peroxisome proliferator-activated receptor alpha isoform X3 [Mus musculus]
nuclear hormone receptor family protein( domain architecture ID 10248694)
nuclear hormone receptor family protein is a ligand-regulated transcriptional modulator that may play a role in many developmental processes; similar to Caenorhabditis elegans nuclear hormone receptor family members
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
NR_LBD_PPAR | cd06932 | The ligand binding domain of peroxisome proliferator-activated receptors; The ligand binding ... |
36-302 | 3.68e-134 | |||||
The ligand binding domain of peroxisome proliferator-activated receptors; The ligand binding domain (LBD) of peroxisome proliferator-activated receptors (PPAR): Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily of ligand-activated transcription factors. PPARs play important roles in regulating cellular differentiation, development and lipid metabolism. Activated PPAR forms a heterodimer with the retinoid X receptor (RXR) that binds to the hormone response element located upstream of the peroxisome proliferator responsive genes and interacts with co-activators. There are three subtypes of peroxisome proliferator activated receptors, alpha, beta (or delta), and gamma, each with a distinct tissue distribution. Several essential fatty acids, oxidized lipids and prostaglandin J derivatives can bind and activate PPAR. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, PPAR has a central well conserved DNA binding domain (DBD), a variable N-terminal regulatory domain, a flexible hinge a nd a C-terminal ligand binding domain (LBD). : Pssm-ID: 132730 Cd Length: 259 Bit Score: 380.60 E-value: 3.68e-134
|
|||||||||
NR_DBD_like super family | cl02596 | DNA-binding domain of nuclear receptors is composed of two C4-type zinc fingers; DNA-binding ... |
1-19 | 7.93e-06 | |||||
DNA-binding domain of nuclear receptors is composed of two C4-type zinc fingers; DNA-binding domain of nuclear receptors is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. It interacts with a specific DNA site upstream of the target gene and modulates the rate of transcriptional initiation. Nuclear receptors form a superfamily of ligand-activated transcription regulators, which regulate various physiological functions, from development, reproduction, to homeostasis and metabolism in animals (metazoans). The family contains not only receptors for known ligands but also orphan receptors for which ligands do not exist or have not been identified. NRs share a common structural organization with a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). Most nuclear receptors bind as homodimers or heterodimers to their target sites, which consist of two hexameric half-sites. Specificity is determined by the half-site sequence, the relative orientation of the half-sites and the number of spacer nucleotides between the half-sites. However, a growing number of nuclear receptors have been reported to bind to DNA as monomers. The actual alignment was detected with superfamily member cd06965: Pssm-ID: 413390 Cd Length: 84 Bit Score: 43.23 E-value: 7.93e-06
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
NR_LBD_PPAR | cd06932 | The ligand binding domain of peroxisome proliferator-activated receptors; The ligand binding ... |
36-302 | 3.68e-134 | |||||
The ligand binding domain of peroxisome proliferator-activated receptors; The ligand binding domain (LBD) of peroxisome proliferator-activated receptors (PPAR): Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily of ligand-activated transcription factors. PPARs play important roles in regulating cellular differentiation, development and lipid metabolism. Activated PPAR forms a heterodimer with the retinoid X receptor (RXR) that binds to the hormone response element located upstream of the peroxisome proliferator responsive genes and interacts with co-activators. There are three subtypes of peroxisome proliferator activated receptors, alpha, beta (or delta), and gamma, each with a distinct tissue distribution. Several essential fatty acids, oxidized lipids and prostaglandin J derivatives can bind and activate PPAR. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, PPAR has a central well conserved DNA binding domain (DBD), a variable N-terminal regulatory domain, a flexible hinge a nd a C-terminal ligand binding domain (LBD). Pssm-ID: 132730 Cd Length: 259 Bit Score: 380.60 E-value: 3.68e-134
|
|||||||||
HOLI | smart00430 | Ligand binding domain of hormone receptors; |
122-271 | 8.39e-19 | |||||
Ligand binding domain of hormone receptors; Pssm-ID: 214658 Cd Length: 163 Bit Score: 81.64 E-value: 8.39e-19
|
|||||||||
Hormone_recep | pfam00104 | Ligand-binding domain of nuclear hormone receptor; This all helical domain is involved in ... |
108-272 | 1.37e-10 | |||||
Ligand-binding domain of nuclear hormone receptor; This all helical domain is involved in binding the hormone in these receptors. Pssm-ID: 459675 [Multi-domain] Cd Length: 194 Bit Score: 59.67 E-value: 1.37e-10
|
|||||||||
NR_DBD_Ppar | cd06965 | DNA-binding domain of peroxisome proliferator-activated receptors (PPAR) is composed of two ... |
1-19 | 7.93e-06 | |||||
