NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1207175108|ref|XP_021331718|]
View 

heterogeneous nuclear ribonucleoprotein L isoform X1 [Danio rerio]

Protein Classification

hnRNP-L/PTB/hephaestus splicing factor family protein( domain architecture ID 11492984)

hnRNP-L/PTB/hephaestus splicing factor family protein similar to Homo sapiens heterogeneous nuclear ribonucleoprotein L (hnRNP-L), a splicing factor binding to exonic or intronic sites and acting as either an activator or repressor of exon inclusion

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
hnRNP-L_PTB TIGR01649
hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ...
39-522 0e+00

hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ribonucleoproteins are PTB (polypyrimidine tract binding protein) and hnRNP-L. These proteins contain four RNA recognition motifs (rrm: pfam00067).


:

Pssm-ID: 273733 [Multi-domain]  Cd Length: 481  Bit Score: 673.07  E-value: 0e+00
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108  39 PSLVVHVRGLIDGITEADLVEALQEFGTISYVVLMPKKRQALVEFEDMNGASNAVTYANNNQIYIAGRPSYINYSTSQKI 118
Cdd:TIGR01649   1 PSPVVHVRNLPQDVVEADLVEALIPFGPVSYVMMLPGKRQALVEFEDEESAKACVNFATSVPIYIRGQPAFFNYSTSQEI 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 119 SRPTDSD-DTRSVNNVLLLTIMNPIYPITSDVLYTICNNCGPVQRIVIFRKNG-VQAMVEFDSVQSAQRAKASLNGADIY 196
Cdd:TIGR01649  81 KRDGNSDfDSAGPNKVLRVIVENPMYPITLDVLYQIFNPYGKVLRIVTFTKNNvFQALVEFESVNSAQHAKAALNGADIY 160
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 197 SGCCTLKIEYAKPTRLNVFKNDQDTWDYTNPNLSGQ-DPNANPNKRQRQPALLGDHPPEYGSPqgGYGHYDDTygpppPP 275
Cdd:TIGR01649 161 NGCCTLKIEYAKPTRLNVKYNDDDSRDYTNPDLPGRrDPGLDQTHRQRQPALLGQHPSSYGHD--GYSSHGGP-----LA 233
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 276 PHYEGRRMGPPIGrGRGVPRYGGAQYGHGPPPPDYNAHADSP--VVMVYGLDPVKINADRVFNIFCLYGNVERVKFMKSK 353
Cdd:TIGR01649 234 PLAGGDRMGPPHG-PPSRYRPAYEAAPLAPAISSYGPAGGGPgsVLMVSGLHQEKVNCDRLFNLFCVYGNVERVKFMKNK 312
                         330       340       350       360       370       380       390       400
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 354 PGAAMVEMGDCYAVDRAVSHLNNTMLFGQKLNVCVSKQQAIMPGQSYQLEDGSCSFKDFHGYRNNRFTTSEQAAKNRIQQ 433
Cdd:TIGR01649 313 KETALIEMADPYQAQLALTHLNGVKLFGKPLRVCPSKQQNVQPPREGQLDDGLTSYKDYSSSRNHRFKKPGSANKNNIQP 392
                         410       420       430       440       450       460       470       480
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 434 PSNVLHFFNSQPDSSVEAFSEICEELGIKSPVSVKLFTGKVDRSSSGLLEWESVNDAMEALALMNHYQMKNPSGPYPYTL 513
Cdd:TIGR01649 393 PSATLHLSNIPLSVSEEDLKELFAENGVHKVKKFKFFPKDNERSKMGLLEWESVEDAVEALIALNHHQLNEPNGSAPYHL 472

                  ....*....
gi 1207175108 514 KLCFSTAQH 522
Cdd:TIGR01649 473 KVSFSTSRI 481
 
Name Accession Description Interval E-value
hnRNP-L_PTB TIGR01649
hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ...
39-522 0e+00

hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ribonucleoproteins are PTB (polypyrimidine tract binding protein) and hnRNP-L. These proteins contain four RNA recognition motifs (rrm: pfam00067).


Pssm-ID: 273733 [Multi-domain]  Cd Length: 481  Bit Score: 673.07  E-value: 0e+00
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108  39 PSLVVHVRGLIDGITEADLVEALQEFGTISYVVLMPKKRQALVEFEDMNGASNAVTYANNNQIYIAGRPSYINYSTSQKI 118
Cdd:TIGR01649   1 PSPVVHVRNLPQDVVEADLVEALIPFGPVSYVMMLPGKRQALVEFEDEESAKACVNFATSVPIYIRGQPAFFNYSTSQEI 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 119 SRPTDSD-DTRSVNNVLLLTIMNPIYPITSDVLYTICNNCGPVQRIVIFRKNG-VQAMVEFDSVQSAQRAKASLNGADIY 196
Cdd:TIGR01649  81 KRDGNSDfDSAGPNKVLRVIVENPMYPITLDVLYQIFNPYGKVLRIVTFTKNNvFQALVEFESVNSAQHAKAALNGADIY 160
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 197 SGCCTLKIEYAKPTRLNVFKNDQDTWDYTNPNLSGQ-DPNANPNKRQRQPALLGDHPPEYGSPqgGYGHYDDTygpppPP 275
Cdd:TIGR01649 161 NGCCTLKIEYAKPTRLNVKYNDDDSRDYTNPDLPGRrDPGLDQTHRQRQPALLGQHPSSYGHD--GYSSHGGP-----LA 233
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 276 PHYEGRRMGPPIGrGRGVPRYGGAQYGHGPPPPDYNAHADSP--VVMVYGLDPVKINADRVFNIFCLYGNVERVKFMKSK 353
Cdd:TIGR01649 234 PLAGGDRMGPPHG-PPSRYRPAYEAAPLAPAISSYGPAGGGPgsVLMVSGLHQEKVNCDRLFNLFCVYGNVERVKFMKNK 312
                         330       340       350       360       370       380       390       400
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 354 PGAAMVEMGDCYAVDRAVSHLNNTMLFGQKLNVCVSKQQAIMPGQSYQLEDGSCSFKDFHGYRNNRFTTSEQAAKNRIQQ 433
Cdd:TIGR01649 313 KETALIEMADPYQAQLALTHLNGVKLFGKPLRVCPSKQQNVQPPREGQLDDGLTSYKDYSSSRNHRFKKPGSANKNNIQP 392
                         410       420       430       440       450       460       470       480
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 434 PSNVLHFFNSQPDSSVEAFSEICEELGIKSPVSVKLFTGKVDRSSSGLLEWESVNDAMEALALMNHYQMKNPSGPYPYTL 513
Cdd:TIGR01649 393 PSATLHLSNIPLSVSEEDLKELFAENGVHKVKKFKFFPKDNERSKMGLLEWESVEDAVEALIALNHHQLNEPNGSAPYHL 472

                  ....*....
gi 1207175108 514 KLCFSTAQH 522
Cdd:TIGR01649 473 KVSFSTSRI 481
RRM2_hnRNPL cd12785
RNA recognition motif 2 (RRM2) found in vertebrate heterogeneous nuclear ribonucleoprotein L ...
128-227 1.00e-63

RNA recognition motif 2 (RRM2) found in vertebrate heterogeneous nuclear ribonucleoprotein L (hnRNP-L); This subgroup corresponds to the RRM2 of hnRNP-L, a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-L shows significant sequence homology to polypyrimidine tract-binding protein (PTB or hnRNP I). Both hnRNP-L and PTB are localized in the nucleus but excluded from the nucleolus. hnRNP-L is an RNA-binding protein with three RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410177 [Multi-domain]  Cd Length: 100  Bit Score: 202.59  E-value: 1.00e-63
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 128 RSVNNVLLLTIMNPIYPITSDVLYTICNNCGPVQRIVIFRKNGVQAMVEFDSVQSAQRAKASLNGADIYSGCCTLKIEYA 207
Cdd:cd12785     1 RSVNNVLLFTILNPIYSITTDVLYTICNPCGPVQRIVIFRKNGVQAMVEFDSVQSAQRAKASLNGADIYSGCCTLKIEYA 80
                          90       100
                  ....*....|....*....|
gi 1207175108 208 KPTRLNVFKNDQDTWDYTNP 227
Cdd:cd12785    81 KPTRLNVFKNDQDTWDYTNP 100
RRM_5 pfam13893
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
294-414 1.20e-56

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins.


Pssm-ID: 433561 [Multi-domain]  Cd Length: 125  Bit Score: 185.00  E-value: 1.20e-56
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 294 PRYGGAQYGHGP--PPPDYNAHADSPVVMVYGLDPVKINADRVFNIFCLYGNVERVKFMKSKPGAAMVEMGDCYAVDRAV 371
Cdd:pfam13893   2 GRFGPSYTGSVAatGWPGAAGVAGNSVLMVYGLNPDRVNCDKLFNLFCLYGNVARVKFMKNKKGTAMVQMGDASQVQRAI 81
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|...
gi 1207175108 372 SHLNNTMLFGQKLNVCVSKQQAIMPGQSYQLEDGSCSFKDFHG 414
Cdd:pfam13893  82 QHLNGHPLFGKRLQIILSKQQAVSYALPFELQDDSPSFKDYSN 124
RRM smart00360
RNA recognition motif;
42-110 5.01e-09

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 52.98  E-value: 5.01e-09
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1207175108   42 VVHVRGLIDGITEADLVEALQEFGTISYVVLMPK------KRQALVEFEDMNGASNAVtyANNNQIYIAGRPSYI 110
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVRLVRDketgksKGFAFVEFESEEDAEKAL--EALNGKELDGRPLKV 73
 
Name Accession Description Interval E-value
hnRNP-L_PTB TIGR01649
hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ...
39-522 0e+00

hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ribonucleoproteins are PTB (polypyrimidine tract binding protein) and hnRNP-L. These proteins contain four RNA recognition motifs (rrm: pfam00067).


Pssm-ID: 273733 [Multi-domain]  Cd Length: 481  Bit Score: 673.07  E-value: 0e+00
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108  39 PSLVVHVRGLIDGITEADLVEALQEFGTISYVVLMPKKRQALVEFEDMNGASNAVTYANNNQIYIAGRPSYINYSTSQKI 118
Cdd:TIGR01649   1 PSPVVHVRNLPQDVVEADLVEALIPFGPVSYVMMLPGKRQALVEFEDEESAKACVNFATSVPIYIRGQPAFFNYSTSQEI 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 119 SRPTDSD-DTRSVNNVLLLTIMNPIYPITSDVLYTICNNCGPVQRIVIFRKNG-VQAMVEFDSVQSAQRAKASLNGADIY 196
Cdd:TIGR01649  81 KRDGNSDfDSAGPNKVLRVIVENPMYPITLDVLYQIFNPYGKVLRIVTFTKNNvFQALVEFESVNSAQHAKAALNGADIY 160
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 197 SGCCTLKIEYAKPTRLNVFKNDQDTWDYTNPNLSGQ-DPNANPNKRQRQPALLGDHPPEYGSPqgGYGHYDDTygpppPP 275
Cdd:TIGR01649 161 NGCCTLKIEYAKPTRLNVKYNDDDSRDYTNPDLPGRrDPGLDQTHRQRQPALLGQHPSSYGHD--GYSSHGGP-----LA 233
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 276 PHYEGRRMGPPIGrGRGVPRYGGAQYGHGPPPPDYNAHADSP--VVMVYGLDPVKINADRVFNIFCLYGNVERVKFMKSK 353
Cdd:TIGR01649 234 PLAGGDRMGPPHG-PPSRYRPAYEAAPLAPAISSYGPAGGGPgsVLMVSGLHQEKVNCDRLFNLFCVYGNVERVKFMKNK 312
                         330       340       350       360       370       380       390       400
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 354 PGAAMVEMGDCYAVDRAVSHLNNTMLFGQKLNVCVSKQQAIMPGQSYQLEDGSCSFKDFHGYRNNRFTTSEQAAKNRIQQ 433
Cdd:TIGR01649 313 KETALIEMADPYQAQLALTHLNGVKLFGKPLRVCPSKQQNVQPPREGQLDDGLTSYKDYSSSRNHRFKKPGSANKNNIQP 392
                         410       420       430       440       450       460       470       480
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 434 PSNVLHFFNSQPDSSVEAFSEICEELGIKSPVSVKLFTGKVDRSSSGLLEWESVNDAMEALALMNHYQMKNPSGPYPYTL 513
Cdd:TIGR01649 393 PSATLHLSNIPLSVSEEDLKELFAENGVHKVKKFKFFPKDNERSKMGLLEWESVEDAVEALIALNHHQLNEPNGSAPYHL 472

                  ....*....
gi 1207175108 514 KLCFSTAQH 522
Cdd:TIGR01649 473 KVSFSTSRI 481
RRM2_hnRNPL cd12785
RNA recognition motif 2 (RRM2) found in vertebrate heterogeneous nuclear ribonucleoprotein L ...
128-227 1.00e-63

RNA recognition motif 2 (RRM2) found in vertebrate heterogeneous nuclear ribonucleoprotein L (hnRNP-L); This subgroup corresponds to the RRM2 of hnRNP-L, a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-L shows significant sequence homology to polypyrimidine tract-binding protein (PTB or hnRNP I). Both hnRNP-L and PTB are localized in the nucleus but excluded from the nucleolus. hnRNP-L is an RNA-binding protein with three RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410177 [Multi-domain]  Cd Length: 100  Bit Score: 202.59  E-value: 1.00e-63
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 128 RSVNNVLLLTIMNPIYPITSDVLYTICNNCGPVQRIVIFRKNGVQAMVEFDSVQSAQRAKASLNGADIYSGCCTLKIEYA 207
Cdd:cd12785     1 RSVNNVLLFTILNPIYSITTDVLYTICNPCGPVQRIVIFRKNGVQAMVEFDSVQSAQRAKASLNGADIYSGCCTLKIEYA 80
                          90       100
                  ....*....|....*....|
gi 1207175108 208 KPTRLNVFKNDQDTWDYTNP 227
Cdd:cd12785    81 KPTRLNVFKNDQDTWDYTNP 100
RRM2_hnRNPL_like cd12694
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) ...
131-216 4.52e-59

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) and similar proteins; This subfamily corresponds to the RRM2 of heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), and similar proteins. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both nuclear and cytoplasmic roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to hnRNP-L, which contains three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410094 [Multi-domain]  Cd Length: 86  Bit Score: 190.18  E-value: 4.52e-59
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 131 NNVLLLTIMNPIYPITSDVLYTICNNCGPVQRIVIFRKNGVQAMVEFDSVQSAQRAKASLNGADIYSGCCTLKIEYAKPT 210
Cdd:cd12694     1 NHVLLFTILNPLYPITVDVIHTICSPYGKVLRIVIFRKNGVQAMVEFDSVESAQRAKAALNGADIYSGCCTLKIEYAKPT 80

                  ....*.
gi 1207175108 211 RLNVFK 216
Cdd:cd12694    81 RLNVYK 86
RRM_5 pfam13893
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
294-414 1.20e-56

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins.


Pssm-ID: 433561 [Multi-domain]  Cd Length: 125  Bit Score: 185.00  E-value: 1.20e-56
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 294 PRYGGAQYGHGP--PPPDYNAHADSPVVMVYGLDPVKINADRVFNIFCLYGNVERVKFMKSKPGAAMVEMGDCYAVDRAV 371
Cdd:pfam13893   2 GRFGPSYTGSVAatGWPGAAGVAGNSVLMVYGLNPDRVNCDKLFNLFCLYGNVARVKFMKNKKGTAMVQMGDASQVQRAI 81
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|...
gi 1207175108 372 SHLNNTMLFGQKLNVCVSKQQAIMPGQSYQLEDGSCSFKDFHG 414
Cdd:pfam13893  82 QHLNGHPLFGKRLQIILSKQQAVSYALPFELQDDSPSFKDYSN 124
RRM4_hnRNPL cd12704
RNA recognition motif 4 (RRM4) found in vertebrate heterogeneous nuclear ribonucleoprotein L ...
434-517 3.24e-53

RNA recognition motif 4 (RRM4) found in vertebrate heterogeneous nuclear ribonucleoprotein L (hnRNP-L); This subgroup corresponds to the RRM4 of hnRNP-L, a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-L shows significant sequence homology with polypyrimidine tract-binding protein (PTB or hnRNP I). Both hnRNP-L and PTB are localized in the nucleus but excluded from the nucleolus. hnRNP-L is an RNA-binding protein with three RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410103  Cd Length: 84  Bit Score: 174.70  E-value: 3.24e-53
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 434 PSNVLHFFNSQPDSSVEAFSEICEELGIKSPVSVKLFTGKVDRSSSGLLEWESVNDAMEALALMNHYQMKNPSGPYPYTL 513
Cdd:cd12704     1 PSNVLHFFNAPPEVTEENFFEICDELGVKRPTSVKVFSGKSERSSSGLLEWDSKSDALETLGLLNHYQMKNPNGPYPYTL 80

                  ....
gi 1207175108 514 KLCF 517
Cdd:cd12704    81 KLCF 84
RRM2_hnRPLL cd12786
RNA recognition motif 2 (RRM2) found in vertebrate heterogeneous nuclear ribonucleoprotein ...
131-225 3.30e-51

RNA recognition motif 2 (RRM2) found in vertebrate heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL); The subgroup corresponds to the RRM2 of hnRNP-LL which plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to heterogeneous nuclear ribonucleoprotein L (hnRNP-L), which is an abundant nuclear, multifunctional RNA-binding protein with three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 241230 [Multi-domain]  Cd Length: 96  Bit Score: 169.81  E-value: 3.30e-51
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 131 NNVLLLTIMNPIYPITSDVLYTICNNCGPVQRIVIFRKNGVQAMVEFDSVQSAQRAKASLNGADIYSGCCTLKIEYAKPT 210
Cdd:cd12786     2 NKVLLLSIQNPLYPITVDVLYTVCNPVGKVQRIVIFKRNGIQAMVEFESVECAQKAKAALNGADIYAGCCTLKIEYARPT 81
                          90
                  ....*....|....*
gi 1207175108 211 RLNVFKNDQDTWDYT 225
Cdd:cd12786    82 RLNVIRNDNDSWDYT 96
RRM3_hnRNPL cd12699
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein L ...
315-391 7.72e-49

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein L (hnRNP-L); This subgroup corresponds to the RRM3 of hnRNP-L, a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-L shows significant sequence homology with polypyrimidine tract-binding protein (PTB or hnRNP I). Both, hnRNP-L and PTB, are localized in the nucleus but excluded from the nucleolus. hnRNP-L is an RNA-binding protein with three RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410099 [Multi-domain]  Cd Length: 77  Bit Score: 162.79  E-value: 7.72e-49
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1207175108 315 DSPVVMVYGLDPVKINADRVFNIFCLYGNVERVKFMKSKPGAAMVEMGDCYAVDRAVSHLNNTMLFGQKLNVCVSKQ 391
Cdd:cd12699     1 DSPVLMVYGLDQSKMNCDRVFNVFCLYGNVEKVKFMKSKPGAAMVEMADGYAVDRAITHLNNNFMFGQKLNVCVSKQ 77
RRM1_hnRNPL_like cd12689
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) ...
39-118 1.13e-45

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) and similar proteins; This subfamily corresponds to the RRM1 of heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), and similar proteins. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to hnRNP-L, which contains three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410090 [Multi-domain]  Cd Length: 80  Bit Score: 154.35  E-value: 1.13e-45
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108  39 PSLVVHVRGLIDGITEADLVEALQEFGTISYVVLMPKKRQALVEFEDMNGASNAVTYANNNQIYIAGRPSYINYSTSQKI 118
Cdd:cd12689     1 PSPVVHVRGLSEHVTEADLVEALQNFGPISYVTMMPKKRQALVEFEDIEGAKACVNYAQQNPIYVGGRPAYFNYSTSQKI 80
RRM1_hnRNPL cd12780
RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein L ...
39-118 2.32e-45

RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein L (hnRNP-L); This subgroup corresponds to the RRM1 of hnRNP-L, a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-L shows significant sequence homology to polypyrimidine tract-binding protein (PTB or hnRNP I). Both, hnRNP-L and PTB, are localized in the nucleus but excluded from the nucleolus. hnRNP-L is an RNA-binding protein with three RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410172 [Multi-domain]  Cd Length: 80  Bit Score: 153.86  E-value: 2.32e-45
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108  39 PSLVVHVRGLIDGITEADLVEALQEFGTISYVVLMPKKRQALVEFEDMNGASNAVTYANNNQIYIAGRPSYINYSTSQKI 118
Cdd:cd12780     1 PSPVVHIRGLIDGVVEADLVEALQEFGTISYVVVMPKKRQALVEFEDILGACNAVNYAADNQIYIAGHPAFVNYSTSQKI 80
RRM3_hnRNPL_like cd12424
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) ...
318-391 5.58e-41

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) and similar proteins; This subfamily corresponds to the RRM3 of heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), and similar proteins. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to hnRNP-L, which contains three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RRMs.


Pssm-ID: 409858 [Multi-domain]  Cd Length: 74  Bit Score: 141.98  E-value: 5.58e-41
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1207175108 318 VVMVYGLDPVKINADRVFNIFCLYGNVERVKFMKSKPGAAMVEMGDCYAVDRAVSHLNNTMLFGQKLNVCVSKQ 391
Cdd:cd12424     1 VLMVYGLDPDKMNCDRLFNLLCLYGNVLKIKFLKSKPGTAMVQMGDPVAADRAIQNLNNVVLFGQKLQLTYSKQ 74
RRM4_hnRNPL_like cd12427
RNA recognition motif 4 (RRM4) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) ...
434-517 2.21e-39

RNA recognition motif 4 (RRM4) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) and similar proteins; This subfamily corresponds to the RRM4 of heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), and similar proteins. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to hnRNP-L, which contains three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409861 [Multi-domain]  Cd Length: 84  Bit Score: 137.76  E-value: 2.21e-39
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 434 PSNVLHFFNSQPDSSVEAFSEICEELGIKSPVSVKLFTGKVDRSSSGLLEWESVNDAMEALALMNHYQMKNPSGPYPYTL 513
Cdd:cd12427     1 PSKVLHFFNAPPEITEETLKELFIEAGAPPPVKVKVFPSKSERSSSGLLEFESVEDALEALALCNHTPIKNPNGKAPYTL 80

                  ....
gi 1207175108 514 KLCF 517
Cdd:cd12427    81 KLCF 84
RRM3_hnRPLL cd12700
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein ...
318-391 4.03e-36

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL); The subgroup corresponds to the RRM3 of hnRNP-LL which plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to heterogeneous nuclear ribonucleoprotein L (hnRNP-L), which is an abundant nuclear, multifunctional RNA-binding protein with three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410100 [Multi-domain]  Cd Length: 74  Bit Score: 128.98  E-value: 4.03e-36
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1207175108 318 VVMVYGLDPVKINADRVFNIFCLYGNVERVKFMKSKPGAAMVEMGDCYAVDRAVSHLNNTMLFGQKLNVCVSKQ 391
Cdd:cd12700     1 VAMVSGLHQLKMNCSRVFNLFCLYGNIEKVKFMKTIPGTALVEMGDEYAVERAVTHLNNVKLFGKRLNVCVSKQ 74
RRM2_PTBP1_hnRNPL_like cd12422
RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), ...
133-214 3.23e-33

RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), and similar proteins; This subfamily corresponds to the RRM2 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), polypyrimidine tract-binding protein homolog 3 (PTBPH3), polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2), and similar proteins, and RRM3 of PTBPH1 and PTBPH2. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. Rod1 is a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL protein plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. This family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to other family members, all of which contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although their biological roles remain unclear, both PTBPH1 and PTBPH2 show significant sequence similarity to PTB. However, in contrast to PTB, they have three RRMs.


Pssm-ID: 409856 [Multi-domain]  Cd Length: 85  Bit Score: 121.14  E-value: 3.23e-33
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 133 VLLLTIMNPIYPITSDVLYTICNNCGPVQRIVIFRKN-GVQAMVEFDSVQSAQRAKASLNGADIYSGCCTLKIEYAKPTR 211
Cdd:cd12422     1 VLLVTVTNLLYPVTVDVLHQVFSPYGAVEKIVIFEKGtGVQALVQFDSVESAEAAKKALNGRNIYDGCCTLDIQFSRLKE 80

                  ...
gi 1207175108 212 LNV 214
Cdd:cd12422    81 LTV 83
RRM1_hnRPLL cd12781
RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein ...
40-121 1.83e-31

RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL); This subgroup corresponds to the RRM1 of hnRNP-LL, which plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to heterogeneous nuclear ribonucleoprotein L (hnRNP-L), which is an abundant nuclear, multifunctional RNA-binding protein with three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410173 [Multi-domain]  Cd Length: 84  Bit Score: 116.29  E-value: 1.83e-31
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108  40 SLVVHVRGLIDGITEADLVEALQEFGTISYVVLMPKKRQALVEFEDMNGASNAVTYANNNQIYIAGRPSYINYSTSQKIS 119
Cdd:cd12781     3 SPVVHVRGLCESVVEADLVEALEKFGTICYVMMMPFKRQALVEFENVESAKKCVTFAADEPVYIAGQQAFFNYSTSKRIT 82

                  ..
gi 1207175108 120 RP 121
Cdd:cd12781    83 RP 84
RRM2_PTBP1_like cd12693
RNA recognition motif 2 (RRM2) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) ...
131-225 1.05e-28

RNA recognition motif 2 (RRM2) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins; This subfamily corresponds to the RRM2 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410093 [Multi-domain]  Cd Length: 96  Bit Score: 109.36  E-value: 1.05e-28
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 131 NNVLLLTIMNPIYPITSDVLYTICNNCGPVQRIVIFRKNGV-QAMVEFDSVQSAQRAKASLNGADIYSGCCTLKIEYAKP 209
Cdd:cd12693     1 NPVLRVIVENLFYPVTLDVLHQIFSKFGTVLKIITFTKNNQfQALIQFADAVSAQAAKLSLDGQNIYNGCCTLRIDFSKL 80
                          90
                  ....*....|....*.
gi 1207175108 210 TRLNVFKNDQDTWDYT 225
Cdd:cd12693    81 TSLNVKYNNDKSRDYT 96
RRM1_PTBP1_hnRNPL_like cd12421
RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), ...
42-115 4.98e-24

RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), and similar proteins; This subfamily corresponds to the RRM1 of the majority of family members that include polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), polypyrimidine tract-binding protein homolog 3 (PTBPH3), polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2), and similar proteins. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. Rod1 is a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL protein plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. The family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to other family members, all of which contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although their biological roles remain unclear, both PTBPH1 and PTBPH2 show significant sequence similarity to PTB. However, in contrast to PTB, they have three RRMs. In addition, this family also includes RNA-binding motif protein 20 (RBM20) that is an alternative splicing regulator associated with dilated cardiomyopathy (DCM) and contains only one RRM.


Pssm-ID: 409855 [Multi-domain]  Cd Length: 74  Bit Score: 95.33  E-value: 4.98e-24
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1207175108  42 VVHVRGLIDGITEADLVEALQEFGTISYVVLMPKKRQALVEFEDMNGASNAVTYANNNQIYIAGRPSYINYSTS 115
Cdd:cd12421     1 VVHIRNLPPDATEADLVALGLPFGKVTNVLLLKGKNQALVEMEDVESASSMVNYYTTVPPLIRGRPVYVQYSNH 74
RRM4_hnRPLL cd12705
RNA recognition motif 4 (RRM4) found in vertebrate heterogeneous nuclear ribonucleoprotein ...
434-517 6.56e-23

RNA recognition motif 4 (RRM4) found in vertebrate heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL); The subgroup corresponds to the RRM4 of hnRNP-LL which plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to heterogeneous nuclear ribonucleoprotein L (hnRNP-L), which is an abundant nuclear, multifunctional RNA-binding protein with three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410104  Cd Length: 85  Bit Score: 92.73  E-value: 6.56e-23
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 434 PSNVLHFFNSQPDSSVEAFSEICEELGIKSPVSVKLFTGKVD-RSSSGLLEWESVNDAMEALALMNHYQMKNPSGPYPYT 512
Cdd:cd12705     1 PSCVLHYYNVPLCVTEETFQKLCEDHEVPTFIKYKVFDAKPSsKTLSGLLEWESKTEAVEALTVLNHYQIRVPNGSNPYT 80

                  ....*
gi 1207175108 513 LKLCF 517
Cdd:cd12705    81 LKLCF 85
RRM2_PTBPH3 cd12692
RNA recognition motif 2 (RRM2) found in plant polypyrimidine tract-binding protein homolog 3 ...
131-214 1.72e-22

RNA recognition motif 2 (RRM2) found in plant polypyrimidine tract-binding protein homolog 3 (PTBPH3); This subfamily corresponds to the RRM2 of PTBPH3. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410092 [Multi-domain]  Cd Length: 88  Bit Score: 91.54  E-value: 1.72e-22
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 131 NNVLLLTIMNPIYPITSDVLYTICNNCGPVQRIVIFRKN-GVQAMVEFDSVQSAQRAKASLNGADIYSGCCTLKIEYAKP 209
Cdd:cd12692     2 NRILLVTIHHPLYPITVDVLHQVFSPHGFVEKIVTFQKSaGLQALIQYQSQQSAVQARSALQGRNIYDGCCQLDIQFSNL 81

                  ....*
gi 1207175108 210 TRLNV 214
Cdd:cd12692    82 QELQV 86
RRM3_PTBPH3 cd12698
RNA recognition motif 3 (RRM3) found in plant polypyrimidine tract-binding protein homolog 3 ...
316-390 3.44e-21

RNA recognition motif 3 (RRM3) found in plant polypyrimidine tract-binding protein homolog 3 (PTBPH3); This subgroup corresponds to the RRM3 of PTBPH3. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410098 [Multi-domain]  Cd Length: 76  Bit Score: 87.41  E-value: 3.44e-21
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1207175108 316 SPVVMVYGLDPVKINADRVFNIFCLYGNVERVKFMKSKPGAAMVEMGDCYAVDRAVSHLNNTMLFGQKLNVCVSK 390
Cdd:cd12698     1 TPVLLVSNLNPEKVDVDKLFNLFSLYGNIVRIKILRNKPDHALIQMSDPFQAELAVNYLKGAMLFGKSLEVNFSK 75
RRM2_PTBP1 cd12782
RNA recognition motif 2 (RRM2) found in vertebrate polypyrimidine tract-binding protein 1 (PTB) ...
133-233 3.80e-21

RNA recognition motif 2 (RRM2) found in vertebrate polypyrimidine tract-binding protein 1 (PTB); This subgroup corresponds to the RRM2 of PTB, also known as 58 kDa RNA-binding protein PPTB-1 or heterogeneous nuclear ribonucleoprotein I (hnRNP I), an important negative regulator of alternative splicing in mammalian cells. PTB also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTB contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). RRM1 and RRM2 are independent from each other and separated by flexible linkers. By contrast, there is an unusual and conserved interdomain interaction between RRM3 and RRM4. It is widely held that only RRMs 3 and 4 are involved in RNA binding and RRM2 mediates PTB homodimer formation. However, new evidence shows that the RRMs 1 and 2 also contribute substantially to RNA binding. Moreover, PTB may not always dimerize to repress splicing. It is a monomer in solution.


Pssm-ID: 410174 [Multi-domain]  Cd Length: 108  Bit Score: 88.61  E-value: 3.80e-21
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 133 VLLLTIMNPIYPITSDVLYTICNNCGPVQRIVIFRKNG-VQAMVEFDSVQSAQRAKASLNGADIYSGCCTLKIEYAKPTR 211
Cdd:cd12782     7 VLRIIVENLFYPVTLDVLHQIFSKFGTVLKIITFTKNNqFQALLQYADPVSAQHAKLSLDGQNIYNACCTLRIDFSKLTS 86
                          90       100
                  ....*....|....*....|..
gi 1207175108 212 LNVFKNDQDTWDYTNPNLSGQD 233
Cdd:cd12782    87 LNVKYNNDKSRDYTRPDLPSGD 108
RRM2_PTBP2 cd12783
RNA recognition motif 2 (RRM2) found in vertebrate polypyrimidine tract-binding protein 2 ...
133-233 6.67e-20

RNA recognition motif 2 (RRM2) found in vertebrate polypyrimidine tract-binding protein 2 (PTBP2); This subgroup corresponds to the RRM2 of PTBP2, also known as neural polypyrimidine tract-binding protein or neurally-enriched homolog of PTB (nPTB), highly homologous to polypyrimidine tract binding protein (PTB) and perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 contains four RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410175 [Multi-domain]  Cd Length: 107  Bit Score: 85.06  E-value: 6.67e-20
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 133 VLLLTIMNPIYPITSDVLYTICNNCGPVQRIVIFRKNG-VQAMVEFDSVQSAQRAKASLNGADIYSGCCTLKIEYAKPTR 211
Cdd:cd12783     3 VLRIIIDNMYYPVTLDVLHQIFSKFGTVLKIITFTKNNqFQALLQYGDPVNAQQAKLALDGQNIYNACCTLRIDFSKLVN 82
                          90       100
                  ....*....|....*....|..
gi 1207175108 212 LNVFKNDQDTWDYTNPNLSGQD 233
Cdd:cd12783    83 LNVKYNNDKSRDYTRPDLPSGD 104
RRM3_PTBPH1_PTBPH2 cd12690
RNA recognition motif 3 (RRM3) found in plant polypyrimidine tract-binding protein homolog 1 ...
132-225 3.34e-19

RNA recognition motif 3 (RRM3) found in plant polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2); This subfamily corresponds to the RRM3 of PTBPH1 and PTBPH2. Although their biological roles remain unclear, PTBPH1 and PTBPH2 show significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Both, PTBPH1 and PTBPH2, contain three RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410091 [Multi-domain]  Cd Length: 97  Bit Score: 82.61  E-value: 3.34e-19
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 132 NVLLLTIMNPIYPITSDVLYTICNNCGPVQRIVIFRKN-GVQAMVEFDSVQSAQRAKASLNGADIYS-GCCTLKIEYAKP 209
Cdd:cd12690     2 NVLLASIENMQYAVTLDVLHTVFSAFGFVQKIAIFEKNgGFQALIQYPDVPTAVVAKEALEGHCIYDgGYCKLHLSYSRH 81
                          90
                  ....*....|....*.
gi 1207175108 210 TRLNVFKNDQDTWDYT 225
Cdd:cd12690    82 TDLNVKVNNDRSRDYT 97
RRM2_ROD1 cd12784
RNA recognition motif 2 (RRM2) found in vertebrate regulator of differentiation 1 (Rod1); This ...
133-233 7.78e-17

RNA recognition motif 2 (RRM2) found in vertebrate regulator of differentiation 1 (Rod1); This subgroup corresponds to the RRM2 of ROD1 coding protein Rod1, a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein and negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. Rod1 contains four repeats of RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain) and does have RNA binding activities.


Pssm-ID: 410176 [Multi-domain]  Cd Length: 108  Bit Score: 76.20  E-value: 7.78e-17
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 133 VLLLTIMNPIYPITSDVLYTICNNCGPVQRIVIFRKNG-VQAMVEFDSVQSAQRAKASLNGADIYSGCCTLKIEYAKPTR 211
Cdd:cd12784     5 VLRIIVENLFYPVTLEVLHQIFSKFGTVLKIITFTKNNqFQALLQYADPMNAHHAKVALDGQNIYNACCTLRIEFSKLTS 84
                          90       100
                  ....*....|....*....|..
gi 1207175108 212 LNVFKNDQDTWDYTNPNLSGQD 233
Cdd:cd12784    85 LNVKYNNDKSRDFTRLDLPSGD 106
RRM1_PTBPH3 cd12687
RNA recognition motif 1 (RRM1) found in plant polypyrimidine tract-binding protein homolog 3 ...
42-114 1.44e-13

RNA recognition motif 1 (RRM1) found in plant polypyrimidine tract-binding protein homolog 3 (PTBPH3); This subfamily corresponds to the RRM1 of PTBPH3. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410088 [Multi-domain]  Cd Length: 75  Bit Score: 65.66  E-value: 1.44e-13
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1207175108  42 VVHVRGLIDGITEADLVEALQEFGTISYVVLMPKKRQALVEFEDMNGASNAVTYANNNQIYIAGRPSYINYST 114
Cdd:cd12687     2 VLHVRNVGHEISENDLLQLAQPFGVVTKLVMLRAKNQALLQMQDVSAAISALQFYTSVQPSIRGRNVYIQFSS 74
RRM3_PTBP1_like cd12423
RNA recognition motif 3 (RRM3) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) ...
318-390 5.53e-13

RNA recognition motif 3 (RRM3) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins; This subfamily corresponds to the RRM3 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409857 [Multi-domain]  Cd Length: 74  Bit Score: 64.17  E-value: 5.53e-13
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1207175108 318 VVMVYGLDPVKINADRVFNIFCLYGNVERVKFMKSKPGAAMVEMGDCYAVDRAVSHLNNTMLFGQKLNVCVSK 390
Cdd:cd12423     1 VLLVSNLNEEMVTPDALFTLFGVYGDVLRVKILFNKKDTALIQMADPQQAQTALQHLNGIKLFGKPIRVTLSK 73
RRM3_PTBP1 cd12695
RNA recognition motif 3 (RRM3) found in vertebrate polypyrimidine tract-binding protein 1 (PTB) ...
318-401 1.21e-11

RNA recognition motif 3 (RRM3) found in vertebrate polypyrimidine tract-binding protein 1 (PTB); This subgroup corresponds to the RRM3 of PTB, also known as 58 kDa RNA-binding protein PPTB-1 or heterogeneous nuclear ribonucleoprotein I (hnRNP I), an important negative regulator of alternative splicing in mammalian cells. PTB also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTB contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). RRM1 and RRM2 are independent from each other and separated by flexible linkers. By contrast, there is an unusual and conserved interdomain interaction between RRM3 and RRM4. It is widely held that only RRMs 3 and 4 are involved in RNA binding and RRM2 mediates PTB homodimer formation. However, new evidence show that the RRMs 1 and 2 also contribute substantially to RNA binding. Moreover, PTB may not always dimerize to repress splicing. It is a monomer in solution.


Pssm-ID: 410095 [Multi-domain]  Cd Length: 93  Bit Score: 60.79  E-value: 1.21e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 318 VVMVYGLDPVKINADRVFNIFCLYGNVERVKFMKSKPGAAMVEMGDCYAVDRAVSHLNNTMLFGQKLNVCVSKQQAI-MP 396
Cdd:cd12695     1 VLLVSNLNPERVTPQCLFILFGVYGDVQRVKILFNKKENALVQMADGNQAQLAMSHLNGQKLHGKPIRITLSKHQTVqLP 80

                  ....*..
gi 1207175108 397 --GQSYQ 401
Cdd:cd12695    81 reGQEDQ 87
RRM_8 pfam11835
RRM-like domain; This domain is related to the RRM domains suggesting it may have an ...
133-209 3.30e-11

RRM-like domain; This domain is related to the RRM domains suggesting it may have an RNA-binding function.


Pssm-ID: 432114  Cd Length: 89  Bit Score: 59.40  E-value: 3.30e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1207175108 133 VLLLTIMNPIYPITSDVLYTICNNCGPVQ-RIVIFRKNGVQAMVEFDSVQSAQRAKASLNGADIYSGCCTLKIEYAKP 209
Cdd:pfam11835  12 VLRVTVSHILYPVTSEVLHQVYDTYGAVAvQVLAVSTWHVEALVSFMSSCDAERARSATHGRNIYDGGCLLDVQHAQP 89
RRM3_ROD1 cd12697
RNA recognition motif 3 (RRM3) found in vertebrate regulator of differentiation 1 (Rod1); This ...
318-392 9.19e-11

RNA recognition motif 3 (RRM3) found in vertebrate regulator of differentiation 1 (Rod1); This subgroup corresponds to the RRM3 of ROD1 coding protein Rod1, a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. Rod1 contains four repeats of RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain) and does have RNA binding activities.


Pssm-ID: 410097 [Multi-domain]  Cd Length: 76  Bit Score: 58.06  E-value: 9.19e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1207175108 318 VVMVYGLDPVKINADRVFNIFCLYGNVERVKFMKSKPGAAMVEMGDCYAVDRAVSHLNNTMLFGQKLNVCVSKQQ 392
Cdd:cd12697     2 VLLVSNLNPDAITPHGLFILFGVYGDVLRVKIMFNKKENALVQMADATQAQIAMSHLNGQRLYGKVLRATLSKHQ 76
RRM2_PTBPH1_PTBPH2 cd12691
RNA recognition motif 2 (RRM2) found in plant polypyrimidine tract-binding protein homolog 1 ...
132-214 2.09e-09

RNA recognition motif 2 (RRM2) found in plant polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2); This subfamily corresponds to the RRM2 of PTBPH1 and PTBPH2. Although their biological roles remain unclear, PTBPH1 and PTBPH2 show significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Both, PTBPH1 and PTBPH2, contain three RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 241135 [Multi-domain]  Cd Length: 95  Bit Score: 54.47  E-value: 2.09e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 132 NVLLLTIMN-PIYPITSDVLYTICNNCGPVQRIVIFRKN-GVQAMVEFDSVQSAQRAKASLNGADI-------YSGCCTL 202
Cdd:cd12691     2 NVLLVTIEGvEAGDVSIDVLHLVFSAFGFVHKIATFEKTaGFQALVQFTDAETASAARSALDGRSIpryllpeHVGPCSL 81
                          90
                  ....*....|..
gi 1207175108 203 KIEYAKPTRLNV 214
Cdd:cd12691    82 RISYSAHTDLNV 93
RRM1_PTBPH1_PTBPH2 cd12686
RNA recognition motif 1 (RRM1) found in plant polypyrimidine tract-binding protein homolog 1 ...
39-114 2.15e-09

RNA recognition motif 1 (RRM1) found in plant polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2); This subfamily corresponds to the RRM1 of PTBPH1 and PTBPH2. Although their biological roles remain unclear, PTBPH1 and PTBPH2 show significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Both, PTBPH1 and PTBPH2, contain three RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410087 [Multi-domain]  Cd Length: 81  Bit Score: 54.04  E-value: 2.15e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108  39 PSLVVHVRGLIDGITEADLVEALQEFGTISYVVLM--PKKRQALVEFEDMNGASNAVTY--ANNNQIYIAGRPSYINYST 114
Cdd:cd12686     1 PSKVLHLRNLPWECTEEELIELCKPFGTVVNTKCNvgANKNQAFVEFADLNQAISMVSYyaSSSEPAQVRGKTVYLQYSN 80
RRM3_PTBP2 cd12696
RNA recognition motif 3 (RRM3) found in vertebrate polypyrimidine tract-binding protein 2 ...
318-394 3.07e-09

RNA recognition motif 3 (RRM3) found in vertebrate polypyrimidine tract-binding protein 2 (PTBP2); This subgroup corresponds to the RRM3 of PTBP2, also known as neural polypyrimidine tract-binding protein or neurally-enriched homolog of PTB (nPTB), highly homologous to polypyrimidine tract binding protein (PTB) and perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 contains four RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410096 [Multi-domain]  Cd Length: 107  Bit Score: 54.61  E-value: 3.07e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1207175108 318 VVMVYGLDPVKINADRVFNIFCLYGNVERVKFMKSKPGAAMVEMGDCYAVDRAVSHLNNTMLFGQKLNVCVSKQQAI 394
Cdd:cd12696    15 VLLVSNLNEEMVTPQSLFTLFGVYGDVQRVKILYNKKDSALIQMADGNQSQLAMSHLNGQKMYGKIIRVTLSKHQTV 91
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
319-386 4.09e-09

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 53.06  E-value: 4.09e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1207175108 319 VMVYGLDPvKINADRVFNIFCLYGNVERVKFMKSK----PGAAMVEMGDCYAVDRAVSHLNNTMLFGQKLNV 386
Cdd:cd00590     1 LFVGNLPP-DTTEEDLRELFSKFGEVVSVRIVRDRdgksKGFAFVEFESPEDAEKALEALNGTELGGRPLKV 71
RRM smart00360
RNA recognition motif;
42-110 5.01e-09

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 52.98  E-value: 5.01e-09
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1207175108   42 VVHVRGLIDGITEADLVEALQEFGTISYVVLMPK------KRQALVEFEDMNGASNAVtyANNNQIYIAGRPSYI 110
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVRLVRDketgksKGFAFVEFESEEDAEKAL--EALNGKELDGRPLKV 73
RRM1_2_MATR3_like cd12436
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in the matrin 3 family of nuclear proteins; ...
42-114 5.66e-09

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in the matrin 3 family of nuclear proteins; This subfamily corresponds to the RRM of the matrin 3 family of nuclear proteins consisting of Matrin 3 (MATR3), nuclear protein 220 (NP220) and similar proteins. MATR3 is a highly conserved inner nuclear matrix protein that has been implicated in various biological processes. NP220 is a large nucleoplasmic DNA-binding protein that binds to cytidine-rich sequences, such as CCCCC (G/C), in double-stranded DNA (dsDNA). Both, Matrin 3 and NP220, contain two RNA recognition motif (RRM), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a Cys2-His2 zinc finger-like motif at the C-terminal region.


Pssm-ID: 409870 [Multi-domain]  Cd Length: 76  Bit Score: 52.73  E-value: 5.66e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1207175108  42 VVHVRGL-IDGITEADLVEALQEFGTISYVVLMPKKRQALVEFEDMNGASNAVTYANNNQIYIAGRPSYINYST 114
Cdd:cd12436     2 VLYLTGLpVSKYSEEDVLKLAEPFGKVNNVLLIRSKREAFIEMETAEDAQAMLSYCKTKPITIKGKKVKVSVSQ 75
RRM1_PTBP1 cd12777
RNA recognition motif 1 (RRM1) found in vertebrate polypyrimidine tract-binding protein 1 (PTB) ...
42-118 3.35e-08

RNA recognition motif 1 (RRM1) found in vertebrate polypyrimidine tract-binding protein 1 (PTB); This subgroup corresponds to the RRM1 of PTB, also known as 58 kDa RNA-binding protein PPTB-1 or heterogeneous nuclear ribonucleoprotein I (hnRNP I), an important negative regulator of alternative splicing in mammalian cells. PTB also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTB contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). RRM1 and RRM2 are independent from each other and separated by flexible linkers. By contrast, there is an unusual and conserved interdomain interaction between RRM3 and RRM4. It is widely held that only RRMs 3 and 4 are involved in RNA binding and RRM2 mediates PTB homodimer formation. However, new evidence shows that the RRMs 1 and 2 also contribute substantially to RNA binding. Moreover, PTB may not always dimerize to repress splicing. It is a monomer in solution.


Pssm-ID: 410169 [Multi-domain]  Cd Length: 81  Bit Score: 50.75  E-value: 3.35e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1207175108  42 VVHVRGLIDGITEADLVEALQEFGTISYVVLMPKKRQALVEFEDMNGASNAVTYANNNQIYIAGRPSYINYSTSQKI 118
Cdd:cd12777     2 VIHVRKLPNDVTEAEVISLGLPFGKVTNLLMLKGKNQAFIEMNTEEAANTMVNYYTSVTPVLRGQPIYIQFSNHKEL 78
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
43-107 9.36e-08

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 49.20  E-value: 9.36e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108  43 VHVRGLIDGITEADLVEALQEFGTISYVVLMPK-----KRQALVEFEDMNGASNAVTYANNNQIYiaGRP 107
Cdd:cd00590     1 LFVGNLPPDTTEEDLRELFSKFGEVVSVRIVRDrdgksKGFAFVEFESPEDAEKALEALNGTELG--GRP 68
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
143-205 1.50e-07

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 48.43  E-value: 1.50e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1207175108 143 YPITSDVLYTICNNCGPVQRIVIFRKNGVQ----AMVEFDSVQSAQRAKASLNGADIysGCCTLKIE 205
Cdd:cd00590     8 PDTTEEDLRELFSKFGEVVSVRIVRDRDGKskgfAFVEFESPEDAEKALEALNGTEL--GGRPLKVS 72
RRM_ALKBH8 cd12431
RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and ...
39-112 2.64e-07

RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and similar proteins; This subfamily corresponds to the RRM of ALKBH8, also termed alpha-ketoglutarate-dependent dioxygenase ABH8, or S-adenosyl-L-methionine-dependent tRNA methyltransferase ABH8, expressed in various types of human cancers. It is essential in urothelial carcinoma cell survival mediated by NOX-1-dependent ROS signals. ALKBH8 has also been identified as a tRNA methyltransferase that catalyzes methylation of tRNA to yield 5-methylcarboxymethyl uridine (mcm5U) at the wobble position of the anticodon loop. Thus, ALKBH8 plays a crucial role in the DNA damage survival pathway through a distinct mechanism involving the regulation of tRNA modification. ALKBH8 localizes to the cytoplasm. It contains the characteristic AlkB domain that is composed of a tRNA methyltransferase motif, a motif homologous to the bacterial AlkB DNA/RNA repair enzyme, and a dioxygenase catalytic core domain encompassing cofactor-binding sites for iron and 2-oxoglutarate. In addition, unlike other AlkB homologs, ALKBH8 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal S-adenosylmethionine (SAM)-dependent methyltransferase (MT) domain.


