NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1622924709|ref|XP_014989370|]
View 

oxysterol-binding protein-related protein 3 isoform X1 [Macaca mulatta]

Protein Classification

oxysterol-binding protein-related protein( domain architecture ID 10193026)

oxysterol-binding protein-related protein is a lipid transporter involved in lipid counter-transport between the endoplasmic reticulum and the plasma membrane; similar to Homo sapiens oxysterol-binding protein-related proteins 3, 6, and 7

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
Oxysterol_BP pfam01237
Oxysterol-binding protein;
527-874 0e+00

Oxysterol-binding protein;


:

Pssm-ID: 460126  Cd Length: 366  Bit Score: 554.08  E-value: 0e+00
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709 527 SLWNILRNNIGKDLSKVAMPVELNEPLNTLQRLCEELEYSELLDKAAQIPNPLERMVYVAAFAISAYaSSYYRAGSKPFN 606
Cdd:pfam01237   1 SLWSILKKNIGKDLSKITMPVFFNEPLSLLQRLAEDLEYSELLDKAAEEDDPLERMLYVAAFAVSGY-SSTRRRVKKPFN 79
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709 607 PVLGETYECIREDKGFQFFSEQVSHHPPISACHAESRNFVFWQDVRWKNKFWGKSMEIVPIGTTHVTLPAFGDHFEWNKV 686
Cdd:pfam01237  80 PLLGETFELVRPDKGFRFIAEQVSHHPPISAFHAESKGWTFWGEIAPKSKFWGKSLEVNPEGTVHLTLKKTGEHYTWTKP 159
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709 687 TSCIHNILSGQRWIEHYGEIVIKNLNDDScYCKVNFIKAKYWS-TNAHEIEGTVFDRSGNAVHRLFGKWHESIYCGGAS- 764
Cdd:pfam01237 160 TTYVHNIIFGKLWVEHYGEMTITNHTTGY-KAVLEFKPKGYFSsGRSNEVTGKVYDKNGKVLYTLSGKWNESLYIKDVSt 238
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709 765 ----------------SSACVWRANPMPKgyeQYYGFTQFALELNEMDPsSKSLLPPTDTRFRPDQRFLEEGNLEEAEIQ 828
Cdd:pfam01237 239 gkksseddsveeqpdgESRLLWKAGPLPN---AYYGFTSFAVTLNELTD-ELGKLPPTDSRLRPDQRALENGDIDEAEEE 314
                         330       340       350       360       370
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1622924709 829 KQRIEQLQRERRRVLEENHVEHQPRFFRKSDDDS------WLSNGTYLELRK 874
Cdd:pfam01237 315 KLRLEEKQRARRKEREEKGEEWKPRWFKKVKDDPvtgeeyWKYKGGYWERRE 366
PH_ORP3_ORP6_ORP7 cd13287
Human Oxysterol binding protein related proteins 3, 6, and 7 Pleckstrin homology (PH) domain; ...
31-153 1.69e-75

Human Oxysterol binding protein related proteins 3, 6, and 7 Pleckstrin homology (PH) domain; Human ORP3 is proposed to function in regulating the cell-matrix and cell-cell adhesion. A proposed specific function for Human ORP6 was not found at present. Human ORP7is proposed to function in negatively regulating the Golgi soluble NSF attachment protein receptor (SNARE) of 28kDa (GS28) protein stability via sequestration of Golgi-associated ATPase enhancer of 16 kDa (GATE-16). ORP3 has 2 isoforms: the longer ORP3(1) and the shorter ORP3(2). ORP3(1), ORP6, and ORP7 all contain a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. The shorter ORP3(2) is missing the C-terminal portion of its OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270104  Cd Length: 123  Bit Score: 241.85  E-value: 1.69e-75
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  31 RQDSWEVVEGLRGEMNYTQEPPVQKGFLLKKRKWPLKGWHKRFFYLDKGILKYAKSQTDIEREKLHGCIDVGLSVMSVKK 110
Cdd:cd13287     1 RSDDWEIMEGLKGGQTSVQEPGKQEGYLLKKRKWPLKGWHKRFFVLEKGILKYAKSPLDIAKGKLHGSIDVGLSVMSIKK 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|...
gi 1622924709 111 SSKCIDLDTEEHIYHLKVKSEEVFDEWVSKLRHHRMYRQNEIA 153
Cdd:cd13287    81 KARRIDLDTEEFIYHLKVKSQDLFDSWVAKLRAHRLYRQNEIA 123
 
Name Accession Description Interval E-value
Oxysterol_BP pfam01237
Oxysterol-binding protein;
527-874 0e+00

Oxysterol-binding protein;


Pssm-ID: 460126  Cd Length: 366  Bit Score: 554.08  E-value: 0e+00
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709 527 SLWNILRNNIGKDLSKVAMPVELNEPLNTLQRLCEELEYSELLDKAAQIPNPLERMVYVAAFAISAYaSSYYRAGSKPFN 606
Cdd:pfam01237   1 SLWSILKKNIGKDLSKITMPVFFNEPLSLLQRLAEDLEYSELLDKAAEEDDPLERMLYVAAFAVSGY-SSTRRRVKKPFN 79
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709 607 PVLGETYECIREDKGFQFFSEQVSHHPPISACHAESRNFVFWQDVRWKNKFWGKSMEIVPIGTTHVTLPAFGDHFEWNKV 686
Cdd:pfam01237  80 PLLGETFELVRPDKGFRFIAEQVSHHPPISAFHAESKGWTFWGEIAPKSKFWGKSLEVNPEGTVHLTLKKTGEHYTWTKP 159
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709 687 TSCIHNILSGQRWIEHYGEIVIKNLNDDScYCKVNFIKAKYWS-TNAHEIEGTVFDRSGNAVHRLFGKWHESIYCGGAS- 764
Cdd:pfam01237 160 TTYVHNIIFGKLWVEHYGEMTITNHTTGY-KAVLEFKPKGYFSsGRSNEVTGKVYDKNGKVLYTLSGKWNESLYIKDVSt 238
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709 765 ----------------SSACVWRANPMPKgyeQYYGFTQFALELNEMDPsSKSLLPPTDTRFRPDQRFLEEGNLEEAEIQ 828
Cdd:pfam01237 239 gkksseddsveeqpdgESRLLWKAGPLPN---AYYGFTSFAVTLNELTD-ELGKLPPTDSRLRPDQRALENGDIDEAEEE 314
                         330       340       350       360       370
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1622924709 829 KQRIEQLQRERRRVLEENHVEHQPRFFRKSDDDS------WLSNGTYLELRK 874
Cdd:pfam01237 315 KLRLEEKQRARRKEREEKGEEWKPRWFKKVKDDPvtgeeyWKYKGGYWERRE 366
PH_ORP3_ORP6_ORP7 cd13287
Human Oxysterol binding protein related proteins 3, 6, and 7 Pleckstrin homology (PH) domain; ...
31-153 1.69e-75

Human Oxysterol binding protein related proteins 3, 6, and 7 Pleckstrin homology (PH) domain; Human ORP3 is proposed to function in regulating the cell-matrix and cell-cell adhesion. A proposed specific function for Human ORP6 was not found at present. Human ORP7is proposed to function in negatively regulating the Golgi soluble NSF attachment protein receptor (SNARE) of 28kDa (GS28) protein stability via sequestration of Golgi-associated ATPase enhancer of 16 kDa (GATE-16). ORP3 has 2 isoforms: the longer ORP3(1) and the shorter ORP3(2). ORP3(1), ORP6, and ORP7 all contain a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. The shorter ORP3(2) is missing the C-terminal portion of its OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270104  Cd Length: 123  Bit Score: 241.85  E-value: 1.69e-75
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  31 RQDSWEVVEGLRGEMNYTQEPPVQKGFLLKKRKWPLKGWHKRFFYLDKGILKYAKSQTDIEREKLHGCIDVGLSVMSVKK 110
Cdd:cd13287     1 RSDDWEIMEGLKGGQTSVQEPGKQEGYLLKKRKWPLKGWHKRFFVLEKGILKYAKSPLDIAKGKLHGSIDVGLSVMSIKK 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|...
gi 1622924709 111 SSKCIDLDTEEHIYHLKVKSEEVFDEWVSKLRHHRMYRQNEIA 153
Cdd:cd13287    81 KARRIDLDTEEFIYHLKVKSQDLFDSWVAKLRAHRLYRQNEIA 123
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
52-142 2.12e-12

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 64.11  E-value: 2.12e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709   52 PVQKGFLLKKRKWPLKGWHKRFFYLDKGILKYAKSQTDIEREKLHGCIDV-GLSVMSVKKSSK-----CIDLDT-EEHIY 124
Cdd:smart00233   1 VIKEGWLYKKSGGGKKSWKKRYFVLFNSTLLYYKSKKDKKSYKPKGSIDLsGCTVREAPDPDSskkphCFEIKTsDRKTL 80
                           90
                   ....*....|....*...
gi 1622924709  125 HLKVKSEEVFDEWVSKLR 142
Cdd:smart00233  81 LLQAESEEEREKWVEALR 98
PH_8 pfam15409
Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.
56-141 2.10e-10

Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.


Pssm-ID: 405984  Cd Length: 89  Bit Score: 57.76  E-value: 2.10e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  56 GFLLKKRKWPLKGWHKRFFYLD--KGILKYAKSQTDierEKLHGCIDVGLSVMSVKKSSKCIDLDTEEHIYHLKVKSEEV 133
Cdd:pfam15409   1 GILLKKRRKKLQGYAKRFFVLNfkSGTLSYYRDDNS---SALRGKIPLSLAAISANAKTREIIIDSGMEVWHLKALNEKD 77

                  ....*...
gi 1622924709 134 FDEWVSKL 141
Cdd:pfam15409  78 FQAWVDAL 85
 
Name Accession Description Interval E-value
Oxysterol_BP pfam01237
Oxysterol-binding protein;
527-874 0e+00

Oxysterol-binding protein;


Pssm-ID: 460126  Cd Length: 366  Bit Score: 554.08  E-value: 0e+00
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709 527 SLWNILRNNIGKDLSKVAMPVELNEPLNTLQRLCEELEYSELLDKAAQIPNPLERMVYVAAFAISAYaSSYYRAGSKPFN 606
Cdd:pfam01237   1 SLWSILKKNIGKDLSKITMPVFFNEPLSLLQRLAEDLEYSELLDKAAEEDDPLERMLYVAAFAVSGY-SSTRRRVKKPFN 79
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709 607 PVLGETYECIREDKGFQFFSEQVSHHPPISACHAESRNFVFWQDVRWKNKFWGKSMEIVPIGTTHVTLPAFGDHFEWNKV 686
Cdd:pfam01237  80 PLLGETFELVRPDKGFRFIAEQVSHHPPISAFHAESKGWTFWGEIAPKSKFWGKSLEVNPEGTVHLTLKKTGEHYTWTKP 159
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709 687 TSCIHNILSGQRWIEHYGEIVIKNLNDDScYCKVNFIKAKYWS-TNAHEIEGTVFDRSGNAVHRLFGKWHESIYCGGAS- 764
Cdd:pfam01237 160 TTYVHNIIFGKLWVEHYGEMTITNHTTGY-KAVLEFKPKGYFSsGRSNEVTGKVYDKNGKVLYTLSGKWNESLYIKDVSt 238
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709 765 ----------------SSACVWRANPMPKgyeQYYGFTQFALELNEMDPsSKSLLPPTDTRFRPDQRFLEEGNLEEAEIQ 828
Cdd:pfam01237 239 gkksseddsveeqpdgESRLLWKAGPLPN---AYYGFTSFAVTLNELTD-ELGKLPPTDSRLRPDQRALENGDIDEAEEE 314
                         330       340       350       360       370
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1622924709 829 KQRIEQLQRERRRVLEENHVEHQPRFFRKSDDDS------WLSNGTYLELRK 874
Cdd:pfam01237 315 KLRLEEKQRARRKEREEKGEEWKPRWFKKVKDDPvtgeeyWKYKGGYWERRE 366
PH_ORP3_ORP6_ORP7 cd13287
Human Oxysterol binding protein related proteins 3, 6, and 7 Pleckstrin homology (PH) domain; ...
31-153 1.69e-75

Human Oxysterol binding protein related proteins 3, 6, and 7 Pleckstrin homology (PH) domain; Human ORP3 is proposed to function in regulating the cell-matrix and cell-cell adhesion. A proposed specific function for Human ORP6 was not found at present. Human ORP7is proposed to function in negatively regulating the Golgi soluble NSF attachment protein receptor (SNARE) of 28kDa (GS28) protein stability via sequestration of Golgi-associated ATPase enhancer of 16 kDa (GATE-16). ORP3 has 2 isoforms: the longer ORP3(1) and the shorter ORP3(2). ORP3(1), ORP6, and ORP7 all contain a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. The shorter ORP3(2) is missing the C-terminal portion of its OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270104  Cd Length: 123  Bit Score: 241.85  E-value: 1.69e-75
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  31 RQDSWEVVEGLRGEMNYTQEPPVQKGFLLKKRKWPLKGWHKRFFYLDKGILKYAKSQTDIEREKLHGCIDVGLSVMSVKK 110
Cdd:cd13287     1 RSDDWEIMEGLKGGQTSVQEPGKQEGYLLKKRKWPLKGWHKRFFVLEKGILKYAKSPLDIAKGKLHGSIDVGLSVMSIKK 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|...
gi 1622924709 111 SSKCIDLDTEEHIYHLKVKSEEVFDEWVSKLRHHRMYRQNEIA 153
Cdd:cd13287    81 KARRIDLDTEEFIYHLKVKSQDLFDSWVAKLRAHRLYRQNEIA 123
PH_Osh3p_yeast cd13289
Yeast oxysterol binding protein homolog 3 Pleckstrin homology (PH) domain; Yeast Osh3p is ...
53-143 4.80e-15

Yeast oxysterol binding protein homolog 3 Pleckstrin homology (PH) domain; Yeast Osh3p is proposed to function in sterol transport and regulation of nuclear fusion during mating and of pseudohyphal growth as well as sphingolipid metabolism. Osh3 contains a N-GOLD (Golgi dynamics) domain, a PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. GOLD domains are thought to mediate protein-protein interactions, but their role in ORPs are unknown. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241443  Cd Length: 90  Bit Score: 71.14  E-value: 4.80e-15
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  53 VQKGFLLKKRKWPLKGWHKRFFYLD--KGILKYAKSQTDIEReklhGCIDVGLSVMSVKKSSKCIDLDTEEHIYHLKVKS 130
Cdd:cd13289     1 YLEGWLLKKRRKKMQGFARRYFVLNfkYGTLSYYFNPNSPVR----GQIPLRLASISASPRRRTIHIDSGSEVWHLKALN 76
                          90
                  ....*....|...
gi 1622924709 131 EEVFDEWVSKLRH 143
Cdd:cd13289    77 DEDFQAWMKALRK 89
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
52-142 2.12e-12

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 64.11  E-value: 2.12e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709   52 PVQKGFLLKKRKWPLKGWHKRFFYLDKGILKYAKSQTDIEREKLHGCIDV-GLSVMSVKKSSK-----CIDLDT-EEHIY 124
Cdd:smart00233   1 VIKEGWLYKKSGGGKKSWKKRYFVLFNSTLLYYKSKKDKKSYKPKGSIDLsGCTVREAPDPDSskkphCFEIKTsDRKTL 80
                           90
                   ....*....|....*...
gi 1622924709  125 HLKVKSEEVFDEWVSKLR 142
Cdd:smart00233  81 LLQAESEEEREKWVEALR 98
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
55-141 8.58e-12

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 62.17  E-value: 8.58e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  55 KGFLLKKRKWPLKGWHKRFFYLDKGILKYAKSQTDIeREKLHGCIDV--GLSVMSVKKSSK--CIDLDTEEH-IYHLKVK 129
Cdd:cd00821     2 EGYLLKRGGGGLKSWKKRWFVLFEGVLLYYKSKKDS-SYKPKGSIPLsgILEVEEVSPKERphCFELVTPDGrTYYLQAD 80
                          90
                  ....*....|..
gi 1622924709 130 SEEVFDEWVSKL 141
Cdd:cd00821    81 SEEERQEWLKAL 92
PH_8 pfam15409
Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.
56-141 2.10e-10

Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.


Pssm-ID: 405984  Cd Length: 89  Bit Score: 57.76  E-value: 2.10e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  56 GFLLKKRKWPLKGWHKRFFYLD--KGILKYAKSQTDierEKLHGCIDVGLSVMSVKKSSKCIDLDTEEHIYHLKVKSEEV 133
Cdd:pfam15409   1 GILLKKRRKKLQGYAKRFFVLNfkSGTLSYYRDDNS---SALRGKIPLSLAAISANAKTREIIIDSGMEVWHLKALNEKD 77

                  ....*...
gi 1622924709 134 FDEWVSKL 141
Cdd:pfam15409  78 FQAWVDAL 85
PH pfam00169
PH domain; PH stands for pleckstrin homology.
52-142 2.58e-09

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 55.26  E-value: 2.58e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  52 PVQKGFLLKKRKWPLKGWHKRFFYLDKGILKYAKSQTDIEREKLHGCIDV-GLSVMSVKKSSKC---------IDLDTEE 121
Cdd:pfam00169   1 VVKEGWLLKKGGGKKKSWKKRYFVLFDGSLLYYKDDKSGKSKEPKGSISLsGCEVVEVVASDSPkrkfcfelrTGERTGK 80
                          90       100
                  ....*....|....*....|.
gi 1622924709 122 HIYHLKVKSEEVFDEWVSKLR 142
Cdd:pfam00169  81 RTYLLQAESEEERKDWIKAIQ 101
PH1_PLEKHH1_PLEKHH2 cd13282
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ...
56-141 6.07e-08

Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241436  Cd Length: 96  Bit Score: 51.14  E-value: 6.07e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  56 GFLLKKRKwPLKGWHKRFFYLDKGILKYAKSQTDIEREKLhGCIDVGLSVMSVKKSSKC-IDLDTEEHIYHLKVKSEEVF 134
Cdd:cd13282     3 GYLTKLGG-KVKTWKRRWFVLKNGELFYYKSPNDVIRKPQ-GQIALDGSCEIARAEGAQtFEIVTEKRTYYLTADSENDL 80

                  ....*..
gi 1622924709 135 DEWVSKL 141
Cdd:cd13282    81 DEWIRVI 87
PH2_MyoX cd13296
Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular ...
67-154 1.44e-07

Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270108  Cd Length: 103  Bit Score: 50.16  E-value: 1.44e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  67 KGWHKRFFYLDKGILKYAKSQTdiEREKLHGCIDVGLSVMSV--KKSSKCIDLDTEEHIYHLKVKSEEVFDEWVSKLrhH 144
Cdd:cd13296    18 RNWKSRWFVLRDTVLKYYENDQ--EGEKLLGTIDIRSAKEIVdnDPKENRLSITTEERTYHLVAESPEDASQWVNVL--T 93
                          90
                  ....*....|
gi 1622924709 145 RMYRQNEIAM 154
Cdd:cd13296    94 RVISATDLEL 103
PH_GPBP cd13283
Goodpasture antigen binding protein Pleckstrin homology (PH) domain; The GPBP (also called ...
63-148 1.73e-06

Goodpasture antigen binding protein Pleckstrin homology (PH) domain; The GPBP (also called Collagen type IV alpha-3-binding protein/hCERT; START domain-containing protein 11/StARD11; StAR-related lipid transfer protein 11) is a kinase that phosphorylates an N-terminal region of the alpha 3 chain of type IV collagen, which is commonly known as the goodpasture antigen. Its splice variant the ceramide transporter (CERT) mediates the cytosolic transport of ceramide. There have been additional splice variants identified, but all of them function as ceramide transport proteins. GPBP and CERT both contain an N-terminal PH domain, followed by a serine rich domain, and a C-terminal START domain. However, GPBP has an additional serine rich domain just upstream of its START domain. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270100 [Multi-domain]  Cd Length: 100  Bit Score: 47.28  E-value: 1.73e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  63 KWP--LKGWHKRFFYLDKGILKYAKSQTDIEreklHGC---IDVGLSVMSVKKSSKC-IDLDTEEHIYHLKVKSEEVFDE 136
Cdd:cd13283     7 KWTnyIHGWQDRYFVLKDGTLSYYKSESEKE----YGCrgsISLSKAVIKPHEFDECrFDVSVNDSVWYLRAESPEERQR 82
                          90
                  ....*....|..
gi 1622924709 137 WVSKLRHHRMYR 148
Cdd:cd13283    83 WIDALESHKAAS 94
PH_AtPH1 cd13276
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ...
56-147 4.23e-06

Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270095  Cd Length: 106  Bit Score: 46.16  E-value: 4.23e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  56 GFLLKKRKWpLKGWHKRFFYLDKGILKYAKSQTDIEREKLHGCIDVGlSVMSVK----KSSK--CIDLDTEEHIYHLKVK 129
Cdd:cd13276     3 GWLEKQGEF-IKTWRRRWFVLKQGKLFWFKEPDVTPYSKPRGVIDLS-KCLTVKsaedATNKenAFELSTPEETFYFIAD 80
                          90       100
                  ....*....|....*....|...
gi 1622924709 130 SEEVFDEWVSKL-----RHHRMY 147
Cdd:cd13276    81 NEKEKEEWIGAIgraivKHSRSV 103
PH_TAAP2-like cd13255
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ...
49-141 3.47e-05

Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270075  Cd Length: 110  Bit Score: 43.94  E-value: 3.47e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  49 QEPPVQKGFLLKKRKwPLKGWHKRFFYLDKGILKYAKSQT------DIEREKLHGCIDVglsvmSVKKSSKCIDLDTEEH 122
Cdd:cd13255     3 SEAVLKAGYLEKKGE-RRKTWKKRWFVLRPTKLAYYKNDKeyrllrLIDLTDIHTCTEV-----QLKKHDNTFGIVTPAR 76
                          90
                  ....*....|....*....
gi 1622924709 123 IYHLKVKSEEVFDEWVSKL 141
Cdd:cd13255    77 TFYVQADSKAEMESWISAI 95
PH1_PH_fungal cd13298
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ...
56-151 4.38e-05

Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270110  Cd Length: 106  Bit Score: 43.38  E-value: 4.38e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  56 GFLLKKRKwPLKGWHKRFFYLDKGILKYAKSQTD------IEREKLHGCidvglSVMSVKKSSKCIDLDTEEHIYHLKVK 129
Cdd:cd13298    10 GYLLKRSR-KTKNWKKRWVVLRPCQLSYYKDEKEyklrrvINLSELLAV-----APLKDKKRKNVFGIYTPSKNLHFRAT 83
                          90       100
                  ....*....|....*....|..
gi 1622924709 130 SEEVFDEWVSKLRHHRMYRQNE 151
Cdd:cd13298    84 SEKDANEWVEALREEFRLDDEE 105
PH_OSBP_ORP4 cd13284
Human Oxysterol binding protein and OSBP-related protein 4 Pleckstrin homology (PH) domain; ...
55-141 1.23e-04

Human Oxysterol binding protein and OSBP-related protein 4 Pleckstrin homology (PH) domain; Human OSBP is proposed to function is sterol-dependent regulation of ERK dephosphorylation and sphingomyelin synthesis as well as modulation of insulin signaling and hepatic lipogenesis. It contains a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. OSBPs and Osh1p PH domains specifically localize to the Golgi apparatus in a PtdIns4P-dependent manner. ORP4 is proposed to function in Vimentin-dependent sterol transport and/or signaling. Human ORP4 has 2 forms, a long (ORP4L) and a short (ORP4S). ORP4L contains a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. ORP4S is truncated and contains only an OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270101  Cd Length: 99  Bit Score: 41.98  E-value: 1.23e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  55 KGFLLKkrkWP--LKGWHKRFFYLDKGILKYAKSQTDIERE-----KLHG-CIDVGLSVMSVKKSSKcidldteEHIYHL 126
Cdd:cd13284     2 KGWLLK---WTnyIKGYQRRWFVLSNGLLSYYRNQAEMAHTcrgtiNLAGaEIHTEDSCNFVISNGG-------TQTFHL 71
                          90
                  ....*....|....*
gi 1622924709 127 KVKSEEVFDEWVSKL 141
Cdd:cd13284    72 KASSEVERQRWVTAL 86
PH_ORP9 cd13290
Human Oxysterol binding protein related protein 9 Pleckstrin homology (PH) domain; Human ORP9 ...
63-148 1.32e-04

Human Oxysterol binding protein related protein 9 Pleckstrin homology (PH) domain; Human ORP9 is proposed to function in regulation of Akt phosphorylation. ORP9 has 2 forms, a long (ORP9L) and a short (ORP9S). ORP9L contains an N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. ORP1S is truncated and contains a FFAT motif and an OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241444  Cd Length: 102  Bit Score: 42.05  E-value: 1.32e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  63 KWP--LKGWHKRFFYLDK--GILKYAKSQTDIEREKLHGCIDVGLSVMSVKKSSKC-IDLDTEEHIYHLKVKSEEVFDEW 137
Cdd:cd13290     7 KWTnvMKGWQYRWFVLDDnaGLLSYYTSKEKMMRGSRRGCVRLKGAVVGIDDEDDStFTITVDQKTFHFQARDAEERERW 86
                          90
                  ....*....|....*.
gi 1622924709 138 VSKL-----RHHRMYR 148
Cdd:cd13290    87 IRALedtilRHSQQYQ 102
PH_FAPP1_FAPP2 cd01247
Four phosphate adaptor protein 1 and 2 Pleckstrin homology (PH) domain; Human FAPP1 (also ...
63-141 7.68e-04

Four phosphate adaptor protein 1 and 2 Pleckstrin homology (PH) domain; Human FAPP1 (also called PLEKHA3/Pleckstrin homology domain-containing, family A member 3) regulates secretory transport from the trans-Golgi network to the plasma membrane. It is recruited through binding of PH domain to phosphatidylinositol 4-phosphate (PtdIns(4)P) and a small GTPase ADP-ribosylation factor 1 (ARF1). These two binding sites have little overlap the FAPP1 PH domain to associate with both ligands simultaneously and independently. FAPP1 has a N-terminal PH domain followed by a short proline-rich region. FAPP1 is a member of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), and Goodpasture antigen binding protein (GPBP). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. FAPP2 (also called PLEKHA8/Pleckstrin homology domain-containing, family A member 8), a member of the Glycolipid lipid transfer protein(GLTP) family has an N-terminal PH domain that targets the TGN and C-terminal GLTP domain. FAPP2 functions to traffic glucosylceramide (GlcCer) which is made in the Golgi. It's interaction with vesicle-associated membrane protein-associated protein (VAP) could be a means of regulation. Some FAPP2s share the FFAT-like motifs found in GLTP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269951  Cd Length: 100  Bit Score: 39.70  E-value: 7.68e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  63 KWP--LKGWHKRFFYLDKGILKYAKSQTDIEReklhGC---IDVGLSVMSVKKSSKC-IDL--DTEEHIYhLKVKSEEVF 134
Cdd:cd01247     7 KWTnyLSGWQPRWFVLDDGVLSYYKSQEEVNQ----GCkgsVKMSVCEIIVHPTDPTrMDLiiPGEQHFY-LKASSAAER 81

                  ....*..
gi 1622924709 135 DEWVSKL 141
Cdd:cd01247    82 QRWLVAL 88
PH_ACAP cd13250
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ...
54-142 8.60e-04

ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270070  Cd Length: 98  Bit Score: 39.51  E-value: 8.60e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  54 QKGFLLKKRKWPLKGWHKRFFYLDKGILKYAKSQTDiEREKLHGCiDVGLSvmSVKKSSK-----CIDLDTEEHIYHLKV 128
Cdd:cd13250     1 KEGYLFKRSSNAFKTWKRRWFSLQNGQLYYQKRDKK-DEPTVMVE-DLRLC--TVKPTEDsdrrfCFEVISPTKSYMLQA 76
                          90
                  ....*....|....
gi 1622924709 129 KSEEVFDEWVSKLR 142
Cdd:cd13250    77 ESEEDRQAWIQAIQ 90
PH_Gab2_2 cd13384
Grb2-associated binding protein family pleckstrin homology (PH) domain; The Gab subfamily ...
53-138 1.12e-03

Grb2-associated binding protein family pleckstrin homology (PH) domain; The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. Members here include insect, nematodes, and crustacean Gab2s. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241535  Cd Length: 115  Bit Score: 39.73  E-value: 1.12e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  53 VQKGFLLK----KRKWPLKgWHKRFFYLDKG------ILKYaksQTDIEREKLHGCIDV--------GLSVMSVKK-SSK 113
Cdd:cd13384     4 VYEGWLTKsppeKRIWRAK-WRRRYFVLRQSeipgqyFLEY---YTDRTCRKLKGSIDLdqceqvdaGLTFETKNKlKDQ 79
                          90       100
                  ....*....|....*....|....*.
gi 1622924709 114 CI-DLDTEEHIYHLKVKSEEVFDEWV 138
Cdd:cd13384    80 HIfDIRTPKRTYYLVADTEDEMNKWV 105
PH_Sbf1_hMTMR5 cd01235
Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a ...
56-141 1.13e-03

Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a myotubularin-related pseudo-phosphatase. Both Sbf1 and myotubularin interact with the SET domains of Hrx and other epigenetic regulatory proteins, but Sbf1 lacks phosphatase activity due to several amino acid changes in its structurally preserved catalytic pocket. It contains pleckstrin (PH), GEF, and myotubularin homology domains that are thought to be responsible for signaling and growth control. Sbf1 functions as an inhibitor of cellular growth. The N-terminal GEF homology domain serves to inhibit the transforming effects of Sbf1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269941  Cd Length: 106  Bit Score: 39.24  E-value: 1.13e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  56 GFLLKKRKWpLKGWHKRFFYLD--KGILKYAKSQTDierEKLHGCIDvgLS-VMSV----------KKSSKC--IDLDTE 120
Cdd:cd01235     7 GYLYKRGAL-LKGWKQRWFVLDstKHQLRYYESRED---TKCKGFID--LAeVESVtpatpiigapKRADEGafFDLKTN 80
                          90       100
                  ....*....|....*....|.
gi 1622924709 121 EHIYHLKVKSEEVFDEWVSKL 141
Cdd:cd01235    81 KRVYNFCAFDAESAQQWIEKI 101
PH_RhoGap25-like cd13263
Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; ...
50-142 3.81e-03

Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; RhoGAP25 (also called ArhGap25) like other RhoGaps are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. This hierarchy contains RhoGAP22, RhoGAP24, and RhoGAP25. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270083  Cd Length: 114  Bit Score: 38.13  E-value: 3.81e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  50 EPPVQKGFLlKKRKWPLKGWHKRFFYLDKGILKYAKsqtDIEREKLHGCIDVGLSVMSV-----KKSSKCI--------- 115
Cdd:cd13263     1 ERPIKSGWL-KKQGSIVKNWQQRWFVLRGDQLYYYK---DEDDTKPQGTIPLPGNKVKEvpfnpEEPGKFLfeiipgggg 76
                          90       100
                  ....*....|....*....|....*...
gi 1622924709 116 DLDTEEH-IYHLKVKSEEVFDEWVSKLR 142
Cdd:cd13263    77 DRMTSNHdSYLLMANSQAEMEEWVKVIR 104
PH_Gab-like cd13324
Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are ...
53-138 9.91e-03

Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. There are 3 families: Gab1, Gab2, and Gab3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270133  Cd Length: 112  Bit Score: 36.62  E-value: 9.91e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622924709  53 VQKGFLLK----KRKWPLKgWHKRFFYLDKG-------ILKYaksQTDIEREKLHGCIDV--------GLSVMSVK-KSS 112
Cdd:cd13324     2 VYEGWLTKsppeKKIWRAA-WRRRWFVLRSGrlsggqdVLEY---YTDDHCKKLKGIIDLdqceqvdaGLTFEKKKfKNQ 77
                          90       100
                  ....*....|....*....|....*.
gi 1622924709 113 KCIDLDTEEHIYHLKVKSEEVFDEWV 138
Cdd:cd13324    78 FIFDIRTPKRTYYLVAETEEEMNKWV 103
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH