
Third immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM); The members here are composed of the third immunoglobulin (Ig)-like domain of the L1 cell adhesion molecule (CAM). L1 belongs to the L1 subfamily of cell adhesion molecules (CAMs) and is comprised of an extracellular region having six Ig-like domains, five fibronectin type III domains, a transmembrane region and an intracellular domain. L1 is primarily expressed in the nervous system and is involved in its development and function. L1 is associated with an X-linked recessive disorder, X-linked hydrocephalus, MASA syndrome, or spastic paraplegia type 1, that involves abnormalities of axonal growth. This group also contains the chicken neuron-glia cell adhesion molecule, Ng-CAM. Pssm-ID: 409460 [Multi-domain] Cd Length: 83 Bit Score: 37.58 E-value: 9.32e-03
|
||||||||||||
Ig_Perlecan_like | cd05743 | Immunoglobulin (Ig)-like domain of the human basement membrane heparan sulfate proteoglycan ... |
2564-2625 | 9.37e-03 | ||||||||
Immunoglobulin (Ig)-like domain of the human basement membrane heparan sulfate proteoglycan perlecan and similar proteins; The members here are composed of the immunoglobulin (Ig)-like domain of the human basement membrane heparan sulfate proteoglycan perlecan, also known as HSPG2, and similar proteins. Perlecan consists of five domains: domain I has three putative heparan sulfate attachment sites, domain II has four LDL receptor-like repeats, and one Ig-like repeat, domain III resembles the short arm of laminin chains, domain IV has multiple Ig-like repeats (21 repeats in human perlecan), and domain V resembles the globular G domain of the laminin A chain and internal repeats of EGF. Perlecan may participate in a variety of biological functions including cell binding, LDL-metabolism, basement membrane assembly and selective permeability, calcium binding, and growth- and neurite-promoting activities. Pssm-ID: 143220 Cd Length: 78 Bit Score: 37.47 E-value: 9.37e-03
|
||||||||||||
Ig1_FcgammaR_like | cd05752 | First immunoglobulin (Ig)-like domain of Fcgamma-receptors (FcgammaRs), and similar domains; ... |
2724-2797 | 9.42e-03 | ||||||||
First immunoglobulin (Ig)-like domain of Fcgamma-receptors (FcgammaRs), and similar domains; The members here are composed of the first immunoglobulin (Ig)-like domain of Fcgamma-receptors (FcgammaRs). Interactions between IgG and FcgammaR are important to the initiation of cellular and humoral response. IgG binding to FcgammaR leads to a cascade of signals and ultimately to functions such as antibody-dependent-cellular-cytotoxicity (ADCC), endocytosis, phagocytosis, release of inflammatory mediators, etc. FcgammaR has two Ig-like domains. This group also contains FcepsilonRI which binds IgE with high affinity. Pssm-ID: 409410 [Multi-domain] Cd Length: 79 Bit Score: 37.34 E-value: 9.42e-03
|
||||||||||||
IgI_NCAM-2 | cd05870 | Immunoglobulin (Ig)-like I-set domain of Neural Cell Adhesion Molecule 2 (NCAM-2); The members ... |
2459-2527 | 9.55e-03 | ||||||||
Immunoglobulin (Ig)-like I-set domain of Neural Cell Adhesion Molecule 2 (NCAM-2); The members here are composed of the fourth Ig domain of Neural Cell Adhesion Molecule NCAM-2 (also known as OCAM/mamFas II and RNCAM). NCAM-2 is organized similarly to NCAM, including five N-terminal Ig-like domains and two fibronectin type III domains. NCAM-2 is differentially expressed in the developing and mature olfactory epithelium (OE), and may function like NCAM, as an adhesion molecule. One of the unique features of I-set domains is the lack of a C" strand. The structures of this group show that the Ig domain lacks this strand and thus is a member of the I-set of Ig domains. Pssm-ID: 143278 [Multi-domain] Cd Length: 98 Bit Score: 38.03 E-value: 9.55e-03
|
||||||||||||
TSP_1 | pfam00090 | Thrombospondin type 1 domain; |
648-697 | 9.62e-03 | ||||||||
Thrombospondin type 1 domain; Pssm-ID: 459668 [Multi-domain] Cd Length: 49 Bit Score: 36.63 E-value: 9.62e-03
|
||||||||||||
PRK15319 | PRK15319 | fibronectin-binding autotransporter adhesin ShdA; |
956-1232 | 9.67e-03 | ||||||||
fibronectin-binding autotransporter adhesin ShdA; Pssm-ID: 185219 [Multi-domain] Cd Length: 2039 Bit Score: 41.61 E-value: 9.67e-03
|
||||||||||||
Blast search parameters | ||||
|