NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1622853342|ref|XP_014967037|]
View 

FERM, ARHGEF and pleckstrin domain-containing protein 2 isoform X1 [Macaca mulatta]

Protein Classification

FERM, ARHGEF and pleckstrin domain-containing protein( domain architecture ID 12200574)

FERM, ARHGEF and pleckstrin domain-containing protein (either FARP1 or FARP2) functions as guanine nucleotide exchange factor for RAC1

Gene Ontology:  GO:0005085|GO:0008092|GO:0030036

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
FERM_C_FARP1-like cd13193
FERM domain C-lobe of FERM, RhoGEF and pleckstrin domain-containing protein 1 and related ...
221-341 1.43e-71

FERM domain C-lobe of FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins; Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FRMD7(FERM domain containing 7). FARP1 and FARP2 are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. These members are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. Other members in this family do not contain the DH domains such as the Human FERM domain containing protein 7 and Caenorhabditis elegans CFRM3, both of which have unknown functions. They contain an N-terminal FERM domain, a PH domain, followed by a FA (FERM adjacent) domain. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


:

Pssm-ID: 270014  Cd Length: 122  Bit Score: 233.00  E-value: 1.43e-71
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  221 EIARKLEMYGIRFHMASDREGTKIHLAVSHMGVLVFQGTTKINTFNWSKVRKLSFKRKRFLIKLHPEVHGPYQDTLEFLL 300
Cdd:cd13193      1 ETARRCELYGIRLHPAKDREGVKLNLAVAHMGILVFQGFTKINTFSWAKIRKLSFKRKRFLIKLHPEAYGSYKDTVEFSF 80
                           90       100       110       120
                   ....*....|....*....|....*....|....*....|..
gi 1622853342  301 GSRDECKNFWKICVEYHTFFRLLDQPKPKA-KAVFFSRGSSF 341
Cdd:cd13193     81 ESRNECKSFWKKCIEHHAFFRCSEVPKPPSpKLRLFSRGSSF 122
PH2_FARP1-like cd13235
FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin ...
929-1026 6.85e-66

FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin Homology (PH) domain, repeat 2; Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FARP6 (also called Zinc finger FYVE domain-containing protein 24). They are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. Little is known about FARP1 and FARP6, though FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. FARP1 and FARP2 are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. FARP6 is composed of Dbl-homology (DH), and two C-terminal PH domains separated by a FYVE domain. This hierarchy contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270055  Cd Length: 98  Bit Score: 216.42  E-value: 6.85e-66
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  929 VENQLSGYLLRKFKNSHGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSTPQEADGIHKDYVFKLQFKSHVYFFR 1008
Cdd:cd13235      1 VENQMSGYLLRKFKNSNGWQKLWVVFTNFCLFFYKSHQDEFPLASLPLLGYSVGLPSEADNIDKDYVFKLQFKSHVYFFR 80
                           90
                   ....*....|....*...
gi 1622853342 1009 AESKYTFERWMEVIQGAS 1026
Cdd:cd13235     81 AESEYTFERWMEVIRSAT 98
PH1_FARP1-like cd01220
FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin ...
750-856 2.06e-59

FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin Homology (PH) domain, repeat 1; Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FARP6 (also called Zinc finger FYVE domain-containing protein 24). They are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. Little is known about FARP1 and FARP6, though FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. FARP1 and FARP2 are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. FARP6 is composed of Dbl-homology (DH), and two C-terminal PH domains separated by a FYVE domain. This hierarchy contains the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 269928  Cd Length: 109  Bit Score: 198.69  E-value: 2.06e-59
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  750 LIAPGREFIREGCLHKLTKKGLQQRMFFLFSDMLLYTSKGVAGTSHFRIRGLLPLRGMLVEESENEWSVPHCFTIYAAQK 829
Cdd:cd01220      1 LVQPGREFIREGCLQKLSKKGLQQRMFFLFSDVLLYTSRSPTPSLQFKVHGQLPLRGLMVEESEPEWGVAHCFTIYGGNR 80
                           90       100
                   ....*....|....*....|....*..
gi 1622853342  830 TIVVAASTRLEKEKWMLDLNNAIQAAK 856
Cdd:cd01220     81 ALTVAASSEEEKERWLEDLQRAIDAAK 107
B41 smart00295
Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in ...
45-234 1.63e-53

Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in myosins, ezrin, radixin, moesin, protein tyrosine phosphatases. Plasma membrane-binding domain. These proteins play structural and regulatory roles in the assembly and stabilization of specialized plasmamembrane domains. Some PDZ domain containing proteins bind one or more of this family. Now includes JAKs.


:

Pssm-ID: 214604 [Multi-domain]  Cd Length: 201  Bit Score: 185.58  E-value: 1.63e-53
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342    45 HLRVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSY-WIWLEPMKPIIRQIRRPKNVVLRLAVKF 123
Cdd:smart00295    1 VLKVYLLDGTTLEFEVDSSTTAEELLETVCRKLGIRESEYFGLQFEDPDEDlRHWLDPAKTLLDQDVKSEPLTLYFRVKF 80
                            90       100       110       120       130       140       150       160
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   124 FPPDPGQLQEEYTRY-LFALQLKRDLLEERLTCADTTAALLTSHLLQSEIGDYDE--MLDREHLKANEYLPGQ------- 193
Cdd:smart00295   81 YPPDPNQLKEDPTRLnLLYLQVRNDILEGRLPCPEEEALLLAALALQAEFGDYDEelHDLRGELSLKRFLPKQlldsrkl 160
                           170       180       190       200
                    ....*....|....*....|....*....|....*....|.
gi 1622853342   194 QHCLEKILEFHQKHVGQTPAESDFQVLEIARKLEMYGIRFH 234
Cdd:smart00295  161 KEWRERIVELHKELIGLSPEEAKLKYLELARKLPTYGVELF 201
RhoGEF cd00160
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous ...
538-721 4.50e-37

Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains.


:

Pssm-ID: 238091 [Multi-domain]  Cd Length: 181  Bit Score: 137.81  E-value: 4.50e-37
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  538 YFIVKEILATERTYLKDLEVITVWFRSAVVKEDA-MPATLMTLLFSNIDPIYEFHRGFLREVEQRLALWEAPskahtkgs 616
Cdd:cd00160      2 QEVIKELLQTERNYVRDLKLLVEVFLKPLDKELLpLSPEEVELLFGNIEEIYEFHRIFLKSLEERVEEWDKS-------- 73
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  617 HQRIGDILLRNMLQLKEFTSYFQRHDEVLTELEKATKRFKKLEAVYKEFELQkVCYLPLNTFLLKPIQRLLHYRLLLRRL 696
Cdd:cd00160     74 GPRIGDVFLKLAPFFKIYSEYCSNHPDALELLKKLKKFNKFFQEFLEKAESE-CGRLKLESLLLKPVQRLTKYPLLLKEL 152
                          170       180
                   ....*....|....*....|....*
gi 1622853342  697 CGHYTPGHHDYADCHDALKAITEVT 721
Cdd:cd00160    153 LKHTPDGHEDREDLKKALEAIKEVA 177
FA pfam08736
FERM adjacent (FA); This region is found adjacent to Band 4.1 / FERM domains (pfam00373) in a ...
333-375 2.56e-15

FERM adjacent (FA); This region is found adjacent to Band 4.1 / FERM domains (pfam00373) in a subset of FERM containing protein. The region has been hypothesized to play a role in regulatory adaptation, based on similarity to other protein kinase substrates.


:

Pssm-ID: 462582  Cd Length: 44  Bit Score: 70.66  E-value: 2.56e-15
                           10        20        30        40
                   ....*....|....*....|....*....|....*....|...
gi 1622853342  333 VFFSRGSSFRYSGRTQKQLVDYFKDSGMKRIPYERRHSKTHMS 375
Cdd:pfam08736    1 KFFSLGSKFRYSGRTQKQTVEDSSEILRPQPEFERSPSKRYPS 43
PHA03307 super family cl33723
transcriptional regulator ICP4; Provisional
358-528 3.70e-06

transcriptional regulator ICP4; Provisional


The actual alignment was detected with superfamily member PHA03307:

Pssm-ID: 223039 [Multi-domain]  Cd Length: 1352  Bit Score: 51.33  E-value: 3.70e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  358 SGMKRIPYERRHSKTHMSIRALTADLPKQSISfpEGLRTPGSPSSANASFYSLSPSTLVPPGLPE-FKDSSSSLTEPQVS 436
Cdd:PHA03307    74 GPGTEAPANESRSTPTWSLSTLAPASPAREGS--PTPPGPSSPDPPPPTPPPASPPPSPAPDLSEmLRPVGSPGPPPAAS 151
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  437 yikSPAAERSSGAVAGGPDTP------------SAQPVGPPALQPGPGLSTKSPQPSPSSRNSPLSLSPAFQVPLGP--- 501
Cdd:PHA03307   152 ---PPAAGASPAAVASDAASSrqaalplsspeeTARAPSSPPAEPPPSTPPAAASPRPPRRSSPISASASSPAPAPGrsa 228
                          170       180       190
                   ....*....|....*....|....*....|
gi 1622853342  502 ---AEQGSSPLLSPVLSDAGGAGMDyEEPR 528
Cdd:PHA03307   229 addAGASSSDSSSSESSGCGWGPEN-ECPL 257
 
Name Accession Description Interval E-value
FERM_C_FARP1-like cd13193
FERM domain C-lobe of FERM, RhoGEF and pleckstrin domain-containing protein 1 and related ...
221-341 1.43e-71

FERM domain C-lobe of FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins; Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FRMD7(FERM domain containing 7). FARP1 and FARP2 are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. These members are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. Other members in this family do not contain the DH domains such as the Human FERM domain containing protein 7 and Caenorhabditis elegans CFRM3, both of which have unknown functions. They contain an N-terminal FERM domain, a PH domain, followed by a FA (FERM adjacent) domain. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 270014  Cd Length: 122  Bit Score: 233.00  E-value: 1.43e-71
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  221 EIARKLEMYGIRFHMASDREGTKIHLAVSHMGVLVFQGTTKINTFNWSKVRKLSFKRKRFLIKLHPEVHGPYQDTLEFLL 300
Cdd:cd13193      1 ETARRCELYGIRLHPAKDREGVKLNLAVAHMGILVFQGFTKINTFSWAKIRKLSFKRKRFLIKLHPEAYGSYKDTVEFSF 80
                           90       100       110       120
                   ....*....|....*....|....*....|....*....|..
gi 1622853342  301 GSRDECKNFWKICVEYHTFFRLLDQPKPKA-KAVFFSRGSSF 341
Cdd:cd13193     81 ESRNECKSFWKKCIEHHAFFRCSEVPKPPSpKLRLFSRGSSF 122
PH2_FARP1-like cd13235
FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin ...
929-1026 6.85e-66

FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin Homology (PH) domain, repeat 2; Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FARP6 (also called Zinc finger FYVE domain-containing protein 24). They are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. Little is known about FARP1 and FARP6, though FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. FARP1 and FARP2 are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. FARP6 is composed of Dbl-homology (DH), and two C-terminal PH domains separated by a FYVE domain. This hierarchy contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270055  Cd Length: 98  Bit Score: 216.42  E-value: 6.85e-66
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  929 VENQLSGYLLRKFKNSHGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSTPQEADGIHKDYVFKLQFKSHVYFFR 1008
Cdd:cd13235      1 VENQMSGYLLRKFKNSNGWQKLWVVFTNFCLFFYKSHQDEFPLASLPLLGYSVGLPSEADNIDKDYVFKLQFKSHVYFFR 80
                           90
                   ....*....|....*...
gi 1622853342 1009 AESKYTFERWMEVIQGAS 1026
Cdd:cd13235     81 AESEYTFERWMEVIRSAT 98
PH1_FARP1-like cd01220
FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin ...
750-856 2.06e-59

FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin Homology (PH) domain, repeat 1; Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FARP6 (also called Zinc finger FYVE domain-containing protein 24). They are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. Little is known about FARP1 and FARP6, though FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. FARP1 and FARP2 are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. FARP6 is composed of Dbl-homology (DH), and two C-terminal PH domains separated by a FYVE domain. This hierarchy contains the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269928  Cd Length: 109  Bit Score: 198.69  E-value: 2.06e-59
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  750 LIAPGREFIREGCLHKLTKKGLQQRMFFLFSDMLLYTSKGVAGTSHFRIRGLLPLRGMLVEESENEWSVPHCFTIYAAQK 829
Cdd:cd01220      1 LVQPGREFIREGCLQKLSKKGLQQRMFFLFSDVLLYTSRSPTPSLQFKVHGQLPLRGLMVEESEPEWGVAHCFTIYGGNR 80
                           90       100
                   ....*....|....*....|....*..
gi 1622853342  830 TIVVAASTRLEKEKWMLDLNNAIQAAK 856
Cdd:cd01220     81 ALTVAASSEEEKERWLEDLQRAIDAAK 107
B41 smart00295
Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in ...
45-234 1.63e-53

Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in myosins, ezrin, radixin, moesin, protein tyrosine phosphatases. Plasma membrane-binding domain. These proteins play structural and regulatory roles in the assembly and stabilization of specialized plasmamembrane domains. Some PDZ domain containing proteins bind one or more of this family. Now includes JAKs.


Pssm-ID: 214604 [Multi-domain]  Cd Length: 201  Bit Score: 185.58  E-value: 1.63e-53
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342    45 HLRVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSY-WIWLEPMKPIIRQIRRPKNVVLRLAVKF 123
Cdd:smart00295    1 VLKVYLLDGTTLEFEVDSSTTAEELLETVCRKLGIRESEYFGLQFEDPDEDlRHWLDPAKTLLDQDVKSEPLTLYFRVKF 80
                            90       100       110       120       130       140       150       160
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   124 FPPDPGQLQEEYTRY-LFALQLKRDLLEERLTCADTTAALLTSHLLQSEIGDYDE--MLDREHLKANEYLPGQ------- 193
Cdd:smart00295   81 YPPDPNQLKEDPTRLnLLYLQVRNDILEGRLPCPEEEALLLAALALQAEFGDYDEelHDLRGELSLKRFLPKQlldsrkl 160
                           170       180       190       200
                    ....*....|....*....|....*....|....*....|.
gi 1622853342   194 QHCLEKILEFHQKHVGQTPAESDFQVLEIARKLEMYGIRFH 234
Cdd:smart00295  161 KEWRERIVELHKELIGLSPEEAKLKYLELARKLPTYGVELF 201
FERM_F1_FARP2 cd17190
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM, ARH/RhoGEF ...
44-128 1.11e-52

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM, ARH/RhoGEF and pleckstrin domain-containing protein 2 (FARP2) and similar proteins; FARP2, also termed FERM domain including RhoGEF (FIR), or Pleckstrin homology (PH) domain-containing family C member 3, is a Dbl-family guanine nucleotide exchange factor (GEF) that activates Rac1 or Cdc42 in response to upstream signals, suggesting roles in regulating processes such as neuronal axon guidance and bone homeostasis. It is also a key molecule involved in the response of neuronal growth cones to class-3 semaphorins. FARP2 contains a FERM domain, a Dbl-homology (DH) domain and two pleckstrin homology (PH) domains. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).


Pssm-ID: 340710  Cd Length: 85  Bit Score: 178.45  E-value: 1.11e-52
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   44 LHLRVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRRPKNVVLRLAVKF 123
Cdd:cd17190      1 LQLRVKLLDNTTEPLEIEPKADGQALLSQVFKRLNLVESDYFGLEFQNSQSNWIWLEPMKLIVKQVRRPKNTKLRLAVKF 80

                   ....*
gi 1622853342  124 FPPDP 128
Cdd:cd17190     81 FPPDP 85
RhoGEF cd00160
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous ...
538-721 4.50e-37

Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains.


Pssm-ID: 238091 [Multi-domain]  Cd Length: 181  Bit Score: 137.81  E-value: 4.50e-37
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  538 YFIVKEILATERTYLKDLEVITVWFRSAVVKEDA-MPATLMTLLFSNIDPIYEFHRGFLREVEQRLALWEAPskahtkgs 616
Cdd:cd00160      2 QEVIKELLQTERNYVRDLKLLVEVFLKPLDKELLpLSPEEVELLFGNIEEIYEFHRIFLKSLEERVEEWDKS-------- 73
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  617 HQRIGDILLRNMLQLKEFTSYFQRHDEVLTELEKATKRFKKLEAVYKEFELQkVCYLPLNTFLLKPIQRLLHYRLLLRRL 696
Cdd:cd00160     74 GPRIGDVFLKLAPFFKIYSEYCSNHPDALELLKKLKKFNKFFQEFLEKAESE-CGRLKLESLLLKPVQRLTKYPLLLKEL 152
                          170       180
                   ....*....|....*....|....*
gi 1622853342  697 CGHYTPGHHDYADCHDALKAITEVT 721
Cdd:cd00160    153 LKHTPDGHEDREDLKKALEAIKEVA 177
RhoGEF smart00325
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange ...
540-725 1.27e-34

Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Improved coverage.


Pssm-ID: 214619 [Multi-domain]  Cd Length: 180  Bit Score: 130.50  E-value: 1.27e-34
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   540 IVKEILATERTYLKDLEVITVWFRSAVVKE-DAMPATLMTLLFSNIDPIYEFHRGFLREVEQRLALWEapskahtkGSHQ 618
Cdd:smart00325    1 VLKELLQTERNYVRDLKLLVEVFLKPLKKElKLLSPNELETLFGNIEEIYEFHRDFLDELEERIEEWD--------DSVE 72
                            90       100       110       120       130       140       150       160
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   619 RIGDILLRNMLQLKEFTSYFQRHDEVLTELEKATKRfKKLEAVYKEFELQKVCY-LPLNTFLLKPIQRLLHYRLLLRRLC 697
Cdd:smart00325   73 RIGDVFLKLEEFFKIYSEYCSNHPDALELLKKLKKN-PRFQKFLKEIESSPQCRrLTLESLLLKPVQRLTKYPLLLKELL 151
                           170       180
                    ....*....|....*....|....*...
gi 1622853342   698 GHYTPGHHDYADCHDALKAITEVTTTLQ 725
Cdd:smart00325  152 KHTPEDHEDREDLKKALKAIKELANQVN 179
FERM_C pfam09380
FERM C-terminal PH-like domain;
238-322 5.93e-34

FERM C-terminal PH-like domain;


Pssm-ID: 462779 [Multi-domain]  Cd Length: 85  Bit Score: 125.06  E-value: 5.93e-34
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  238 DREGTKIHLAVSHMGVLVFQGTTKI-NTFNWSKVRKLSFKRKRFLIKLHpevHGPYQDTLEFLLGSRDECKNFWKICVEY 316
Cdd:pfam09380    1 DKEGTDLWLGVSAKGILVYEDNNKIlNLFPWREIRKISFKRKKFLIKLR---DKSSEETLGFYTESSRACKYLWKLCVEQ 77

                   ....*.
gi 1622853342  317 HTFFRL 322
Cdd:pfam09380   78 HTFFRL 83
RhoGEF pfam00621
RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called ...
540-722 1.96e-28

RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that pfam00169 domains invariably occur C-terminal to RhoGEF/DH domains.


Pssm-ID: 459876 [Multi-domain]  Cd Length: 176  Bit Score: 112.78  E-value: 1.96e-28
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  540 IVKEILATERTYLKDLEVITVWFRSAVVKEDAMPATLMTLLFSNIDPIYEFHRGFLreVEQRLALWEAPskahtkgshQR 619
Cdd:pfam00621    1 VIKELLQTERSYVRDLEILVEVFLPPNSKPLSESEEEIKTIFSNIEEIYELHRQLL--LEELLKEWISI---------QR 69
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  620 IGDILLRNMLQLKEFTSYFQRHDEVLTELEKATKRFKKLEAVYKEFELQKVCY-LPLNTFLLKPIQrllhyrlllrrLCG 698
Cdd:pfam00621   70 IGDIFLKFAPGFKVYSTYCSNYPKALKLLKKLLKKNPKFRAFLEELEANPECRgLDLNSFLIKPVQ-----------RIP 138
                          170       180       190
                   ....*....|....*....|....*....|....*
gi 1622853342  699 HY-----------TPGHHDYADCHDALKAITEVTT 722
Cdd:pfam00621  139 RYplllkellkhtPPDHPDYEDLKKALEAIKEVAK 173
FERM_N pfam09379
FERM N-terminal domain; This domain is the N-terminal ubiquitin-like structural domain of the ...
48-110 2.80e-24

FERM N-terminal domain; This domain is the N-terminal ubiquitin-like structural domain of the FERM domain.


Pssm-ID: 430570  Cd Length: 63  Bit Score: 96.89  E-value: 2.80e-24
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1622853342   48 VKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIR 110
Cdd:pfam09379    1 VRLLDGTVLEFDVQPKATGQVLLDQVCNHLNLKEKDYFGLQFLDDNGEHRWLDLSKRLSKQAP 63
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
933-1027 5.67e-16

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 74.51  E-value: 5.67e-16
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   933 LSGYLLRKFKN-SHGWQKLWVVFTNFCLFFYKTHQDDY---PLASLPLLGYSVSTPQEADGIHKDYVFKLQFKS-HVYFF 1007
Cdd:smart00233    3 KEGWLYKKSGGgKKSWKKRYFVLFNSTLLYYKSKKDKKsykPKGSIDLSGCTVREAPDPDSSKKPHCFEIKTSDrKTLLL 82
                            90       100
                    ....*....|....*....|
gi 1622853342  1008 RAESKYTFERWMEVIQGASS 1027
Cdd:smart00233   83 QAESEEEREKWVEALRKAIA 102
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
757-853 9.88e-16

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 73.74  E-value: 9.88e-16
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   757 FIREGCLHKLT---KKGLQQRMFFLFSDMLLYTSKGVAGTShFRIRGLLPLRGMLVEESENEWSV--PHCFTI-YAAQKT 830
Cdd:smart00233    1 VIKEGWLYKKSgggKKSWKKRYFVLFNSTLLYYKSKKDKKS-YKPKGSIDLSGCTVREAPDPDSSkkPHCFEIkTSDRKT 79
                            90       100
                    ....*....|....*....|...
gi 1622853342   831 IVVAASTRLEKEKWMLDLNNAIQ 853
Cdd:smart00233   80 LLLQAESEEEREKWVEALRKAIA 102
FA pfam08736
FERM adjacent (FA); This region is found adjacent to Band 4.1 / FERM domains (pfam00373) in a ...
333-375 2.56e-15

FERM adjacent (FA); This region is found adjacent to Band 4.1 / FERM domains (pfam00373) in a subset of FERM containing protein. The region has been hypothesized to play a role in regulatory adaptation, based on similarity to other protein kinase substrates.


Pssm-ID: 462582  Cd Length: 44  Bit Score: 70.66  E-value: 2.56e-15
                           10        20        30        40
                   ....*....|....*....|....*....|....*....|...
gi 1622853342  333 VFFSRGSSFRYSGRTQKQLVDYFKDSGMKRIPYERRHSKTHMS 375
Cdd:pfam08736    1 KFFSLGSKFRYSGRTQKQTVEDSSEILRPQPEFERSPSKRYPS 43
PH pfam00169
PH domain; PH stands for pleckstrin homology.
934-1027 3.62e-12

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 63.74  E-value: 3.62e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  934 SGYLLRKFK-NSHGWQKLWVVFTNFCLFFYK---THQDDYPLASLPLLGYSVSTPQEADGIHKDYVFKL----QFKSHVY 1005
Cdd:pfam00169    4 EGWLLKKGGgKKKSWKKRYFVLFDGSLLYYKddkSGKSKEPKGSISLSGCEVVEVVASDSPKRKFCFELrtgeRTGKRTY 83
                           90       100
                   ....*....|....*....|..
gi 1622853342 1006 FFRAESKYTFERWMEVIQGASS 1027
Cdd:pfam00169   84 LLQAESEEERKDWIKAIQSAIR 105
PH pfam00169
PH domain; PH stands for pleckstrin homology.
758-852 1.01e-08

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 54.11  E-value: 1.01e-08
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  758 IREGCLHKLT---KKGLQQRMFFLFSDMLLYTSKGVAGTSHfRIRGLLPLRGMLVEESENEWS--VPHCFTIYAAQ---- 828
Cdd:pfam00169    2 VKEGWLLKKGggkKKSWKKRYFVLFDGSLLYYKDDKSGKSK-EPKGSISLSGCEVVEVVASDSpkRKFCFELRTGErtgk 80
                           90       100
                   ....*....|....*....|....
gi 1622853342  829 KTIVVAASTRLEKEKWMLDLNNAI 852
Cdd:pfam00169   81 RTYLLQAESEEERKDWIKAIQSAI 104
PHA03307 PHA03307
transcriptional regulator ICP4; Provisional
358-528 3.70e-06

transcriptional regulator ICP4; Provisional


Pssm-ID: 223039 [Multi-domain]  Cd Length: 1352  Bit Score: 51.33  E-value: 3.70e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  358 SGMKRIPYERRHSKTHMSIRALTADLPKQSISfpEGLRTPGSPSSANASFYSLSPSTLVPPGLPE-FKDSSSSLTEPQVS 436
Cdd:PHA03307    74 GPGTEAPANESRSTPTWSLSTLAPASPAREGS--PTPPGPSSPDPPPPTPPPASPPPSPAPDLSEmLRPVGSPGPPPAAS 151
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  437 yikSPAAERSSGAVAGGPDTP------------SAQPVGPPALQPGPGLSTKSPQPSPSSRNSPLSLSPAFQVPLGP--- 501
Cdd:PHA03307   152 ---PPAAGASPAAVASDAASSrqaalplsspeeTARAPSSPPAEPPPSTPPAAASPRPPRRSSPISASASSPAPAPGrsa 228
                          170       180       190
                   ....*....|....*....|....*....|
gi 1622853342  502 ---AEQGSSPLLSPVLSDAGGAGMDyEEPR 528
Cdd:PHA03307   229 addAGASSSDSSSSESSGCGWGPEN-ECPL 257
 
Name Accession Description Interval E-value
FERM_C_FARP1-like cd13193
FERM domain C-lobe of FERM, RhoGEF and pleckstrin domain-containing protein 1 and related ...
221-341 1.43e-71

FERM domain C-lobe of FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins; Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FRMD7(FERM domain containing 7). FARP1 and FARP2 are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. These members are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. Other members in this family do not contain the DH domains such as the Human FERM domain containing protein 7 and Caenorhabditis elegans CFRM3, both of which have unknown functions. They contain an N-terminal FERM domain, a PH domain, followed by a FA (FERM adjacent) domain. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 270014  Cd Length: 122  Bit Score: 233.00  E-value: 1.43e-71
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  221 EIARKLEMYGIRFHMASDREGTKIHLAVSHMGVLVFQGTTKINTFNWSKVRKLSFKRKRFLIKLHPEVHGPYQDTLEFLL 300
Cdd:cd13193      1 ETARRCELYGIRLHPAKDREGVKLNLAVAHMGILVFQGFTKINTFSWAKIRKLSFKRKRFLIKLHPEAYGSYKDTVEFSF 80
                           90       100       110       120
                   ....*....|....*....|....*....|....*....|..
gi 1622853342  301 GSRDECKNFWKICVEYHTFFRLLDQPKPKA-KAVFFSRGSSF 341
Cdd:cd13193     81 ESRNECKSFWKKCIEHHAFFRCSEVPKPPSpKLRLFSRGSSF 122
PH2_FARP1-like cd13235
FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin ...
929-1026 6.85e-66

FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin Homology (PH) domain, repeat 2; Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FARP6 (also called Zinc finger FYVE domain-containing protein 24). They are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. Little is known about FARP1 and FARP6, though FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. FARP1 and FARP2 are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. FARP6 is composed of Dbl-homology (DH), and two C-terminal PH domains separated by a FYVE domain. This hierarchy contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270055  Cd Length: 98  Bit Score: 216.42  E-value: 6.85e-66
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  929 VENQLSGYLLRKFKNSHGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSTPQEADGIHKDYVFKLQFKSHVYFFR 1008
Cdd:cd13235      1 VENQMSGYLLRKFKNSNGWQKLWVVFTNFCLFFYKSHQDEFPLASLPLLGYSVGLPSEADNIDKDYVFKLQFKSHVYFFR 80
                           90
                   ....*....|....*...
gi 1622853342 1009 AESKYTFERWMEVIQGAS 1026
Cdd:cd13235     81 AESEYTFERWMEVIRSAT 98
PH1_FARP1-like cd01220
FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin ...
750-856 2.06e-59

FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin Homology (PH) domain, repeat 1; Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FARP6 (also called Zinc finger FYVE domain-containing protein 24). They are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. Little is known about FARP1 and FARP6, though FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. FARP1 and FARP2 are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. FARP6 is composed of Dbl-homology (DH), and two C-terminal PH domains separated by a FYVE domain. This hierarchy contains the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269928  Cd Length: 109  Bit Score: 198.69  E-value: 2.06e-59
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  750 LIAPGREFIREGCLHKLTKKGLQQRMFFLFSDMLLYTSKGVAGTSHFRIRGLLPLRGMLVEESENEWSVPHCFTIYAAQK 829
Cdd:cd01220      1 LVQPGREFIREGCLQKLSKKGLQQRMFFLFSDVLLYTSRSPTPSLQFKVHGQLPLRGLMVEESEPEWGVAHCFTIYGGNR 80
                           90       100
                   ....*....|....*....|....*..
gi 1622853342  830 TIVVAASTRLEKEKWMLDLNNAIQAAK 856
Cdd:cd01220     81 ALTVAASSEEEKERWLEDLQRAIDAAK 107
B41 smart00295
Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in ...
45-234 1.63e-53

Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in myosins, ezrin, radixin, moesin, protein tyrosine phosphatases. Plasma membrane-binding domain. These proteins play structural and regulatory roles in the assembly and stabilization of specialized plasmamembrane domains. Some PDZ domain containing proteins bind one or more of this family. Now includes JAKs.


Pssm-ID: 214604 [Multi-domain]  Cd Length: 201  Bit Score: 185.58  E-value: 1.63e-53
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342    45 HLRVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSY-WIWLEPMKPIIRQIRRPKNVVLRLAVKF 123
Cdd:smart00295    1 VLKVYLLDGTTLEFEVDSSTTAEELLETVCRKLGIRESEYFGLQFEDPDEDlRHWLDPAKTLLDQDVKSEPLTLYFRVKF 80
                            90       100       110       120       130       140       150       160
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   124 FPPDPGQLQEEYTRY-LFALQLKRDLLEERLTCADTTAALLTSHLLQSEIGDYDE--MLDREHLKANEYLPGQ------- 193
Cdd:smart00295   81 YPPDPNQLKEDPTRLnLLYLQVRNDILEGRLPCPEEEALLLAALALQAEFGDYDEelHDLRGELSLKRFLPKQlldsrkl 160
                           170       180       190       200
                    ....*....|....*....|....*....|....*....|.
gi 1622853342   194 QHCLEKILEFHQKHVGQTPAESDFQVLEIARKLEMYGIRFH 234
Cdd:smart00295  161 KEWRERIVELHKELIGLSPEEAKLKYLELARKLPTYGVELF 201
FERM_F1_FARP2 cd17190
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM, ARH/RhoGEF ...
44-128 1.11e-52

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM, ARH/RhoGEF and pleckstrin domain-containing protein 2 (FARP2) and similar proteins; FARP2, also termed FERM domain including RhoGEF (FIR), or Pleckstrin homology (PH) domain-containing family C member 3, is a Dbl-family guanine nucleotide exchange factor (GEF) that activates Rac1 or Cdc42 in response to upstream signals, suggesting roles in regulating processes such as neuronal axon guidance and bone homeostasis. It is also a key molecule involved in the response of neuronal growth cones to class-3 semaphorins. FARP2 contains a FERM domain, a Dbl-homology (DH) domain and two pleckstrin homology (PH) domains. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).


Pssm-ID: 340710  Cd Length: 85  Bit Score: 178.45  E-value: 1.11e-52
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   44 LHLRVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRRPKNVVLRLAVKF 123
Cdd:cd17190      1 LQLRVKLLDNTTEPLEIEPKADGQALLSQVFKRLNLVESDYFGLEFQNSQSNWIWLEPMKLIVKQVRRPKNTKLRLAVKF 80

                   ....*
gi 1622853342  124 FPPDP 128
Cdd:cd17190     81 FPPDP 85
FERM_F1_FARP1_like cd17098
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM, RhoGEF and ...
44-128 8.87e-44

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM, RhoGEF and pleckstrin domain-containing protein 1 (FARP1) and similar proteins; This family includes the F1 sub-domain of FERM, RhoGEF and pleckstrin domain-containing proteins FARP1, FARP2, and FERM domain-containing protein 7 (FRMD7). FARP1, also termed chondrocyte-derived ezrin-like protein (CDEP), or pleckstrin homology (PH) domain-containing family C member 2 (PLEKHC2), is a neuronal activator of the RhoA GTPase. It promotes outgrowth of developing motor neuron dendrites. It also regulates excitatory synapse formation and morphology, as well as activates the GTPase Rac1 to promote F-actin assembly. FARP2, also termed FERM domain including RhoGEF (FIR), or Pleckstrin homology (PH) domain-containing family C member 3, is a Dbl-family guanine nucleotide exchange factor (GEF) that activates Rac1 or Cdc42 in response to upstream signals, suggesting roles in regulating processes such as neuronal axon guidance and bone homeostasis. It is also a key molecule involved in the response of neuronal growth cones to class-3 semaphorins. FRMD7 plays an important role in neuronal development and is involved in the regulation of F-actin, neurofilament, and microtubule dynamics. All family members contain a FERM domain that is made up of three sub-domains, F1, F2, and F3. This family corresponds to F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).


Pssm-ID: 340618  Cd Length: 85  Bit Score: 153.14  E-value: 8.87e-44
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   44 LHLRVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRRPKNVVLRLAVKF 123
Cdd:cd17098      1 LHVKVQMLDDTVHIFQVQQKALGEVLFDQVCKHLNLLESDYFGLEFTDPEGNKCWLDPEKPILRQVKRPKDVVFKFVVKF 80

                   ....*
gi 1622853342  124 FPPDP 128
Cdd:cd17098     81 YTPDP 85
RhoGEF cd00160
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous ...
538-721 4.50e-37

Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains.


Pssm-ID: 238091 [Multi-domain]  Cd Length: 181  Bit Score: 137.81  E-value: 4.50e-37
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  538 YFIVKEILATERTYLKDLEVITVWFRSAVVKEDA-MPATLMTLLFSNIDPIYEFHRGFLREVEQRLALWEAPskahtkgs 616
Cdd:cd00160      2 QEVIKELLQTERNYVRDLKLLVEVFLKPLDKELLpLSPEEVELLFGNIEEIYEFHRIFLKSLEERVEEWDKS-------- 73
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  617 HQRIGDILLRNMLQLKEFTSYFQRHDEVLTELEKATKRFKKLEAVYKEFELQkVCYLPLNTFLLKPIQRLLHYRLLLRRL 696
Cdd:cd00160     74 GPRIGDVFLKLAPFFKIYSEYCSNHPDALELLKKLKKFNKFFQEFLEKAESE-CGRLKLESLLLKPVQRLTKYPLLLKEL 152
                          170       180
                   ....*....|....*....|....*
gi 1622853342  697 CGHYTPGHHDYADCHDALKAITEVT 721
Cdd:cd00160    153 LKHTPDGHEDREDLKKALEAIKEVA 177
RhoGEF smart00325
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange ...
540-725 1.27e-34

Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Improved coverage.


Pssm-ID: 214619 [Multi-domain]  Cd Length: 180  Bit Score: 130.50  E-value: 1.27e-34
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   540 IVKEILATERTYLKDLEVITVWFRSAVVKE-DAMPATLMTLLFSNIDPIYEFHRGFLREVEQRLALWEapskahtkGSHQ 618
Cdd:smart00325    1 VLKELLQTERNYVRDLKLLVEVFLKPLKKElKLLSPNELETLFGNIEEIYEFHRDFLDELEERIEEWD--------DSVE 72
                            90       100       110       120       130       140       150       160
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   619 RIGDILLRNMLQLKEFTSYFQRHDEVLTELEKATKRfKKLEAVYKEFELQKVCY-LPLNTFLLKPIQRLLHYRLLLRRLC 697
Cdd:smart00325   73 RIGDVFLKLEEFFKIYSEYCSNHPDALELLKKLKKN-PRFQKFLKEIESSPQCRrLTLESLLLKPVQRLTKYPLLLKELL 151
                           170       180
                    ....*....|....*....|....*...
gi 1622853342   698 GHYTPGHHDYADCHDALKAITEVTTTLQ 725
Cdd:smart00325  152 KHTPEDHEDREDLKKALKAIKELANQVN 179
FERM_C pfam09380
FERM C-terminal PH-like domain;
238-322 5.93e-34

FERM C-terminal PH-like domain;


Pssm-ID: 462779 [Multi-domain]  Cd Length: 85  Bit Score: 125.06  E-value: 5.93e-34
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  238 DREGTKIHLAVSHMGVLVFQGTTKI-NTFNWSKVRKLSFKRKRFLIKLHpevHGPYQDTLEFLLGSRDECKNFWKICVEY 316
Cdd:pfam09380    1 DKEGTDLWLGVSAKGILVYEDNNKIlNLFPWREIRKISFKRKKFLIKLR---DKSSEETLGFYTESSRACKYLWKLCVEQ 77

                   ....*.
gi 1622853342  317 HTFFRL 322
Cdd:pfam09380   78 HTFFRL 83
FERM_C_PTPN4_PTPN3_like cd13189
FERM domain C-lobe of Protein tyrosine phosphatase non-receptor proteins 3 and 4 (PTPN4 and ...
228-322 1.95e-31

FERM domain C-lobe of Protein tyrosine phosphatase non-receptor proteins 3 and 4 (PTPN4 and PTPN3); PTPN4 (also called PTPMEG, protein tyrosine phosphatase, megakaryocyte) is a cytoplasmic protein-tyrosine phosphatase (PTP) thought to play a role in cerebellar function. PTPMEG-knockout mice have impaired memory formation and cerebellar long-term depression. PTPN3/PTPH1 is a membrane-associated PTP that is implicated in regulating tyrosine phosphorylation of growth factor receptors, p97 VCP (valosin-containing protein, or Cdc48 in Saccharomyces cerevisiae), and HBV (Hepatitis B Virus) gene expression; it is mutated in a subset of colon cancers. PTPMEG and PTPN3/PTPH1 contains a N-terminal FERM domain, a middle PDZ domain, and a C-terminal phosphatase domain. PTP1/Tyrosine-protein phosphatase 1 from nematodes and a FERM_C repeat 1 from Tetraodon nigroviridis are also included in this cd. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 270010  Cd Length: 95  Bit Score: 118.18  E-value: 1.95e-31
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  228 MYGIRFHMASDREGTKIHLAVSHMGVLVFQGTTKINTFNWSKVRKLSFKRKRFLIKLHPEVHGPYQDTLEFLLGSRDECK 307
Cdd:cd13189      1 LYGVELHSARDSNNLELQIGVSSAGILVFQNGIRINTFPWSKIVKISFKRKQFFIQLRREPNESRDTILGFNMLSYRACK 80
                           90
                   ....*....|....*
gi 1622853342  308 NFWKICVEYHTFFRL 322
Cdd:cd13189     81 NLWKSCVEHHTFFRL 95
RhoGEF pfam00621
RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called ...
540-722 1.96e-28

RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that pfam00169 domains invariably occur C-terminal to RhoGEF/DH domains.


Pssm-ID: 459876 [Multi-domain]  Cd Length: 176  Bit Score: 112.78  E-value: 1.96e-28
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  540 IVKEILATERTYLKDLEVITVWFRSAVVKEDAMPATLMTLLFSNIDPIYEFHRGFLreVEQRLALWEAPskahtkgshQR 619
Cdd:pfam00621    1 VIKELLQTERSYVRDLEILVEVFLPPNSKPLSESEEEIKTIFSNIEEIYELHRQLL--LEELLKEWISI---------QR 69
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  620 IGDILLRNMLQLKEFTSYFQRHDEVLTELEKATKRFKKLEAVYKEFELQKVCY-LPLNTFLLKPIQrllhyrlllrrLCG 698
Cdd:pfam00621   70 IGDIFLKFAPGFKVYSTYCSNYPKALKLLKKLLKKNPKFRAFLEELEANPECRgLDLNSFLIKPVQ-----------RIP 138
                          170       180       190
                   ....*....|....*....|....*....|....*
gi 1622853342  699 HY-----------TPGHHDYADCHDALKAITEVTT 722
Cdd:pfam00621  139 RYplllkellkhtPPDHPDYEDLKKALEAIKEVAK 173
FERM_C_4_1_family cd13184
FERM domain C-lobe of Protein 4.1 family; The protein 4.1 family includes four well-defined ...
229-322 1.42e-27

FERM domain C-lobe of Protein 4.1 family; The protein 4.1 family includes four well-defined members: erythroid protein 4.1 (4.1R), the best known and characterized member, 4.1G (general), 4.1N (neuronal), and 4.1 B (brain). The less well understood 4.1O/FRMD3 is not a true member of this family and is not included in this hierarchy. Besides three highly conserved domains, FERM, SAB (spectrin and actin binding domain) and CTD (C-terminal domain), the proteins from this family contain several unique domains: U1, U2 and U3. FERM domains like other members of the FERM domain superfamily have a cloverleaf architecture with three distinct lobes: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The brain is a particularly rich source of protein 4.1 isoforms. The various 4.1R, 4.1G, 4.1N, and 4.1B mRNAs are all expressed in distinct patterns within the brain. It is likely that 4.1 proteins play important functional roles in the brain including motor coordination and spatial learning, postmitotic differentiation, and synaptic architecture and function. In addition they are found in nonerythroid, nonneuronal cells where they may play a general structural role in nuclear architecture and/or may interact with splicing factors. The FERM C domain is the third structural domain within the FERM domain. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 270005  Cd Length: 94  Bit Score: 107.41  E-value: 1.42e-27
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  229 YGIRFHMASDREGTKIHLAVSHMGVLVFQGTTKINTFNWSKVRKLSFKRKRFLIKLHPEVHGPYQDTLEFLLGSRDECKN 308
Cdd:cd13184      1 YGVDLHPAKDSEGVDIMLGVCSSGLLVYRDRLRINRFAWPKVLKISYKRNNFYIKIRPGEFEQYETTIGFKLPNHRAAKR 80
                           90
                   ....*....|....
gi 1622853342  309 FWKICVEYHTFFRL 322
Cdd:cd13184     81 LWKVCVEHHTFFRL 94
FERM_F1_FARP1 cd17189
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM, ARH/RhoGEF ...
46-127 4.60e-26

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM, ARH/RhoGEF and pleckstrin domain-containing protein 1 (FARP1); FARP1, also termed chondrocyte-derived ezrin-like protein (CDEP), or pleckstrin homology (PH) domain-containing family C member 2 (PLEKHC2), is a neuronal activator of the RhoA GTPase. It promotes outgrowth of developing motor neuron dendrites. It also regulates excitatory synapse formation and morphology, as well as activates the GTPase Rac1 to promote F-actin assembly. As a novel downstream signaling partner of Rif, FARP1 is involved in the regulation of semaphorin signaling in neurons. FARP1 contains a FERM domain, a Dbl-homology (DH) domain and two pleckstrin homology (PH) domains. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).


Pssm-ID: 340709  Cd Length: 85  Bit Score: 102.58  E-value: 4.60e-26
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   46 LRVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRRPKNVVLRLAVKFFP 125
Cdd:cd17189      3 IKVQMLDDTQEVFEVPQRAPGKVLLDAVCSHLNLVEGDYFGLEFQDHRKVMVWLDLLKPIVKQIRRPKHVVLRFVVKFFP 82

                   ..
gi 1622853342  126 PD 127
Cdd:cd17189     83 PD 84
FERM_N pfam09379
FERM N-terminal domain; This domain is the N-terminal ubiquitin-like structural domain of the ...
48-110 2.80e-24

FERM N-terminal domain; This domain is the N-terminal ubiquitin-like structural domain of the FERM domain.


Pssm-ID: 430570  Cd Length: 63  Bit Score: 96.89  E-value: 2.80e-24
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1622853342   48 VKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIR 110
Cdd:pfam09379    1 VRLLDGTVLEFDVQPKATGQVLLDQVCNHLNLKEKDYFGLQFLDDNGEHRWLDLSKRLSKQAP 63
FERM_F1_FRMD7 cd17188
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM ...
44-128 4.39e-24

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM domain-containing protein 7 (FRMD7); FRMD7 plays an important role in neuronal development and is involved in the regulation of F-actin, neurofilament, and microtubule dynamics. It interacts with the Rho GTPase regulator, RhoGDIalpha, and activates the Rho subfamily member Rac1, which regulates reorganization of actin filaments and controls neuronal outgrowth. Mutations in the FRMD7 gene are responsible for the X-linked idiopathic congenital nystagmus (ICN), a disease which affects ocular motor control. FRMD7 contains a FERM domain, and a pleckstrin homology (PH) domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).


Pssm-ID: 340708  Cd Length: 86  Bit Score: 97.19  E-value: 4.39e-24
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   44 LHLRVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRRPKNVVLRLAVKF 123
Cdd:cd17188      2 LHLKVQFLDDSQKVFVVDQKSTGKDLFNMSCSHLNLVEKEYFGLEFRNHAGNNVWLELLKPITKQIKNPKELIFKFTVKF 81

                   ....*
gi 1622853342  124 FPPDP 128
Cdd:cd17188     82 FPVDP 86
PH1_FGD5_FGD6 cd13389
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6, N-terminal ...
744-857 2.58e-23

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6, N-terminal Pleckstrin Homology (PH) domain; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275424  Cd Length: 124  Bit Score: 96.19  E-value: 2.58e-23
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  744 LVGVENLIAPGREFIREGCLHKLTKKGLQQRMFFLFSDMLLYTSKgVAGTSHFRIRGLLPLRGMLVEESENEwSVPHCFT 823
Cdd:cd13389      1 LLGQYNIVKPGRKLIKEGELMKVSRKEMQPRYFFLFNDCLLYTTP-VQSSGMLKLNNELPLSGMKVKLPEDE-EYSNEFQ 78
                           90       100       110
                   ....*....|....*....|....*....|....
gi 1622853342  824 IYAAQKTIVVAASTRLEKEKWMLDLNNAIQAAKS 857
Cdd:cd13389     79 IISTKRSFTLIASSEEERDEWVKALSRAIEEHTK 112
FERM_B-lobe cd14473
FERM domain B-lobe; The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C ...
136-226 2.67e-21

FERM domain B-lobe; The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases, the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 271216  Cd Length: 99  Bit Score: 89.61  E-value: 2.67e-21
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  136 TRYLFALQLKRDLLEERLTCADTTAALLTSHLLQSEIGDYDEM-LDREHLKANEYLP-------GQQHCLEKILEFHQKH 207
Cdd:cd14473      1 TRYLLYLQVKRDILEGRLPCSEETAALLAALALQAEYGDYDPSeHKPKYLSLKRFLPkqllkqrKPEEWEKRIVELHKKL 80
                           90
                   ....*....|....*....
gi 1622853342  208 VGQTPAESDFQVLEIARKL 226
Cdd:cd14473     81 RGLSPAEAKLKYLKIARKL 99
FERM_M pfam00373
FERM central domain; This domain is the central structural domain of the FERM domain.
126-234 5.49e-21

FERM central domain; This domain is the central structural domain of the FERM domain.


Pssm-ID: 459788 [Multi-domain]  Cd Length: 117  Bit Score: 89.25  E-value: 5.49e-21
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  126 PDPGQLQEEYTRYLFALQLKRDLLEERLTCADTTAALLTSHLLQSEIGDY-DEMLDREHLKANEYLP-------GQQHCL 197
Cdd:pfam00373    1 DLELLLQDEVTRHLLYLQAKDDILEGRLPCSEEEALLLAALQLQAEFGDYqPSSHTSEYLSLESFLPkqllrkmKSKELE 80
                           90       100       110
                   ....*....|....*....|....*....|....*..
gi 1622853342  198 EKILEFHQKHVGQTPAESDFQVLEIARKLEMYGIRFH 234
Cdd:pfam00373   81 KRVLEAHKNLRGLSAEEAKLKYLQIAQSLPTYGVEFF 117
PH_Phafin2-like cd01218
Phafin2 (also called EAPF, FLJ13187, ZFYVE18 or PLEKHF2) Pleckstrin Homology (PH) domain; ...
732-849 1.13e-20

Phafin2 (also called EAPF, FLJ13187, ZFYVE18 or PLEKHF2) Pleckstrin Homology (PH) domain; Phafin2 is differentially expressed in the liver cancer cell and regulates the structure and function of the endosomes through Rab5-dependent processes. Phafin2 modulates the cell's response to extracellular stimulation by modulating the receptor density on the cell surface. Phafin2 contains a PH domain and a FYVE domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269927 [Multi-domain]  Cd Length: 123  Bit Score: 88.47  E-value: 1.13e-20
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  732 ENLQKLTELQRDLVGVEN-LIAPGREFIREGCLHKLTKKGLQQRMFFLFSDMLLYTSkGVAGTSHFRIRGLLPLRGMLVE 810
Cdd:cd01218      4 ANRRRIAAVESCFGGSGQpLVKPGRVLVGEGVLTKVCRKKPKPRQFFLFNDILVYGS-IVINKKKYNKQRIIPLEDVKIE 82
                           90       100       110
                   ....*....|....*....|....*....|....*....
gi 1622853342  811 ESENEWSVPHCFTIYAAQKTIVVAASTRLEKEKWMLDLN 849
Cdd:cd01218     83 DLEDTGELKNGWQIISPKKSFVVYAATATEKSEWMDHIN 121
FERM_C_NBL4_NBL5 cd13186
FERM domain C-lobe of Novel band 4.1-like protein 4 and 5 (NBL4 and 5); NBL4 (also called ...
230-321 8.63e-18

FERM domain C-lobe of Novel band 4.1-like protein 4 and 5 (NBL4 and 5); NBL4 (also called Erythrocyte protein band 4.1-like 4; Epb4 1l4) plays a role the beta-catenin/Tcf signaling pathway and is thought to be involved in establishing the cell polarity or proliferation. NBL4 may be also involved in adhesion, in cell motility and/or in cell-to-cell communication. No role for NBL5 has been proposed to date. Both NBL4 and NBL5 contain a N-terminal FERM domain which has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe is a member of the PH superfamily. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 270007  Cd Length: 92  Bit Score: 79.25  E-value: 8.63e-18
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  230 GIRFHMASDREGTKIHLAVSHMGVLVFQGTTKINTFNWSKVRKLSFKRKRFLIKLHPEVHGPYQDTLEFLLGSRDECKNF 309
Cdd:cd13186      1 GVDLHPVKGEDGNEYFLGLTPTGILVFENKTKIGLFFWPRITKLDFKGKKLKLVVKEKDDQEQEHTFVFRLPNKKACKHL 80
                           90
                   ....*....|..
gi 1622853342  310 WKICVEYHTFFR 321
Cdd:cd13186     81 WKCAVEHHAFFR 92
FERM_C_FRMD3_FRMD5 cd13192
FERM domain C-lobe of FERM domain-containing protein 3 and 5 (FRMD3 and 5); FRMD3 (also called ...
213-321 1.88e-17

FERM domain C-lobe of FERM domain-containing protein 3 and 5 (FRMD3 and 5); FRMD3 (also called Band 4.1-like protein 4O/4.1O though it is not a true member of that family) is a novel putative tumor suppressor gene that is implicated in the origin and progression of lung cancer. In humans there are 5 isoforms that are produced by alternative splicing. Less is known about FRMD5, though there are 2 isoforms of the human protein are produced by alternative splicing. Both FRMD3 and FRMD5 contain a N-terminal FERM domain, followed by a FERM adjacent (FA) domain, and 4.1 protein C-terminal domain (CTD). The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 270013  Cd Length: 105  Bit Score: 78.97  E-value: 1.88e-17
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  213 AESDFqvLEIARKLEMYGIRFHMASDREGTKIHLAVSHMGVLVFQGTTKINTFNWSKVRKLSFKRKRFLIKLHpeVHGPY 292
Cdd:cd13192      1 AEDNF--LRKAATLETYGVDPHPVKDHRGNQLYLGFTHTGIVTFQGGKRVHHFRWNDITKFNYEGKMFILHVM--QKEEK 76
                           90       100
                   ....*....|....*....|....*....
gi 1622853342  293 QDTLEFLLGSRDECKNFWKICVEYHTFFR 321
Cdd:cd13192     77 KHTLGFKCPTPAACKHLWKCAVEQQAFYT 105
PH1_FGD6 cd15793
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 6, N-terminal Pleckstrin ...
744-853 5.14e-17

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 6, N-terminal Pleckstrin Homology (PH) domain; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275436  Cd Length: 123  Bit Score: 78.15  E-value: 5.14e-17
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  744 LVGVENLIAPGREFIREGCLHKLTKKGLQQRMFFLFSDMLLYTSKGVAGTshFRIRGLLPLRGMLVEESENEwSVPHCFT 823
Cdd:cd15793      1 LNGHHEIVQPGRVFLKEGTLMKLSRKVMQPRMFFLFNDALLYTTPVQSGM--YKLNNMLSLAGMKVSKPSQE-AYQNELN 77
                           90       100       110
                   ....*....|....*....|....*....|
gi 1622853342  824 IYAAQKTIVVAASTRLEKEKWMLDLNNAIQ 853
Cdd:cd15793     78 IESVERSFILSASSATERDEWLEAISRAIE 107
PH2_FGD5_FGD6 cd13237
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin ...
933-1022 8.56e-17

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin homology (PH) domain, C-terminus; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270057  Cd Length: 91  Bit Score: 76.30  E-value: 8.56e-17
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  933 LSGYLLRKFKNSHGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSTPQEADGIHKDYVFKLQFKSHVYF-FRAES 1011
Cdd:cd13237      1 MSGYLQRRKKSKKSWKRLWFVLKDKVLYTYKASEDVVALESVPLLGFTVVTIDESFEEDESLVFQLLHKGQLPIiFRADD 80
                           90
                   ....*....|.
gi 1622853342 1012 KYTFERWMEVI 1022
Cdd:cd13237     81 AETAQRWIEAL 91
FERM_F1_PTPN3_like cd17100
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein ...
48-124 1.34e-16

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein phosphatase non-receptor type 3 (PTPN3) and similar proteins; This family includes two tyrosine-protein phosphatase non-receptors, PTPN3 and PTPN4, both of which belong to the non-transmembrane FERM-containing protein-tyrosine phosphatase (PTP) subfamily characterized by a conserved N-terminal FERM domain, a PDZ domain, and a C-terminal PTP catalytic domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).


Pssm-ID: 340620  Cd Length: 86  Bit Score: 75.81  E-value: 1.34e-16
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   48 VKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSY---WIWLEPMKPIIRQIRRPKNVVLRLAVKFF 124
Cdd:cd17100      6 VHFLDDTEQTFEVEKRDKGQVLLDKVFNHLELVEKDYFGLQFSDDSPAtdsMRWLDPLKPIRKQIKGGPPYYLNFRVKFY 85
FERM_F0_F1 cd01765
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain and F1 sub-domain, found ...
44-123 1.60e-16

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain and F1 sub-domain, found in FERM (Four.1/Ezrin/Radixin/Moesin) family proteins; FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain is present at the N-terminus of a large and diverse group of proteins that mediate linkage of the cytoskeleton to the plasma membrane. FERM-containing proteins are ubiquitous components of the cytocortex and are involved in cell transport, cell structure and signaling functions. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N), which is structurally similar to ubiquitin.


Pssm-ID: 340464  Cd Length: 80  Bit Score: 75.32  E-value: 1.60e-16
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   44 LHLRVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRRPKNVVLRLAVKF 123
Cdd:cd01765      1 ISCRVRLLDGTELTLEVSKKATGQELFDKVCEKLNLLEKDYFGLFYEDNDGQKHWLDLDKKISKQLKRSGPYQFYFRVKF 80
PH_PEPP1_2_3 cd13248
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ...
933-1026 2.35e-16

Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270068  Cd Length: 104  Bit Score: 75.77  E-value: 2.35e-16
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  933 LSGYLLRK----FKNshgWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSTPQEADGIHKDYVFKL-QFKSHVYFF 1007
Cdd:cd13248      9 MSGWLHKQggsgLKN---WRKRWFVLKDNCLYYYKDPEEEKALGSILLPSYTISPAPPSDEISRKFAFKAeHANMRTYYF 85
                           90
                   ....*....|....*....
gi 1622853342 1008 RAESKYTFERWMEVIQGAS 1026
Cdd:cd13248     86 AADTAEEMEQWMNAMSLAA 104
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
933-1027 5.67e-16

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 74.51  E-value: 5.67e-16
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   933 LSGYLLRKFKN-SHGWQKLWVVFTNFCLFFYKTHQDDY---PLASLPLLGYSVSTPQEADGIHKDYVFKLQFKS-HVYFF 1007
Cdd:smart00233    3 KEGWLYKKSGGgKKSWKKRYFVLFNSTLLYYKSKKDKKsykPKGSIDLSGCTVREAPDPDSSKKPHCFEIKTSDrKTLLL 82
                            90       100
                    ....*....|....*....|
gi 1622853342  1008 RAESKYTFERWMEVIQGASS 1027
Cdd:smart00233   83 QAESEEEREKWVEALRKAIA 102
FERM_C-lobe cd00836
FERM domain C-lobe; The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N ...
230-321 6.98e-16

FERM domain C-lobe; The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 275389  Cd Length: 93  Bit Score: 73.95  E-value: 6.98e-16
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  230 GIRFHMA--SDREGTKIHLAVSHMGVLVFQGTTK--INTFNWSKVRKLSFKR-KRFLIKLHPEVHgpyQDTLEFLLGSRd 304
Cdd:cd00836      1 GVEFFPVkdKSKKGSPIILGVNPEGISVYDELTGqpLVLFPWPNIKKISFSGaKKFTIVVADEDK---QSKLLFQTPSR- 76
                           90
                   ....*....|....*..
gi 1622853342  305 ECKNFWKICVEYHTFFR 321
Cdd:cd00836     77 QAKEIWKLIVGYHRFLL 93
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
757-853 9.88e-16

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 73.74  E-value: 9.88e-16
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   757 FIREGCLHKLT---KKGLQQRMFFLFSDMLLYTSKGVAGTShFRIRGLLPLRGMLVEESENEWSV--PHCFTI-YAAQKT 830
Cdd:smart00233    1 VIKEGWLYKKSgggKKSWKKRYFVLFNSTLLYYKSKKDKKS-YKPKGSIDLSGCTVREAPDPDSSkkPHCFEIkTSDRKT 79
                            90       100
                    ....*....|....*....|...
gi 1622853342   831 IVVAASTRLEKEKWMLDLNNAIQ 853
Cdd:smart00233   80 LLLQAESEEEREKWVEALRKAIA 102
FERM_F1_FRMD3 cd17102
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM ...
48-124 2.07e-15

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM domain-containing protein 3 (FRMD3) and similar proteins; FRMD3, also termed band 4.1-like protein 4O, or ovary type protein 4.1 (4.1O), belongs to the 4.1 protein superfamily, which share the highly conserved membrane-association FERM domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). FRMD3 is involved in maintaining cell shape and integrity. It also functions as a tumour suppressor in non-small cell lung carcinoma (NSCLC). Some single nucleotide polymorphisms (SNPs) located in FRMD3 have been associated with diabetic kidney disease (DKD) in different ethnicities.


Pssm-ID: 340622  Cd Length: 82  Bit Score: 72.28  E-value: 2.07e-15
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1622853342   48 VKLLDNTvEIFDTE--PKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRRPKNVVLRLAVKFF 124
Cdd:cd17102      5 IRLLDDS-EVICCEfkKDTKGQFLLDYVCNYLNLLEKDYFGLRYVDTEKQRHWLDPNKSIYKQLKGVPPYVLCFRVKFY 82
FA pfam08736
FERM adjacent (FA); This region is found adjacent to Band 4.1 / FERM domains (pfam00373) in a ...
333-375 2.56e-15

FERM adjacent (FA); This region is found adjacent to Band 4.1 / FERM domains (pfam00373) in a subset of FERM containing protein. The region has been hypothesized to play a role in regulatory adaptation, based on similarity to other protein kinase substrates.


Pssm-ID: 462582  Cd Length: 44  Bit Score: 70.66  E-value: 2.56e-15
                           10        20        30        40
                   ....*....|....*....|....*....|....*....|...
gi 1622853342  333 VFFSRGSSFRYSGRTQKQLVDYFKDSGMKRIPYERRHSKTHMS 375
Cdd:pfam08736    1 KFFSLGSKFRYSGRTQKQTVEDSSEILRPQPEFERSPSKRYPS 43
FERM_F1_EPB41L2 cd17202
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte ...
47-127 3.93e-15

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte membrane protein band 4.1-like protein 2 (EPB41L2) and similar proteins; EPB41L2, also termed generally expressed protein 4.1 (4.1G), belongs to the skeletal protein 4.1 family that is involved in cellular processes such as cell adhesion, migration and signaling. EPB41L2 contains a FERM domain, a spectrin and actin binding (SAB) domain, and a C-terminal domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).


Pssm-ID: 340722  Cd Length: 84  Bit Score: 71.54  E-value: 3.93e-15
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   47 RVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRRPKnVVLRLAVKFFPP 126
Cdd:cd17202      5 KVTLLDGTEYSCDLEKRAKGQVLFDKVCEHLNLLEKDYFGLLYQVSANQKNWLDSTKEIKRQIRRLP-WLFTFNVKFYPP 83

                   .
gi 1622853342  127 D 127
Cdd:cd17202     84 D 84
FERM_F1_EPB41L cd17106
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte ...
47-127 5.58e-15

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte membrane protein band 4.1-like proteins; The family includes erythrocyte membrane protein band 4.1-like proteins EPB41L1/4.1N, EPB41L2/4.1G, and EPB41L3/4.1B. They belong to the skeletal protein 4.1 family that is involved in cellular processes such as cell adhesion, migration and signaling. EPB41L1 is a cytoskeleton-associated protein that may serve as a tumor suppressor in solid tumors. EPB41L2 is involved in cellular processes such as cell adhesion, migration and signaling. EPB41L3 also acts as a tumor suppressor implicated in a variety of meningiomas and carcinomas. Members in this family contain a FERM domain, a spectrin and actin binding (SAB) domain, and a C-terminal domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).


Pssm-ID: 340626  Cd Length: 84  Bit Score: 70.93  E-value: 5.58e-15
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   47 RVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRRpKNVVLRLAVKFFPP 126
Cdd:cd17106      5 KVLLLDGTEYTCEVEKRAKGQVLFDKVCEHLNLLEKDYFGLTYRDAQDQKNWLDPAKEIKKQIRS-GPWLFSFNVKFYPP 83

                   .
gi 1622853342  127 D 127
Cdd:cd17106     84 D 84
FERM_F1_EPB41L1 cd17201
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte ...
44-127 1.77e-14

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte membrane protein band 4.1-like protein 1 (EPB41L1) and similar proteins; EPB41L1, also termed neuronal protein 4.1 (4.1N), belongs to the skeletal protein 4.1 family that is involved in cellular processes such as cell adhesion, migration and signaling. It is a cytoskeleton-associated protein that may serve as a tumor suppressor in solid tumors. It suppresses hypoxia-induced epithelial-mesenchymal transition in epithelial ovarian cancer (EOC) cells. The down-regulation of EPB41L1 expression is a critical step for non-small cell lung cancer (NSCLC) development. Moreover, EPB41L1 functions as a linker protein between inositol 1,4,5-trisphosphate receptor type1 (IP3R1) and actin filaments in neurons. EPB41L1 contains a FERM domain, a spectrin and actin binding (SAB) domain, and a C-terminal domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).


Pssm-ID: 340721  Cd Length: 84  Bit Score: 69.53  E-value: 1.77e-14
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   44 LHLRVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRR-PKNvvLRLAVK 122
Cdd:cd17201      2 AICKVTLLDGSEYECEVEKHARGQVLFDTVCEHLNLLEKDYFGLTFCDTESQKNWLDPSKEIKKQIRSgPWH--FAFTVK 79

                   ....*
gi 1622853342  123 FFPPD 127
Cdd:cd17201     80 FYPPD 84
FERM_F1_EPB41L5_like cd17108
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte ...
47-124 4.44e-14

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte membrane protein band 4.1-like 5 (EPB41L5) and similar proteins; This family includes FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte membrane protein band 4.1-like proteins, EPB41L5 and EPB41L4B. EPB41L5 is a mesenchymal-specific protein that is an integral component of the ARF6-based pathway. EPB41L4B is a positive regulator of keratinocyte adhesion and motility, suggesting a role in wound healing. It also promotes cancer metastasis in melanoma, prostate cancer and breast cancer. Both EPB41L5 and EPB41L4B contain a FERM domain that is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).


Pssm-ID: 340628  Cd Length: 81  Bit Score: 68.53  E-value: 4.44e-14
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1622853342   47 RVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRRPKNVVLRLAVKFF 124
Cdd:cd17108      4 KVILLDGTDLSIELPKKAKGQELYEQVFYHLDLIEKDYFGLQFMDAAQVQHWLDPTKKIKKQVKIGPPYTLRFRVKFY 81
FERM_F1_EPB41 cd17105
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte ...
44-127 4.93e-14

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte membrane protein band 4.1 (EPB41) and similar proteins; EPB41, also termed protein 4.1 (P4.1), or 4.1R, or Band 4.1, or EPB4.1, belongs to the skeletal protein 4.1 family that is involved in cellular processes such as cell adhesion, migration and signaling. EPB41 is a widely expressed cytoskeletal phosphoprotein that stabilizes the spectrin-actin cytoskeleton and anchors the cytoskeleton to the cell membrane. EPB41 contains a FERM domain, a spectrin and actin binding (SAB) domain, and a C-terminal domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).


Pssm-ID: 340625  Cd Length: 83  Bit Score: 68.30  E-value: 4.93e-14
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   44 LHLRVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRR-PKNVVLRlaVK 122
Cdd:cd17105      1 MHCKVSLLDDTVYECEVEKHAKGQDLFKKVCEHLNLLEEDYFGLAIWDSPTSKTWLDPAKEIKKQVHGgPWEFTFN--VK 78

                   ....*
gi 1622853342  123 FFPPD 127
Cdd:cd17105     79 FYPPD 83
PH1_FDG_family cd13328
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia family proteins, N-terminal ...
759-845 6.99e-14

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia family proteins, N-terminal Pleckstrin homology (PH) domain; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Mutations in the FGD1 gene are responsible for the X-linked disorder known as faciogenital dysplasia (FGDY). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275410  Cd Length: 92  Bit Score: 68.29  E-value: 6.99e-14
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  759 REGCLHKLTKKG--LQQRMFFLFSDMLLYTSKGVAGT-SHFRIRGLLPLRGMLVEESENEwSVPHCFTIYAAQKTIVVAA 835
Cdd:cd13328      1 KEGQILKLSAKNgtPQPRYLFLFNDMLLYCVPKLSLVgQKFSVRNRLDVAGMKVREPVNE-NYPHTFKISGKERSLELQA 79
                           90
                   ....*....|
gi 1622853342  836 STRLEKEKWM 845
Cdd:cd13328     80 SSAEEKDEWI 89
FERM_F1_EPB41L3 cd17203
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte ...
47-127 7.93e-14

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte membrane protein band 4.1-like protein 3 (EPB41L3) and similar proteins; EPB41L3, also termed 4.1B, or differentially expressed in adenocarcinoma of the lung protein 1 (DAL-1), belongs to the skeletal protein 4.1 family that is involved in cellular processes such as cell adhesion, migration and signaling. EPB41L3 is a tumor suppressor that has been implicated in a variety of meningiomas and carcinomas. EPB41L3 contains a FERM domain, a spectrin and actin binding (SAB) domain, and a C-terminal domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).


Pssm-ID: 340723  Cd Length: 84  Bit Score: 67.66  E-value: 7.93e-14
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   47 RVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRrpkNVVLRLA--VKFF 124
Cdd:cd17203      5 KVTLLDGSEYTCEVEKRSKGQVLFDKVCEHLNLLEKDYFGLTYRDSENQKNWLDPAKEIKKQIR---SGAWQFSfnVKFY 81

                   ...
gi 1622853342  125 PPD 127
Cdd:cd17203     82 PPD 84
PH_Collybistin_ASEF cd01224
Collybistin/APC-stimulated guanine nucleotide exchange factor pleckstrin homology (PH) domain; ...
731-845 1.19e-13

Collybistin/APC-stimulated guanine nucleotide exchange factor pleckstrin homology (PH) domain; Collybistin (also called PEM2) is homologous to the Dbl proteins ASEF (also called ARHGEF4/RhoGEF4) and SPATA13 (Spermatogenesis-associated protein 13; also called ASEF2). It activates CDC42 specifically and not any other Rho-family GTPases. Collybistin consists of an SH3 domain, followed by a RhoGEF/DH and PH domain. In Dbl proteins, the DH and PH domains catalyze the exchange of GDP for GTP in Rho GTPases, allowing them to signal to downstream effectors. It induces submembrane clustering of the receptor-associated peripheral membrane protein gephyrin, which is thought to form a scaffold underneath the postsynaptic membrane linking receptors to the cytoskeleton. It also acts as a tumor suppressor that links adenomatous polyposis coli (APC) protein, a negative regulator of the Wnt signaling pathway and promotes the phosphorylation and degradation of beta-catenin, to Cdc42. Autoinhibition of collybistin is accomplished by the binding of its SH3 domain with both the RhoGEF and PH domains to block access of Cdc42 to the GTPase-binding site. Inactivation promotes cancer progression. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269931  Cd Length: 138  Bit Score: 69.21  E-value: 1.19e-13
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  731 LENLQKLTELQRDLVGVE--NLIAPGREFIREGCLHKLTKKGLQQRMFFLFSDMLLYTSKGVAGTSHFRIRGLLPLRGML 808
Cdd:cd01224      1 MENLEKLAAWQSTVEGWEgeDLSDRSSELIHSGELTKISAGRAQERTFFLFDHQLVYCKKDLLRRKNYIYKGRIDTDNME 80
                           90       100       110       120
                   ....*....|....*....|....*....|....*....|....*
gi 1622853342  809 VE------ESENEWSVPHCFTIY--AAQKTIVVAASTRLEKEKWM 845
Cdd:cd01224     81 IEdlpdgkDDESGVTVKNAWKIYnaSKNKWYVLCAKSAEEKQRWL 125
PH2_FGD1-4 cd13236
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins pleckstrin homology (PH) ...
943-1026 3.00e-13

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins pleckstrin homology (PH) domain, C-terminus; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Not much is known about FGD2. FGD1 is the best characterized member of the group with mutations here leading to the X-linked disorder known as faciogenital dysplasia (FGDY). Both FGD1 and FGD3 are targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. However, FGD1 and FGD3 induced significantly different morphological changes in HeLa Tet-Off cells and while FGD1 induced long finger-like protrusions, FGD3 induced broad sheet-like protrusions when the level of GTP-bound Cdc42 was significantly increased by the inducible expression of FGD3. They also reciprocally regulated cell motility in inducibly expressed in HeLa Tet-Off cells, FGD1 stimulated cell migration while FGD3 inhibited it. FGD1 and FGD3 therefore play different roles to regulate cellular functions, even though their intracellular levels are tightly controlled by the same destruction pathway through SCF(FWD1/beta-TrCP). FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270056  Cd Length: 105  Bit Score: 66.99  E-value: 3.00e-13
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  943 NSHGWQKLWVVFTN---FCLFFYKTHQDDYPLASLPLLGYSVSTPQEADGIHKDYVFKLQFKSHVYFFRAESKYTFERWM 1019
Cdd:cd13236     19 KGKTWQKVWCVIPRtepLVLYLYGAPQDVRAQRTIPLPGCEVTVPPPEERLDGRHVFKLSQSKQSHYFSAESEELQQRWL 98

                   ....*..
gi 1622853342 1020 EVIQGAS 1026
Cdd:cd13236     99 EALSRAA 105
FERM_F1_PTPN4 cd17194
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein ...
48-124 4.80e-13

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein phosphatase non-receptor type 4 (PTPN4); PTPN4, also termed protein-tyrosine phosphatase MEG1 (MEG) or PTPase-MEG1, belongs to the non-transmembrane FERM-containing protein-tyrosine phosphatase (PTP) subfamily characterized by a conserved N-terminal FERM domain, a PDZ domain, and a C-terminal PTP catalytic domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). PTPN4 protects cells against apoptosis. It associates with the mitogen-activated protein kinase p38gamma (also known as MAPK12) to form a PTPN4-p38gamma complex that promotes cellular signaling, preventing cell death induction. It also inhibits tyrosine phosphorylation and subsequent cytoplasm translocation of TRIF-related adaptor molecule (TRAM, also known as TICAM2), resulting in the disturbance of TRAM-TRIF interaction. Moreover, PTPN4 negatively regulates cell proliferation and motility through dephosphorylation of CrkI.


Pssm-ID: 340714  Cd Length: 84  Bit Score: 65.71  E-value: 4.80e-13
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1622853342   48 VKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQS-YWIWLEPMKPIIRQIRRPKNVVLRLAVKFF 124
Cdd:cd17194      6 ILLLDNTVQAFKVNKHDQGQVLLDLVFKHLDLTERDYFGLQLADDSTdNPRWLDPNKPIRKQLKRGSPHNLNFRVKFF 83
FERM_F1_MYLIP cd17104
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in E3 ...
48-124 2.46e-12

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in E3 ubiquitin-protein ligase MYLIP and similar proteins; MYLIP, also termed inducible degrader of the LDL-receptor (Idol), or myosin regulatory light chain interacting protein (MIR), is an E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of myosin regulatory light chain (MRLC), LDLR, VLDLR and LRP8. Its activity depends on E2 ubiquitin-conjugating enzymes of the UBE2D family, including UBE2D1, UBE2D2, UBE2D3, and UBE2D4. MYLIP stimulates clathrin-independent endocytosis and acts as a sterol-dependent inhibitor of cellular cholesterol uptake by binding directly to the cytoplasmic tail of the LDLR and promoting its ubiquitination via the UBE2D1/E1 complex. The ubiquitinated LDLR then enters the multivesicular body (MVB) protein-sorting pathway and is shuttled to the lysosome for degradation. Moreover, MYLIP has been identified as a novel ERM-like protein that affects cytoskeleton interactions regulating cell motility, such as neurite outgrowth. The ERM proteins includes ezrin, radixin, and moesin, which are cytoskeletal effector proteins linking actin to membrane-bound proteins at the cell surface. MYLIP contains a FERM-domain and a C-terminal C3HC4-type RING-HC finger. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).


Pssm-ID: 340624  Cd Length: 81  Bit Score: 63.44  E-value: 2.46e-12
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1622853342   48 VKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRRPKNVVLRLAVKFF 124
Cdd:cd17104      5 VSQPDSVVIEVEVDPKANGQECLDKVCQKLGIIEKDYFGLQYTGPKGERLWLNLRNRISRQLPGPPPYRLRLRVKFF 81
PH pfam00169
PH domain; PH stands for pleckstrin homology.
934-1027 3.62e-12

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 63.74  E-value: 3.62e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  934 SGYLLRKFK-NSHGWQKLWVVFTNFCLFFYK---THQDDYPLASLPLLGYSVSTPQEADGIHKDYVFKL----QFKSHVY 1005
Cdd:pfam00169    4 EGWLLKKGGgKKKSWKKRYFVLFDGSLLYYKddkSGKSKEPKGSISLSGCEVVEVVASDSPKRKFCFELrtgeRTGKRTY 83
                           90       100
                   ....*....|....*....|..
gi 1622853342 1006 FFRAESKYTFERWMEVIQGASS 1027
Cdd:pfam00169   84 LLQAESEEERKDWIKAIQSAIR 105
PH1_FGD5 cd15792
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 5, N-terminal Pleckstrin ...
746-853 5.60e-12

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 5, N-terminal Pleckstrin Homology (PH) domain; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275435  Cd Length: 123  Bit Score: 63.70  E-value: 5.60e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  746 GVENLIAPGREFIREGCLHKLTKKGLQQRMFFLFSDMLLYTSKGVAGTshFRIRGLLPLRGMLVEESENEwSVPHCFTIY 825
Cdd:cd15792      3 GQRDLLQPGREFVKEGTLMKVSGKNRHPRHLFLMNDVLLYTYPQKDGK--YRLKNTLAVSGMKVSRPVIE-KAQNVLKIE 79
                           90       100
                   ....*....|....*....|....*...
gi 1622853342  826 AAQKTIVVAASTRLEKEKWMLDLNNAIQ 853
Cdd:cd15792     80 VSEVCLTLSASSCSERDEWYSCLSRTIP 107
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
933-1022 6.19e-12

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 62.56  E-value: 6.19e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  933 LSGYLLRK-FKNSHGWQKLWVVFTNFCLFFYKTHQDD--YPLASLPLLGYSVSTPQEADGihKDYVFKLQFKSH-VYFFR 1008
Cdd:cd00821      1 KEGYLLKRgGGGLKSWKKRWFVLFEGVLLYYKSKKDSsyKPKGSIPLSGILEVEEVSPKE--RPHCFELVTPDGrTYYLQ 78
                           90
                   ....*....|....
gi 1622853342 1009 AESKYTFERWMEVI 1022
Cdd:cd00821     79 ADSEEERQEWLKAL 92
PH1_FGD1-4_like cd13388
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 1-4 and similar proteins, ...
758-845 1.87e-11

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 1-4 and similar proteins, N-terminal Pleckstrin homology (PH) domain; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Mutations in the FGD1 gene are responsible for the X-linked disorder known as faciogenital dysplasia (FGDY). Both FGD1 and FGD3 are targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. They play different roles to regulate cellular functions, even though their intracellular levels are tightly controlled by the same destruction pathway. FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275423  Cd Length: 94  Bit Score: 61.19  E-value: 1.87e-11
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  758 IREGCLHKLTKKG--LQQRMFFLFSDMLLYTS-KGVAGTSHFRIRGLLPLRGMLVEESENEwSVPHCFTIYAAQKTIVVA 834
Cdd:cd13388      2 IKEGKILKISARNgdTQERYLFLFNDMLLYCSpRLRLIGQKYKVRARFDVDGMQVLEGDNL-ETPHTFYVRGKQRSLELQ 80
                           90
                   ....*....|.
gi 1622853342  835 ASTRLEKEKWM 845
Cdd:cd13388     81 ASTQEEKAEWV 91
FERM_F1_EPB41L4A cd17107
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte band ...
44-127 6.27e-11

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte band 4.1-like protein 4A (EPB41L4A) and similar proteins; EPB41L4A, also termed protein NBL4, is a member of the band 4.1/Nbl4 (novel band 4.1-like protein 4) group of the FERM protein superfamily. It contains a FERM domain that is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). EPB41L4A is an important component of the beta-catenin/Tcf pathway. It may be related to determination of cell polarity or proliferation.


Pssm-ID: 340627  Cd Length: 91  Bit Score: 59.66  E-value: 6.27e-11
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   44 LHLRVKLLDNTVEIFDTEPKCD----GQILLTEVWKRLNLVECDYFGLEF--QNTQSYwiWLEPMKPIIRQIR-RPKNVV 116
Cdd:cd17107      3 FYCEIVLLDESELILTIQQDGIksskGSVVLDVVFQHLNLLETDYFGLRYidRQHQTH--WLDPAKTLSEQLKlIGPPYT 80
                           90
                   ....*....|.
gi 1622853342  117 LRLAVKFFPPD 127
Cdd:cd17107     81 LYFGVKFYAED 91
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
759-848 6.81e-11

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 59.86  E-value: 6.81e-11
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  759 REGCLHKLT---KKGLQQRMFFLFSDMLLYTSKGvaGTSHFRIRGLLPLRGMLVEESENEWSVPHCFTIYAA-QKTIVVA 834
Cdd:cd00821      1 KEGYLLKRGgggLKSWKKRWFVLFEGVLLYYKSK--KDSSYKPKGSIPLSGILEVEEVSPKERPHCFELVTPdGRTYYLQ 78
                           90
                   ....*....|....
gi 1622853342  835 ASTRLEKEKWMLDL 848
Cdd:cd00821     79 ADSEEERQEWLKAL 92
PH1_FDG4 cd15791
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 4, N-terminal Pleckstrin ...
757-845 5.14e-10

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 4, N-terminal Pleckstrin homology (PH) domain; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275434  Cd Length: 94  Bit Score: 57.31  E-value: 5.14e-10
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  757 FIREGCLHKLTKKGL--QQRMFFLFSDMLLY-TSKGVAGTSHFRIRGLLPLRGMLVEESENEwSVPHCFTIYAAQKTIVV 833
Cdd:cd15791      1 LIKEGQILKLAARNTsaQERYLFLFNNMLLYcVPKFSLVGSKYTVRTRIGIDGMKVVETQNE-DYPHTFQVSGKERTLEL 79
                           90
                   ....*....|..
gi 1622853342  834 AASTRLEKEKWM 845
Cdd:cd15791     80 QASSEQDKEEWI 91
FERM_F1_EPB41L5 cd17205
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte ...
47-124 6.88e-10

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte membrane protein band 4.1-like 5 (EPB41L5); EPB41L5 is a mesenchymal-specific protein that is an integral component of the ARF6-based pathway. It is normally induced during epithelial-mesenchymal transition (EMT) by an EMT-related transcriptional factor, ZEB1, which drives ARF6-based invasion, metastasis and drug resistance. EPB41L5 also binds to paxillin to enhance integrin/paxillin association, and thus promotes focal adhesion dynamics. Moreover, EPB41L5 acts as a substrate for the E3 ubiquitin ligase Mind bomb 1 (Mib1), which is essential for activation of Notch signaling. EPB41L5 is a member of the band 4.1/Nbl4 (novel band 4.1-like protein 4) group of the FERM protein superfamily. It contains a FERM domain that is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).


Pssm-ID: 340725  Cd Length: 86  Bit Score: 56.59  E-value: 6.88e-10
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1622853342   47 RVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRRPKNVVLRLAVKFF 124
Cdd:cd17205      6 RVSLLDGTDVSVDLPKKAKGQELFEQIMYHLDLIEKDYFGLRFMDSAQVAHWLDVTKSIKKQVKIGPPYCLHLRVKFY 83
PH1_PH_fungal cd13298
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ...
933-1028 1.49e-09

Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270110  Cd Length: 106  Bit Score: 56.48  E-value: 1.49e-09
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  933 LSGYLLRKFKNSHGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSTPQEADgiHKDYVFKLQFKSHVYFFRAESK 1012
Cdd:cd13298      8 KSGYLLKRSRKTKNWKKRWVVLRPCQLSYYKDEKEYKLRRVINLSELLAVAPLKDK--KRKNVFGIYTPSKNLHFRATSE 85
                           90
                   ....*....|....*.
gi 1622853342 1013 YTFERWMEVIQGASSS 1028
Cdd:cd13298     86 KDANEWVEALREEFRL 101
FERM_F1_PTPN14_like cd17099
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein ...
46-124 1.88e-09

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein phosphatase non-receptors PTPN14, PTPN21, and similar proteins; This family includes tyrosine-protein phosphatase non-receptors PTPN14 and PTPN21, both of which are protein-tyrosine phosphatase (PTP). They belong to the FERM family of PTPs characterized by a conserved N-terminal FERM domain and a C-terminal PTP catalytic domain with an intervening sequence containing an acidic region and a putative SH3 domain-binding sequence. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). PTPN14 plays a role in the nucleus during cell proliferation. PTPN21 interacts with a Tec tyrosine kinase family member, the epithelial and endothelial tyrosine kinase (Etk, also known as Bmx), modulates Stat3 activation, and plays a role in the regulation of cell growth and differentiation.


Pssm-ID: 340619  Cd Length: 85  Bit Score: 55.32  E-value: 1.88e-09
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   46 LRVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRRPKN-VVLRLAVKFF 124
Cdd:cd17099      6 VRIQLLDNTVLECTLSPESTGQDCLEYVAQRLELREIEYFGLRYVNKKGQLRWVDLEKPLKKQLDKHAHePLLYFGVMFY 85
FERM_F1_EPB41L4B cd17204
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte band ...
44-124 1.94e-09

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in erythrocyte band 4.1-like protein 4B (EPB41L4B); EPB41L4B, also termed FERM-containing protein CG1, or expressed in high metastatic cells (Ehm2), or Lulu2, is a member of the band 4.1/Nbl4 (novel band 4.1-like protein 4) group of the FERM protein superfamily. It contains a FERM domain that is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). EPB41L4B is a positive regulator of keratinocyte adhesion and motility, suggesting a role in wound healing. It also promotes cancer metastasis in melanoma, prostate cancer and breast cancer.


Pssm-ID: 340724  Cd Length: 84  Bit Score: 55.21  E-value: 1.94e-09
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   44 LHLRVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRRPKNVVLRLAVKF 123
Cdd:cd17204      1 LTCRVLLLDGTDVSVELPKHAKGQDLFDQIVYHLDLVETDYFGLQFMDAAQVAHWLDHTKPIKKQIKIGPPYTLHFRIKY 80

                   .
gi 1622853342  124 F 124
Cdd:cd17204     81 Y 81
FERM_F1_PTPN3 cd17193
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein ...
48-124 7.29e-09

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein phosphatase non-receptor type 3 (PTPN3); PTPN3, also termed protein-tyrosine phosphatase H1 (PTP-H1), belongs to the non-transmembrane FERM-containing protein-tyrosine phosphatase (PTP) subfamily characterized by a conserved N-terminal FERM domain, a PDZ domain, and a C-terminal PTP catalytic domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). PTPN3 associates with the mitogen-activated protein kinase p38gamma (also known as MAPK12) to form a PTPN3-p38gamma complex that promotes Ras-induced oncogenesis. It may also act as a tumor suppressor in lung cancer through its modulation of epidermal growth factor receptor (EGFR) signaling. Moreover, PTPN3 shows sensitizing effect to anti-estrogens. It dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear estrogen receptor, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). It also cooperates with vitamin D receptor to stimulate breast cancer growth through their mutual stabilization.


Pssm-ID: 340713  Cd Length: 84  Bit Score: 53.70  E-value: 7.29e-09
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1622853342   48 VKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQ-SYWIWLEPMKPIIRQIRRPKNVVLRLAVKFF 124
Cdd:cd17193      6 VHFLDGSVQSFKVNKQDTGQVLLDMAYNHLGLTEREYFGLQHNEDSvDSPRWLEPSKPIRKQLKGGFPCSLHFRVRFF 83
PH2_FGD4_insect-like cd13238
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 4 pleckstrin homology (PH) ...
933-1019 7.35e-09

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 4 pleckstrin homology (PH) domain, C-terminus, in insect and related arthropods; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. This cd contains insects, crustaceans, and chelicerates. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270058  Cd Length: 97  Bit Score: 54.19  E-value: 7.35e-09
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  933 LSGYLLRKFKNSHGWQKLWVVF-TNFCLFFYKTHQDDYPLASLPLLGYSVSTPQEADGI------HKDYVFKLQFKSHVY 1005
Cdd:cd13238      1 LSGYLKLKTNGRKTWSRRWFALqPDFVLYSYKSQEDKLPLTATPVPGFLVTLLEKGSAVdplndpKRPRTFKMFHVKKSY 80
                           90
                   ....*....|....
gi 1622853342 1006 FFRAESKYTFERWM 1019
Cdd:cd13238     81 YFQANDGDEQKKWV 94
PH pfam00169
PH domain; PH stands for pleckstrin homology.
758-852 1.01e-08

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 54.11  E-value: 1.01e-08
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  758 IREGCLHKLT---KKGLQQRMFFLFSDMLLYTSKGVAGTSHfRIRGLLPLRGMLVEESENEWS--VPHCFTIYAAQ---- 828
Cdd:pfam00169    2 VKEGWLLKKGggkKKSWKKRYFVLFDGSLLYYKDDKSGKSK-EPKGSISLSGCEVVEVVASDSpkRKFCFELRTGErtgk 80
                           90       100
                   ....*....|....*....|....
gi 1622853342  829 KTIVVAASTRLEKEKWMLDLNNAI 852
Cdd:pfam00169   81 RTYLLQAESEEERKDWIKAIQSAI 104
PH_alsin cd13269
Alsin Pleckstrin homology (PH) domain; The ALS2 gene encodes alsin, a GEF, that has dual ...
748-858 1.12e-08

Alsin Pleckstrin homology (PH) domain; The ALS2 gene encodes alsin, a GEF, that has dual specificity for Rac1 and Rab5 GTPases. Alsin mutations in the form of truncated proteins are responsible for motor function disorders including juvenile-onset amyotrophic lateral sclerosis, familial juvenile primary lateral sclerosis, and infantile-onset ascending hereditary spastic paralysis. The alsin protein is widely expressed in the developing CNS including neurons of the cerebral cortex, brain stem, spinal cord, and cerebellum. Alsin contains a regulator of chromosome condensation 1 (RCC1) domain, a Rho guanine nucleotide exchanging factor (RhoGEF) domain, a PH domain, a Membrane Occupation and Recognition Nexus (MORN), a vacuolar protein sorting 9 (Vps9) domain, and a Dbl homology (DH) domain. Alsin interacts with Rab5 through its Vps9 domain and through this interaction modulates early endosome fusion and trafficking. The GEF activity of alsin towards Rab5 is regulated by Rac1 function. The GEF activity of alsin for Rac1 occurs via its DH domain and this interaction plays a role in promoting spinal motor neuron survival via multiple Rac-dependent signaling pathways. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241423  Cd Length: 106  Bit Score: 53.94  E-value: 1.12e-08
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  748 ENLIAPGREFIREGCLHKLTKKG---LQQRMFFLFSDMLLYTSkgvaGTSHfrirGLLPLRGMLVEESENEWSVPHCFTI 824
Cdd:cd13269      1 DSLRSPDRRLIRESSTRPLTLQNagrFSSHWFILFNDALVHAQ----FSTH----HIFPLATLWVEPIPDEDSGQNALKI 72
                           90       100       110
                   ....*....|....*....|....*....|....
gi 1622853342  825 YAAQKTIVVAASTRLEKEKWMLDLNNAIQAAKSG 858
Cdd:cd13269     73 TTPEESFTLVASTPQEKAEWLRAINQAIDQALNG 106
FERM_F1_ERM_like cd17097
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in the ERM family ...
47-125 4.91e-08

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in the ERM family proteins; The ezrin-radixin-moesin (ERM) family includes a group of closely related cytoskeletal proteins that play an essential role in microvilli formation, T-cell activation, and tumor metastasis through providing a regulated linkage between F-actin and membrane-associated proteins. These proteins may also function in signaling cascades that regulate the assembly of actin stress fibers. The ERM proteins consist of an N-terminal FERM domain, a coiled-coil (CC) domain and a C-terminal tail segment (C-tail) containing a well-defined actin-binding motif. They exist in two states, a dormant state in which the FERM domain binds to its own C-terminal tail and thereby precludes binding of some partner proteins, and an activated state, in which the FERM domain binds to one of many membrane binding proteins and the C-terminal tail binds to F-actin. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). Merlin, which is highly related to the members of the ezrin, radixin, and moesin (ERM) protein family that are directly attached to and functionally linked with NHE1, is included in this family.


Pssm-ID: 340617  Cd Length: 83  Bit Score: 51.13  E-value: 4.91e-08
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   47 RVKLLDNTVEiFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRRPKN-VVLRLAVKFFP 125
Cdd:cd17097      4 RVTTMDAELE-FSIKPKAKGRELFDLVCRTIGLRETWYFGLQYENKKGRVAWLKPDKKVLTQDVSKNNtLKFFFLVKFYP 82
PH1_FGD3 cd13387
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 3, N-terminal Pleckstrin ...
757-861 6.88e-08

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 3, N-terminal Pleckstrin homology (PH) domain; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Both FGD1 and FGD3 are targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. However, FGD1 and FGD3 induced significantly different morphological changes in HeLa Tet-Off cells and while FGD1 induced long finger-like protrusions, FGD3 induced broad sheet-like protrusions when the level of GTP-bound Cdc42 was significantly increased by the inducible expression of FGD3. They also reciprocally regulated cell motility in inducibly expressed in HeLa Tet-Off cells, FGD1 stimulated cell migration while FGD3 inhibited it. FGD1 and FGD3 therefore play different roles to regulate cellular functions, even though their intracellular levels are tightly controlled by the same destruction pathway through SCF(FWD1/beta-TrCP). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275422  Cd Length: 108  Bit Score: 51.51  E-value: 6.88e-08
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  757 FIREGCLHKLTKKG--LQQRMFFLFSDMLLY-TSKGVAGTSHFRIRGLLPLRGMLVEESENEwSVPHCFTIYAAQKTIVV 833
Cdd:cd13387      1 LIKEGHIQKLSAKNgtAQDRYLYLFNSMVLYcVPKLRLMGQKFSVREKIDIAGMQVQEIVKQ-NVPHTFTITGKKRSLEL 79
                           90       100
                   ....*....|....*....|....*...
gi 1622853342  834 AASTRLEKEKWMLDLNNAIQAAKSGGDT 861
Cdd:cd13387     80 QARTEEEKKEWIQVIQATIEKHKQNSET 107
FERM_C_ERM cd13194
FERM domain C-lobe/F3 of the ERM family; The ERM family includes ezrin, radixin, moesin and ...
228-285 1.06e-07

FERM domain C-lobe/F3 of the ERM family; The ERM family includes ezrin, radixin, moesin and merlin. They are composed of a N-terminal FERM (ERM) domain (also called N-ERMAD (N-terminal ERM association domain)), a coiled coil region (CRR), and a C-terminal domain CERMAD (C-terminal ERM association domain) which has an F-actin-binding site (ABD). Two actin-binding sites have been identified in the middle and N-terminal domains. Merlin is structurally similar to the ERM proteins, but instead of an actin-binding domain (ABD), it contains a C-terminal domain (CTD), just like the proteins from the 4.1 family. Activated ezrin, radixin and moesin are thought to be involved in the linking of actin filaments to CD43, CD44, ICAM1-3 cell adhesion molecules, various membrane channels and receptors, such as the Na+/H+ exchanger-3 (NHE3), cystic fibrosis transmembrane conductance regulator (CFTR), and the beta2-adrenergic receptor. The ERM proteins exist in two states, a dormant state in which the FERM domain binds to its own C-terminal tail and thereby precludes binding of some partner proteins, and an activated state, in which the FERM domain binds to one of many membrane binding proteins and the C-terminal tail binds to F-actin. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain of ERM is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 270015  Cd Length: 97  Bit Score: 50.73  E-value: 1.06e-07
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1622853342  228 MYGIRFHMASDREGTKIHLAVSHMGVLVFQGTTKIN---TFNWSKVRKLSFKRKRFLIKLH 285
Cdd:cd13194      1 MYGVNYFEIKNKKGTDLWLGVDALGLNIYEPDNKLTpkiGFPWSEIRNISFNDKKFVIKPI 61
FERM_F1_Moesin cd17237
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in moesin and ...
44-125 1.28e-07

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in moesin and similar proteins; Moesin, also termed membrane-organizing extension spike protein, is a member of the ezrin/radixin/moesin (ERM) family of cytoskeletal proteins that plays an essential role in microvilli formation, T-cell activation, and tumor metastasis through providing a regulated linkage between F-actin and membrane-associated proteins. These proteins may also function in signaling cascades that regulate the assembly of actin stress fibers. The ERM proteins consist of an N-terminal FERM domain, a coiled-coil (CC) domain and a C-terminal tail segment (C-tail) containing a well-defined actin-binding motif. The C-terminal domain can fold back to bind to the FERM domain forming an autoinhibited conformation. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). Moesin is involved in mitotic spindle function through stabilizing cell shape and microtubules at the cell cortex. It is required for the formation of F-actin networks that mediate endosome biogenesis or maturation and transport through the degradative pathway.


Pssm-ID: 340757  Cd Length: 84  Bit Score: 50.13  E-value: 1.28e-07
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   44 LHLRVKLLDNTVEiFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQ-IRRPKNVVLRLAVK 122
Cdd:cd17237      2 ISVRVTTMDAELE-FAIQPNTTGKQLFDQVVKTIGLREVWFFGLQYQDTKGFSTWLKLNKKVTAQdVRKESPLLFKFRAK 80

                   ...
gi 1622853342  123 FFP 125
Cdd:cd17237     81 FYP 83
PH1_Pleckstrin_2 cd13301
Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in ...
935-1026 2.01e-07

Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270113  Cd Length: 108  Bit Score: 50.45  E-value: 2.01e-07
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  935 GYLLRKFKNSHGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSTP-QEADgiHKDYVFKLQF-KSHVYFFRAESK 1012
Cdd:cd13301      7 GYLVKKGHVVNNWKARWFVLKEDGLEYYKKKTDSSPKGMIPLKGCTITSPcLEYG--KRPLVFKLTTaKGQEHFFQACSR 84
                           90
                   ....*....|....
gi 1622853342 1013 YTFERWMEVIQGAS 1026
Cdd:cd13301     85 EERDAWAKDITKAI 98
FERM_F1_Ezrin cd17239
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in Ezrin and ...
42-125 3.01e-07

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in Ezrin and similar proteins; Ezrin, also termed cytovillin, or villin-2, or p81, is a member of the ezrin/radixin/moesin (ERM) family of cytoskeletal proteins that plays an essential role in microvilli formation, T-cell activation, and tumor metastasis through providing a regulated linkage between F-actin and membrane-associated proteins. These proteins may also function in signaling cascades that regulate the assembly of actin stress fibers. The ERM proteins consist of an N-terminal FERM domain, a coiled-coil (CC) domain and a C-terminal tail segment (C-tail) containing a well-defined actin-binding motif. The C-terminal domain can fold back to bind to the FERM domain forming an autoinhibited conformation. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). Ezrin is a tyrosine kinase substrate that functions as a cross-linker between actin cytoskeleton and plasma membrane. It has been implicated in the regulation of the proliferation, apoptosis, adhesion, invasion, metastasis and angiogenesis of cancer cells.


Pssm-ID: 340759  Cd Length: 85  Bit Score: 49.22  E-value: 3.01e-07
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   42 KHLHLRVKLLDNTVEiFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQ-IRRPKNVVLRLA 120
Cdd:cd17239      1 KPINVRVTTMDAELE-FAIQPNTTGKQLFDQVVKTIGLREVWYFGLQYVDNKGFPTWLKLDKKVSAQeVRKENPLQFKFR 79

                   ....*
gi 1622853342  121 VKFFP 125
Cdd:cd17239     80 AKFYP 84
FERM_F1_Radixin cd17238
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in radixin and ...
44-125 3.82e-07

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in radixin and similar proteins; Radixin is a member of the ezrin/radixin/moesin (ERM) family of cytoskeletal proteins that plays an essential role in microvilli formation, T-cell activation, and tumor metastasis through providing a regulated linkage between F-actin and membrane-associated proteins. These proteins may also function in signaling cascades that regulate the assembly of actin stress fibers. The ERM proteins consist of an N-terminal FERM domain, a coiled-coil (CC) domain and a C-terminal tail segment (C-tail) containing a well-defined actin-binding motif. The C-terminal domain can fold back to bind to the FERM domain forming an autoinhibited conformation. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). Radixin plays important roles in cell polarity, cell motility, invasion and tumor progression. It mediates the binding of F-actin to the plasma membrane after a conformational activation through Akt2-dependent phosphorylation at Thr564. It is also involved in reversal learning and short-term memory by regulating synaptic GABAA receptor density.


Pssm-ID: 340758 [Multi-domain]  Cd Length: 83  Bit Score: 48.97  E-value: 3.82e-07
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   44 LHLRVKLLDNTVEiFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQ-IRRPKNVVLRLAVK 122
Cdd:cd17238      1 INVRVTTMDAELE-FAIQPNTTGKQLFDQVVKTVGLREVWFFGLQYVDSKGYSTWLKLNKKVTQQdVKKENPLQFKFRAK 79

                   ...
gi 1622853342  123 FFP 125
Cdd:cd17238     80 FFP 82
PH1_PLEKHH1_PLEKHH2 cd13282
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ...
934-1025 3.97e-07

Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241436  Cd Length: 96  Bit Score: 49.22  E-value: 3.97e-07
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  934 SGYLLR---KFKNshgWQKLWVVFTNFCLFFYKtHQDDY---PLASLPLLGYSVSTPqeADGIHkdyVFKLQFKSHVYFF 1007
Cdd:cd13282      2 AGYLTKlggKVKT---WKRRWFVLKNGELFYYK-SPNDVirkPQGQIALDGSCEIAR--AEGAQ---TFEIVTEKRTYYL 72
                           90
                   ....*....|....*...
gi 1622853342 1008 RAESKYTFERWMEVIQGA 1025
Cdd:cd13282     73 TADSENDLDEWIRVIQNV 90
PH_CNK_insect-like cd13326
Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; ...
933-1022 5.36e-07

Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; CNK family members function as protein scaffolds, regulating the activity and the subcellular localization of RAS activated RAF. There is a single CNK protein present in Drosophila and Caenorhabditis elegans in contrast to mammals which have 3 CNK proteins (CNK1, CNK2, and CNK3). All of the CNK members contain a sterile a motif (SAM), a conserved region in CNK (CRIC) domain, and a PSD-95/DLG-1/ZO-1 (PDZ) domain, and a PH domain. A CNK2 splice variant CNK2A also has a PDZ domain-binding motif at its C terminus and Drosophila CNK (D-CNK) also has a domain known as the Raf-interacting region (RIR) that mediates binding of the Drosophila Raf kinase. This cd contains CNKs from insects, spiders, mollusks, and nematodes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270135  Cd Length: 91  Bit Score: 48.49  E-value: 5.36e-07
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  933 LSGYLLRKFKNSHG---WQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSTPQEADGihKDYVFKLQFKSHVYFFRA 1009
Cdd:cd13326      1 YQGWLYQRRRKGKGggkWAKRWFVLKGSNLYGFRSQESTKADCVIFLPGFTVSPAPEVKS--RKYAFKVYHTGTVFYFAA 78
                           90
                   ....*....|...
gi 1622853342 1010 ESKYTFERWMEVI 1022
Cdd:cd13326     79 ESQEDMKKWLDLL 91
PH1_ARAP cd13253
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
933-1025 7.09e-07

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270073  Cd Length: 94  Bit Score: 48.15  E-value: 7.09e-07
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  933 LSGYLLRK--FKNSHGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSTPQeadgihKDYVFKLQFKSHVYFFRAE 1010
Cdd:cd13253      2 KSGYLDKQggQGNNKGFQKRWVVFDGLSLRYFDSEKDAYSKRIIPLSAISTVRAV------GDNKFELVTTNRTFVFRAE 75
                           90
                   ....*....|....*
gi 1622853342 1011 SKYTFERWMEVIQGA 1025
Cdd:cd13253     76 SDDERNLWCSTLQAA 90
PH1_FGD2 cd13386
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 2, N-terminal Pleckstrin ...
757-852 1.71e-06

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 2, N-terminal Pleckstrin homology (PH) domain; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Not much is known about FGD2. FGD1 is the best characterized member of the group with mutations here leading to the X-linked disorder known as faciogenital dysplasia (FGDY). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275421  Cd Length: 108  Bit Score: 47.60  E-value: 1.71e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  757 FIREGCLHKLT--KKGLQQRMFFLFSDMLLY-TSKGVAGTSHFRIRGLLPLRGMLVEESeNEWSVPHCFTIYAAQKTIVV 833
Cdd:cd13386      1 LLKEGPVLKISfrNNNPKERYLFLFNNMLLYcVPKVIQVGAKFQVHMRIDVDGMKVREL-NDAEFPHSFLVSGKQRTLEL 79
                           90
                   ....*....|....*....
gi 1622853342  834 AASTRLEKEKWMLDLNNAI 852
Cdd:cd13386     80 QARSQEEMEAWIQAFQEAI 98
FERM_C_PTPN14_PTPN21 cd13188
FERM domain C-lobe of Protein tyrosine phosphatase non-receptor proteins 14 and 21 (PTPN14 and ...
229-322 2.25e-06

FERM domain C-lobe of Protein tyrosine phosphatase non-receptor proteins 14 and 21 (PTPN14 and 21); This CD contains PTP members: pez/PTPN14 and PTPN21. A number of mutations in Pez have been shown to be associated with breast and colorectal cancer. The PTPN protein family belong to larger family of PTPs. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. The members are composed of a N-terminal FERM domain and a C-terminal PTP catalytic domain. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. Like most other ERM members they have a phosphoinositide-binding site in their FERM domain. The FERM C domain is the third structural domain within the FERM domain. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 270009  Cd Length: 91  Bit Score: 46.90  E-value: 2.25e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  229 YGIRFHMASDREGTKIHLAVSHMGVLV-FQGTTKINTFNWSKVRKLSFKRKRFLIKLHPEvhgpyQDTLEFLLGSRDECK 307
Cdd:cd13188      1 YGEESFPAKDEQGNEVLIGASLEGIFVkHDNGRPPVFFRWEDIKNVINHKRTFSIECQNS-----EETVQFQFEDAETAK 75
                           90
                   ....*....|....*
gi 1622853342  308 NFWKICVEYHTFFRL 322
Cdd:cd13188     76 YVWKLCVLQHKFYRQ 90
FERM_F1_ERM cd17187
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in the ERM family ...
44-125 2.69e-06

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in the ERM family proteins, Ezrin, Radixin, and Moesin; The ezrin-radixin-moesin (ERM) family includes a group of closely related cytoskeletal proteins that plays an essential role in microvilli formation, T-cell activation, and tumor metastasis through providing a regulated linkage between F-actin and membrane-associated proteins. These proteins may also function in signaling cascades that regulate the assembly of actin stress fibers. The ERM proteins consist of an N-terminal FERM domain, a coiled-coil (CC) domain and a C-terminal tail segment (C-tail) containing a well-defined actin-binding motif. They exist in two states, a dormant state in which the FERM domain binds to its own C-terminal tail and thereby precludes binding of some partner proteins, and an activated state, in which the FERM domain binds to one of many membrane binding proteins and the C-terminal tail binds to F-actin. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).


Pssm-ID: 340707 [Multi-domain]  Cd Length: 83  Bit Score: 46.31  E-value: 2.69e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   44 LHLRVKLLDNTVEiFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQ-IRRPKNVVLRLAVK 122
Cdd:cd17187      1 VNVRVTTMDAELE-FAIQPNTTGKQLFDQVVKTIGLREIWFFGLQYVDSKGYSTWLKLNKKVLSQdVKKENPLQFKFRAK 79

                   ...
gi 1622853342  123 FFP 125
Cdd:cd17187     80 FYP 82
PH_Ses cd13288
Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 ...
935-1026 2.70e-06

Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 mammalian members: Ses1 and Ses2, which are also callled 7 kDa inositol polyphosphate phosphatase-interacting protein 1 and 2. They play a role in endocytic trafficking and are required for receptor recycling from endosomes, both to the trans-Golgi network and the plasma membrane. Members of this family form homodimers and heterodimers. Sesquipedalian interacts with inositol polyphosphate 5-phosphatase OCRL-1 (INPP5F) also known as Lowe oculocerebrorenal syndrome protein, a phosphatase enzyme that is involved in actin polymerization and is found in the trans-Golgi network and INPP5B. Sesquipedalian contains a single PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270105 [Multi-domain]  Cd Length: 120  Bit Score: 47.23  E-value: 2.70e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  935 GYLLRKFKNSHGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSTPQEADgihkDYVFKLQF---KSHVYFFRAES 1011
Cdd:cd13288     12 GYLWKKGERNTSYQKRWFVLKGNLLFYFEKKGDREPLGVIVLEGCTVELAEDAE----PYAFAIRFdgpGARSYVLAAEN 87
                           90
                   ....*....|....*
gi 1622853342 1012 KYTFERWMEVIQGAS 1026
Cdd:cd13288     88 QEDMESWMKALSRAS 102
PHA03307 PHA03307
transcriptional regulator ICP4; Provisional
358-528 3.70e-06

transcriptional regulator ICP4; Provisional


Pssm-ID: 223039 [Multi-domain]  Cd Length: 1352  Bit Score: 51.33  E-value: 3.70e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  358 SGMKRIPYERRHSKTHMSIRALTADLPKQSISfpEGLRTPGSPSSANASFYSLSPSTLVPPGLPE-FKDSSSSLTEPQVS 436
Cdd:PHA03307    74 GPGTEAPANESRSTPTWSLSTLAPASPAREGS--PTPPGPSSPDPPPPTPPPASPPPSPAPDLSEmLRPVGSPGPPPAAS 151
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  437 yikSPAAERSSGAVAGGPDTP------------SAQPVGPPALQPGPGLSTKSPQPSPSSRNSPLSLSPAFQVPLGP--- 501
Cdd:PHA03307   152 ---PPAAGASPAAVASDAASSrqaalplsspeeTARAPSSPPAEPPPSTPPAAASPRPPRRSSPISASASSPAPAPGrsa 228
                          170       180       190
                   ....*....|....*....|....*....|
gi 1622853342  502 ---AEQGSSPLLSPVLSDAGGAGMDyEEPR 528
Cdd:PHA03307   229 addAGASSSDSSSSESSGCGWGPEN-ECPL 257
PH1_FGD1 cd01219
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 1, N-terminal Pleckstrin ...
757-853 8.14e-06

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 1, N-terminal Pleckstrin homology (PH) domain; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Mutations in the FGD1 gene are responsible for the X-linked disorder known as faciogenital dysplasia (FGDY). Both FGD1 and FGD3 are targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. However, FGD1 and FGD3 induced significantly different morphological changes in HeLa Tet-Off cells and while FGD1 induced long finger-like protrusions, FGD3 induced broad sheet-like protrusions when the level of GTP-bound Cdc42 was significantly increased by the inducible expression of FGD3. They also reciprocally regulated cell motility in inducibly expressed in HeLa Tet-Off cells, FGD1 stimulated cell migration while FGD3 inhibited it. FGD1 and FGD3 therefore play different roles to regulate cellular functions, even though their intracellular levels are tightly controlled by the same destruction pathway through SCF(FWD1/beta-TrCP). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275392  Cd Length: 108  Bit Score: 45.78  E-value: 8.14e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  757 FIREGCLHKLTKKG--LQQRMFFLFSDMLLY-TSKGVAGTSHFRIRGLLPLRGMLVEESENEwSVPHCFTIYAAQKTIVV 833
Cdd:cd01219      1 LIKEGHILKLSAKNgtTQDRYLILFNDRLLYcVPKLRLIGQKFSVRARIDVEGMELKESSSL-NLPRTFLVSGKQRSLEL 79
                           90       100
                   ....*....|....*....|
gi 1622853342  834 AASTRLEKEKWMLDLNNAIQ 853
Cdd:cd01219     80 QARTEEEKKDWIQAIQATIQ 99
PH_3BP2 cd13308
SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes ...
934-1027 8.79e-06

SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes the adaptor protein 3BP2), HD, ITU, IT10C3, and ADD1 are located near the Huntington's Disease Gene on Human Chromosome 4pl6.3. SH3BP2 lies in a region that is often missing in individuals with Wolf-Hirschhorn syndrome (WHS). Gain of function mutations in SH3BP2 causes enhanced B-cell antigen receptor (BCR)-mediated activation of nuclear factor of activated T cells (NFAT), resulting in a rare, genetic disorder called cherubism. This results in an increase in the signaling complex formation with Syk, phospholipase C-gamma2 (PLC-gamma2), and Vav1. It was recently discovered that Tankyrase regulates 3BP2 stability through ADP-ribosylation and ubiquitylation by the E3-ubiquitin ligase. Cherubism mutations uncouple 3BP2 from Tankyrase-mediated protein destruction, which results in its stabilization and subsequent hyperactivation of the Src, Syk, and Vav signaling pathways. SH3BP2 is also a potential negative regulator of the abl oncogene. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270118  Cd Length: 113  Bit Score: 45.86  E-value: 8.79e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  934 SGYLLRK---FKNSHGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSTPQEAdGIHKDYVFKL---QFKSHVYFF 1007
Cdd:cd13308     12 SGTLTKKggsQKTLQNWQLRYVIIHQGCVYYYKNDQSAKPKGVFSLNGYNRRAAEER-TSKLKFVFKIihlSPDHRTWYF 90
                           90       100
                   ....*....|....*....|
gi 1622853342 1008 RAESKYTFERWMEVIQGASS 1027
Cdd:cd13308     91 AAKSEDEMSEWMEYIRREID 110
PH_DAPP1 cd10573
Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; ...
934-1023 1.93e-05

Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; DAPP1 (also known as PHISH/3' phosphoinositide-interacting SH2 domain-containing protein or Bam32) plays a role in B-cell activation and has potential roles in T-cell and mast cell function. DAPP1 promotes B cell receptor (BCR) induced activation of Rho GTPases Rac1 and Cdc42, which feed into mitogen-activated protein kinases (MAPK) activation pathways and affect cytoskeletal rearrangement. DAPP1can also regulate BCR-induced activation of extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). DAPP1 contains an N-terminal SH2 domain and a C-terminal pleckstrin homology (PH) domain with a single tyrosine phosphorylation site located centrally. DAPP1 binds strongly to both PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The PH domain is essential for plasma membrane recruitment of PI3K upon cell activation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269977 [Multi-domain]  Cd Length: 96  Bit Score: 44.24  E-value: 1.93e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  934 SGYLLRKFKNSHGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLgySVSTPQEADGIHKDYVFKLQFKSHVYFFRAESKY 1013
Cdd:cd10573      6 EGYLTKLGGIVKNWKTRWFVLRRNELKYFKTRGDTKPIRVLDLR--ECSSVQRDYSQGKVNCFCLVFPERTFYMYANTEE 83
                           90
                   ....*....|
gi 1622853342 1014 TFERWMEVIQ 1023
Cdd:cd10573     84 EADEWVKLLK 93
PHA03247 PHA03247
large tegument protein UL36; Provisional
368-513 2.15e-05

large tegument protein UL36; Provisional


Pssm-ID: 223021 [Multi-domain]  Cd Length: 3151  Bit Score: 48.78  E-value: 2.15e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  368 RHSKTHMSIRALTADLPKQSISfPeglRTPGSP--SSANASFYSLSPSTLVPPGLPEFKDSSSSLTEPQVSYIKSPAAER 445
Cdd:PHA03247  2576 RPSEPAVTSRARRPDAPPQSAR-P---RAPVDDrgDPRGPAPPSPLPPDTHAPDPPPPSPSPAANEPDPHPPPTVPPPER 2651
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  446 SSGAVAGG-------------PDTPSAQPVGP--PALQPGPGLSTKS---PQPSPSSRNSPLSLSPAFQVPLGPAEQGSS 507
Cdd:PHA03247  2652 PRDDPAPGrvsrprrarrlgrAAQASSPPQRPrrRAARPTVGSLTSLadpPPPPPTPEPAPHALVSATPLPPGPAAARQA 2731

                   ....*.
gi 1622853342  508 PLLSPV 513
Cdd:PHA03247  2732 SPALPA 2737
PH_TAAP2-like cd13255
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ...
934-1025 2.83e-05

Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270075  Cd Length: 110  Bit Score: 44.33  E-value: 2.83e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  934 SGYLLRKFKNSHGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLlgYSVSTPQEADGIHKDYVFKLQFKSHVYFFRAESKY 1013
Cdd:cd13255      9 AGYLEKKGERRKTWKKRWFVLRPTKLAYYKNDKEYRLLRLIDL--TDIHTCTEVQLKKHDNTFGIVTPARTFYVQADSKA 86
                           90
                   ....*....|..
gi 1622853342 1014 TFERWMEVIQGA 1025
Cdd:cd13255     87 EMESWISAINLA 98
PH_TBC1D2A cd01265
TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1 ...
932-1023 3.32e-05

TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1/Prostate antigen recognized and identified by SEREX 1 and ARMUS) contains a PH domain and a TBC-type GTPase catalytic domain. TBC1D2A integrates signaling between Arf6, Rac1, and Rab7 during junction disassembly. Activated Rac1 recruits TBC1D2A to locally inactivate Rab7 via its C-terminal TBC/RabGAP domain and facilitate E-cadherin degradation in lysosomes. The TBC1D2A PH domain mediates localization at cell-cell contacts and coprecipitates with cadherin complexes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269966  Cd Length: 102  Bit Score: 43.85  E-value: 3.32e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  932 QLSGYLLRKFKNS---HGWQKLWVVF--TNFCLFFYKTHQDDYPLASLPLLGYSVS-TPQEADGIhkdyvFKLQFKSHVY 1005
Cdd:cd01265      1 RLCGYLNKLETRGlglKGWKRRWFVLdeSKCQLYYYRSPQDATPLGSIDLSGAAFSyDPEAEPGQ-----FEIHTPGRVH 75
                           90
                   ....*....|....*...
gi 1622853342 1006 FFRAESKYTFERWMEVIQ 1023
Cdd:cd01265     76 ILKASTRQAMLYWLQALQ 93
PH2_PH_fungal cd13299
Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal ...
935-976 3.58e-05

Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270111  Cd Length: 102  Bit Score: 43.77  E-value: 3.58e-05
                           10        20        30        40
                   ....*....|....*....|....*....|....*....|...
gi 1622853342  935 GYLLR-KFKNSHGWQKLWVVFTNFCLFFYKTHQDDYPLASLPL 976
Cdd:cd13299     10 GYLQVlKKKGVNQWKKYWLVLRNRSLSFYKDQSEYSPVKIIPI 52
FERM_F1_PTPN21 cd17192
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein ...
47-111 3.62e-05

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein phosphatase non-receptor type 21 (PTPN21) and similar proteins; PTPN21, also termed protein-tyrosine phosphatase D1 (PTPD1), is a cytosolic non-receptor protein-tyrosine phosphatase (PTP) that belongs to the FERM family of PTPs characterized by a conserved N-terminal FERM domain and a C-terminal PTP catalytic domain with an intervening sequence containing an acidic region and a putative SH3 domain-binding sequence. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). PTPN21 interacts with a Tec tyrosine kinase family member, the epithelial and endothelial tyrosine kinase (Etk, also known as Bmx), modulates Stat3 activation, and plays a role in the regulation of cell growth and differentiation. It also associates with and activates Src tyrosine kinase, and directs epidermal growth factor (EGF)/Src signaling to the nucleus through activating ERK1/2- and Elk1-dependent gene transcription. PTPD1-Src complex interacts a protein kinase A-anchoring protein AKAP121 to forms a PTPD1-Src-AKAP121 complex, which is required for efficient maintenance of mitochondrial membrane potential and ATP oxidative synthesis. As a novel component of the endocytic pathway, PTPN21 supports EGF receptor stability and mitogenic signaling in bladder cancer cells. Moreover, PTPD1 regulates focal adhesion kinase (FAK) autophosphorylation and cell migration through modulating Src-FAK signaling at adhesion sites.


Pssm-ID: 340712  Cd Length: 87  Bit Score: 43.47  E-value: 3.62e-05
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1622853342   47 RVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRR 111
Cdd:cd17192      7 RIQLLNNEFVEFTLSVESTGQECLEAVAQRLELREITYFSLWYYNKQNQQRWVDLEKPLKKQLDK 71
FERM_F1_Merlin cd17186
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in merlin and ...
42-125 4.78e-05

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in merlin and similar proteins; Merlin, also termed moesin-ezrin-radixin-like protein, or neurofibromin-2 (NF2), or Schwannomerlin, or Schwannomin, is a member of the ezrin/radixin/moesin (ERM) family of cytoskeletal proteins that plays an essential role in microvilli formation, T-cell activation, and tumor metastasis through providing a regulated linkage between F-actin and membrane-associated proteins. These proteins may also function in signaling cascades that regulate the assembly of actin stress fibers. The ERM proteins consist of an N-terminal FERM domain, a coiled-coil (CC) domain and a C-terminal tail segment (C-tail) containing a well-defined actin-binding motif, merlin however lacks the typical actin-binding motif in the C-tail. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). Merlin plays vital roles in controlling proper development of organ sizes by specifically binding to a large number of target proteins localized both in cytoplasm and nuclei. Merlin may function as a tumor suppressor that functions upstream of the core Hippo pathway kinases Lats1/2 (Wts in Drosophila) and Mst1/2 (Hpo in Drosophila), as well as the nuclear E3 ubiquitin ligase DDB1-and-Cullin 4-associated Factor 1 (DCAF1)-associated cullin 4-Roc1 ligase, CRL4(DCAF1). Merlin may also has a tumor suppressor function in melanoma cells, the inhibition of the proto-oncogenic Na(+)/H(+) exchanger isoform 1 (NHE1) activity.


Pssm-ID: 340706  Cd Length: 85  Bit Score: 42.76  E-value: 4.78e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   42 KHLHLRVKLLDNTVEiFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQ-IRRPKNVVLRLA 120
Cdd:cd17186      1 KTFTVRIVTMDAEME-FNCEMKWKGKDLFDLVCRTIGLRETWYFGLQYTDSKGTVAWLKMDKKVLDQdVPKEEPVTFHFL 79

                   ....*
gi 1622853342  121 VKFFP 125
Cdd:cd17186     80 AKFYP 84
PHA03247 PHA03247
large tegument protein UL36; Provisional
384-585 4.79e-05

large tegument protein UL36; Provisional


Pssm-ID: 223021 [Multi-domain]  Cd Length: 3151  Bit Score: 47.63  E-value: 4.79e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  384 PKQSISFPEGLRTPGSPssanasfYSLSPSTLVPPGLPefkdssSSLTEPQVSYIKSPAAERSSGAVAGGPDTPSAQPVG 463
Cdd:PHA03247  2845 PPPPSLPLGGSVAPGGD-------VRRRPPSRSPAAKP------AAPARPPVRRLARPAVSRSTESFALPPDQPERPPQP 2911
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  464 PPALQPGPGLSTK-SPQPSPSSRNSPLSLSPAFQVPlGPAEQGSSPLLSPVLSDAGGAGMDYEEPRHK-RMPADEayfiv 541
Cdd:PHA03247  2912 QAPPPPQPQPQPPpPPQPQPPPPPPPRPQPPLAPTT-DPAGAGEPSGAVPQPWLGALVPGRVAVPRFRvPQPAPS----- 2985
                          170       180       190       200
                   ....*....|....*....|....*....|....*....|....*...
gi 1622853342  542 KEILATERTYLKDLEV--ITVWFRSAVVKEDAM--PATLMTLLFSNID 585
Cdd:PHA03247  2986 REAPASSTPPLTGHSLsrVSSWASSLALHEETDppPVSLKQTLWPPDD 3033
PH_GPBP cd13283
Goodpasture antigen binding protein Pleckstrin homology (PH) domain; The GPBP (also called ...
933-1023 1.15e-04

Goodpasture antigen binding protein Pleckstrin homology (PH) domain; The GPBP (also called Collagen type IV alpha-3-binding protein/hCERT; START domain-containing protein 11/StARD11; StAR-related lipid transfer protein 11) is a kinase that phosphorylates an N-terminal region of the alpha 3 chain of type IV collagen, which is commonly known as the goodpasture antigen. Its splice variant the ceramide transporter (CERT) mediates the cytosolic transport of ceramide. There have been additional splice variants identified, but all of them function as ceramide transport proteins. GPBP and CERT both contain an N-terminal PH domain, followed by a serine rich domain, and a C-terminal START domain. However, GPBP has an additional serine rich domain just upstream of its START domain. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270100 [Multi-domain]  Cd Length: 100  Bit Score: 42.27  E-value: 1.15e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  933 LSGYLlRKFKNS-HGWQKLWVVFTNFCLFFYKTHQDdyplaslplLGY----SVS------TPQEADgihkDYVFKLQFK 1001
Cdd:cd13283      1 LRGVL-SKWTNYiHGWQDRYFVLKDGTLSYYKSESE---------KEYgcrgSISlskaviKPHEFD----ECRFDVSVN 66
                           90       100
                   ....*....|....*....|..
gi 1622853342 1002 SHVYFFRAESKYTFERWMEVIQ 1023
Cdd:cd13283     67 DSVWYLRAESPEERQRWIDALE 88
PH_Skap-hom_Skap2 cd13381
Src kinase-associated phosphoprotein homolog and Skap 2 Pleckstrin homology (PH) domain; ...
934-1022 1.47e-04

Src kinase-associated phosphoprotein homolog and Skap 2 Pleckstrin homology (PH) domain; Adaptor protein Skap-hom, a homolog of Skap55, which interacts with actin and with ADAP (adhesion and degranulation promoting adapter protein) undergoes tyrosine phosphorylation in response to plating of bone marrow-derived macrophages on fibronectin. Skap-hom has an N-terminal coiled-coil conformation that is involved in homodimer formation, a central PH domain and a C-terminal SH3 domain that associates with ADAP. The Skap-hom PH domain regulates intracellular targeting; its interaction with the DM domain inhibits Skap-hom actin-based ruffles in macrophages and its binding to 3'-phosphoinositides reverses this autoinhibition. The Skap-hom PH domain binds PI[3,4]P2 and PI[3,4,5]P3, but not to PI[3]P, PI[5]P, or PI[4,5]P2. Skap2 is a downstream target of Heat shock transcription factor 4 (HSF4) and functions in the regulation of actin reorganization during lens differentiation. It is thought that SKAP2 anchors the complex of tyrosine kinase adaptor protein 2 (NCK20/focal adhesion to fibroblast growth factor receptors at the lamellipodium in lens epithelial cells. Skap2 has an N-terminal coiled-coil conformation which interacts with the SH2 domain of NCK2, a central PH domain and a C-terminal SH3 domain that associates with ADAP (adhesion and degranulation promoting adapter protein)/FYB (the Fyn binding protein). Skap2 PH domain binds to membrane lipids. Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Src kinase-associated phosphoprotein of 55 kDa (Skap55)/Src kinase-associated phosphoprotein 1 (Skap1), Skap2, and Skap-hom have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270181  Cd Length: 106  Bit Score: 42.25  E-value: 1.47e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  934 SGYLLRKFKN----SHGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSV--STPQEADGiHKDYVFK-LQFKSHVYF 1006
Cdd:cd13381      4 AGYLEKRRKDhsffGFEWQKRWCALSNSVFYYYGSDKDKQQKGEFAIDGYDVkmNNTLRKDA-KKDCCFEiCAPDKRVYQ 82
                           90
                   ....*....|....*.
gi 1622853342 1007 FRAESKYTFERWMEVI 1022
Cdd:cd13381     83 FTAASPKEAEEWVQQI 98
PH1_AFAP cd13306
Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 1; There are ...
935-1027 1.72e-04

Actin filament associated protein family Pleckstrin homology (PH) domain, repeat 1; There are 3 members of the AFAP family of adaptor proteins: AFAP1, AFAP1L1, and AFAP1L2/XB130. AFAP1 is a cSrc binding partner and actin cross-linking protein. AFAP1L1 is thought to play a similar role to AFAP1 in terms of being an actin cross-linking protein, but it preferentially binds to cortactin and not cSrc, thereby playing a role in invadosome formation. AFAP1L2 is a cSrc binding protein, but does not bind to actin filaments. AFAP1L2 acts as an intermediary between the RET/PTC kinase and PI-3kinase pathway in the thyroid. The AFAPs share a similar structure of a SH3 binding motif, 3 SH2 binding motifs, 2 PH domains, a coiled-coil region corresponding to the AFAP1 leucine zipper, and an actin binding domain. The amino terminal PH1 domain of AFAP1 has been known to function in intra-molecular regulation of AFAP1. In addition, the PH1 domain is a binding partner for PKCa and phospholipids. This cd is the first PH domain of AFAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270116  Cd Length: 107  Bit Score: 42.09  E-value: 1.72e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  935 GYLLRKfKNSHGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVsTPQEADGIHKDYVFKL-QFKSHVYFFRAESKY 1013
Cdd:cd13306     16 AFLLRK-KRFGQWAKQLCVIKDNRLLCYKSSKDQQPQLELPLLGCSV-IYVPKDGRRKKHELKFtPPGAEALVLAVQSKE 93
                           90
                   ....*....|....
gi 1622853342 1014 TFERWMEVIQGASS 1027
Cdd:cd13306     94 QAEQWLKVIREVSS 107
PH_PLEKHD1 cd13281
Pleckstrin homology (PH) domain containing, family D (with coiled-coil domains) member 1 PH ...
764-845 1.93e-04

Pleckstrin homology (PH) domain containing, family D (with coiled-coil domains) member 1 PH domain; Human PLEKHD1 (also called UPF0639, pleckstrin homology domain containing, family D (with M protein repeats) member 1) is a single transcript and contains a single PH domain. PLEKHD1 is conserved in human, chimpanzee, , dog, cow, mouse, chicken, zebrafish, and Caenorhabditis elegans. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270099  Cd Length: 139  Bit Score: 42.70  E-value: 1.93e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  764 HKLTKKGLQQRMFFLFSD-MLLYTS----KGVAGTSHFRI--RGLLPLRGMLVEESEnEWSVPHCFTIYAAQKT--IVVA 834
Cdd:cd13281     22 PFGHQSAKWSKRFFIIKEgFLLYYSesekKDFEKTRHFNIhpKGVIPLGGCSIEAVE-DPGKPYAISISHSDFKgnIILA 100
                           90
                   ....*....|.
gi 1622853342  835 ASTRLEKEKWM 845
Cdd:cd13281    101 ADSEFEQEKWL 111
FERM_C_FRMD4A_FRMD4B cd13191
FERM domain C-lobe of FERM domain-containing protein 4A and 4B (FRMD4A and 4B); FRMD4A is part ...
230-331 3.03e-04

FERM domain C-lobe of FERM domain-containing protein 4A and 4B (FRMD4A and 4B); FRMD4A is part of the Par-3/FRMD4A/cytohesin-1 complex that activates Arf6, a central player in actin cytoskeleton dynamics and membrane trafficking, during junctional remodeling and epithelial polarization. The Par-3/Par-6/aPKC/Cdc42 complex regulates the conversion of primordial adherens junctions (AJs) into belt-like AJs and the formation of linear actin cables. When primordial AJs are formed, Par-3 recruits scaffolding protein FRMD4A which connects Par-3 and the Arf6 guanine-nucleotide exchange factor (GEF), cytohesin-1. FRMD4B (also called GRP1-binding protein, GRSP1) is a novel member of GRP1 signaling complexes that are recruited to plasma membrane ruffles in response to insulin receptor signaling. The GRSP1/FRMD4B protein contains a FERM protein domain as well as two coiled coil domains and may function as a scaffolding protein. GRP1 and GRSP1 interact through the coiled coil domains in the two proteins. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 270012  Cd Length: 113  Bit Score: 41.18  E-value: 3.03e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  230 GIRFHMASDREGTKIHLAVSHMGVLVFQGTTKIN---TFNWSKVRKLSFKRKRFLIklhpEVHGPYQ--DTLEFLLGSRD 304
Cdd:cd13191      1 GVHYYEVKDKNGIPWWLGVSYKGIGQYDLQDKVKprkFFQWKQLENLYFRDRKFSI----EVRDPRRnsHRSRRTFQSSS 76
                           90       100       110
                   ....*....|....*....|....*....|....*....
gi 1622853342  305 ------------ECKNFWKICVEYHTFFrlLDQPKPKAK 331
Cdd:cd13191     77 vsvhvwygqtpaLCKTIWSMAIAQHQFY--LDRKQSKKK 113
PH_RARhoGAP cd13319
RA and RhoGAP domain-containing protein Pleckstrin homology PH domain; RARhoGAP (also called ...
755-844 4.43e-04

RA and RhoGAP domain-containing protein Pleckstrin homology PH domain; RARhoGAP (also called Rho GTPase-activating protein 20 and ARHGAP20 ) is thought to function in rearrangements of the cytoskeleton and cell signaling events that occur during spermatogenesis. RARhoGAP was also shown to be activated by Rap1 and to induce inactivation of Rho, resulting in the neurite outgrowth. Recent findings show that ARHGAP20, even although it is located in the middle of the MDR on 11q22-23, is expressed at higher levels in chronic lymphocytic leukemia patients with 11q22-23 and/or 13q14 deletions and its expression pattern suggests a functional link between cases with 11q22-23 and 13q14 deletions. The mechanism needs to be further studied. RARhoGAP contains a PH domain, a Ras-associating domain, a Rho-GAP domain, and ANXL repeats. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270129  Cd Length: 97  Bit Score: 40.30  E-value: 4.43e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  755 REFIREGCLhKLTKkGL--QQRMFFLFSDMLLytskgVA---GTSHFRIRGLLPLRGM-----LVEESENEWSVPHCFTI 824
Cdd:cd13319      1 RTFLLEGPV-QLTR-GLqtQERHLFLFSDVLV-----VAkpkSKNSFKLKHKIRLSELwlascVDEVCEGSKSADKSFVL 73
                           90       100
                   ....*....|....*....|
gi 1622853342  825 YAAQKTIVVAASTRLEKEKW 844
Cdd:cd13319     74 GWPTTNFVATFSSQEEKDLW 93
PH-GRAM1_AGT26 cd13215
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, ...
908-1023 4.66e-04

Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1; ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275402  Cd Length: 116  Bit Score: 41.07  E-value: 4.66e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  908 TTMHVCWY-----RNTSVSradhsaavenqLSGYLLRKFKNSHGWQKLWVVFTNFCLFFYKTHQDDY-PLASLPL-LGYS 980
Cdd:cd13215      4 TSKHLCFFaylpkRSGAVI-----------KSGYLSKRSKRTLRYTRYWFVLKGDTLSWYNSSTDLYfPAGTIDLrYATS 72
                           90       100       110       120
                   ....*....|....*....|....*....|....*....|...
gi 1622853342  981 VStPQEADGIHKDYvFKLQFKSHVYFFRAESKYTFERWMEVIQ 1023
Cdd:cd13215     73 IE-LSKSNGEATTS-FKIVTNSRTYKFKADSETSADEWVKALK 113
PH_CNK_mammalian-like cd01260
Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; ...
935-1028 4.68e-04

Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; CNK family members function as protein scaffolds, regulating the activity and the subcellular localization of RAS activated RAF. There is a single CNK protein present in Drosophila and Caenorhabditis elegans in contrast to mammals which have 3 CNK proteins (CNK1, CNK2, and CNK3). All of the CNK members contain a sterile a motif (SAM), a conserved region in CNK (CRIC) domain, and a PSD-95/DLG-1/ZO-1 (PDZ) domain, and, with the exception of CNK3, a PH domain. A CNK2 splice variant CNK2A also has a PDZ domain-binding motif at its C terminus and Drosophila CNK (D-CNK) also has a domain known as the Raf-interacting region (RIR) that mediates binding of the Drosophila Raf kinase. This cd contains CNKs from mammals, chickens, amphibians, fish, and crustacea. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269962  Cd Length: 114  Bit Score: 40.85  E-value: 4.68e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  935 GYLLRKFKN----SHGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSTPQEAdgiHKDYVFKL---QFKShvYFF 1007
Cdd:cd01260     17 GWLWKKKEAksffGQKWKKYWFVLKGSSLYWYSNQQDEKAEGFINLPDFKIERASEC---KKKYAFKAchpKIKT--FYF 91
                           90       100
                   ....*....|....*....|.
gi 1622853342 1008 RAESKYTFERWMEVIQGASSS 1028
Cdd:cd01260     92 AAENLDDMNKWLSKLNMAINK 112
PH_IQSEC cd13318
IQ motif and SEC7 domain-containing protein family Pleckstrin homology domain; The IQSEC (also ...
764-852 5.73e-04

IQ motif and SEC7 domain-containing protein family Pleckstrin homology domain; The IQSEC (also called BRAG/Brefeldin A-resistant Arf-gunanine nucleotide exchange factor) family are a subset of Arf GEFs that have been shown to activate Arf6, which acts in the endocytic pathway to control the trafficking of a subset of cargo proteins including integrins and have key roles in the function and organization of distinct excitatory and inhibitory synapses in the retina. The family consists of 3 members: IQSEC1 (also called BRAG2/GEP100), IQSEC2 (also called BRAG1), and IQSEC3 (also called SynArfGEF, BRAG3, or KIAA1110). IQSEC1 interacts with clathrin and modulates cell adhesion by regulating integrin surface expression and in addition to Arf6, it also activates the class II Arfs, Arf4 and Arf5. Mutations in IQSEC2 cause non-syndromic X-linked intellectual disability as well as reduced activation of Arf substrates (Arf1, Arf6). IQSEC3 regulates Arf6 at inhibitory synapses and associates with the dystrophin-associated glycoprotein complex and S-SCAM. These members contains a IQ domain that may bind calmodulin, a PH domain that is thought to mediate membrane localization by binding of phosphoinositides, and a SEC7 domain that can promote GEF activity on ARF. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270128  Cd Length: 128  Bit Score: 40.76  E-value: 5.73e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  764 HKLTKKGLQQRMFFLFSDMLLYTsKGVA--GTSHF-RIRGLLPLRGMLVEESENEWsVPHCFTIYAAQKTIVVA---AST 837
Cdd:cd13318     18 NKREKPGLHQREVFLFNDLLVVT-KIFSkkKSSVTySFRQSFSLLGMQVLLFETSH-YPFGIRLTSPLDNKVLItfnARN 95
                           90
                   ....*....|....*
gi 1622853342  838 RLEKEKWMLDLNNAI 852
Cdd:cd13318     96 ESDRKKFVEDLRESI 110
PH_Boi cd13316
Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally ...
934-1026 1.23e-03

Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally redundant and important for cell growth with Boi mutants displaying defects in bud formation and in the maintenance of cell polarity.They appear to be linked to Rho-type GTPase, Cdc42 and Rho3. Boi1 and Boi2 display two-hybrid interactions with the GTP-bound ("active") form of Cdc42, while Rho3 can suppress of the lethality caused by deletion of Boi1 and Boi2. These findings suggest that Boi1 and Boi2 are targets of Cdc42 that promote cell growth in a manner that is regulated by Rho3. Boi proteins contain a N-terminal SH3 domain, followed by a SAM (sterile alpha motif) domain, a proline-rich region, which mediates binding to the second SH3 domain of Bem1, and C-terminal PH domain. The PH domain is essential for its function in cell growth and is important for localization to the bud, while the SH3 domain is needed for localization to the neck. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270126  Cd Length: 97  Bit Score: 39.28  E-value: 1.23e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  934 SGYLLRKFKNSHGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSTPQEADGIHKDYVFKL----QFKSHvyFFRA 1009
Cdd:cd13316      3 SGWMKKRGERYGTWKTRYFVLKGTRLYYLKSENDDKEKGLIDLTGHRVVPDDSNSPFRGSYGFKLvppaVPKVH--YFAV 80
                           90
                   ....*....|....*..
gi 1622853342 1010 ESKYTFERWMEVIQGAS 1026
Cdd:cd13316     81 DEKEELREWMKALMKAT 97
PH_ORP9 cd13290
Human Oxysterol binding protein related protein 9 Pleckstrin homology (PH) domain; Human ORP9 ...
760-854 1.44e-03

Human Oxysterol binding protein related protein 9 Pleckstrin homology (PH) domain; Human ORP9 is proposed to function in regulation of Akt phosphorylation. ORP9 has 2 forms, a long (ORP9L) and a short (ORP9S). ORP9L contains an N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. ORP1S is truncated and contains a FFAT motif and an OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241444  Cd Length: 102  Bit Score: 38.97  E-value: 1.44e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  760 EGCLHKLTK--KGLQQRMFFL--FSDMLLY-TSK-----GVAgtshfriRGLLPLRGMLVE-ESENEWSvphcFTIYAAQ 828
Cdd:cd13290      2 EGPLSKWTNvmKGWQYRWFVLddNAGLLSYyTSKekmmrGSR-------RGCVRLKGAVVGiDDEDDST----FTITVDQ 70
                           90       100
                   ....*....|....*....|....*.
gi 1622853342  829 KTIVVAASTRLEKEKWMLDLNNAIQA 854
Cdd:cd13290     71 KTFHFQARDAEERERWIRALEDTILR 96
FERM_F1_PTPN14 cd17191
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein ...
47-126 1.53e-03

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in tyrosine-protein phosphatase non-receptor type 14 (PTPN14) and similar proteins; PTPN14, also termed protein-tyrosine phosphatase pez, or PTPD2, or PTP36, is a widely expressed non-transmembrane cytosolic protein tyrosine phosphatase (PTP). It belongs to the FERM family of PTPs characterized by a conserved N-terminal FERM domain and a C-terminal PTP catalytic domain with an intervening sequence containing an acidic region and a putative SH3 domain-binding sequence. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). PTPN14 plays a role in the nucleus during cell proliferation. It forms a complex with Kibra and LATS1 proteins and negatively regulates the key Hippo pathway protein Yes-associated protein (YAP) oncogenic function by controlling its localization. It specifically regulates p130 Crk-associated substrate (p130Cas) phosphorylation at tyrosine residue 128 (Y128) in colorectal cancer (CRC) cells. Moreover, PTPN14 may be a critical enzyme in regulating endothelial cell function. It plays a crucial role in organogenesis by inducing transforming growth factor beta (TGFbeta) and epithelial-mesenchymal transition (EMT). It also acts as a modifier of angiogenesis and hereditary haemorrhagic telangiectasia. It regulates the lymphatic function and choanal development through the interaction with the vascular endothelial growth factor receptor 3 (VEGFR3), a receptor tyrosine kinase essential for lymphangiogenesis. Furthermore, PTPN14 functions as a regulator of cell motility through its action on cell-cell adhesion. Beta-Catenin, a central component of adherens junctions, has been identified as a PTPN14 substrate. PTPN14 works as a novel sperm-motility biomarker and a potential mitochondrial protein.


Pssm-ID: 340711  Cd Length: 87  Bit Score: 38.87  E-value: 1.53e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   47 RVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQIRRPKN-VVLRLAVKFFP 125
Cdd:cd17191      7 RIRLLDSNVIECTLSVESTGQECLEAVAQRLELRETHYFGLWFLSKSQQARWVELEKPLKKQLDKFANePLLFFGVMFYV 86

                   .
gi 1622853342  126 P 126
Cdd:cd17191     87 P 87
FERM_C_FRMD1_FRMD6 cd13185
FERM domain C-lobe of FERM domain containing 1 and 6 proteins; FRMD6 (also called willin and ...
246-282 2.10e-03

FERM domain C-lobe of FERM domain containing 1 and 6 proteins; FRMD6 (also called willin and hEx/human expanded) is localized throughout the cytoplasm or along the plasma membrane. The Drosophilla protein Ex is a regulator of the Hippo/SWH (Sav/Wts/Hpo) signaling pathway, a signaling pathway that plays a pivotal role in organ size control and is tumor suppression by restricting proliferation and promoting apoptosis. Surprisingly, hEx is thought to function independently of the Hippo pathway. Instead it is hypothesized that hEx inhibits progression through the S phase of the cell cycle by upregulating p21(Cip1) and downregulating Cyclin A. It is also implicated in the progression of Alzheimer disease. Not much is known about FRMD1 to date. Both FRMD1 and FRMD6 contains a single FERM domain which has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe is a member of the PH superfamily. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs) , the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 270006  Cd Length: 107  Bit Score: 38.83  E-value: 2.10e-03
                           10        20        30        40
                   ....*....|....*....|....*....|....*....|.
gi 1622853342  246 LAVSHMGVLVFQGTTKIN----TFNWSKVRKLSFKRKRFLI 282
Cdd:cd13185     23 LGITAKGIQIYQESDGEQqllrTFPWSNIGKLSFDRKKFEI 63
PH_Skap_family cd13266
Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor ...
935-1030 2.32e-03

Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Src kinase-associated phosphoprotein of 55 kDa (Skap55)/Src kinase-associated phosphoprotein 1 (Skap1), Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270086  Cd Length: 106  Bit Score: 38.66  E-value: 2.32e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  935 GYLLRKFKNsHG-----WQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVSTPQEAD-GIHKDYVFKLQFKS-HVYFF 1007
Cdd:cd13266      5 GYLEKRRKD-HSffgseWQKRWCAISKNVFYYYGSDKDKQQKGEFAINGYDVRMNPTLRkDGKKDCCFELVCPDkRTYQF 83
                           90       100
                   ....*....|....*....|...
gi 1622853342 1008 RAESKYTFERWMEVIQGASSSAG 1030
Cdd:cd13266     84 TAASPEDAEDWVDQISFILQDLS 106
PH_AtPH1 cd13276
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ...
774-852 2.41e-03

Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270095  Cd Length: 106  Bit Score: 38.45  E-value: 2.41e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  774 RMFFLFSDMLLYTSKGVAGTSHFRIRGLLPLRGML-VEESENEWSVPHCFTIYAAQKTIVVAASTRLEKEKWMldlnNAI 852
Cdd:cd13276     17 RRWFVLKQGKLFWFKEPDVTPYSKPRGVIDLSKCLtVKSAEDATNKENAFELSTPEETFYFIADNEKEKEEWI----GAI 92
PH_RasGRF1_2 cd13261
Ras-specific guanine nucleotide-releasing factors 1 and 2 Pleckstrin homology (PH) domain; ...
927-1029 2.76e-03

Ras-specific guanine nucleotide-releasing factors 1 and 2 Pleckstrin homology (PH) domain; RasGRF1 (also called GRF1; CDC25Mm/Ras-specific nucleotide exchange factor CDC25; GNRP/Guanine nucleotide-releasing protein) and RasGRF2 (also called GRF2; Ras guanine nucleotide exchange factor 2) are a family of guanine nucleotide exchange factors (GEFs). They both promote the exchange of Ras-bound GDP by GTP, thereby regulating the RAS signaling pathway. RasGRF1 and RasGRF2 form homooligomers and heterooligomers. GRF1 has 3 isoforms and GRF2 has 2 isoforms. The longest isoforms of RasGRF1 and RasGRF2 contain the following domains: a Rho-GEF domain sandwiched between 2 PH domains, IQ domains, a REM (Ras exchanger motif) domain, and a Ras-GEF domainwhich gives them the capacity to activate both Ras and Rac GTPases in response to signals from a variety of neurotransmitter receptors. Their IQ domains allow them to act as calcium sensors to mediate the actions of NMDA-type and calcium-permeable AMPA-type glutamate receptors. GRF1 also mediates the action of dopamine receptors that signal through cAMP. GRF1 and GRF2 play strikingly different roles in regulating MAP kinase family members, neuronal synaptic plasticity, specific forms of learning and memory, and behavioral responses to psychoactive drugs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270081  Cd Length: 136  Bit Score: 39.33  E-value: 2.76e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  927 AAVENQLSGYLLRKFKNSHGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYS---VSTPQEA----DGIHKDYVFKLQ 999
Cdd:cd13261      1 ARKDGTKRGYLSKKTSDSGKWHERWFALYQNLLFYFENESSSRPSGLYLLEGCYcerLPTPKGAlkgkDHLEKQHYFTIS 80
                           90       100       110
                   ....*....|....*....|....*....|...
gi 1622853342 1000 FK---SHVYFFRAESKYTFERWMEVIQGASSSA 1029
Cdd:cd13261     81 FRhenQRQYELRAETESDCDEWVEAIKQASFNK 113
FERM_C_MYLIP_IDOL cd13195
FERM domain C-lobe of E3 ubiquitin ligase myosin regulatory light chain-interacting protein ...
229-321 3.21e-03

FERM domain C-lobe of E3 ubiquitin ligase myosin regulatory light chain-interacting protein (MYLIP; also called inducible degrader of the LDL receptor, IDOL); MYLIP/IDOL is a regulator of the LDL receptor (LDLR) pathway via the nuclear receptor liver X receptor (LXR). In response to cellular cholesterol loading, the activation of LXR leads to the induction of MYLIP expression. MYLIP stimulates ubiquitination of the LDLR on its cytoplasmic tail, directing its degradation. The LXR-MYLIP-LDLR pathway provides a complementary pathway to sterol regulatory element-binding proteins for the feedback inhibition of cholesterol uptake. MYLIP has an N-terminal FERM domain and in some cases a C-terminal RING domain. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 270016  Cd Length: 111  Bit Score: 38.38  E-value: 3.21e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  229 YGIRFHMASDREGTKIHLAVSHMGVLVFQGT-TKINTFNWSKVRKLSFKRKRFLIKLHPEVHGpyQDTLEFLLGSRDECK 307
Cdd:cd13195      1 YGVEFFEVRNIEGQKLLIGVGPHGITICNDDfEVIERIPYTAIQMATSSGRVFTLTYLSDDGS--VKVLEFKLPSTRAAS 78
                           90
                   ....*....|....
gi 1622853342  308 NFWKICVEYHTFFR 321
Cdd:cd13195     79 GLYRAITEKHAFYR 92
PH_Ses cd13288
Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 ...
759-851 4.18e-03

Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 mammalian members: Ses1 and Ses2, which are also callled 7 kDa inositol polyphosphate phosphatase-interacting protein 1 and 2. They play a role in endocytic trafficking and are required for receptor recycling from endosomes, both to the trans-Golgi network and the plasma membrane. Members of this family form homodimers and heterodimers. Sesquipedalian interacts with inositol polyphosphate 5-phosphatase OCRL-1 (INPP5F) also known as Lowe oculocerebrorenal syndrome protein, a phosphatase enzyme that is involved in actin polymerization and is found in the trans-Golgi network and INPP5B. Sesquipedalian contains a single PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270105 [Multi-domain]  Cd Length: 120  Bit Score: 38.37  E-value: 4.18e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  759 REGCLHK--LTKKGLQQRMFFLFSDMLLYtskgvagtshFRIR------GLLPLRGMLVEESENEwsVPHCFTIY---AA 827
Cdd:cd13288     10 KEGYLWKkgERNTSYQKRWFVLKGNLLFY----------FEKKgdreplGVIVLEGCTVELAEDA--EPYAFAIRfdgPG 77
                           90       100
                   ....*....|....*....|....
gi 1622853342  828 QKTIVVAASTRLEKEKWMLDLNNA 851
Cdd:cd13288     78 ARSYVLAAENQEDMESWMKALSRA 101
FERM_C_PTPH13 cd13187
FERM domain C-lobe of Protein tyrosine phosphatase non-receptor 13 (PTPH13); There are many ...
230-319 5.89e-03

FERM domain C-lobe of Protein tyrosine phosphatase non-receptor 13 (PTPH13); There are many functions of PTPN13 (also called PTPL1, PTP-BAS, hPTP1E, FAP1, or PTPL1). Mice lacking PTPN13 activity have abnormal regulation of signal transducer and activator of transcription signaling in their T cells, mild impairment of motor nerve repair, and a significant reduction in the growth of retinal glia cultures. It also plays a role in adipocyte differentiation. PTPN13 contains a kinase non-catalytic C-lobe domain (KIND), a FERM domain with two potential phosphatidylinositol 4,5-biphosphate [PtdIns(4,5)P2]-binding motifs, 5 PDZ domains, and a carboxy-terminal catalytic domain. There is an nteraction between the FERM domain of PTPL1 and PtdIns(4,5)P2 which is thought to regulate the membrane localization of PTPN13. PDZ are protein/protein interaction domains so there is the potential for numerous partners that can actively participate in the regulation of its phosphatase activity or can permit direct or indirect recruitment of tyrosine phosphorylated PTPL1 substrates. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites.


Pssm-ID: 270008  Cd Length: 103  Bit Score: 37.30  E-value: 5.89e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  230 GIRFHMASD---REGTKIHLAVSHMGVLVF--QGTTKINT--FNWSKVRKLSFKRKRFLIKlhPEVHGPYQDTleFLLGS 302
Cdd:cd13187      1 GVHFHRVYRekkSSTLSLWLGICSRGIIIYeeKNGARTPVlrFPWRETQKISFDKKKFTIE--SRGGSGIKHT--FYTDS 76
                           90
                   ....*....|....*..
gi 1622853342  303 RDECKNFWKICVEYHTF 319
Cdd:cd13187     77 YKKSQYLLQLCSAQHKF 93
PH_GRP1-like cd01252
General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 ...
934-998 6.30e-03

General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 and the related proteins ARNO (ARF nucleotide-binding site opener)/cytohesin-2 and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. The PH domains of all three proteins exhibit relatively high affinity for PtdIns(3,4,5)P3. Within the Grp1 family, diglycine (2G) and triglycine (3G) splice variants, differing only in the number of glycine residues in the PH domain, strongly influence the affinity and specificity for phosphoinositides. The 2G variants selectively bind PtdIns(3,4,5)P3 with high affinity,the 3G variants bind PtdIns(3,4,5)P3 with about 30-fold lower affinity and require the polybasic region for plasma membrane targeting. These ARF-GEFs share a common, tripartite structure consisting of an N-terminal coiled-coil domain, a central domain with homology to the yeast protein Sec7, a PH domain, and a C-terminal polybasic region. The Sec7 domain is autoinhibited by conserved elements proximal to the PH domain. GRP1 binds to the DNA binding domain of certain nuclear receptors (TRalpha, TRbeta, AR, ER, but not RXR), and can repress thyroid hormone receptor (TR)-mediated transactivation by decreasing TR-complex formation on thyroid hormone response elements. ARNO promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion. Cytohesin acts as a PI 3-kinase effector mediating biological responses including cell spreading and adhesion, chemotaxis, protein trafficking, and cytoskeletal rearrangements, only some of which appear to depend on their ability to activate ARFs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269954  Cd Length: 119  Bit Score: 37.68  E-value: 6.30e-03
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1622853342  934 SGYLLRKFKNSHGWQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVstpQEADGIHKDYVFKL 998
Cdd:cd01252      6 EGWLLKLGGRVKSWKRRWFILTDNCLYYFEYTTDKEPRGIIPLENLSV---REVEDKKKPFCFEL 67
PH_Cool_Pix cd01225
Cloned out of library/PAK-interactive exchange factor pleckstrin homology (PH) domain; There ...
772-854 6.57e-03

Cloned out of library/PAK-interactive exchange factor pleckstrin homology (PH) domain; There are two forms of Pix proteins: alpha Pix (also called Rho guanine nucleotide exchange factor (GEF) 6/90Cool-2) and beta Pix (GEF7/p85Cool-1). betaPix contains an N-terminal SH3 domain, a RhoGEF/DH domain, a PH domain, a GIT1 binding domain (GBD), and a C-terminal coiled-coil (CC) domain. alphaPix differs in that it contains a calponin homology (CH) domain, which interacts with beta-parvin, N-terminal to the SH3 domain. alphaPix is an exchange factor for Rac1 and Cdc42 and mediates Pak activation on cell adhesion to fibronectin. Mutations in alphaPix can cause X-linked mental retardation. alphaPix also interacts with Huntington's disease protein (htt), and enhances the aggregation of mutant htt (muthtt) by facilitating SDS-soluble muthtt-muthtt interactions. The DH-PH domain of a Pix was required for its binding to htt. In the majority of Rho GEF proteins, the DH-PH domain is responsible for the exchange activity. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269932  Cd Length: 100  Bit Score: 37.29  E-value: 6.57e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  772 QQRMFFLFSDMLLYTSKGvAGTSHFRIRGLLPLRGMLVEESENEWSVPHCFTIYAAQ-KTIVVAASTRLEKEKWMLDLNN 850
Cdd:cd01225     18 KERYFLLFPHVLLMLSAS-PRMSGFIYEGKLPLTGISVNRLEDTEGIKNAFEISGPLiERIVVICNSQQDQQEWLEHLQQ 96

                   ....
gi 1622853342  851 AIQA 854
Cdd:cd01225     97 QTKA 100
PH_DGK_type2 cd13274
Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes ...
758-853 6.58e-03

Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA) utilizing ATP as a source of the phosphate. In non-stimulated cells, DGK activity is low and DAG is used for glycerophospholipid biosynthesis. Upon receptor activation of the phosphoinositide pathway, DGK activity increases which drives the conversion of DAG to PA. DGK acts as a switch by terminating the signalling of one lipid while simultaneously activating signalling by another. There are 9 mammalian DGK isoforms all with conserved catalytic domains and two cysteine rich domains. These are further classified into 5 groups according to the presence of additional functional domains and substrate specificity: Type 1 - DGK-alpha, DGK-beta, DGK-gamma - contain EF-hand motifs and a recoverin homology domain; Type 2 - DGK-delta, DGK-eta, and DGK-kappa- contain a pleckstrin homology domain, two cysteine-rich zinc finger-like structures, and a separated catalytic region; Type 3 - DGK-epsilon - has specificity for arachidonate-containing DAG; Type 4 - DGK-zeta, DGK-iota- contain a MARCKS homology domain, ankyrin repeats, a C-terminal nuclear localization signal, and a PDZ-binding motif; Type 5 - DGK-theta - contains a third cysteine-rich domain, a pleckstrin homology domain and a proline rich region. The type 2 DGKs are present as part of this Metazoan DGK hierarchy. They have a N-terminal PH domain, two cysteine rich domains, followed by bipartite catalytic domains, and a C-terminal SAM domain. Their catalytic domains and perhaps other DGK catalytic domains may function as two independent units in a coordinated fashion. They may also require other motifs for maximal activity because several DGK catalytic domains have very little DAG kinase activity when expressed as isolated subunits. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270093  Cd Length: 97  Bit Score: 36.99  E-value: 6.58e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  758 IREGCLHKLTKKG--LQQRMFFLFSDMLLYtskgvAGTSHFRIRGLLPLRGMLVEESENEwSVPHCFTIYAAQKTIVVAA 835
Cdd:cd13274      1 IKEGPLLKQTSSFqrWKRRYFKLKGRKLYY-----AKDSKSLIFEEIDLSDASVAECSTK-NVNNSFTVITPFRKLILCA 74
                           90
                   ....*....|....*...
gi 1622853342  836 STRLEKEKWMLDLNNAIQ 853
Cdd:cd13274     75 ESRKEMEEWISALKTVQQ 92
PH_SOS cd01261
Son of Sevenless (SOS) Pleckstrin homology (PH) domain; SOS is a Ras guanine nucleotide ...
756-848 6.90e-03

Son of Sevenless (SOS) Pleckstrin homology (PH) domain; SOS is a Ras guanine nucleotide exchange factor. SOS is thought to transmit signals from activated receptor tyrosine kinases to the Ras signaling pathway. SOS contains a histone domain, Dbl-homology (DH), a PH domain, Rem domain, Cdc25 domain, and a Grb2 binding domain. The SOS PH domain binds to phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphatidic acid (PA). SOS is dependent on Ras binding to the allosteric site via its histone domain for both a lower level of activity (Ras GDP) and maximal activity (Ras GTP). The DH domain blocks the allosteric Ras binding site in SOS. The PH domain is closely associated with the DH domain and the action of the DH-PH unit gates a reciprocal interaction between Ras and SOS. The C-terminal proline-rich domain of SOS binds to the adapter protein Grb2 which localizes the Sos protein to the plasma membrane and diminishes the negative effect of the C-terminal domain on the guanine nucleotide exchange activity of the CDC25-homology domain of SOS. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269963  Cd Length: 109  Bit Score: 37.34  E-value: 6.90e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  756 EFIREGCLHKLTK-KGLQQRMFFLFSDMLLYT------SKGVAGTSHFRIRGLLPLRGMLVEESENEWSVPHCFTIYA-A 827
Cdd:cd01261      5 EFIMEGTLGKVGSgKRKTERHAFLFDGLLLLCksnrrrTSTGGPKPEYRLKEKFFIRKVEINDLEDTEELKNAFEIVPrD 84
                           90       100
                   ....*....|....*....|.
gi 1622853342  828 QKTIVVAASTRLEKEKWMLDL 848
Cdd:cd01261     85 QPSVILFAKSAEEKNNWMAAL 105
FERM_F1_FRMD4B cd17200
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM ...
45-124 8.44e-03

FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in FERM domain-containing protein 4B (FRMD4B); FRMD4B, also termed GRP1-binding protein GRSP1, interacts with the coil-coil domain of ARF exchange factor GRP1 to form the Grsp1-Grp1 complex that co-localizes with cortical actin rich regions in response to stimulation of CHO-T cells with insulin or epidermal growth factor (EGF). FRMD4B contains a FERM protein interaction domain as well as two coiled coil domains and may therefore function as a scaffolding protein. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N).


Pssm-ID: 340720  Cd Length: 89  Bit Score: 36.79  E-value: 8.44e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342   45 HLRVKLLDNTVEIFDTEPKCDGQILLTEVWKRLNLVECDYFGLEFQNTQSYWIWLEPMKPIIRQ--IRRPKNVVLRLAVK 122
Cdd:cd17200      4 HCQVHLLDDRKLELLVQPKLLSRELLDLVASHFNLKEKEYFGITFIDDTGQSNWLQLDHRVLDHdlPKKSGPVTLYFAVR 83

                   ..
gi 1622853342  123 FF 124
Cdd:cd17200     84 FY 85
PH_Skap1 cd13380
Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 ...
935-1023 9.79e-03

Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 (also called Skap55/Src kinase-associated phosphoprotein of 55 kDa) and its partner, ADAP (adhesion and degranulation promoting adapter protein) help reorganize the cytoskeleton and/or promote integrin-mediated adhesion upon immunoreceptor activation. Skap1 is also involved in T Cell Receptor (TCR)-induced RapL-Rap1 complex formation and LFA-1 activation. Skap1 has an N-terminal coiled-coil conformation which is proposed to be involved in homodimer formation, a central PH domain and a C-terminal SH3 domain that associates with ADAP. The Skap1 PH domain plays a role in controlling integrin function via recruitment of ADAP-SKAP complexes to integrins as well as in controlling the ability of ADAP to interact with the CBM signalosome and regulate NF-kappaB. SKAP1 is necessary for RapL binding to membranes in a PH domain-dependent manner and the PI3K pathway. Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Skap55/Skap1, Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270180  Cd Length: 106  Bit Score: 36.76  E-value: 9.79e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1622853342  935 GYLLRKFKNsHG-----WQKLWVVFTNFCLFFYKTHQDDYPLASLPLLGYSVS-TPQEADGIHKDYVFKLQFKS-HVYFF 1007
Cdd:cd13380      5 GYLEKRSKD-HSffgseWQKRWCVLTNRAFYYYASEKSKQPKGGFLIKGYSAQmAPHLRKDSRRDSCFELTTPGrRTYQF 83
                           90
                   ....*....|....*.
gi 1622853342 1008 RAESKYTFERWMEVIQ 1023
Cdd:cd13380     84 TAASPSEARDWVDQIQ 99
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH