probable G-protein coupled receptor 149 isoform X1 [Mus musculus]
G protein-coupled receptor family protein; olfactory receptor subfamily 2A protein( domain architecture ID 11606634)
G protein-coupled receptor family protein is a seven-transmembrane G protein-coupled receptor (7TM-GPCR) family protein which typically transmits an extracellular signal into the cell by the conformational rearrangement of the 7TM helices and by the subsequent binding and activation of an intracellular heterotrimeric G protein; GPCR ligands include light-sensitive compounds, odors, pheromones, hormones, and neurotransmitters| olfactory receptor (OR) subfamily 2A protein, such as human olfactory receptor 2A2 and related proteins in other mammals and sauropsids; ORs play a central role in olfaction, the sense of smell, and belong to the class A rhodopsin-like family of seven-transmembrane G protein-coupled receptors (7TM GPCRs)
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
7tmA_GPR149 | cd15011 | G protein-coupled receptor 149, member of the class A family of seven-transmembrane G ... |
37-375 | 8.66e-109 | ||||||
G protein-coupled receptor 149, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR149 is predominantly expressed in the ovary and is present at low levels in the brain and the digestive tract (stomach and small intestine). GPR149-null mice are viable and have normal maturation of the ovarian follicle, but show enhanced fertility and ovulation. Additionally, the null mice showed increased expression levels of growth differentiation factor 9 (Gdf9) in oocytes, and upregulated expression of cyclin D2, a downstream target of FSH (follicle-stimulating hormone) receptor signaling pathways that promotes granulosa cell proliferation. GPR149 is an orphan receptor with no known endogenous ligand as yet identified. Although categorized as a member of the class A GPCRs, GPR149 lacks the first two charged amino acids of the highly conserved Asp-Arg-Tyr (DRY) motif found in the third transmembrane helix (TM3) of class A receptors which is important for efficient G protein-coupled signal transduction. Moreover, the transmembrane domains and carboxyl terminus of GPR149 show low similarities to other GPCRs. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. : Pssm-ID: 320139 Cd Length: 256 Bit Score: 325.18 E-value: 8.66e-109
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
7tmA_GPR149 | cd15011 | G protein-coupled receptor 149, member of the class A family of seven-transmembrane G ... |
37-375 | 8.66e-109 | ||||||
G protein-coupled receptor 149, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR149 is predominantly expressed in the ovary and is present at low levels in the brain and the digestive tract (stomach and small intestine). GPR149-null mice are viable and have normal maturation of the ovarian follicle, but show enhanced fertility and ovulation. Additionally, the null mice showed increased expression levels of growth differentiation factor 9 (Gdf9) in oocytes, and upregulated expression of cyclin D2, a downstream target of FSH (follicle-stimulating hormone) receptor signaling pathways that promotes granulosa cell proliferation. GPR149 is an orphan receptor with no known endogenous ligand as yet identified. Although categorized as a member of the class A GPCRs, GPR149 lacks the first two charged amino acids of the highly conserved Asp-Arg-Tyr (DRY) motif found in the third transmembrane helix (TM3) of class A receptors which is important for efficient G protein-coupled signal transduction. Moreover, the transmembrane domains and carboxyl terminus of GPR149 show low similarities to other GPCRs. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320139 Cd Length: 256 Bit Score: 325.18 E-value: 8.66e-109
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
7tmA_GPR149 | cd15011 | G protein-coupled receptor 149, member of the class A family of seven-transmembrane G ... |
37-375 | 8.66e-109 | ||||||
G protein-coupled receptor 149, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR149 is predominantly expressed in the ovary and is present at low levels in the brain and the digestive tract (stomach and small intestine). GPR149-null mice are viable and have normal maturation of the ovarian follicle, but show enhanced fertility and ovulation. Additionally, the null mice showed increased expression levels of growth differentiation factor 9 (Gdf9) in oocytes, and upregulated expression of cyclin D2, a downstream target of FSH (follicle-stimulating hormone) receptor signaling pathways that promotes granulosa cell proliferation. GPR149 is an orphan receptor with no known endogenous ligand as yet identified. Although categorized as a member of the class A GPCRs, GPR149 lacks the first two charged amino acids of the highly conserved Asp-Arg-Tyr (DRY) motif found in the third transmembrane helix (TM3) of class A receptors which is important for efficient G protein-coupled signal transduction. Moreover, the transmembrane domains and carboxyl terminus of GPR149 show low similarities to other GPCRs. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320139 Cd Length: 256 Bit Score: 325.18 E-value: 8.66e-109
|
||||||||||
7tm_GPCRs | cd14964 | seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary ... |
37-243 | 3.71e-23 | ||||||
seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary model represents the seven-transmembrane (7TM) receptors, often referred to as G protein-coupled receptors (GPCRs), which transmit physiological signals from the outside of the cell to the inside via G proteins. GPCRs constitute the largest known superfamily of transmembrane receptors across the three kingdoms of life that respond to a wide variety of extracellular stimuli including peptides, lipids, neurotransmitters, amino acids, hormones, and sensory stimuli such as light, smell and taste. All GPCRs share a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. However, some 7TM receptors, such as the type 1 microbial rhodopsins, do not activate G proteins. Based on sequence similarity, GPCRs can be divided into six major classes: class A (the rhodopsin-like family), class B (the Methuselah-like, adhesion and secretin-like receptor family), class C (the metabotropic glutamate receptor family), class D (the fungal mating pheromone receptors), class E (the cAMP receptor family), and class F (the frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections. Pssm-ID: 410628 [Multi-domain] Cd Length: 267 Bit Score: 99.04 E-value: 3.71e-23
|
||||||||||
7tm_classA_rhodopsin-like | cd00637 | rhodopsin receptor-like class A family of the seven-transmembrane G protein-coupled receptor ... |
37-209 | 8.39e-12 | ||||||
rhodopsin receptor-like class A family of the seven-transmembrane G protein-coupled receptor superfamily; Class A rhodopsin-like receptors constitute about 90% of all GPCRs. The class A GPCRs include the light-sensitive rhodopsin as well as receptors for biogenic amines, lipids, nucleotides, odorants, peptide hormones, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Based on sequence similarity, GPCRs can be divided into six major classes: class A (rhodopsin-like family), class B (Methuselah-like, adhesion and secretin-like receptor family), class C (metabotropic glutamate receptor family), class D (fungal mating pheromone receptors), class E (cAMP receptor family), and class F (frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections. Pssm-ID: 410626 [Multi-domain] Cd Length: 275 Bit Score: 65.77 E-value: 8.39e-12
|
||||||||||
7tmA_GPR135 | cd15212 | G protein-coupled receptor 135, member of the class A family of seven-transmembrane G ... |
40-181 | 1.15e-03 | ||||||
G protein-coupled receptor 135, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR135, also known as the somatostatin- and angiotensin-like peptide receptor (SALPR), is found in various tissues including eye, brain, cervix, stomach, and testis. Pharmacological studies have shown that relaxin-3 (R3) is a high-affinity endogenous ligand for GPR135. R3 has recently been identified as a new member of the insulin/relaxin family of peptide hormones and is exclusively expressed in the brain neurons. In addition to GPR135, R3 also acts as an agonist for GPR142, a pseudogene in the rat, and can activate LGR7 (leucine repeat-containing G-protein receptor-7), which is the main receptor for relaxin-1 (R1) and relaxin-2 (R2). While R1 and R2 are hormones primarily associated with reproduction and pregnancy, R3 is involved in neuroendocrine and sensory processing. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320340 [Multi-domain] Cd Length: 285 Bit Score: 40.91 E-value: 1.15e-03
|
||||||||||
7tmA_Prostanoid_R | cd14981 | G protein-coupled receptors for prostanoids, member of the class A family of ... |
43-219 | 1.38e-03 | ||||||
G protein-coupled receptors for prostanoids, member of the class A family of seven-transmembrane G protein-coupled receptors; Prostanoids are the cyclooxygenase (COX) metabolites of arachidonic acid, which include the prostaglandins (PGD2, PGE2, PGF2alpha), prostacyclin (PGI2), and thromboxane A2 (TxA2). These five major bioactive prostanoids acts as mediators or modulators in a wide range of physiological and pathophysiological processes within the kidney and play important roles in inflammation, platelet aggregation, and vasoconstriction/relaxation, among many others. They act locally by preferentially interacting with G protein-coupled receptors designated DP, EP. FP, IP, and TP, respectively. The phylogenetic tree suggests that the prostanoid receptors can be grouped into two major branches: G(s)-coupled (DP1, EP2, EP4, and IP) and G(i)- (EP3) or G(q)-coupled (EP1, FP, and TP), forming three clusters. Pssm-ID: 320112 [Multi-domain] Cd Length: 288 Bit Score: 40.69 E-value: 1.38e-03
|
||||||||||
7tmA_MCHR2 | cd15339 | melanin concentrating hormone receptor 2, member of the class A family of seven-transmembrane ... |
40-218 | 9.34e-03 | ||||||
melanin concentrating hormone receptor 2, member of the class A family of seven-transmembrane G protein-coupled receptors; Melanin-concentrating hormone receptor (MCHR) binds melanin concentrating hormone and is presumably involved in the neuronal regulation of food intake and energy homeostasis. Despite strong homology with somatostatin receptors, MCHR does not appear to bind somatostatin. Two MCHRs have been characterized in vertebrates, MCHR1 and MCHR2. MCHR1 is expressed in all mammals, whereas MCHR2 is only expressed in the higher order mammals, such as humans, primates, and dogs, and is not found in rodents. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320461 [Multi-domain] Cd Length: 283 Bit Score: 38.26 E-value: 9.34e-03
|
||||||||||
7tmA_photoreceptors_insect | cd15079 | insect photoreceptors R1-R6 and similar proteins, member of the class A family of ... |
149-192 | 9.83e-03 | ||||||
insect photoreceptors R1-R6 and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes the insect photoreceptors and their closely related proteins. The Drosophila eye is composed of about 800 unit eyes called ommatidia, each of which contains eight photoreceptor cells (R1-R8). The six outer photoreceptors (R1-R6) function like the vertebrate rods and are responsible for motion detection in dim light and image formation. The R1-R6 photoreceptors express a blue-absorbing pigment, Rhodopsin 1(Rh1). The inner photoreceptors (R7 and R8) are considered the equivalent of the color-sensitive vertebrate cone cells, which express a range of different pigments. The R7 photoreceptors express one of two different UV absorbing pigments, either Rh3 or Rh4. Likewise, the R8 photoreceptors express either the blue absorbing pigment Rh5 or green absorbing pigment Rh6. These photoreceptors belong the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. Pssm-ID: 320207 [Multi-domain] Cd Length: 292 Bit Score: 38.33 E-value: 9.83e-03
|
||||||||||
Blast search parameters | ||||
|