DNA-binding domain of peroxisome proliferator-activated receptors (PPAR) is composed of two C4-type zinc fingers; DNA-binding domain of peroxisome proliferator-activated receptors (PPAR) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. PPAR interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily of ligand-activated transcription factors. PPARs play important roles in regulating cellular differentiation, development and lipid metabolism. Activated PPAR forms a heterodimer with the retinoid X receptor (RXR) that binds to the hormone response elements, which are composed of two direct repeats of the consensus sequence 5'-AGGTCA-3' separated by one to five base pair located upstream of the peroxisome proliferator responsive genes, and interacts with co-activators. Several essential fatty acids, oxidized lipids and prostaglandin J derivatives can bind and activate PPAR. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, PPAR has a central well conserved DNA binding domain (DBD), a variable N-terminal regulatory domain, a flexible hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 143523 Cd Length: 84 Bit Score: 43.23 E-value: 7.93e-06
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
NR_LBD_PPAR | cd06932 | The ligand binding domain of peroxisome proliferator-activated receptors; The ligand binding ... |
36-302 | 3.68e-134 | |||||
The ligand binding domain of peroxisome proliferator-activated receptors; The ligand binding domain (LBD) of peroxisome proliferator-activated receptors (PPAR): Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily of ligand-activated transcription factors. PPARs play important roles in regulating cellular differentiation, development and lipid metabolism. Activated PPAR forms a heterodimer with the retinoid X receptor (RXR) that binds to the hormone response element located upstream of the peroxisome proliferator responsive genes and interacts with co-activators. There are three subtypes of peroxisome proliferator activated receptors, alpha, beta (or delta), and gamma, each with a distinct tissue distribution. Several essential fatty acids, oxidized lipids and prostaglandin J derivatives can bind and activate PPAR. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, PPAR has a central well conserved DNA binding domain (DBD), a variable N-terminal regulatory domain, a flexible hinge a nd a C-terminal ligand binding domain (LBD). Pssm-ID: 132730 Cd Length: 259 Bit Score: 380.60 E-value: 3.68e-134
|
|||||||||
NR_LBD_F1 | cd06929 | Ligand-binding domain of nuclear receptor family 1; Ligand-binding domain (LBD) of nuclear ... |
104-279 | 1.00e-51 | |||||
Ligand-binding domain of nuclear receptor family 1; Ligand-binding domain (LBD) of nuclear receptor (NR) family 1: This is one of the major subfamily of nuclear receptors, including thyroid receptor, retinoid acid receptor, ecdysone receptor, farnesoid X receptor, vitamin D receptor, and other related receptors. Nuclear receptors form a superfamily of ligand-activated transcription regulators, which regulate various physiological functions, from development, reproduction, to homeostasis and metabolism in animals (metazoans). The family contains not only receptors for known ligands but also orphan receptors for which ligands do not exist or have not been identified. NRs share a common structural organization with a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132727 Cd Length: 174 Bit Score: 167.78 E-value: 1.00e-51
|
|||||||||
NR_LBD_REV_ERB | cd06940 | The ligand binding domain of REV-ERB receptors, members of the nuclear receptor superfamily; ... |
119-283 | 6.00e-34 | |||||
The ligand binding domain of REV-ERB receptors, members of the nuclear receptor superfamily; The ligand binding domain (LBD) of REV-ERB receptors: REV-ERBs are transcriptional regulators belonging to the nuclear receptor superfamily. They regulate a number of physiological functions including the circadian rhythm, lipid metabolism, and cellular differentiation. The LBD domain of REV-ERB is unusual in the nuclear receptor family by lacking the AF-2 region that is responsible for coactivator interaction. REV-ERBs act as constitutive repressors because of their inability to bind coactivators. REV-ERB receptors can bind to two classes of DNA response elements as either a monomer or heterodimer, indicating functional diversity. When bound to the DNA, they recruit corepressors (NcoR/histone deacetylase 3) to the promoter, resulting in repression of the target gene. The porphyrin heme has been demonstrated to function as a ligand for REV-ERB. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, REV-ERB receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132738 Cd Length: 189 Bit Score: 122.60 E-value: 6.00e-34
|
|||||||||
NR_LBD_LXR | cd06954 | The ligand binding domain of Liver X receptors, a family of nuclear receptors of ... |
100-299 | 9.13e-30 | |||||
The ligand binding domain of Liver X receptors, a family of nuclear receptors of ligand-activated transcription factors; The ligand binding domain of Liver X receptors: Liver X receptors (LXRs) belong to a family of nuclear receptors of ligand-activated transcription factors. LXRs operate as cholesterol sensors which protect from cholesterol overload by stimulating reverse cholesterol transport from peripheral tissues to the liver and its excretion in the bile. Oxidized cholesterol derivatives or oxysterols were identified as specific ligands for LXRs. Upon ligand binding a conformational change leads to recruitment of co-factors, which stimulates expression of target genes. Among the LXR target genes are several genes involved in cholesterol efflux from peripheral tissues such as the ATP-binding-cassette transporters ABCA1, ABCG1 and ApoE. There are two LXR isoforms in mammals, LXRalpha and LXRbeta. LXRalpha is expressed mainly in the liver, intestine, kidney, spleen, and adipose tissue, whereas LXRbeta is ubiquitously expressed at lower level. Both LXRalpha and LXRbeta function as heterodimers with the retinoid X receptor (RX R) which may be activated by either LXR ligands or 9-cis retinoic acid, a specific RXR ligand. The LXR/RXR complex binds to a liver X receptor response element (LXRE) in the promoter region of target genes. LXR has typical NR modular structure with a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and the ligand binding domain (LBD) at the C-terminal. Pssm-ID: 132752 Cd Length: 236 Bit Score: 112.92 E-value: 9.13e-30
|
|||||||||
NR_LBD_RAR | cd06937 | The ligand binding domain (LBD) of retinoic acid receptor (RAR), a members of the nuclear ... |
114-298 | 1.21e-29 | |||||
The ligand binding domain (LBD) of retinoic acid receptor (RAR), a members of the nuclear receptor superfamily; The ligand binding domain (LBD) of retinoic acid receptor (RAR): Retinoic acid receptors are members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors. RARs mediate the biological effect of retinoids, including both naturally dietary vitamin A (retinol) metabolites and active synthetic analogs. Retinoids play key roles in a wide variety of essential biological processes, such as vertebrate embryonic morphogenesis and organogenesis, differentiation and apoptosis, and homeostasis. RARs function as heterodimers with retinoic X receptors by binding to specific RAR response elements (RAREs) found in the promoter regions of retinoid target genes. In the absence of ligand, the RAR-RXR heterodimer recruits the corepressor proteins NCoR or AMRT, and associated factors such as histone deacetylases or DNA-methyltransferases, leading to an inactive condensed chromatin structure, preventing transcription. Upon ligand binding, the corepressors are released, and coactivator complexes such as histone acetyltransferase or histone arginine methyltransferases are recruited to activate transcription. There are three RAR subtypes (alpha, beta, gamma), originating from three distinct genes. For each subtype, several isoforms exist that differ in their N-terminal region, allowing retinoids to exert their pleiotropic effects. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, retinoic acid receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132735 Cd Length: 231 Bit Score: 112.60 E-value: 1.21e-29
|
|||||||||
NR_LBD_DmE78_like | cd06941 | The ligand binding domain of Drosophila ecdysone-induced protein 78, a member of the nuclear ... |
117-299 | 9.91e-29 | |||||
The ligand binding domain of Drosophila ecdysone-induced protein 78, a member of the nuclear receptor superfamily; The ligand binding domain (LBD) of Drosophila ecdysone-induced protein 78 (E78) like: Drosophila ecdysone-induced protein 78 (E78) is a transcription factor belonging to the nuclear receptor superfamily. E78 is a product of the ecdysone-inducible gene found in an early late puff locus at position 78C during the onset of Drosophila metamorphosis. Two isoforms of E78, E78A and E78B, are expressed from two nested transcription units. An E78 orthologue from the Platyhelminth Schistosoma mansoni (SmE78) has also been identified. It is the first E78 orthologue known outside of the molting animals--the Ecdysozoa. SmE78 may be involved in transduction of an ecdysone signal in S. mansoni, consistent with its function in Drosophila. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, E78-like receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132739 Cd Length: 195 Bit Score: 109.02 E-value: 9.91e-29
|
|||||||||
NR_LBD_ROR_like | cd06939 | The ligand binding domain of Retinoid-related orphan receptors, of the nuclear receptor ... |
111-303 | 3.56e-27 | |||||
The ligand binding domain of Retinoid-related orphan receptors, of the nuclear receptor superfamily; The ligand binding domain (LBD) of Retinoid-related orphan receptors (RORs): Retinoid-related orphan receptors (RORs) are transcription factors belonging to the nuclear receptor superfamily. RORs are key regulators of many physiological processes during embryonic development. RORs bind as monomers to specific ROR response elements (ROREs) consisting of the consensus core motif AGGTCA preceded by a 5-bp A/T-rich sequence. Transcription regulation by RORs is mediated through certain corepressors, as well as coactivators. There are three subtypes of retinoid-related orphan receptors (RORs), alpha, beta, and gamma that differ only in N-terminal sequence and are distributed in distinct tissues. RORalpha plays a key role in the development of the cerebellum, particularly in the regulation of the maturation and survival of Purkinje cells. RORbeta expression is largely restricted to several regions of the brain, the retina, and pineal gland. RORgamma is essential for lymph node organogenesis. Recently, it has been su ggested that cholesterol or a cholesterol derivative is the natural ligand of RORalpha. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, retinoid-related orphan receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132737 [Multi-domain] Cd Length: 241 Bit Score: 106.30 E-value: 3.56e-27
|
|||||||||
NR_LBD | cd06157 | The ligand binding domain of nuclear receptors, a family of ligand-activated transcription ... |
109-271 | 5.38e-27 | |||||
The ligand binding domain of nuclear receptors, a family of ligand-activated transcription regulators; Ligand-binding domain (LBD) of nuclear receptor (NR): Nuclear receptors form a superfamily of ligand-activated transcription regulators, which regulate various physiological functions in metazoans, from development, reproduction, to homeostasis and metabolism. The superfamily contains not only receptors for known ligands but also orphan receptors for which ligands do not exist or have not been identified. The members of the family include receptors of steroids, thyroid hormone, retinoids, cholesterol by-products, lipids and heme. With few exceptions, NRs share a common structural organization with a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132726 Cd Length: 168 Bit Score: 103.54 E-value: 5.38e-27
|
|||||||||
NR_LBD_TR | cd06935 | The ligand binding domain of thyroid hormone receptor, a members of a superfamily of nuclear ... |
119-298 | 2.36e-23 | |||||
The ligand binding domain of thyroid hormone receptor, a members of a superfamily of nuclear receptors; The ligand binding domain (LBD) of thyroid hormone receptors: Thyroid hormone receptors are members of a superfamily of nuclear receptors. Thyroid hormone receptors (TR) mediate the actions of thyroid hormones, which play critical roles in growth, development, and homeostasis in mammals. They regulate overall metabolic rate, cholesterol and triglyceride levels, and heart rate, and affect mood. TRs are expressed from two separate genes (alpha and beta) in human and each gene generates two isoforms of the receptor through differential promoter usage or splicing. TRalpha functions in the heart to regulate heart rate and rhythm and TRbeta is active in the liver and other tissues. The unliganded TRs function as transcription repressors, by binding to thyroid hormone response elements (TRE) predominantly as homodimers, or as heterodimers with retinoid X-receptors (RXR), and being associated with a complex of proteins containing corepressor proteins. Ligand binding promotes corepressor dissociation and binding of a coactivator to activate transcription. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, TR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132733 Cd Length: 243 Bit Score: 96.04 E-value: 2.36e-23
|
|||||||||
NR_LBD_Fxr | cd06936 | The ligand binding domain of Farnesoid X receptor:a member of the nuclear receptor superfamily ... |
99-297 | 2.19e-19 | |||||
The ligand binding domain of Farnesoid X receptor:a member of the nuclear receptor superfamily of ligand-activated transcription factors; The ligand binding domain (LBD) of Farnesoid X receptor: Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. FXR is highly expressed in the liver, the intestine, the kidney, and the adrenals. FXR plays key roles in the regulation of bile acid, cholesterol, triglyceride, and glucose metabolism. Evidences show that it also regulates liver regeneration. Upon binding of ligands, such as bile acid, an endogenous ligand, FXRs bind to FXR response elements (FXREs) either as a monomer or as a heterodimer with retinoid X receptor (RXR), and regulate the expression of various genes involved in bile acid, lipid, and glucose metabolism. There are two FXR genes (FXRalpha and FXRbeta) in mammals. A single FXRalpha gene encodes four isoforms resulting from differential use of promoters and alternative splicing. FXRbeta is a functional receptor in mice, rats, rabbits and dogs, but is a pseudogene in humans and primates. Like other members of the nuclear receptor (NR) superfamily, farnesoid X receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132734 Cd Length: 221 Bit Score: 84.50 E-value: 2.19e-19
|
|||||||||
HOLI | smart00430 | Ligand binding domain of hormone receptors; |
122-271 | 8.39e-19 | |||||
Ligand binding domain of hormone receptors; Pssm-ID: 214658 Cd Length: 163 Bit Score: 81.64 E-value: 8.39e-19
|
|||||||||
NR_LBD_EcR | cd06938 | The ligand binding domain (LBD) of the Ecdysone receptor, a member of the nuclear receptors ... |
99-299 | 1.24e-18 | |||||
The ligand binding domain (LBD) of the Ecdysone receptor, a member of the nuclear receptors super family; The ligand binding domain (LBD) of the ecdysone receptor: The ecdysone receptor (EcR) belongs to the superfamily of nuclear receptors (NRs) of ligand-dependent transcription factors. Ecdysone receptor is present only in invertebrates and regulates the expression of a large number of genes during development and reproduction. ECR functions as a heterodimer by partnering with ultraspiracle protein (USP), the ortholog of the vertebrate retinoid X receptor (RXR). The natural ligands of ecdysone receptor are ecdysteroids#the endogenous steroidal hormones found in invertebrates. In addition, insecticide bisacylhydrazine used against pests has shown to act on EcR. EcR must be dimerised with a USP for high-affinity ligand binding to occur. The ligand binding triggers a conformational change in the C-terminal part of the EcR ligand-binding domain that leads to transcriptional activation of genes controlled by EcR. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, ec dysone receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132736 [Multi-domain] Cd Length: 231 Bit Score: 82.87 E-value: 1.24e-18
|
|||||||||
NR_LBD_VDR | cd06933 | The ligand binding domain of vitamin D receptors, a member of the nuclear receptor superfamily; ... |
118-301 | 1.34e-17 | |||||
The ligand binding domain of vitamin D receptors, a member of the nuclear receptor superfamily; The ligand binding domain of vitamin D receptors (VDR): VDR is a member of the nuclear receptor (NR) superfamily that functions as classical endocrine receptors. VDR controls a wide range of biological activities including calcium metabolism, cell proliferation and differentiation, and immunomodulation. VDR is a high affinity receptor for the biologically most active Vitamin D metabolite, 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). The binding of the ligand to the receptor induces a conformational change of the ligand binding domain (LBD) with consequent dissociation of corepressors. Upon ligand binding, VDR forms heterodimer with the retinoid X receptor (RXR) that binds to vitamin D response elements (VDREs), recruits coactivators. This leads to the expression of a large number of genes. Approximately 200 human genes are considered to be primary targets of VDR and even more genes are regulated indirectly. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, VDR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132731 Cd Length: 238 Bit Score: 80.02 E-value: 1.34e-17
|
|||||||||
NR_LBD_PXR_like | cd06934 | The ligand binding domain of xenobiotic receptors:pregnane X receptor and constitutive ... |
125-298 | 2.42e-17 | |||||
The ligand binding domain of xenobiotic receptors:pregnane X receptor and constitutive androstane receptor; The ligand binding domain of xenobiotic receptors: This xenobiotic receptor family includes pregnane X receptor (PXR), constitutive androstane receptor (CAR) and other related nuclear receptors. They function as sensors of toxic byproducts of cell metabolism and of exogenous chemicals, to facilitate their elimination. The nuclear receptor pregnane X receptor (PXR) is a ligand-regulated transcription factor that responds to a diverse array of chemically distinct ligands, including many endogenous compounds and clinical drugs. The ligand binding domain of PXR shows remarkable flexibility to accommodate both large and small molecules. PXR functions as a heterodimer with retinoic X receptor-alpha (RXRa) and binds to a variety of response elements in the promoter regions of a diverse set of target genes involved in the metabolism, transport, and elimination of these molecules from the cell. Constitutive androstane receptor (CAR) is a closest mammalian relative of PXR, which has also been proposed to function as a xenosensor. CAR is activated by some of the same ligands as PXR and regulates a subset of common genes. The sequence homology and functional similarity suggests that the CAR gene arose from a duplication of an ancestral PXR gene. Like other nuclear receptors, xenobiotic receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132732 Cd Length: 226 Bit Score: 79.00 E-value: 2.42e-17
|
|||||||||
NR_LBD_Sex_1_like | cd06942 | The ligand binding domain of Caenorhabditis elegans nuclear hormone receptor Sex-1 protein; ... |
124-294 | 5.89e-13 | |||||
The ligand binding domain of Caenorhabditis elegans nuclear hormone receptor Sex-1 protein; The ligand binding domain (LBD) of Caenorhabditis elegans nuclear hormone receptor Sex-1 protein like: Sex-1 protein of C. elegans is a transcription factor belonging to the nuclear receptor superfamily. Sex-1 plays pivotal role in sex fate of C. elegans by regulating the transcription of the sex-determination gene xol-1, which specifies male (XO) fate when active and hermaphrodite (XX) fate when inactive. The Sex-1 protein directly represses xol-1 transcription by binding to its promoter. However, the active ligand for Sex-1 protein has not yet been identified. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, Sex-1 like receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132740 Cd Length: 191 Bit Score: 66.22 E-value: 5.89e-13
|
|||||||||
NR_LBD_RXR_like | cd06943 | The ligand binding domain of the retinoid X receptor and Ultraspiracle, members of nuclear ... |
113-269 | 5.58e-12 | |||||
The ligand binding domain of the retinoid X receptor and Ultraspiracle, members of nuclear receptor superfamily; The ligand binding domain of the retinoid X receptor (RXR) and Ultraspiracle (USP): This family includes two evolutionary related nuclear receptors: retinoid X receptor (RXR) and Ultraspiracle (USP). RXR is a nuclear receptor in mammalian and USP is its counterpart in invertebrates. The native ligand of retinoid X receptor is 9-cis retinoic acid (RA). RXR functions as a DNA binding partner by forming heterodimers with other nuclear receptors including CAR, FXR, LXR, PPAR, PXR, RAR, TR, and VDR. RXRs can play different roles in these heterodimers. It acts either as a structural component of the heterodimer complex, required for DNA binding but not acting as a receptor or as both a structural and a functional component of the heterodimer, allowing 9-cis RA to signal through the corresponding heterodimer. In addition, RXR can also form homodimers, functioning as a receptor for 9-cis RA, independently of other nuclear receptors. Ultraspiracle (USP) plays similar roles as DNA binding partner of other nuclear rec eptors in invertebrates. USP has no known high-affinity ligand and is thought to be a silent component in the heterodimeric complex with partner receptors. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, RXR and USP have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132741 Cd Length: 207 Bit Score: 63.85 E-value: 5.58e-12
|
|||||||||
Hormone_recep | pfam00104 | Ligand-binding domain of nuclear hormone receptor; This all helical domain is involved in ... |
108-272 | 1.37e-10 | |||||
Ligand-binding domain of nuclear hormone receptor; This all helical domain is involved in binding the hormone in these receptors. Pssm-ID: 459675 [Multi-domain] Cd Length: 194 Bit Score: 59.67 E-value: 1.37e-10
|
|||||||||
NR_LBD_F2 | cd06930 | Ligand-binding domain of nuclear receptor family 2; Ligand-binding domain (LBD) of nuclear ... |
124-271 | 1.51e-10 | |||||
Ligand-binding domain of nuclear receptor family 2; Ligand-binding domain (LBD) of nuclear receptor (NR) family 2: This is one of the major subfamily of nuclear receptors, including some well known nuclear receptors such as glucocorticoid receptor (GR), mineralocorticoid receptor (MR), estrogen receptor (ER), progesterone receptor (PR), and androgen receptor (AR), other related receptors. Nuclear receptors form a superfamily of ligand-activated transcription regulators, which regulate various physiological functions, from development, reproduction, to homeostasis and metabolism in animals (metazoans). The family contains not only receptors for known ligands but also orphan receptors for which ligands do not exist or have not been identified. NRs share a common structural organization with a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132728 [Multi-domain] Cd Length: 165 Bit Score: 58.78 E-value: 1.51e-10
|
|||||||||
NR_LBD_TR2_like | cd06952 | The ligand binding domain of the orphan nuclear receptors TR4 and TR2; The ligand binding ... |
126-271 | 9.15e-10 | |||||
The ligand binding domain of the orphan nuclear receptors TR4 and TR2; The ligand binding domain of the TR4 and TR2 (human testicular receptor 4 and 2): TR4 and TR2 are orphan nuclear receptors. Several isoforms of TR4 and TR2 have been isolated in various tissues. TR2 is abundantly expressed in the androgen-sensitive prostate. TR4 transcripts are expressed in many tissues, including central nervous system, adrenal gland, spleen, thyroid gland, and prostate. The expression of TR2 is negatively regulated by androgen, retinoids, and radiation. The expression of both mouse TR2 and TR4 is up-regulated by neurocytokine ciliary neurotrophic factor (CNTF) in mouse. It has shown that human TR2 binds to a wide spectrum of natural hormone response elements (HREs) with distinct affinities suggesting that TR2 may cross-talk with other gene expression regulation systems. The genes responding to TR2 or TR4 include genes that are regulated by retinoic acid receptor, vitamin D receptor, peroxisome proliferator-activated receptor. TR4/2 binds to HREs as a dimer. Like other members of the nuclea r receptor (NR) superfamily of ligand-activated transcription factors, TR2-like receptors have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132750 Cd Length: 222 Bit Score: 57.73 E-value: 9.15e-10
|
|||||||||
NR_LBD_COUP-TF | cd06948 | Ligand binding domain of chicken ovalbumin upstream promoter transcription factors, a member ... |
111-295 | 9.52e-08 | |||||
Ligand binding domain of chicken ovalbumin upstream promoter transcription factors, a member of the nuclear receptor family; The ligand binding domain of chicken ovalbumin upstream promoter transcription factors (COUP-TFs): COUP-TFs are orphan members of the steroid/thyroid hormone receptor superfamily. They are expressed in many tissues and are involved in the regulation of several important biological processes, such as neurogenesis, organogenesis, cell fate determination, and metabolic homeostasis. In mammals two isoforms named COUP-TFI and COUP-TFII have been identified. Both genes show an exceptional homology and overlapping expression patterns, suggesting that they may serve redundant functions. Although COUP-TF was originally characterized as a transcriptional activator of the chicken ovalbumin gene, COUP-TFs are generally considered to be repressors of transcription for other nuclear hormone receptors, such as retinoic acid receptor (RAR), thyroid hormone receptor (TR), vitamin D receptor (VDR), peroxisome proliferator activated receptor (PPAR), and hepatocyte nuclear factor 4 (HNF4). Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, COUP-TFs have a central well cons erved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132746 Cd Length: 236 Bit Score: 52.07 E-value: 9.52e-08
|
|||||||||
NR_LBD_DHR38_like | cd07072 | Ligand binding domain of DHR38_like proteins, members of the nuclear receptor superfamily; ... |
104-283 | 1.71e-07 | |||||
Ligand binding domain of DHR38_like proteins, members of the nuclear receptor superfamily; The ligand binding domain of nuclear receptor DHR38_like proteins: DHR38 is a member of the steroid receptor superfamily in Drosophila. DHR38 interacts with the USP component of the ecdysone receptor complex, suggesting that DHR38 might modulate ecdysone-triggered signals in the fly, in addition to the ECR/USP pathway. At least four differentially expressed mRNA isoforms have been detected during development. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, DHR38 has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132757 Cd Length: 239 Bit Score: 51.37 E-value: 1.71e-07
|
|||||||||
NR_LBD_NGFI-B | cd07348 | The ligand binding domain of Nurr1, a member of conserved family of nuclear receptors; The ... |
124-301 | 1.85e-07 | |||||
The ligand binding domain of Nurr1, a member of conserved family of nuclear receptors; The ligand binding domain of Nerve growth factor-induced-B (NGFI-B): NGFI-B is a member of the nuclear#steroid receptor superfamily. NGFI-B is classified as an orphan receptor because no ligand has yet been identified. NGFI-B is an early immediate gene product of the embryo development that is rapidly produced in response to a variety of cellular signals including nerve growth factor. It is involved in T-cell-mediated apoptosis, as well as neuronal differentiation and function. NGFI-B regulates transcription by binding to a specific DNA target upstream of its target genes and regulating the rate of transcriptional initiation. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, NGFI-B has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132762 Cd Length: 238 Bit Score: 50.98 E-value: 1.85e-07
|
|||||||||
NR_LBD_Nurr1 | cd07071 | The ligand binding domain of Nurr1, a member of conserved family of nuclear receptors; The ... |
125-283 | 7.17e-07 | |||||
The ligand binding domain of Nurr1, a member of conserved family of nuclear receptors; The ligand binding domain of nuclear receptor Nurr1: Nurr1 belongs to the conserved family of nuclear receptors. It is a transcription factor that is expressed in the embryonic ventral midbrain and is critical for the development of dopamine (DA) neurons. Structural studies have shown that the ligand binding pocket of Nurr1 is filled by bulky hydrophobic residues, making it unable to bind to ligands. Therefore, it belongs to the class of orphan receptors. However, Nurr1 forms heterodimers with RXR and can promote signaling via its partner, RXR. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, Nurr1 has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132756 Cd Length: 238 Bit Score: 49.26 E-value: 7.17e-07
|
|||||||||
NR_LBD_Nurr1_like | cd06945 | The ligand binding domain of Nurr1 and related nuclear receptor proteins, members of nuclear ... |
111-301 | 8.54e-07 | |||||
The ligand binding domain of Nurr1 and related nuclear receptor proteins, members of nuclear receptor superfamily; The ligand binding domain of nuclear receptor Nurr1_like: This family of nuclear receptors, including Nurr1, Nerve growth factor-induced-B (NGFI-B) and DHR38 are involved in the embryo development. Nurr1 is a transcription factor that is expressed in the embryonic ventral midbrain and is critical for the development of dopamine (DA) neurons. Structural studies have shown that the ligand binding pocket of Nurr1 is filled by bulky hydrophobic residues, making it unable to bind to ligands. Therefore, it belongs to the class of orphan receptors. However, Nurr1 forms heterodimers with RXR and can promote signaling via its partner, RXR. NGFI-B is an early immediate gene product of embryo development that is rapidly produced in response to a variety of cellular signals including nerve growth factor. It is involved in T-cell-mediated apoptosis, as well as neuronal differentiation and function. NGFI-B regulates transcription by binding to a specific DNA target upstream of its target genes and regulating the rate of tr anscriptional initiation. Another group of receptor in this family is DHR38. DHR38 is the Drosophila homolog to the vertebrate NGFI-B-type orphan receptor. It interacts with the USP component of the ecdysone receptor complex, suggesting that DHR38 might modulate ecdysone-triggered signals in the fly, in addition to the ECR/USP pathway. Nurr1_like proteins exhibit a modular structure that is characteristic for nuclear receptors; they have a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a non-conserved hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132743 [Multi-domain] Cd Length: 239 Bit Score: 48.94 E-value: 8.54e-07
|
|||||||||
NR_LBD_HNF4_like | cd06931 | The ligand binding domain of heptocyte nuclear factor 4, which is explosively expanded in ... |
122-298 | 2.32e-06 | |||||
The ligand binding domain of heptocyte nuclear factor 4, which is explosively expanded in nematodes; The ligand binding domain of hepatocyte nuclear factor 4 (HNF4) like proteins: HNF4 is a member of the nuclear receptor superfamily. HNF4 plays a key role in establishing and maintenance of hepatocyte differentiation in the liver. It is also expressed in gut, kidney, and pancreatic beta cells. HNF4 was originally classified as an orphan receptor, but later it is found that HNF4 binds with very high affinity to a variety of fatty acids. However, unlike other nuclear receptors, the ligands do not act as a molecular switch for HNF4. They seem to constantly bind to the receptor, which is constitutively active as a transcription activator. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, HNF4 has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). The LBD domain is also responsible for recruiting co-activator proteins. More than 280 nuclear receptors are found in C. ele gans, most of which are originated from an explosive burst of duplications of HNF4. Pssm-ID: 132729 Cd Length: 222 Bit Score: 47.75 E-value: 2.32e-06
|
|||||||||
NR_DBD_Ppar | cd06965 | DNA-binding domain of peroxisome proliferator-activated receptors (PPAR) is composed of two ... |
1-19 | 7.93e-06 | |||||
DNA-binding domain of peroxisome proliferator-activated receptors (PPAR) is composed of two C4-type zinc fingers; DNA-binding domain of peroxisome proliferator-activated receptors (PPAR) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. PPAR interacts with specific DNA sites upstream of the target gene and modulates the rate of transcriptional initiation. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily of ligand-activated transcription factors. PPARs play important roles in regulating cellular differentiation, development and lipid metabolism. Activated PPAR forms a heterodimer with the retinoid X receptor (RXR) that binds to the hormone response elements, which are composed of two direct repeats of the consensus sequence 5'-AGGTCA-3' separated by one to five base pair located upstream of the peroxisome proliferator responsive genes, and interacts with co-activators. Several essential fatty acids, oxidized lipids and prostaglandin J derivatives can bind and activate PPAR. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, PPAR has a central well conserved DNA binding domain (DBD), a variable N-terminal regulatory domain, a flexible hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 143523 Cd Length: 84 Bit Score: 43.23 E-value: 7.93e-06
|
|||||||||
NR_LBD_GR_Like | cd06947 | Ligand binding domain of nuclear hormone receptors:glucocorticoid receptor, mineralocorticoid ... |
126-146 | 1.06e-03 | |||||
Ligand binding domain of nuclear hormone receptors:glucocorticoid receptor, mineralocorticoid receptor , progesterone receptor, and androgen receptor; The ligand binding domain of GR_like nuclear receptors: This family of NRs includes four distinct, but closely related nuclear hormone receptors: glucocorticoid receptor (GR), mineralocorticoid receptor (MR), progesterone receptor (PR), and androgen receptor (AR). These four receptors play key roles in some of the most fundamental physiological functions such as the stress response, metabolism, electrolyte homeostasis, immune function, growth, development, and reproduction. The NRs in this family use multiple signaling pathways and share similar functional mechanisms. The dominant signaling pathway is via direct DNA binding and transcriptional regulation of target genes. Another mechanism is via protein-protein interactions, mainly with other transcription factors such as nuclear factor-kappaB and activator protein-1, to regulate gene expression patterns. Both pathways can up-regulate or down-regulate gene expression and require ligand activation of the receptor and recruitment of other cofactors such as chaperone proteins and coregulator proteins. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, GR, MR, PR, and AR share the same modular structure with a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). Pssm-ID: 132745 Cd Length: 246 Bit Score: 39.65 E-value: 1.06e-03
|
|||||||||
NR_LBD_GR | cd07076 | Ligand binding domain of the glucocorticoid receptor, a member of the nuclear receptor ... |
119-146 | 1.53e-03 | |||||
Ligand binding domain of the glucocorticoid receptor, a member of the nuclear receptor superfamily; The ligand binding domain of the glucocorticoid receptor (GR): GR is a ligand-activated transcription factor belonging to the nuclear receptor superfamily. It binds with high affinity to cortisol and other glucocorticoids. GR is expressed in almost every cell in the body and regulates genes controlling a wide variety of processes including the development, metabolism, and immune response of the organism. In the absence of hormone, the glucocorticoid receptor (GR) is complexes with a variety of heat shock proteins in the cytosol. The binding of the glucocorticoids results in release of the heat shock proteins and transforms it to its active state. One mechanism of action of GR is by direct activation of gene transcription. The activated form of GR forms dimers, translocates into the nucleus, and binds to specific hormone responsive elements, activating gene transcription. GR can also function as a repressor of other gene transcription activators, such as NF-kappaB and AF-1 by directly binding to them, and bloc king the expression of their activated genes. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, GR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). The LBD also functions for dimerization and chaperone protein association. Pssm-ID: 132761 Cd Length: 247 Bit Score: 39.53 E-value: 1.53e-03
|
|||||||||
Blast search parameters | ||||
|