Pssm-ID: 409865 [Multi-domain]  Cd Length: 80  Bit Score: 48.34  E-value: 2.64e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1207175108  39 PSLVVHVRGLIDGITEADLVEALQEFGTISYVVLMPKKRQALVEFEDMNGASNAVTYANNNQIYIAGRPS--YINY 112
Cdd:cd12431     2 QHLVVANGGLGNGVSREQLLEVFEKYGTVEDIVMLPGKPYSFVSFKSVEEAAKAYNALNGKELELPQQNVplYLSF 77
RRM1_ROD1 cd12779
RNA recognition motif 1 (RRM1) found in vertebrate regulator of differentiation 1 (Rod1); This ...
39-118 3.78e-07

RNA recognition motif 1 (RRM1) found in vertebrate regulator of differentiation 1 (Rod1); This subgroup corresponds to the RRM1 of ROD1 coding protein Rod1, a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein that negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. Rod1 contains four repeats of RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain) and does have RNA binding activities.


Pssm-ID: 410171 [Multi-domain]  Cd Length: 90  Bit Score: 48.09  E-value: 3.78e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108  39 PSLVVHVRGLIDGITEADLVEALQEFGTISYVVLMPKKRQALVEFEDMNGASNAVTYANNNQIYIAGRPSYINYSTSQKI 118
Cdd:cd12779     4 PSRVLHIRKIPNDVTEAEVISLGLPFGKVTNLLMLKGKNQAFLEMASEEAAVTMVNYYTTVTPHLRNQPVYIQYSNHREL 83
RRM smart00360
RNA recognition motif;
143-202 6.01e-07

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 46.82  E-value: 6.01e-07
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1207175108  143 YPITSDVLYTICNNCGPVQRIVIFR-----KNGVQAMVEFDSVQSAQRAKASLNGADIYSGCCTL 202
Cdd:smart00360   9 PDTTEEELRELFSKFGKVESVRLVRdketgKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
143-197 7.56e-07

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 46.46  E-value: 7.56e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 1207175108 143 YPITSDVLYTICNNCGPVQRIVIFRKNGVQAM----VEFDSVQSAQRAKASLNGADIYS 197
Cdd:pfam00076   8 PDTTEEDLKDLFSKFGPIKSIRLVRDETGRSKgfafVEFEDEEDAEKAIEALNGKELGG 66
RRM1_PTBP2 cd12778
RNA recognition motif 1 (RRM1) found in vertebrate polypyrimidine tract-binding protein 2 ...
40-118 4.71e-06

RNA recognition motif 1 (RRM1) found in vertebrate polypyrimidine tract-binding protein 2 (PTBP2); This subgroup corresponds to the RRM1 of PTBP2, also known as neural polypyrimidine tract-binding protein or neurally-enriched homolog of PTB (nPTB), highly homologous to polypyrimidine tract binding protein (PTB) and perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 contains four RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410170 [Multi-domain]  Cd Length: 82  Bit Score: 44.67  E-value: 4.71e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1207175108  40 SLVVHVRGLIDGITEADLVEALQEFGTISYVVLMPKKRQALVEFEDMNGASNAVTYANNNQIYIAGRPSYINYSTSQKI 118
Cdd:cd12778     1 SRVLHIRKLPGEVTETEVIALGLPFGKVTNILMLKGKNQAFLELATEEAAITMVNYYTAVTPHLRNQPIYIQYSNHKEL 79
RRM_ScJSN1_like cd21616
RNA recognition motif (RRM) found in Saccharomyces cerevisiae protein JSN1 and similar ...
107-208 5.09e-06

RNA recognition motif (RRM) found in Saccharomyces cerevisiae protein JSN1 and similar proteins; JSN1, also called Pumilio homology domain family member 1 (PUF1), is a member of the PUF family of proteins. It facilitates association of Arp2/3 complex to yeast mitochondria. It may play a role in mitosis, perhaps by affecting the stability of microtubules. Members in this family contain an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410195 [Multi-domain]  Cd Length: 118  Bit Score: 45.52  E-value: 5.09e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 107 PSYINYSTSQKISRPTDSDDTRSVNNVLLLT-----------IMNPIyPITSDVLYTICNNCGPVQRIVIFRkNGVQAMV 175
Cdd:cd21616     5 PTSINWITTSPYVPPINQVNNLLPTNTILVSnifpiqqtspqPPNPI-NLTSTSLASLCSKFGDIISSRTLR-GLNMALI 82
                          90       100       110
                  ....*....|....*....|....*....|...
gi 1207175108 176 EFDSVQSAQRAKASLNGADIYSGCCTLKIEYAK 208
Cdd:cd21616    83 EFESVDSAILALESLQGKEISIIGVPSDITFAK 115
RRM4_SHARP cd12351
RNA recognition motif 4 (RRM4) found in SMART/HDAC1-associated repressor protein (SHARP) and ...
36-102 6.47e-06

RNA recognition motif 4 (RRM4) found in SMART/HDAC1-associated repressor protein (SHARP) and similar proteins; This subfamily corresponds to the RRM of SHARP, also termed Msx2-interacting protein (MINT), or SPEN homolog, is an estrogen-inducible transcriptional repressor that interacts directly with the nuclear receptor corepressor SMRT, histone deacetylases (HDACs) and components of the NuRD complex. SHARP recruits HDAC activity and binds to the steroid receptor RNA coactivator SRA through four conserved N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), further suppressing SRA-potentiated steroid receptor transcription activity. Thus, SHARP has the capacity to modulate both liganded and nonliganded nuclear receptors. SHARP also has been identified as a component of transcriptional repression complexes in Notch/RBP-Jkappa signaling pathways. In addition to the N-terminal RRMs, SHARP possesses a C-terminal SPOC domain (Spen paralog and ortholog C-terminal domain), which is highly conserved among Spen proteins.


Pssm-ID: 409787 [Multi-domain]  Cd Length: 77  Bit Score: 44.29  E-value: 6.47e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1207175108  36 KTLPSLVVHVRGLIDGITEADLVEALQEFGTISYVVLMPKKRQALVEFEDMNGASNAVTYANNNQIY 102
Cdd:cd12351     3 KSMPTNCVWLDGLSENVTEQYLTRHFCRYGPVVKVVIDRQKGMALVLYDEVECAQAAVKETKGRKIG 69
RRM4_PTBPH3 cd12426
RNA recognition motif 4 (RRM4) found in plant polypyrimidine tract-binding protein homolog 3 ...
39-93 6.58e-06

RNA recognition motif 4 (RRM4) found in plant polypyrimidine tract-binding protein homolog 3 (PTBPH3); This subfamily corresponds to the RRM4 of PTBPH3. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409860 [Multi-domain]  Cd Length: 79  Bit Score: 44.12  E-value: 6.58e-06
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1207175108  39 PSLVVHVRGLIDGITEADLVEALQEFGTISYVVL--MPKKRQALVEFEDMNGASNAV 93
Cdd:cd12426     6 PTKMIHVSSLPQDVTEEDVLNHLQEHGAIVNTKVfeSNGKKQALVLFENEEQATEAL 62
RRM1_PTBP1_like cd12688
RNA recognition motif 1 (RRM1) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) ...
42-118 6.82e-06

RNA recognition motif 1 (RRM1) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins; This subfamily corresponds to the RRM1 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and functions at several aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein and negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410089 [Multi-domain]  Cd Length: 81  Bit Score: 44.22  E-value: 6.82e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1207175108  42 VVHVRGLIDGITEADLVEALQEFGTISYVVLMPKKRQALVEFEDMNGASNAVTYANNNQIYIAGRPSYINYSTSQKI 118
Cdd:cd12688     2 VLHIRKLPCDVTEAEVISLGLPFGKVTNLLMLKGKNQAFLEMATEEAAVTMVNYYTPVTPHLRSQPIYIQYSNHKEL 78
RRM1_U1A_like cd12246
RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily ...
45-113 4.34e-05

RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM1 of U1A/U2B"/SNF protein family which contains Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs), connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. Moreover, U2B" does not require an auxiliary protein for binding to RNA, and its nuclear transport is independent of U2 snRNA binding.


Pssm-ID: 409692 [Multi-domain]  Cd Length: 78  Bit Score: 41.75  E-value: 4.34e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1207175108  45 VRGLIDGITEADLVEALQE----FGTISYVVLM--PKKR-QALVEFEDMNGASNAVTYANNNQIYiaGRPSYINYS 113
Cdd:cd12246     4 INNLNEKIKKDELKRSLYAlfsqFGPVLDIVASksLKMRgQAFVVFKDVESATNALRALQGFPFY--GKPMRIQYA 77
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
45-107 7.66e-05

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 41.06  E-value: 7.66e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1207175108  45 VRGLIDGITEADLVEALQEFGTISYVVLMPK-----KRQALVEFEDMNGASNAVTYANNnqIYIAGRP 107
Cdd:pfam00076   3 VGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDetgrsKGFAFVEFEDEEDAEKAIEALNG--KELGGRE 68
RRM1_U1A_like cd12246
RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily ...
150-208 1.96e-04

RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM1 of U1A/U2B"/SNF protein family which contains Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs), connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. Moreover, U2B" does not require an auxiliary protein for binding to RNA, and its nuclear transport is independent of U2 snRNA binding.


Pssm-ID: 409692 [Multi-domain]  Cd Length: 78  Bit Score: 39.82  E-value: 1.96e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1207175108 150 LYTICNNCGPVQRIVIFRKNGV--QAMVEFDSVQSAQRAKASLNGADIYSGccTLKIEYAK 208
Cdd:cd12246    20 LYALFSQFGPVLDIVASKSLKMrgQAFVVFKDVESATNALRALQGFPFYGK--PMRIQYAK 78
RRM3_RBM39_like cd12285
RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 39 (RBM39) and similar ...
145-192 2.49e-04

RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 39 (RBM39) and similar proteins; This subfamily corresponds to the RRM3 of RBM39, also termed hepatocellular carcinoma protein 1, or RNA-binding region-containing protein 2, or splicing factor HCC1, ia nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Based on the specific domain composition, RBM39 has been classified into a family of non-snRNP (small nuclear ribonucleoprotein) splicing factors that are usually not complexed to snRNAs.


Pssm-ID: 409727 [Multi-domain]  Cd Length: 85  Bit Score: 39.84  E-value: 2.49e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 1207175108 145 ITSDVLyTICNNCGPVQRIVIFRKN--GVqAMVEFDSVQSAQRAKASLNG 192
Cdd:cd12285    24 IKEDVI-EECSKYGPVLHIYVDKNSpqGN-VYVKFKTIEAAQKCVQAMNG 71
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
45-107 2.79e-04

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 39.46  E-value: 2.79e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1207175108  45 VRGLIDGITEADLVEALQEFGTISYVVLmPKKRQ------ALVEFEDMNGASNAVtyANNNQIYIAGRP 107
Cdd:cd12414     4 VRNLPFKCTEDDLKKLFSKFGKVLEVTI-PKKPDgklrgfAFVQFTNVADAAKAI--KGMNGKKIKGRP 69
RRM2_TatSF1_like cd12282
RNA recognition motif 2 (RRM2) found in HIV Tat-specific factor 1 (Tat-SF1) and similar ...
142-206 3.93e-04

RNA recognition motif 2 (RRM2) found in HIV Tat-specific factor 1 (Tat-SF1) and similar proteins; This subfamily corresponds to the RRM2 of Tat-SF1 and CUS2. Tat-SF1 is the cofactor for stimulation of transcriptional elongation by human immunodeficiency virus-type 1 (HIV-1) Tat. It is a substrate of an associated cellular kinase. Tat-SF1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a highly acidic carboxyl-terminal half. The family also includes CUS2, a yeast homolog of human Tat-SF1. CUS2 interacts with U2 RNA in splicing extracts and functions as a splicing factor that aids assembly of the splicing-competent U2 snRNP in vivo. CUS2 also associates with PRP11 that is a subunit of the conserved splicing factor SF3a. Like Tat-SF1, CUS2 contains two RRMs as well.


Pssm-ID: 409724 [Multi-domain]  Cd Length: 91  Bit Score: 39.53  E-value: 3.93e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1207175108 142 IYPITSDVLYTICNNCGPVQRIVIFRKN--GVqAMVEFDSVQSAQRAKASLNGadIYSGCCTLKIEY 206
Cdd:cd12282    21 LINEIKEDLREECEKFGQVKKVVVFDRHpdGV-ASVKFKEPEEADKCIQALNG--RWFAGRKLEAET 84
RRM1_3_MRN1 cd12261
RNA recognition motif 1 (RRM1) and 3 (RRM3) found in RNA-binding protein MRN1 and similar ...
43-110 4.88e-04

RNA recognition motif 1 (RRM1) and 3 (RRM3) found in RNA-binding protein MRN1 and similar proteins; This subfamily corresponds to the RRM1 and RRM3 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, which is an RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 240707 [Multi-domain]  Cd Length: 73  Bit Score: 38.74  E-value: 4.88e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1207175108  43 VHVRGLIDGITEADLVEALQEfGTISYVVLMPKKRQALVEFEDMNGASNAVTYANNNQIYIAGRPSYI 110
Cdd:cd12261     3 VYLGNLPEDTTIRDILSAIRG-GPLESIKLLPTKNSATVSFLDEAAAEAFYAYARNNGFYINGKRIKV 69
RRM3_TIA1_like cd12354
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and ...
43-101 5.41e-04

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and TIAR), and yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1; This subfamily corresponds to the RRM3 of TIA-1, TIAR, and PUB1. Nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR) are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. They share high sequence similarity and are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both TIA-1 and TIAR bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. This subfamily also includes a yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1, termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein, which has been identified as both a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP). It may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RRMs, and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 409790 [Multi-domain]  Cd Length: 71  Bit Score: 38.42  E-value: 5.41e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 1207175108  43 VHVRGLIDGITEADLVEALQEFGTISYVVLMPKKRQALVEFEDMNGASNAVTYANNNQI 101
Cdd:cd12354     3 VYVGNITKGLTEALLQQTFSPFGQILEVRVFPDKGYAFIRFDSHEAATHAIVSVNGTII 61
RRM3_PTBPH3 cd12698
RNA recognition motif 3 (RRM3) found in plant polypyrimidine tract-binding protein homolog 3 ...
133-196 7.19e-04

RNA recognition motif 3 (RRM3) found in plant polypyrimidine tract-binding protein homolog 3 (PTBPH3); This subgroup corresponds to the RRM3 of PTBPH3. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410098 [Multi-domain]  Cd Length: 76  Bit Score: 38.49  E-value: 7.19e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1207175108 133 VLLLTIMNPIYpITSDVLYTICNNCGPVQRIVIFRKNGVQAMVEFDSVQSAQRAKASLNGADIY 196
Cdd:cd12698     3 VLLVSNLNPEK-VDVDKLFNLFSLYGNIVRIKILRNKPDHALIQMSDPFQAELAVNYLKGAMLF 65
RRM3_U2AF65 cd12232
RNA recognition motif 3 (RRM3) found in U2 large nuclear ribonucleoprotein auxiliary factor ...
132-192 9.66e-04

RNA recognition motif 3 (RRM3) found in U2 large nuclear ribonucleoprotein auxiliary factor U2AF 65 kDa subunit (U2AF65) and similar proteins; This subfamily corresponds to the RRM3 of U2AF65 and dU2AF50. U2AF65, also termed U2AF2, is the large subunit of U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF), which has been implicated in the recruitment of U2 snRNP to pre-mRNAs and is a highly conserved heterodimer composed of large and small subunits. U2AF65 specifically recognizes the intron polypyrimidine tract upstream of the 3' splice site and promotes binding of U2 snRNP to the pre-mRNA branchpoint. U2AF65 also plays an important role in the nuclear export of mRNA. It facilitates the formation of a messenger ribonucleoprotein export complex, containing both the NXF1 receptor and the RNA substrate. Moreover, U2AF65 interacts directly and specifically with expanded CAG RNA, and serves as an adaptor to link expanded CAG RNA to NXF1 for RNA export. U2AF65 contains an N-terminal RS domain rich in arginine and serine, followed by a proline-rich segment and three C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The N-terminal RS domain stabilizes the interaction of U2 snRNP with the branch point (BP) by contacting the branch region, and further promotes base pair interactions between U2 snRNA and the BP. The proline-rich segment mediates protein-protein interactions with the RRM domain of the small U2AF subunit (U2AF35 or U2AF1). The RRM1 and RRM2 are sufficient for specific RNA binding, while RRM3 is responsible for protein-protein interactions. The family also includes Splicing factor U2AF 50 kDa subunit (dU2AF50), the Drosophila ortholog of U2AF65. dU2AF50 functions as an essential pre-mRNA splicing factor in flies. It associates with intronless mRNAs and plays a significant and unexpected role in the nuclear export of a large number of intronless mRNAs.


Pssm-ID: 409679 [Multi-domain]  Cd Length: 89  Bit Score: 38.34  E-value: 9.66e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 132 NVLLLtiMNPIYP-----------ITSDVLyTICNNCGPVQRIVIFR-------KNGV-QAMVEFDSVQSAQRAKASLNG 192
Cdd:cd12232     2 RVLCL--LNMVTPeeleddeeyeeILEDVK-EECSKYGKVLSVVIPRpeaegvdVPGVgKVFVEFEDVEDAQKAQKALAG 78
RRM2_SREK1 cd12260
RNA recognition motif 2 (RRM2) found in splicing regulatory glutamine/lysine-rich protein 1 ...
43-121 9.87e-04

RNA recognition motif 2 (RRM2) found in splicing regulatory glutamine/lysine-rich protein 1 (SREK1) and similar proteins; This subfamily corresponds to the RRM2 of SREK1, also termed serine/arginine-rich-splicing regulatory protein 86-kDa (SRrp86), or splicing factor arginine/serine-rich 12 (SFRS12), or splicing regulatory protein 508 amino acid (SRrp508). SREK1 belongs to a family of proteins containing regions rich in serine-arginine dipeptides (SR proteins family), which is involved in bridge-complex formation and splicing by mediating protein-protein interactions across either introns or exons. It is a unique SR family member and it may play a crucial role in determining tissue specific patterns of alternative splicing. SREK1 can alter splice site selection by both positively and negatively modulating the activity of other SR proteins. For instance, SREK1 can activate SRp20 and repress SC35 in a dose-dependent manner both in vitro and in vivo. In addition, SREK1 contains two (some contain only one) RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and two serine-arginine (SR)-rich domains (SR domains) separated by an unusual glutamic acid-lysine (EK) rich region. The RRM and SR domains are highly conserved among other members of the SR superfamily. However, the EK domain is unique to SREK1. It plays a modulatory role controlling SR domain function by involvement in the inhibition of both constitutive and alternative splicing and in the selection of splice-site.


Pssm-ID: 409705 [Multi-domain]  Cd Length: 85  Bit Score: 38.06  E-value: 9.87e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108  43 VHVRGLIDGITEADLVEALQEFGTISYVVLMPK----KRQALVEFEDMNGASNAVTYannNQIYIAGRPSYINYSTsQKI 118
Cdd:cd12260     7 VYVGNLDPSTTADQLLEFFSQAGEVKYVRMAGDetqpTRYAFVEFAEQTSVINALKL---NGKMFGGRPLKVNHSN-NAI 82

                  ...
gi 1207175108 119 SRP 121
Cdd:cd12260    83 VKP 85
RRM3_PTBP1_like cd12423
RNA recognition motif 3 (RRM3) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) ...
133-217 1.10e-03

RNA recognition motif 3 (RRM3) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins; This subfamily corresponds to the RRM3 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409857 [Multi-domain]  Cd Length: 74  Bit Score: 37.60  E-value: 1.10e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 133 VLLLTIMNPIYpITSDVLYTICNNCGPVQRIVIFRKNGVQAMVEFDSVQSAQRAKASLNGADIYSgcctlkieyaKPTRL 212
Cdd:cd12423     1 VLLVSNLNEEM-VTPDALFTLFGVYGDVLRVKILFNKKDTALIQMADPQQAQTALQHLNGIKLFG----------KPIRV 69

                  ....*
gi 1207175108 213 NVFKN 217
Cdd:cd12423    70 TLSKH 74
RRM3_TIA1_like cd12354
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and ...
146-203 1.20e-03

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and TIAR), and yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1; This subfamily corresponds to the RRM3 of TIA-1, TIAR, and PUB1. Nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR) are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. They share high sequence similarity and are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both TIA-1 and TIAR bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. This subfamily also includes a yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1, termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein, which has been identified as both a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP). It may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RRMs, and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 409790 [Multi-domain]  Cd Length: 71  Bit Score: 37.65  E-value: 1.20e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1207175108 146 TSDVLYTICNNCGPVQRIVIFRKNGVqAMVEFDSVQSAQRAKASLNGADIysGCCTLK 203
Cdd:cd12354    13 TEALLQQTFSPFGQILEVRVFPDKGY-AFIRFDSHEAATHAIVSVNGTII--NGQAVK 67
RRM_ALKBH8 cd12431
RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and ...
145-192 3.14e-03

RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and similar proteins; This subfamily corresponds to the RRM of ALKBH8, also termed alpha-ketoglutarate-dependent dioxygenase ABH8, or S-adenosyl-L-methionine-dependent tRNA methyltransferase ABH8, expressed in various types of human cancers. It is essential in urothelial carcinoma cell survival mediated by NOX-1-dependent ROS signals. ALKBH8 has also been identified as a tRNA methyltransferase that catalyzes methylation of tRNA to yield 5-methylcarboxymethyl uridine (mcm5U) at the wobble position of the anticodon loop. Thus, ALKBH8 plays a crucial role in the DNA damage survival pathway through a distinct mechanism involving the regulation of tRNA modification. ALKBH8 localizes to the cytoplasm. It contains the characteristic AlkB domain that is composed of a tRNA methyltransferase motif, a motif homologous to the bacterial AlkB DNA/RNA repair enzyme, and a dioxygenase catalytic core domain encompassing cofactor-binding sites for iron and 2-oxoglutarate. In addition, unlike other AlkB homologs, ALKBH8 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal S-adenosylmethionine (SAM)-dependent methyltransferase (MT) domain.


Pssm-ID: 409865 [Multi-domain]  Cd Length: 80  Bit Score: 36.79  E-value: 3.14e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*...
gi 1207175108 145 ITSDVLYTICNNCGPVQRIViFRKNGVQAMVEFDSVQSAQRAKASLNG 192
Cdd:cd12431    15 VSREQLLEVFEKYGTVEDIV-MLPGKPYSFVSFKSVEEAAKAYNALNG 61
RRM_UHM_SPF45_PUF60 cd12374
RNA recognition motif (RRM) found in UHM domain of 45 kDa-splicing factor (SPF45) and similar ...
132-192 3.26e-03

RNA recognition motif (RRM) found in UHM domain of 45 kDa-splicing factor (SPF45) and similar proteins; This subfamily corresponds to the RRM found in UHM domain of 45 kDa-splicing factor (SPF45 or RBM17), poly(U)-binding-splicing factor PUF60 (FIR or Hfp or RoBP1 or Siah-BP1), and similar proteins. SPF45 is an RNA-binding protein consisting of an unstructured N-terminal region, followed by a G-patch motif and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors a RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain) and an Arg-Xaa-Phe sequence motif. SPF45 regulates alternative splicing of the apoptosis regulatory gene FAS (also known as CD95). It induces exon 6 skipping in FAS pre-mRNA through the UHM domain that binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) present in the 3' splice site-recognizing factors U2AF65, SF1 and SF3b155. PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RRMs and a C-terminal UHM domain.


Pssm-ID: 409809 [Multi-domain]  Cd Length: 85  Bit Score: 36.81  E-value: 3.26e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1207175108 132 NVLLLTIMNPIYPITSDVLYTI---CNNCGPVQRIVIFRKNG------VQAMVEFDSVQSAQRAKASLNG 192
Cdd:cd12374     2 KILVLRNMVGPGEIDEDLKDEIkeeCSKYGKVLNVIIHEVASseaddaVRVFVEFEDADEAIKAFRALNG 71
RRM_NELFE cd12305
RNA recognition motif in negative elongation factor E (NELF-E) and similar proteins; This ...
51-101 4.61e-03

RNA recognition motif in negative elongation factor E (NELF-E) and similar proteins; This subfamily corresponds to the RRM of NELF-E, also termed RNA-binding protein RD. NELF-E is the RNA-binding subunit of cellular negative transcription elongation factor NELF (negative elongation factor) involved in transcriptional regulation of HIV-1 by binding to the stem of the viral transactivation-response element (TAR) RNA which is synthesized by cellular RNA polymerase II at the viral long terminal repeat. NELF is a heterotetrameric protein consisting of NELF A, B, C or the splice variant D, and E. NELF-E contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It plays a role in the control of HIV transcription by binding to TAR RNA. In addition, NELF-E is associated with the NELF-B subunit, probably via a leucine zipper motif.


Pssm-ID: 409746 [Multi-domain]  Cd Length: 75  Bit Score: 36.15  E-value: 4.61e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1207175108  51 GITEADLVEALQEFGTISYVVLMPKKRQALVEFEDMNGASNAVTYANNNQI 101
Cdd:cd12305    13 GITEDVLKKAFSPFGNIINISMEIEKNCAFVTFEKMESADQAIAELNGTTV 63
RRM3_ROD1 cd12697
RNA recognition motif 3 (RRM3) found in vertebrate regulator of differentiation 1 (Rod1); This ...
132-196 6.59e-03

RNA recognition motif 3 (RRM3) found in vertebrate regulator of differentiation 1 (Rod1); This subgroup corresponds to the RRM3 of ROD1 coding protein Rod1, a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. Rod1 contains four repeats of RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain) and does have RNA binding activities.


Pssm-ID: 410097 [Multi-domain]  Cd Length: 76  Bit Score: 35.72  E-value: 6.59e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1207175108 132 NVLLLTIMNPiYPITSDVLYTICNNCGPVQRIVIFRKNGVQAMVEFDSVQSAQRAKASLNGADIY 196
Cdd:cd12697     1 SVLLVSNLNP-DAITPHGLFILFGVYGDVLRVKIMFNKKENALVQMADATQAQIAMSHLNGQRLY 64
RRM_RBM22 cd12224
RNA recognition motif (RRM) found in Pre-mRNA-splicing factor RBM22 and similar proteins; This ...
44-106 7.05e-03

RNA recognition motif (RRM) found in Pre-mRNA-splicing factor RBM22 and similar proteins; This subgroup corresponds to the RRM of RBM22 (also known as RNA-binding motif protein 22, or Zinc finger CCCH domain-containing protein 16), a newly discovered RNA-binding motif protein which belongs to the SLT11 gene family. SLT11 gene encoding protein (Slt11p) is a splicing factor in yeast, which is required for spliceosome assembly. Slt11p has two distinct biochemical properties: RNA-annealing and RNA-binding activities. RBM22 is the homolog of SLT11 in vertebrate. It has been reported to be involved in pre-splicesome assembly and to interact with the Ca2+-signaling protein ALG-2. It also plays an important role in embryogenesis. RBM22 contains a conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a zinc finger of the unusual type C-x8-C-x5-C-x3-H, and a C-terminus that is unusually rich in the amino acids Gly and Pro, including sequences of tetraprolines.


Pssm-ID: 409671 [Multi-domain]  Cd Length: 74  Bit Score: 35.34  E-value: 7.05e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1207175108  44 HVRGLIDGITEADLVEALQEFGTISYVVLMPKKRQALVEFEDMNGASNAVTyANNNQIYIAGR 106
Cdd:cd12224     5 YVGGLGDKITEKDLRDHFYQFGEIRSITVVARQQCAFVQFTTRQAAERAAE-RTFNKLIIKGR 66
RRM_NOL8 cd12226
RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This ...
42-76 7.91e-03

RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This model corresponds to the RRM of NOL8 (also termed Nop132) encoded by a novel NOL8 gene that is up-regulated in the majority of diffuse-type, but not intestinal-type, gastric cancers. Thus, NOL8 may be a good molecular target for treatment of diffuse-type gastric cancer. Also, NOL8 is a phosphorylated protein that contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), suggesting NOL8 is likely to function as a novel RNA-binding protein. It may be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells.


Pssm-ID: 409673 [Multi-domain]  Cd Length: 77  Bit Score: 35.24  E-value: 7.91e-03
                          10        20        30
                  ....*....|....*....|....*....|....*
gi 1207175108  42 VVHVRGLIDGITEADLVEALQEFGTISYVVLMPKK 76
Cdd:cd12226     1 RLFVGGLSPSITEDDLERRFSRFGTVSDVEIIRKK 35
RRM2_PTBP1_hnRNPL_like cd12422
RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), ...
329-386 9.34e-03

RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), and similar proteins; This subfamily corresponds to the RRM2 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), polypyrimidine tract-binding protein homolog 3 (PTBPH3), polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2), and similar proteins, and RRM3 of PTBPH1 and PTBPH2. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. Rod1 is a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL protein plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. This family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to other family members, all of which contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although their biological roles remain unclear, both PTBPH1 and PTBPH2 show significant sequence similarity to PTB. However, in contrast to PTB, they have three RRMs.


Pssm-ID: 409856 [Multi-domain]  Cd Length: 85  Bit Score: 35.24  E-value: 9.34e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1207175108 329 INADRVFNIFCLYGNVER-VKFMKSKPGAAMVEMGDCYAVDRAVSHLNNTMLFGQ--KLNV 386
Cdd:cd12422    13 VTVDVLHQVFSPYGAVEKiVIFEKGTGVQALVQFDSVESAEAAKKALNGRNIYDGccTLDI 73
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH