NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|573884809|ref|XP_006630484|]
View 

pleckstrin homology domain-containing family A member 1 isoform X2 [Lepisosteus oculatus]

Protein Classification

pleckstrin homology domain-containing family A protein( domain architecture ID 10192763)

pleckstrin homology domain-containing family A protein such as human TAPP-1, which binds specifically to phosphatidylinositol 3,4-diphosphate (PtdIns3,4P2), but not to other phosphoinositides

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
PH1_TAPP1_2 cd13270
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, N-terminal ...
1-118 2.93e-81

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, N-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain binds PtdIns(3,4)P2. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270089  Cd Length: 118  Bit Score: 245.11  E-value: 2.93e-81
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809   1 MPYVDRQNRICGFLDIEENENSGKFLRRYFILDTREGSLVWYMDNPQNLPTGTENVGALKLTYISKVSDATKQRPKAEFC 80
Cdd:cd13270    1 MPYVDRQNRTCGFLDIEENENSGKFLRRYFILDTAANLLLYYMDNPQNLPVGAAPVGSLNLTYISKVSDATKQRPKAEFC 80
                         90       100       110
                 ....*....|....*....|....*....|....*...
gi 573884809  81 FVINAGMRKFFLQANDQQDLVEWVNVLNKATKITVPKP 118
Cdd:cd13270   81 FVINALSRRYFLQANDQQDLVEWVEALNNASKITVPKG 118
PH2_TAPP1_2 cd13271
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal ...
186-299 2.36e-74

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270090  Cd Length: 114  Bit Score: 227.24  E-value: 2.36e-74
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 186 RPAQDQAVIKAGYCVKQGAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEVHKVQECKQSDIMMRDNLFEVVTTS 265
Cdd:cd13271    1 RQRAGRNVIKSGYCVKQGAVRKNWKRRFFILDDNTISYYKSETDKEPLRTIPLREVLKVHECLVKSLLMRDNLFEIITTS 80
                         90       100       110
                 ....*....|....*....|....*....|....
gi 573884809 266 RTFYIQADSPEDMHSWIKAISGAIVAQRGPGRSA 299
Cdd:cd13271   81 RTFYIQADSPEEMHSWIKAISGAIVARRGPSRSS 114
PHA03247 super family cl33720
large tegument protein UL36; Provisional
274-371 6.27e-05

large tegument protein UL36; Provisional


The actual alignment was detected with superfamily member PHA03247:

Pssm-ID: 223021 [Multi-domain]  Cd Length: 3151  Bit Score: 45.31  E-value: 6.27e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809  274 SPEDMHSWIkaISGAIVAQRGPGRSAATMRQA------RRLSNPCIQRYTSRNGECSTSTVTVPHPQPSTAATRARPSLA 347
Cdd:PHA03247 2848 PSLPLGGSV--APGGDVRRRPPSRSPAAKPAAparppvRRLARPAVSRSTESFALPPDQPERPPQPQAPPPPQPQPQPPP 2925
                          90       100
                  ....*....|....*....|....
gi 573884809  348 RPSLQRQPTYSPLFPSPAAPRPHT 371
Cdd:PHA03247 2926 PPQPQPPPPPPPRPQPPLAPTTDP 2949
 
Name Accession Description Interval E-value
PH1_TAPP1_2 cd13270
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, N-terminal ...
1-118 2.93e-81

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, N-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain binds PtdIns(3,4)P2. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270089  Cd Length: 118  Bit Score: 245.11  E-value: 2.93e-81
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809   1 MPYVDRQNRICGFLDIEENENSGKFLRRYFILDTREGSLVWYMDNPQNLPTGTENVGALKLTYISKVSDATKQRPKAEFC 80
Cdd:cd13270    1 MPYVDRQNRTCGFLDIEENENSGKFLRRYFILDTAANLLLYYMDNPQNLPVGAAPVGSLNLTYISKVSDATKQRPKAEFC 80
                         90       100       110
                 ....*....|....*....|....*....|....*...
gi 573884809  81 FVINAGMRKFFLQANDQQDLVEWVNVLNKATKITVPKP 118
Cdd:cd13270   81 FVINALSRRYFLQANDQQDLVEWVEALNNASKITVPKG 118
PH2_TAPP1_2 cd13271
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal ...
186-299 2.36e-74

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270090  Cd Length: 114  Bit Score: 227.24  E-value: 2.36e-74
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 186 RPAQDQAVIKAGYCVKQGAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEVHKVQECKQSDIMMRDNLFEVVTTS 265
Cdd:cd13271    1 RQRAGRNVIKSGYCVKQGAVRKNWKRRFFILDDNTISYYKSETDKEPLRTIPLREVLKVHECLVKSLLMRDNLFEIITTS 80
                         90       100       110
                 ....*....|....*....|....*....|....
gi 573884809 266 RTFYIQADSPEDMHSWIKAISGAIVAQRGPGRSA 299
Cdd:cd13271   81 RTFYIQADSPEEMHSWIKAISGAIVARRGPSRSS 114
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
193-289 1.42e-21

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 88.76  E-value: 1.42e-21
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809   193 VIKAGYCVKQGAVM-KNWKRRYFLLDENSVSYFKSD---LDKEPLRMIPLKEVhKVQECKQSDIMMRDNLFEVVTTSR-T 267
Cdd:smart00233   1 VIKEGWLYKKSGGGkKSWKKRYFVLFNSTLLYYKSKkdkKSYKPKGSIDLSGC-TVREAPDPDSSKKPHCFEIKTSDRkT 79
                           90       100
                   ....*....|....*....|..
gi 573884809   268 FYIQADSPEDMHSWIKAISGAI 289
Cdd:smart00233  80 LLLQAESEEEREKWVEALRKAI 101
PH pfam00169
PH domain; PH stands for pleckstrin homology.
193-289 9.05e-20

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 83.77  E-value: 9.05e-20
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809  193 VIKAGYCVKQG-AVMKNWKRRYFLLDENSVSYFKSDL---DKEPLRMIPLKEVhKVQECKQSDIMMRDNLFEVVTT---- 264
Cdd:pfam00169   1 VVKEGWLLKKGgGKKKSWKKRYFVLFDGSLLYYKDDKsgkSKEPKGSISLSGC-EVVEVVASDSPKRKFCFELRTGertg 79
                          90       100
                  ....*....|....*....|....*
gi 573884809  265 SRTFYIQADSPEDMHSWIKAISGAI 289
Cdd:pfam00169  80 KRTYLLQAESEEERKDWIKAIQSAI 104
PH pfam00169
PH domain; PH stands for pleckstrin homology.
10-112 1.58e-09

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 54.88  E-value: 1.58e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809   10 ICGFLDIEENENSGKFLRRYFILdtREGSLVWYmdNPQNLPTGTENVGALKLTYISKVSDATKQRPKAEFCFVI----NA 85
Cdd:pfam00169   3 KEGWLLKKGGGKKKSWKKRYFVL--FDGSLLYY--KDDKSGKSKEPKGSISLSGCEVVEVVASDSPKRKFCFELrtgeRT 78
                          90       100
                  ....*....|....*....|....*..
gi 573884809   86 GMRKFFLQANDQQDLVEWVNVLNKATK 112
Cdd:pfam00169  79 GKRTYLLQAESEEERKDWIKAIQSAIR 105
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
10-112 1.83e-09

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 54.86  E-value: 1.83e-09
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809    10 ICGFLDIEENENSGKFLRRYFILdtREGSLVWYMDNPQNlpTGTENVGALKLTYISKVSDATKQRPKAEFCFVINAGMRK 89
Cdd:smart00233   3 KEGWLYKKSGGGKKSWKKRYFVL--FNSTLLYYKSKKDK--KSYKPKGSIDLSGCTVREAPDPDSSKKPHCFEIKTSDRK 78
                           90       100
                   ....*....|....*....|....
gi 573884809    90 -FFLQANDQQDLVEWVNVLNKATK 112
Cdd:smart00233  79 tLLLQAESEEEREKWVEALRKAIA 102
PHA03247 PHA03247
large tegument protein UL36; Provisional
274-371 6.27e-05

large tegument protein UL36; Provisional


Pssm-ID: 223021 [Multi-domain]  Cd Length: 3151  Bit Score: 45.31  E-value: 6.27e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809  274 SPEDMHSWIkaISGAIVAQRGPGRSAATMRQA------RRLSNPCIQRYTSRNGECSTSTVTVPHPQPSTAATRARPSLA 347
Cdd:PHA03247 2848 PSLPLGGSV--APGGDVRRRPPSRSPAAKPAAparppvRRLARPAVSRSTESFALPPDQPERPPQPQAPPPPQPQPQPPP 2925
                          90       100
                  ....*....|....*....|....
gi 573884809  348 RPSLQRQPTYSPLFPSPAAPRPHT 371
Cdd:PHA03247 2926 PPQPQPPPPPPPRPQPPLAPTTDP 2949
 
Name Accession Description Interval E-value
PH1_TAPP1_2 cd13270
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, N-terminal ...
1-118 2.93e-81

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, N-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain binds PtdIns(3,4)P2. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270089  Cd Length: 118  Bit Score: 245.11  E-value: 2.93e-81
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809   1 MPYVDRQNRICGFLDIEENENSGKFLRRYFILDTREGSLVWYMDNPQNLPTGTENVGALKLTYISKVSDATKQRPKAEFC 80
Cdd:cd13270    1 MPYVDRQNRTCGFLDIEENENSGKFLRRYFILDTAANLLLYYMDNPQNLPVGAAPVGSLNLTYISKVSDATKQRPKAEFC 80
                         90       100       110
                 ....*....|....*....|....*....|....*...
gi 573884809  81 FVINAGMRKFFLQANDQQDLVEWVNVLNKATKITVPKP 118
Cdd:cd13270   81 FVINALSRRYFLQANDQQDLVEWVEALNNASKITVPKG 118
PH2_TAPP1_2 cd13271
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal ...
186-299 2.36e-74

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270090  Cd Length: 114  Bit Score: 227.24  E-value: 2.36e-74
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 186 RPAQDQAVIKAGYCVKQGAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEVHKVQECKQSDIMMRDNLFEVVTTS 265
Cdd:cd13271    1 RQRAGRNVIKSGYCVKQGAVRKNWKRRFFILDDNTISYYKSETDKEPLRTIPLREVLKVHECLVKSLLMRDNLFEIITTS 80
                         90       100       110
                 ....*....|....*....|....*....|....
gi 573884809 266 RTFYIQADSPEDMHSWIKAISGAIVAQRGPGRSA 299
Cdd:cd13271   81 RTFYIQADSPEEMHSWIKAISGAIVARRGPSRSS 114
PH_TAAP2-like cd13255
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ...
190-293 2.21e-27

Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270075  Cd Length: 110  Bit Score: 104.80  E-value: 2.21e-27
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 190 DQAVIKAGYCVKQGAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEVHKVQECkqsDIMMRDNLFEVVTTSRTFY 269
Cdd:cd13255    3 SEAVLKAGYLEKKGERRKTWKKRWFVLRPTKLAYYKNDKEYRLLRLIDLTDIHTCTEV---QLKKHDNTFGIVTPARTFY 79
                         90       100
                 ....*....|....*....|....
gi 573884809 270 IQADSPEDMHSWIKAISGAIVAQR 293
Cdd:cd13255   80 VQADSKAEMESWISAINLARQALR 103
PH_DAPP1 cd10573
Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; ...
195-286 7.28e-22

Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; DAPP1 (also known as PHISH/3' phosphoinositide-interacting SH2 domain-containing protein or Bam32) plays a role in B-cell activation and has potential roles in T-cell and mast cell function. DAPP1 promotes B cell receptor (BCR) induced activation of Rho GTPases Rac1 and Cdc42, which feed into mitogen-activated protein kinases (MAPK) activation pathways and affect cytoskeletal rearrangement. DAPP1can also regulate BCR-induced activation of extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). DAPP1 contains an N-terminal SH2 domain and a C-terminal pleckstrin homology (PH) domain with a single tyrosine phosphorylation site located centrally. DAPP1 binds strongly to both PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The PH domain is essential for plasma membrane recruitment of PI3K upon cell activation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269977 [Multi-domain]  Cd Length: 96  Bit Score: 89.31  E-value: 7.28e-22
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 195 KAGYCVKQGAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEVHKVQECKQSDimmRDNLFEVVTTSRTFYIQADS 274
Cdd:cd10573    5 KEGYLTKLGGIVKNWKTRWFVLRRNELKYFKTRGDTKPIRVLDLRECSSVQRDYSQG---KVNCFCLVFPERTFYMYANT 81
                         90
                 ....*....|..
gi 573884809 275 PEDMHSWIKAIS 286
Cdd:cd10573   82 EEEADEWVKLLK 93
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
193-289 1.42e-21

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 88.76  E-value: 1.42e-21
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809   193 VIKAGYCVKQGAVM-KNWKRRYFLLDENSVSYFKSD---LDKEPLRMIPLKEVhKVQECKQSDIMMRDNLFEVVTTSR-T 267
Cdd:smart00233   1 VIKEGWLYKKSGGGkKSWKKRYFVLFNSTLLYYKSKkdkKSYKPKGSIDLSGC-TVREAPDPDSSKKPHCFEIKTSDRkT 79
                           90       100
                   ....*....|....*....|..
gi 573884809   268 FYIQADSPEDMHSWIKAISGAI 289
Cdd:smart00233  80 LLLQAESEEEREKWVEALRKAI 101
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
195-285 3.68e-21

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 87.21  E-value: 3.68e-21
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 195 KAGYCVKQGAV-MKNWKRRYFLLDENSVSYFKSDLD--KEPLRMIPLKEVHKVQECKQSDimmRDNLFEVVTT-SRTFYI 270
Cdd:cd00821    1 KEGYLLKRGGGgLKSWKKRWFVLFEGVLLYYKSKKDssYKPKGSIPLSGILEVEEVSPKE---RPHCFELVTPdGRTYYL 77
                         90
                 ....*....|....*
gi 573884809 271 QADSPEDMHSWIKAI 285
Cdd:cd00821   78 QADSEEERQEWLKAL 92
PH1_PLEKHH1_PLEKHH2 cd13282
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ...
195-294 6.02e-21

Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241436  Cd Length: 96  Bit Score: 86.58  E-value: 6.02e-21
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 195 KAGYCVKQGAVMKNWKRRYFLLDENSVSYFKS--DLDKEPLRMIPLKEVHKVQ--ECKQSdimmrdnlFEVVTTSRTFYI 270
Cdd:cd13282    1 KAGYLTKLGGKVKTWKRRWFVLKNGELFYYKSpnDVIRKPQGQIALDGSCEIAraEGAQT--------FEIVTEKRTYYL 72
                         90       100
                 ....*....|....*....|....
gi 573884809 271 QADSPEDMHSWIKAISGAIVAQRG 294
Cdd:cd13282   73 TADSENDLDEWIRVIQNVLRRQAS 96
PH1_PH_fungal cd13298
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ...
189-285 7.93e-21

Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270110  Cd Length: 106  Bit Score: 86.91  E-value: 7.93e-21
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 189 QDQAVIKAGYCVKQGAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEVHKVQECKQSDimmRDNLFEVVTTSRTF 268
Cdd:cd13298    2 EFDRVLKSGYLLKRSRKTKNWKKRWVVLRPCQLSYYKDEKEYKLRRVINLSELLAVAPLKDKK---RKNVFGIYTPSKNL 78
                         90
                 ....*....|....*..
gi 573884809 269 YIQADSPEDMHSWIKAI 285
Cdd:cd13298   79 HFRATSEKDANEWVEAL 95
PH_ACAP cd13250
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ...
195-289 5.46e-20

ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270070  Cd Length: 98  Bit Score: 84.19  E-value: 5.46e-20
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 195 KAGYCVKQGA-VMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIP-LKEVHkVQECKQSDimmRDNLFEVVTTSRTFYIQA 272
Cdd:cd13250    1 KEGYLFKRSSnAFKTWKRRWFSLQNGQLYYQKRDKKDEPTVMVEdLRLCT-VKPTEDSD---RRFCFEVISPTKSYMLQA 76
                         90
                 ....*....|....*..
gi 573884809 273 DSPEDMHSWIKAISGAI 289
Cdd:cd13250   77 ESEEDRQAWIQAIQSAI 93
PH pfam00169
PH domain; PH stands for pleckstrin homology.
193-289 9.05e-20

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 83.77  E-value: 9.05e-20
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809  193 VIKAGYCVKQG-AVMKNWKRRYFLLDENSVSYFKSDL---DKEPLRMIPLKEVhKVQECKQSDIMMRDNLFEVVTT---- 264
Cdd:pfam00169   1 VVKEGWLLKKGgGKKKSWKKRYFVLFDGSLLYYKDDKsgkSKEPKGSISLSGC-EVVEVVASDSPKRKFCFELRTGertg 79
                          90       100
                  ....*....|....*....|....*
gi 573884809  265 SRTFYIQADSPEDMHSWIKAISGAI 289
Cdd:pfam00169  80 KRTYLLQAESEEERKDWIKAIQSAI 104
PH_PEPP1_2_3 cd13248
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ...
193-288 6.62e-19

Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270068  Cd Length: 104  Bit Score: 81.16  E-value: 6.62e-19
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 193 VIKAGYCVKQ-GAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEvHKVQECKQSDIMMRDNLFEVV-TTSRTFYI 270
Cdd:cd13248    7 VVMSGWLHKQgGSGLKNWRKRWFVLKDNCLYYYKDPEEEKALGSILLPS-YTISPAPPSDEISRKFAFKAEhANMRTYYF 85
                         90
                 ....*....|....*...
gi 573884809 271 QADSPEDMHSWIKAISGA 288
Cdd:cd13248   86 AADTAEEMEQWMNAMSLA 103
PH1_ARAP cd13253
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
194-292 5.07e-18

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270073  Cd Length: 94  Bit Score: 78.58  E-value: 5.07e-18
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 194 IKAGYCVKQGAVMKN--WKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEVHKVQECKqsdimmrDNLFEVVTTSRTFYIQ 271
Cdd:cd13253    1 IKSGYLDKQGGQGNNkgFQKRWVVFDGLSLRYFDSEKDAYSKRIIPLSAISTVRAVG-------DNKFELVTTNRTFVFR 73
                         90       100
                 ....*....|....*....|.
gi 573884809 272 ADSPEDMHSWIKAISGAIVAQ 292
Cdd:cd13253   74 AESDDERNLWCSTLQAAISEY 94
PH_GRP1-like cd01252
General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 ...
193-289 4.13e-17

General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 and the related proteins ARNO (ARF nucleotide-binding site opener)/cytohesin-2 and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. The PH domains of all three proteins exhibit relatively high affinity for PtdIns(3,4,5)P3. Within the Grp1 family, diglycine (2G) and triglycine (3G) splice variants, differing only in the number of glycine residues in the PH domain, strongly influence the affinity and specificity for phosphoinositides. The 2G variants selectively bind PtdIns(3,4,5)P3 with high affinity,the 3G variants bind PtdIns(3,4,5)P3 with about 30-fold lower affinity and require the polybasic region for plasma membrane targeting. These ARF-GEFs share a common, tripartite structure consisting of an N-terminal coiled-coil domain, a central domain with homology to the yeast protein Sec7, a PH domain, and a C-terminal polybasic region. The Sec7 domain is autoinhibited by conserved elements proximal to the PH domain. GRP1 binds to the DNA binding domain of certain nuclear receptors (TRalpha, TRbeta, AR, ER, but not RXR), and can repress thyroid hormone receptor (TR)-mediated transactivation by decreasing TR-complex formation on thyroid hormone response elements. ARNO promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion. Cytohesin acts as a PI 3-kinase effector mediating biological responses including cell spreading and adhesion, chemotaxis, protein trafficking, and cytoskeletal rearrangements, only some of which appear to depend on their ability to activate ARFs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269954  Cd Length: 119  Bit Score: 76.97  E-value: 4.13e-17
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 193 VIKAGYCVKQGAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEVhKVQECkqsDIMMRDNLFE------------ 260
Cdd:cd01252    3 PDREGWLLKLGGRVKSWKRRWFILTDNCLYYFEYTTDKEPRGIIPLENL-SVREV---EDKKKPFCFElyspsngqvika 78
                         90       100       110
                 ....*....|....*....|....*....|....*...
gi 573884809 261 --------VVTTSRTFY-IQADSPEDMHSWIKAISGAI 289
Cdd:cd01252   79 cktdsdgkVVEGNHTVYrISAASEEERDEWIKSIKASI 116
PH1_Pleckstrin_2 cd13301
Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in ...
191-299 4.54e-17

Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270113  Cd Length: 108  Bit Score: 76.26  E-value: 4.54e-17
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 191 QAVIKAGYCVKQGAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEVHKVQECKQSDimMRDNLFEVVTTSRT-FY 269
Cdd:cd13301    1 PGIIKEGYLVKKGHVVNNWKARWFVLKEDGLEYYKKKTDSSPKGMIPLKGCTITSPCLEYG--KRPLVFKLTTAKGQeHF 78
                         90       100       110
                 ....*....|....*....|....*....|
gi 573884809 270 IQADSPEDMHSWIKAISGAIVAQRGPGRSA 299
Cdd:cd13301   79 FQACSREERDAWAKDITKAITCLEGGKRFA 108
PH_AtPH1 cd13276
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ...
195-290 1.68e-16

Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270095  Cd Length: 106  Bit Score: 74.66  E-value: 1.68e-16
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 195 KAGYCVKQGAVMKNWKRRYFLLDENSVSYFKSDL---DKEPLRMIPLKEVHKVQECKqsDIMMRDNLFEVVTTSRTFYIQ 271
Cdd:cd13276    1 KAGWLEKQGEFIKTWRRRWFVLKQGKLFWFKEPDvtpYSKPRGVIDLSKCLTVKSAE--DATNKENAFELSTPEETFYFI 78
                         90
                 ....*....|....*....
gi 573884809 272 ADSPEDMHSWIKAISGAIV 290
Cdd:cd13276   79 ADNEKEKEEWIGAIGRAIV 97
PH_Ses cd13288
Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 ...
190-288 1.26e-15

Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 mammalian members: Ses1 and Ses2, which are also callled 7 kDa inositol polyphosphate phosphatase-interacting protein 1 and 2. They play a role in endocytic trafficking and are required for receptor recycling from endosomes, both to the trans-Golgi network and the plasma membrane. Members of this family form homodimers and heterodimers. Sesquipedalian interacts with inositol polyphosphate 5-phosphatase OCRL-1 (INPP5F) also known as Lowe oculocerebrorenal syndrome protein, a phosphatase enzyme that is involved in actin polymerization and is found in the trans-Golgi network and INPP5B. Sesquipedalian contains a single PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270105 [Multi-domain]  Cd Length: 120  Bit Score: 72.66  E-value: 1.26e-15
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 190 DQAVIKAGYCVKQGAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLkEVHKVQECKQSDimmrDNLFEVVTT---SR 266
Cdd:cd13288    5 NSPVDKEGYLWKKGERNTSYQKRWFVLKGNLLFYFEKKGDREPLGVIVL-EGCTVELAEDAE----PYAFAIRFDgpgAR 79
                         90       100
                 ....*....|....*....|..
gi 573884809 267 TFYIQADSPEDMHSWIKAISGA 288
Cdd:cd13288   80 SYVLAAENQEDMESWMKALSRA 101
PH2_MyoX cd13296
Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular ...
195-291 1.51e-15

Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270108  Cd Length: 103  Bit Score: 72.11  E-value: 1.51e-15
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 195 KAGYCVKQGAVM-----KNWKRRYFLLDENSVSYFKSDLDKE-PLRMIplkevhKVQECKQS-DIMMRDNLFEVVTTSRT 267
Cdd:cd13296    1 KSGWLTKKGGGSstlsrRNWKSRWFVLRDTVLKYYENDQEGEkLLGTI------DIRSAKEIvDNDPKENRLSITTEERT 74
                         90       100
                 ....*....|....*....|....
gi 573884809 268 FYIQADSPEDMHSWIKAISGAIVA 291
Cdd:cd13296   75 YHLVAESPEDASQWVNVLTRVISA 98
PH_SWAP-70 cd13273
Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called ...
193-294 6.25e-15

Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called Differentially expressed in FDCP 6/DEF-6 or IRF4-binding protein) functions in cellular signal transduction pathways (in conjunction with Rac), regulates cell motility through actin rearrangement, and contributes to the transformation and invasion activity of mouse embryo fibroblasts. Metazoan SWAP-70 is found in B lymphocytes, mast cells, and in a variety of organs. Metazoan SWAP-70 contains an N-terminal EF-hand motif, a centrally located PH domain, and a C-terminal coiled-coil domain. The PH domain of Metazoan SWAP-70 contains a phosphoinositide-binding site and a nuclear localization signal (NLS), which localize SWAP-70 to the plasma membrane and nucleus, respectively. The NLS is a sequence of four Lys residues located at the N-terminus of the C-terminal a-helix; this is a unique characteristic of the Metazoan SWAP-70 PH domain. The SWAP-70 PH domain binds PtdIns(3,4,5)P3 and PtdIns(4,5)P2 embedded in lipid bilayer vesicles. There are additional plant SWAP70 proteins, but these are not included in this hierarchy. Rice SWAP70 (OsSWAP70) exhibits GEF activity toward the its Rho GTPase, OsRac1, and regulates chitin-induced production of reactive oxygen species and defense gene expression in rice. Arabidopsis SWAP70 (AtSWAP70) plays a role in both PAMP- and effector-triggered immunity. Plant SWAP70 contains both DH and PH domains, but their arrangement is the reverse of that in typical DH-PH-type Rho GEFs, wherein the DH domain is flanked by a C-terminal PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270092  Cd Length: 110  Bit Score: 70.40  E-value: 6.25e-15
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 193 VIKAGYCVKQGAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEVHKVQECKQSDimMRDNLFEVVTTSRTFYIQA 272
Cdd:cd13273    8 VIKKGYLWKKGHLLPTWTERWFVLKPNSLSYYKSEDLKEKKGEIALDSNCCVESLPDRE--GKKCRFLVKTPDKTYELSA 85
                         90       100
                 ....*....|....*....|..
gi 573884809 273 DSPEDMHSWIKAISGAIVAQRG 294
Cdd:cd13273   86 SDHKTRQEWIAAIQTAIRLSQE 107
PH_Sbf1_hMTMR5 cd01235
Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a ...
197-290 1.13e-14

Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a myotubularin-related pseudo-phosphatase. Both Sbf1 and myotubularin interact with the SET domains of Hrx and other epigenetic regulatory proteins, but Sbf1 lacks phosphatase activity due to several amino acid changes in its structurally preserved catalytic pocket. It contains pleckstrin (PH), GEF, and myotubularin homology domains that are thought to be responsible for signaling and growth control. Sbf1 functions as an inhibitor of cellular growth. The N-terminal GEF homology domain serves to inhibit the transforming effects of Sbf1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269941  Cd Length: 106  Bit Score: 69.67  E-value: 1.13e-14
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 197 GYCVKQGAVMKNWKRRYFLLDENS--VSYFKSDLDKEPLRMIPLKEVHKVQECKQSDIMMR--DN--LFEVVTTSRTFYI 270
Cdd:cd01235    7 GYLYKRGALLKGWKQRWFVLDSTKhqLRYYESREDTKCKGFIDLAEVESVTPATPIIGAPKraDEgaFFDLKTNKRVYNF 86
                         90       100
                 ....*....|....*....|
gi 573884809 271 QADSPEDMHSWIKAISGAIV 290
Cdd:cd01235   87 CAFDAESAQQWIEKIQSCLS 106
PH_RhoGap25-like cd13263
Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; ...
191-296 1.67e-14

Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; RhoGAP25 (also called ArhGap25) like other RhoGaps are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. This hierarchy contains RhoGAP22, RhoGAP24, and RhoGAP25. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270083  Cd Length: 114  Bit Score: 69.33  E-value: 1.67e-14
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 191 QAVIKAGYCVKQGAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLkevhkvQECKQSDIMMRDN-----LFEVVTTS 265
Cdd:cd13263    1 ERPIKSGWLKKQGSIVKNWQQRWFVLRGDQLYYYKDEDDTKPQGTIPL------PGNKVKEVPFNPEepgkfLFEIIPGG 74
                         90       100       110       120
                 ....*....|....*....|....*....|....*....|
gi 573884809 266 ---------RTFYIQADSPEDMHSWIKAISGAIVAQRGPG 296
Cdd:cd13263   75 ggdrmtsnhDSYLLMANSQAEMEEWVKVIRRVIGSPFGGG 114
PH-GRAM1_AGT26 cd13215
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, ...
187-289 6.39e-13

Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1; ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275402  Cd Length: 116  Bit Score: 64.95  E-value: 6.39e-13
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 187 PAQDQAVIKAGYCVKQGAVMKNWKRRYFLLDENSVSYFKSDLDKE-PLRMIPLKEVHKVQECKQSDimMRDNLFEVVTTS 265
Cdd:cd13215   15 PKRSGAVIKSGYLSKRSKRTLRYTRYWFVLKGDTLSWYNSSTDLYfPAGTIDLRYATSIELSKSNG--EATTSFKIVTNS 92
                         90       100
                 ....*....|....*....|....
gi 573884809 266 RTFYIQADSPEDMHSWIKAISGAI 289
Cdd:cd13215   93 RTYKFKADSETSADEWVKALKKQI 116
PH2_Pleckstrin_2 cd13302
Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 2; Pleckstrin is a protein found in ...
192-285 3.31e-12

Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 2; Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270114  Cd Length: 109  Bit Score: 62.53  E-value: 3.31e-12
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 192 AVIKAGYCVKQGAVMKNWKRRYFLLDENS--VSYFKSDLDKEPLRMIPLK-----EVHKVQECKQSDImmRDNLFEVVTT 264
Cdd:cd13302    6 IIVKQGCLLKQGHRRKNWKVRKFVLRDDPayLHYYDPAKGEDPLGAIHLRgcvvtAVEDNSNPRKGSV--EGNLFEIITA 83
                         90       100
                 ....*....|....*....|..
gi 573884809 265 SRT-FYIQADSPEDMHSWIKAI 285
Cdd:cd13302   84 DEVhYYLQAATPAERTEWIKAI 105
PH_GAP1m_mammal-like cd13370
GTPase activating protein 1 m pleckstrin homology (PH) domain; GAP1(m) (also called RASA2/RAS ...
207-297 9.89e-12

GTPase activating protein 1 m pleckstrin homology (PH) domain; GAP1(m) (also called RASA2/RAS p21 protein activator (GTPase activating protein) 2) is a member of the GAP1 family of GTPase-activating proteins, along with RASAL1, GAP1(IP4BP), and CAPRI. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. GAP1(m) contains two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Its C2 domains, like those of GAP1IP4BP, do not contain the C2 motif that is known to be required for calcium-dependent phospholipid binding. GAP1(m) is regulated by the binding of its PH domains to phophoinositides, PIP3 (phosphatidylinositol 3,4,5-trisphosphate). It suppresses RAS, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. GAP1(m) binds inositol tetrakisphosphate (IP4). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241521  Cd Length: 133  Bit Score: 61.88  E-value: 9.89e-12
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 207 KNWKRRYFLLDENSVSYFKSDlDKEPLRMIPLKEVHKVQECKQSDiMMRDNLFEVVTTSRTFYIQADSPEDMHSWIKAIS 286
Cdd:cd13370   35 KNFKKRWFCLTSRELTYHKQK-GKEAIFTIPVKNILAVEKLEESA-FNKKNMFQVIHSEKPLYVQANNCVEANEWIEVLS 112
                         90
                 ....*....|.
gi 573884809 287 GaiVAQRGPGR 297
Cdd:cd13370  113 R--VSRCNQKR 121
PH_Gab1_Gab2 cd01266
Grb2-associated binding proteins 1 and 2 pleckstrin homology (PH) domain; The Gab subfamily ...
209-285 1.62e-11

Grb2-associated binding proteins 1 and 2 pleckstrin homology (PH) domain; The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. The members in this cd include the Gab1 and Gab2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241297  Cd Length: 123  Bit Score: 61.12  E-value: 1.62e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 209 WKRRYFLL-------DENSVSYFKSDLDKEPLRMIPLkevhkvQECKQSDIMMRDN--------LFEVVTTSRTFYIQAD 273
Cdd:cd01266   24 WKKRWFVLrsgrlsgDPDVLEYYKNDHAKKPIRVIDL------NLCEQVDAGLTFNkkelensyIFDIKTIDRIFYLVAE 97
                         90
                 ....*....|..
gi 573884809 274 SPEDMHSWIKAI 285
Cdd:cd01266   98 TEEDMNKWVRNI 109
PH_GAP1-like cd01244
RAS p21 protein activator (GTPase activating protein) family pleckstrin homology (PH) domain; ...
195-286 1.65e-11

RAS p21 protein activator (GTPase activating protein) family pleckstrin homology (PH) domain; RASAL1, GAP1(m), GAP1(IP4BP), and CAPRI are all members of the GAP1 family of GTPase-activating proteins. They contain N-terminal SH2-SH3-SH2 domains, followed by two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. They act as a suppressor of RAS enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. PH domains share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269950  Cd Length: 107  Bit Score: 60.76  E-value: 1.65e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 195 KAGYCVK--QGAV----MKNWKRRYFLLDENSVSYFKSDlDKEPLRMIPLKEVHKVQECKQSDIMMRdNLFEVVTTSRTF 268
Cdd:cd01244    1 KEGYLIKraQGRKkkfgRKNFKKRYFRLTNEALSYSKSK-GKQPLCSIPLEDILAVERVEEESFKMK-NMFQIVQPDRTL 78
                         90
                 ....*....|....*...
gi 573884809 269 YIQADSPEDMHSWIKAIS 286
Cdd:cd01244   79 YLQAKNVVELNEWLSALR 96
PH_Btk cd01238
Bruton's tyrosine kinase pleckstrin homology (PH) domain; Btk is a member of the Tec family of ...
206-285 1.74e-11

Bruton's tyrosine kinase pleckstrin homology (PH) domain; Btk is a member of the Tec family of cytoplasmic protein tyrosine kinases that includes BMX, IL2-inducible T-cell kinase (Itk) and Tec. Btk plays a role in the maturation of B cells. Tec proteins general have an N-terminal PH domain, followed by a Tek homology (TH) domain, a SH3 domain, a SH2 domain and a kinase domain. The Btk PH domain binds phosphatidylinositol 3,4,5-trisphosphate and responds to signalling via phosphatidylinositol 3-kinase. The PH domain is also involved in membrane anchoring which is confirmed by the discovery of a mutation of a critical arginine residue in the BTK PH domain. This results in severe human immunodeficiency known as X-linked agammaglobulinemia (XLA) in humans and a related disorder is mice.PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269944 [Multi-domain]  Cd Length: 140  Bit Score: 61.48  E-value: 1.74e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 206 MKNWKRRYFLLDENSVSYFKSDLDKEPLR--MIPLKEVHKVQECKQSDIMMRDNLFEVVTTSRTFYIQADSPEDMHSWIK 283
Cdd:cd01238   17 PVNYKERWFVLTKSSLSYYEGDGEKRGKEkgSIDLSKVRCVEEVKDEAFFERKYPFQVVYDDYTLYVFAPSEEDRDEWIA 96

                 ..
gi 573884809 284 AI 285
Cdd:cd01238   97 AL 98
PH_RhoGAP2 cd13378
Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 ...
193-296 2.00e-11

Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 or ArhGap22) are involved in cell polarity, cell morphology and cytoskeletal organization. They activate a GTPase belonging to the RAS superfamily of small GTP-binding proteins. The encoded protein is insulin-responsive, is dependent on the kinase Akt, and requires the Akt-dependent 14-3-3 binding protein which binds sequentially to two serine residues resulting in regulation of cell motility. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241529  Cd Length: 116  Bit Score: 60.73  E-value: 2.00e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 193 VIKAGYCVKQGAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEvHKVQECKQSDIMMRDNLFEVV---------- 262
Cdd:cd13378    3 VLKAGWLKKQRSIMKNWQQRWFVLRGDQLFYYKDEEETKPQGCISLQG-SQVNELPPNPEEPGKHLFEILpggagdrekv 81
                         90       100       110
                 ....*....|....*....|....*....|....*
gi 573884809 263 -TTSRTFYIQADSPEDMHSWIKAISGAIVAQRGPG 296
Cdd:cd13378   82 pMNHEAFLLMANSQSDMEDWVKAIRRVIWAPFGGG 116
PH_Gab-like cd13324
Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are ...
209-286 2.75e-10

Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. There are 3 families: Gab1, Gab2, and Gab3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270133  Cd Length: 112  Bit Score: 57.42  E-value: 2.75e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 209 WKRRYFLL-------DENSVSYFKSDLDKEPLRMIPLKEvhkvqeCKQSDIMMRDN--------LFEVVTTSRTFYIQAD 273
Cdd:cd13324   21 WRRRWFVLrsgrlsgGQDVLEYYTDDHCKKLKGIIDLDQ------CEQVDAGLTFEkkkfknqfIFDIRTPKRTYYLVAE 94
                         90
                 ....*....|...
gi 573884809 274 SPEDMHSWIKAIS 286
Cdd:cd13324   95 TEEEMNKWVRCIC 107
PH_TBC1D2A cd01265
TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1 ...
196-284 5.35e-10

TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1/Prostate antigen recognized and identified by SEREX 1 and ARMUS) contains a PH domain and a TBC-type GTPase catalytic domain. TBC1D2A integrates signaling between Arf6, Rac1, and Rab7 during junction disassembly. Activated Rac1 recruits TBC1D2A to locally inactivate Rab7 via its C-terminal TBC/RabGAP domain and facilitate E-cadherin degradation in lysosomes. The TBC1D2A PH domain mediates localization at cell-cell contacts and coprecipitates with cadherin complexes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269966  Cd Length: 102  Bit Score: 56.18  E-value: 5.35e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 196 AGYCVK---QGAVMKNWKRRYFLLDENSVS--YFKSDLDKEPLRMIPLKevhkvQECKQSDIMMRDNLFEVVTTSRTFYI 270
Cdd:cd01265    3 CGYLNKletRGLGLKGWKRRWFVLDESKCQlyYYRSPQDATPLGSIDLS-----GAAFSYDPEAEPGQFEIHTPGRVHIL 77
                         90
                 ....*....|....
gi 573884809 271 QADSPEDMHSWIKA 284
Cdd:cd01265   78 KASTRQAMLYWLQA 91
PH_Cla4_Ste20 cd13279
Pleckstrin homology (PH) domain; Budding yeast contain two main p21-activated kinases (PAKs), ...
193-285 6.14e-10

Pleckstrin homology (PH) domain; Budding yeast contain two main p21-activated kinases (PAKs), Cla4 and Ste20. The yeast Ste20 protein kinase is involved in pheromone response, though the function of Ste20 mammalian homologs is unknown. Cla4 is involved in budding and cytokinesis and interacts with Cdc42, a GTPase required for polarized cell growth as is Pak. Cla4 and Ste20 kinases share a function in localizing cell growth with respect to the septin ring. They both contain a PH domain, a Cdc42/Rac interactive binding (CRIB) domain, and a C-terminal Protein Kinase catalytic (PKc) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270097  Cd Length: 92  Bit Score: 55.71  E-value: 6.14e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 193 VIKAGYC-VKQGAVMK-NWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEVHKVQeckQSDimMRDNLFEVVTTS--RTF 268
Cdd:cd13279    1 VVKSGWVsVKEDGLLSfRWSKRYLVLREQSLDFYKNESSSSASLSIPLKDISNVS---RTD--LKPYCFEIVRKSstKSI 75
                         90
                 ....*....|....*..
gi 573884809 269 YIQADSPEDMHSWIKAI 285
Cdd:cd13279   76 YISVKSDDELYDWMDDI 92
PH_RhoGap24 cd13379
Rho GTPase activating protein 24 Pleckstrin homology (PH) domain; RhoGap24 (also called ...
191-296 6.72e-10

Rho GTPase activating protein 24 Pleckstrin homology (PH) domain; RhoGap24 (also called ARHGAP24, p73RhoGAp, and Filamin-A-associated RhoGAP) like other RhoGAPs are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241530  Cd Length: 114  Bit Score: 56.13  E-value: 6.72e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 191 QAVIKAGYCVKQGAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEvHKVQECKQSDIMMRDNLFEVV-------- 262
Cdd:cd13379    1 LEVIKCGWLRKQGGFVKTWHTRWFVLKGDQLYYFKDEDETKPLGTIFLPG-NRVTEHPCNEEEPGKFLFEVVpggdrerm 79
                         90       100       110
                 ....*....|....*....|....*....|....*
gi 573884809 263 -TTSRTFYIQADSPEDMHSWIKAISGAIVAQRGPG 296
Cdd:cd13379   80 tANHETYLLMASTQNDMEDWVKSIRRVIWAPFGGG 114
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
10-107 9.15e-10

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 55.24  E-value: 9.15e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809  10 ICGFLDIEENENSGKFLRRYFILdtREGSLVWYMDNPQNlptGTENVGALKLTYISKVSDatKQRPKAEFCF-VINAGMR 88
Cdd:cd00821    1 KEGYLLKRGGGGLKSWKKRWFVL--FEGVLLYYKSKKDS---SYKPKGSIPLSGILEVEE--VSPKERPHCFeLVTPDGR 73
                         90
                 ....*....|....*....
gi 573884809  89 KFFLQANDQQDLVEWVNVL 107
Cdd:cd00821   74 TYYLQADSEEERQEWLKAL 92
PH_Gab3 cd13385
Grb2-associated binding protein 3 pleckstrin homology (PH) domain; The Gab subfamily includes ...
209-286 9.20e-10

Grb2-associated binding protein 3 pleckstrin homology (PH) domain; The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. The members in this cd include the Gab1, Gab2, and Gab3 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270184  Cd Length: 125  Bit Score: 56.13  E-value: 9.20e-10
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 209 WKRRYFLLDENSVS-------YFKSDLDKEPLRMIPLKEVHKVQECKQSDI---MMRDNLFEVVTTSRTFYIQADSPEDM 278
Cdd:cd13385   26 WRKRWFVLRRGRMSgnpdvleYYRNNHSKKPIRVIDLSECEVLKHSGPNFIrkeFQNNFVFIVKTTYRTFYLVAKTEEEM 105

                 ....*...
gi 573884809 279 HSWIKAIS 286
Cdd:cd13385  106 QVWVHNIS 113
PH_GAP1_mammal-like cd13371
GAP1(IP4BP) pleckstrin homology (PH) domain; GAP1 (also called IP4BP, RASA3/Ras ...
193-286 1.26e-09

GAP1(IP4BP) pleckstrin homology (PH) domain; GAP1 (also called IP4BP, RASA3/Ras GTPase-activating protein 3, and RAS p21 protein activator (GTPase activating protein) 3/GAPIII/MGC46517/MGC47588)) is a member of the GAP1 family of GTPase-activating proteins, along with RASAL1, GAP1(m), and CAPRI. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. GAP1(IP4BP) contains two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Its C2 domains, like those of GAP1M, do not contain the C2 motif that is known to be required for calcium-dependent phospholipid binding. GAP1(IP4BP) is regulated by the binding of its PH domains to phophoinositides, PIP3 (phosphatidylinositol 3,4,5-trisphosphate) and PIP2 (phosphatidylinositol 4,5-bisphosphate). It suppresses RAS, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. GAP1(IP4BP) binds tyrosine-protein kinase, HCK. Members here include humans, chickens, frogs, and fish. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241522  Cd Length: 125  Bit Score: 55.81  E-value: 1.26e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 193 VIKAGYCVK--QGAV---MKNWKRRYFLLDENSVSYFKSDLDkEPLRMIPLKEVHKVQECKQSDIMMRdNLFEVVTTSRT 267
Cdd:cd13371   16 LLKEGFMIKraQGRKrfgMKNFKKRWFRLTNHEFTYHKSKGD-HPLCSIPIENILAVERLEEESFKMK-NMFQVIQPERA 93
                         90
                 ....*....|....*....
gi 573884809 268 FYIQADSPEDMHSWIKAIS 286
Cdd:cd13371   94 LYIQANNCVEAKDWIDILT 112
PH pfam00169
PH domain; PH stands for pleckstrin homology.
10-112 1.58e-09

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 54.88  E-value: 1.58e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809   10 ICGFLDIEENENSGKFLRRYFILdtREGSLVWYmdNPQNLPTGTENVGALKLTYISKVSDATKQRPKAEFCFVI----NA 85
Cdd:pfam00169   3 KEGWLLKKGGGKKKSWKKRYFVL--FDGSLLYY--KDDKSGKSKEPKGSISLSGCEVVEVVASDSPKRKFCFELrtgeRT 78
                          90       100
                  ....*....|....*....|....*..
gi 573884809   86 GMRKFFLQANDQQDLVEWVNVLNKATK 112
Cdd:pfam00169  79 GKRTYLLQAESEEERKDWIKAIQSAIR 105
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
10-112 1.83e-09

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 54.86  E-value: 1.83e-09
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809    10 ICGFLDIEENENSGKFLRRYFILdtREGSLVWYMDNPQNlpTGTENVGALKLTYISKVSDATKQRPKAEFCFVINAGMRK 89
Cdd:smart00233   3 KEGWLYKKSGGGKKSWKKRYFVL--FNSTLLYYKSKKDK--KSYKPKGSIDLSGCTVREAPDPDSSKKPHCFEIKTSDRK 78
                           90       100
                   ....*....|....*....|....
gi 573884809    90 -FFLQANDQQDLVEWVNVLNKATK 112
Cdd:smart00233  79 tLLLQAESEEEREKWVEALRKAIA 102
PH_3BP2 cd13308
SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes ...
189-290 2.18e-09

SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes the adaptor protein 3BP2), HD, ITU, IT10C3, and ADD1 are located near the Huntington's Disease Gene on Human Chromosome 4pl6.3. SH3BP2 lies in a region that is often missing in individuals with Wolf-Hirschhorn syndrome (WHS). Gain of function mutations in SH3BP2 causes enhanced B-cell antigen receptor (BCR)-mediated activation of nuclear factor of activated T cells (NFAT), resulting in a rare, genetic disorder called cherubism. This results in an increase in the signaling complex formation with Syk, phospholipase C-gamma2 (PLC-gamma2), and Vav1. It was recently discovered that Tankyrase regulates 3BP2 stability through ADP-ribosylation and ubiquitylation by the E3-ubiquitin ligase. Cherubism mutations uncouple 3BP2 from Tankyrase-mediated protein destruction, which results in its stabilization and subsequent hyperactivation of the Src, Syk, and Vav signaling pathways. SH3BP2 is also a potential negative regulator of the abl oncogene. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270118  Cd Length: 113  Bit Score: 54.72  E-value: 2.18e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 189 QDQAVIKAGYCVKQGA---VMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEVHkvqeCKQSDIMMRDNLF-----E 260
Cdd:cd13308    5 LPRDVIHSGTLTKKGGsqkTLQNWQLRYVIIHQGCVYYYKNDQSAKPKGVFSLNGYN----RRAAEERTSKLKFvfkiiH 80
                         90       100       110
                 ....*....|....*....|....*....|
gi 573884809 261 VVTTSRTFYIQADSPEDMHSWIKAISGAIV 290
Cdd:cd13308   81 LSPDHRTWYFAAKSEDEMSEWMEYIRREID 110
PH_evt cd13265
Evectin Pleckstrin homology (PH) domain; There are 2 members of the evectin family (also ...
192-289 1.10e-08

Evectin Pleckstrin homology (PH) domain; There are 2 members of the evectin family (also called pleckstrin homology domain containing, family B): evt-1 (also called PLEKHB1) and evt-2 (also called PLEKHB2). evt-1 is specific to the nervous system, where it is expressed in photoreceptors and myelinating glia. evt-2 is widely expressed in both neural and nonneural tissues. Evectins possess a single N-terminal PH domain and a C-terminal hydrophobic region. evt-1 is thought to function as a mediator of post-Golgi trafficking in cells that produce large membrane-rich organelles. It is a candidate gene for the inherited human retinopathy autosomal dominant familial exudative vitreoretinopathy and a susceptibility gene for multiple sclerosis. evt-2 is essential for retrograde endosomal membrane transport from the plasma membrane (PM) to the Golgi. Two membrane trafficking pathways pass through recycling endosomes: a recycling pathway and a retrograde pathway that links the PM to the Golgi/ER. Its PH domain that is unique in that it specifically recognizes phosphatidylserine (PS), but not polyphosphoinositides. PS is an anionic phospholipid class in eukaryotic biomembranes, is highly enriched in the PM, and plays key roles in various physiological processes such as the coagulation cascade, recruitment and activation of signaling molecules, and clearance of apoptotic cells. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270085  Cd Length: 108  Bit Score: 52.69  E-value: 1.10e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 192 AVIKAGYCVKQGAVMKNWKRRYFLLDEN-SVSYFKSDLDKEPLRMIPLK----EVHKVQECK---QSDIMMRDNLFEVVT 263
Cdd:cd13265    2 ALVKSGWLLRQSTILKRWKKNWFVLYGDgNLVYYEDETRREVEGRINMPrecrNIRVGLECRdvqPPEGRSRDCLLQIVL 81
                         90       100
                 ....*....|....*....|....*..
gi 573884809 264 -TSRTFYIQADSPEDMHSWIKAISGAI 289
Cdd:cd13265   82 rDGSTLFLCAESADDALAWKLALQDAR 108
PH_KIFIA_KIFIB cd01233
KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA ...
193-286 1.87e-08

KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA (Caenorhabditis elegans homolog unc-104) and KIFIB transport synaptic vesicle precursors that contain synaptic vesicle proteins, such as synaptophysin, synaptotagmin and the small GTPase RAB3A, but they do not transport organelles that contain plasma membrane proteins. They have a N-terminal motor domain, followed by a coiled-coil domain, and a C-terminal PH domain. KIF1A adopts a monomeric form in vitro, but acts as a processive dimer in vivo. KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein; this results in their different motor activities. KIF1A and KIF1B bind to RAB3 proteins through the adaptor protein mitogen-activated protein kinase (MAPK) -activating death domain (MADD; also calledDENN), which was first identified as a RAB3 guanine nucleotide exchange factor (GEF). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269939  Cd Length: 103  Bit Score: 51.83  E-value: 1.87e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 193 VIKAGYCVKQGAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEVHKVQECKQSDIMMRDNLFEVVTTSRTFYIQA 272
Cdd:cd01233    6 VSKRGYLLFLEDATDGWVRRWVVLRRPYLHIYSSEKDGDERGVINLSTARVEYSPDQEALLGRPNVFAVYTPTNSYLLQA 85
                         90
                 ....*....|....
gi 573884809 273 DSPEDMHSWIKAIS 286
Cdd:cd01233   86 RSEKEMQDWLYAID 99
PH_GPBP cd13283
Goodpasture antigen binding protein Pleckstrin homology (PH) domain; The GPBP (also called ...
209-285 2.20e-08

Goodpasture antigen binding protein Pleckstrin homology (PH) domain; The GPBP (also called Collagen type IV alpha-3-binding protein/hCERT; START domain-containing protein 11/StARD11; StAR-related lipid transfer protein 11) is a kinase that phosphorylates an N-terminal region of the alpha 3 chain of type IV collagen, which is commonly known as the goodpasture antigen. Its splice variant the ceramide transporter (CERT) mediates the cytosolic transport of ceramide. There have been additional splice variants identified, but all of them function as ceramide transport proteins. GPBP and CERT both contain an N-terminal PH domain, followed by a serine rich domain, and a C-terminal START domain. However, GPBP has an additional serine rich domain just upstream of its START domain. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270100 [Multi-domain]  Cd Length: 100  Bit Score: 51.52  E-value: 2.20e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 209 WKRRYFLLDENSVSYFKSDLDKE-------PLRMIPLKEvHKVQECKqsdimmrdnlFEVVTTSRTFYIQADSPEDMHSW 281
Cdd:cd13283   15 WQDRYFVLKDGTLSYYKSESEKEygcrgsiSLSKAVIKP-HEFDECR----------FDVSVNDSVWYLRAESPEERQRW 83

                 ....
gi 573884809 282 IKAI 285
Cdd:cd13283   84 IDAL 87
PH_Skap_family cd13266
Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor ...
193-286 2.98e-08

Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Src kinase-associated phosphoprotein of 55 kDa (Skap55)/Src kinase-associated phosphoprotein 1 (Skap1), Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270086  Cd Length: 106  Bit Score: 51.37  E-value: 2.98e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 193 VIKAGYCVKQ----GAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLK--EVHKVQECKQSDimMRDNLFEVVTTS- 265
Cdd:cd13266    1 VIKAGYLEKRrkdhSFFGSEWQKRWCAISKNVFYYYGSDKDKQQKGEFAINgyDVRMNPTLRKDG--KKDCCFELVCPDk 78
                         90       100
                 ....*....|....*....|.
gi 573884809 266 RTFYIQADSPEDMHSWIKAIS 286
Cdd:cd13266   79 RTYQFTAASPEDAEDWVDQIS 99
PH_RASA1 cd13260
RAS p21 protein activator (GTPase activating protein) 1 Pleckstrin homology (PH) domain; RASA1 ...
191-286 5.74e-08

RAS p21 protein activator (GTPase activating protein) 1 Pleckstrin homology (PH) domain; RASA1 (also called RasGap1 or p120) is a member of the RasGAP family of GTPase-activating proteins. RASA1 contains N-terminal SH2-SH3-SH2 domains, followed by two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Splice variants lack the N-terminal domains. It is a cytosolic vertebrate protein that acts as a suppressor of RAS via its C-terminal GAP domain function, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. Additionally, it is involved in mitogenic signal transmission towards downstream interacting partners through its N-terminal SH2-SH3-SH2 domains. RASA1 interacts with a number of proteins including: G3BP1, SOCS3, ANXA6, Huntingtin, KHDRBS1, Src, EPHB3, EPH receptor B2, Insulin-like growth factor 1 receptor, PTK2B, DOK1, PDGFRB, HCK, Caveolin 2, DNAJA3, HRAS, GNB2L1 and NCK1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270080  Cd Length: 103  Bit Score: 50.42  E-value: 5.74e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 191 QAVIKAGYCVKQGAVMKNWKRRYFLL--DENSVSYFKSDLDKEPLRMIPLKE--VHKVQEckqsDIMMRDNLFEVV---- 262
Cdd:cd13260    1 KGIDKKGYLLKKGGKNKKWKNLYFVLegKEQHLYFFDNEKRTKPKGLIDLSYcsLYPVHD----SLFGRPNCFQIVvral 76
                         90       100
                 ....*....|....*....|....
gi 573884809 263 TTSRTFYIQADSPEDMHSWIKAIS 286
Cdd:cd13260   77 NESTITYLCADTAELAQEWMRALR 100
PH_DGK_type2 cd13274
Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes ...
194-293 1.21e-07

Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA) utilizing ATP as a source of the phosphate. In non-stimulated cells, DGK activity is low and DAG is used for glycerophospholipid biosynthesis. Upon receptor activation of the phosphoinositide pathway, DGK activity increases which drives the conversion of DAG to PA. DGK acts as a switch by terminating the signalling of one lipid while simultaneously activating signalling by another. There are 9 mammalian DGK isoforms all with conserved catalytic domains and two cysteine rich domains. These are further classified into 5 groups according to the presence of additional functional domains and substrate specificity: Type 1 - DGK-alpha, DGK-beta, DGK-gamma - contain EF-hand motifs and a recoverin homology domain; Type 2 - DGK-delta, DGK-eta, and DGK-kappa- contain a pleckstrin homology domain, two cysteine-rich zinc finger-like structures, and a separated catalytic region; Type 3 - DGK-epsilon - has specificity for arachidonate-containing DAG; Type 4 - DGK-zeta, DGK-iota- contain a MARCKS homology domain, ankyrin repeats, a C-terminal nuclear localization signal, and a PDZ-binding motif; Type 5 - DGK-theta - contains a third cysteine-rich domain, a pleckstrin homology domain and a proline rich region. The type 2 DGKs are present as part of this Metazoan DGK hierarchy. They have a N-terminal PH domain, two cysteine rich domains, followed by bipartite catalytic domains, and a C-terminal SAM domain. Their catalytic domains and perhaps other DGK catalytic domains may function as two independent units in a coordinated fashion. They may also require other motifs for maximal activity because several DGK catalytic domains have very little DAG kinase activity when expressed as isolated subunits. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270093  Cd Length: 97  Bit Score: 49.32  E-value: 1.21e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 194 IKAGYCVKQGAVMKNWKRRYFLLDENSVSYFK---SDLDKEplrmIPLKEVhKVQECKQSDImmrDNLFEVVTTSRTFYI 270
Cdd:cd13274    1 IKEGPLLKQTSSFQRWKRRYFKLKGRKLYYAKdskSLIFEE----IDLSDA-SVAECSTKNV---NNSFTVITPFRKLIL 72
                         90       100
                 ....*....|....*....|...
gi 573884809 271 QADSPEDMHSWIKAISGaiVAQR 293
Cdd:cd13274   73 CAESRKEMEEWISALKT--VQQR 93
PH2_ADAP cd01251
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called ...
194-289 4.01e-07

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241282  Cd Length: 105  Bit Score: 47.97  E-value: 4.01e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 194 IKAGYCVKQGAVMKN-WKRRYFLLDENSVSYFKSDLDKEPLRMIPL---KEVHKVQEC-KQSDIMMRDNLFEVVTTSRTF 268
Cdd:cd01251    3 LKEGYLEKTGPKQTDgFRKRWFTLDDRRLMYFKDPLDAFPKGEIFIgskEEGYSVREGlPPGIKGHWGFGFTLVTPDRTF 82
                         90       100
                 ....*....|....*....|.
gi 573884809 269 YIQADSPEDMHSWIKAISGAI 289
Cdd:cd01251   83 LLSAETEEERREWITAIQKVL 103
PH_CNK_insect-like cd13326
Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; ...
195-285 7.59e-07

Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; CNK family members function as protein scaffolds, regulating the activity and the subcellular localization of RAS activated RAF. There is a single CNK protein present in Drosophila and Caenorhabditis elegans in contrast to mammals which have 3 CNK proteins (CNK1, CNK2, and CNK3). All of the CNK members contain a sterile a motif (SAM), a conserved region in CNK (CRIC) domain, and a PSD-95/DLG-1/ZO-1 (PDZ) domain, and a PH domain. A CNK2 splice variant CNK2A also has a PDZ domain-binding motif at its C terminus and Drosophila CNK (D-CNK) also has a domain known as the Raf-interacting region (RIR) that mediates binding of the Drosophila Raf kinase. This cd contains CNKs from insects, spiders, mollusks, and nematodes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270135  Cd Length: 91  Bit Score: 46.95  E-value: 7.59e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 195 KAGYCVKQgavmknWKRRYFLLDENSVSYFKSDLDKEPLRMIPLK--EVHKVQECKQsdimmRDNLFEVVTTSRTFYIQA 272
Cdd:cd13326   10 RKGKGGGK------WAKRWFVLKGSNLYGFRSQESTKADCVIFLPgfTVSPAPEVKS-----RKYAFKVYHTGTVFYFAA 78
                         90
                 ....*....|...
gi 573884809 273 DSPEDMHSWIKAI 285
Cdd:cd13326   79 ESQEDMKKWLDLL 91
PH_IRS cd01257
Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate ...
193-285 9.19e-07

Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate (IRS) molecules are mediators in insulin signaling and play a role in maintaining basic cellular functions such as growth and metabolism. They act as docking proteins between the insulin receptor and a complex network of intracellular signaling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3, IRS-4) of this family have been identified that differ as to tissue distribution, subcellular localization, developmental expression, binding to the insulin receptor, and interaction with SH2 domain-containing proteins. IRS molecules have an N-terminal PH domain, followed by an IRS-like PTB domain which has a PH-like fold. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.cytoskeletal associated molecules, and in lipid associated enzymes.


Pssm-ID: 269959  Cd Length: 106  Bit Score: 46.90  E-value: 9.19e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 193 VIKAGYCVKQgavmKNWKRRYFLLDENSVS------YF----KSDLDKEPLRMIPLKEVHKVQecKQSDIMMRdNLFEVV 262
Cdd:cd01257    3 VRKSGYLKKL----KTMRKRYFVLRAESHGgparleYYenekKFRRNAEPKRVIPLSSCFNIN--KRADAKHK-HLIALY 75
                         90       100
                 ....*....|....*....|...
gi 573884809 263 TTSRTFYIQADSPEDMHSWIKAI 285
Cdd:cd01257   76 TKDECFGLVAESEEEQDEWYQAL 98
PH_ORP_plant cd13294
Plant Oxysterol binding protein related protein Pleckstrin homology (PH) domain; Plant ORPs ...
207-288 1.09e-06

Plant Oxysterol binding protein related protein Pleckstrin homology (PH) domain; Plant ORPs contain a N-terminal PH domain and a C-terminal OSBP-related domain. Not much is known about its specific function in plants to date. Members here include: Arabidopsis, spruce, and petunia. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241448  Cd Length: 100  Bit Score: 46.72  E-value: 1.09e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 207 KNWKRRYFLLDENSVSYFKSdldKEPLRMIPLKEVH-KVQECKQSDimMRDNLFEVVTTSRTFYIQADSPEDMHSWIKAI 285
Cdd:cd13294   13 KGWRSRWFVLQDGVLSYYKV---HGPDKVKPSGEVHlKVSSIRESR--SDDKKFYIFTGTKTLHLRAESREDRAAWLEAL 87

                 ...
gi 573884809 286 SGA 288
Cdd:cd13294   88 QAA 90
PH_8 pfam15409
Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.
25-110 2.87e-06

Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.


Pssm-ID: 405984  Cd Length: 89  Bit Score: 45.05  E-value: 2.87e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809   25 FLRRYFILDTREGSLVWYMDnpqnlPTGTENVGALKLTyISKVSDATKQRPkaefcFVINAGMRKFFLQANDQQDLVEWV 104
Cdd:pfam15409  14 YAKRFFVLNFKSGTLSYYRD-----DNSSALRGKIPLS-LAAISANAKTRE-----IIIDSGMEVWHLKALNEKDFQAWV 82

                  ....*.
gi 573884809  105 NVLNKA 110
Cdd:pfam15409  83 DALEKA 88
PH_Boi cd13316
Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally ...
196-285 2.96e-06

Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally redundant and important for cell growth with Boi mutants displaying defects in bud formation and in the maintenance of cell polarity.They appear to be linked to Rho-type GTPase, Cdc42 and Rho3. Boi1 and Boi2 display two-hybrid interactions with the GTP-bound ("active") form of Cdc42, while Rho3 can suppress of the lethality caused by deletion of Boi1 and Boi2. These findings suggest that Boi1 and Boi2 are targets of Cdc42 that promote cell growth in a manner that is regulated by Rho3. Boi proteins contain a N-terminal SH3 domain, followed by a SAM (sterile alpha motif) domain, a proline-rich region, which mediates binding to the second SH3 domain of Bem1, and C-terminal PH domain. The PH domain is essential for its function in cell growth and is important for localization to the bud, while the SH3 domain is needed for localization to the neck. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270126  Cd Length: 97  Bit Score: 45.44  E-value: 2.96e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 196 AGYCVKQGAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEvHKVqECKQSDIMMRDNL-FEVV--TTSRTFYIQA 272
Cdd:cd13316    3 SGWMKKRGERYGTWKTRYFVLKGTRLYYLKSENDDKEKGLIDLTG-HRV-VPDDSNSPFRGSYgFKLVppAVPKVHYFAV 80
                         90
                 ....*....|...
gi 573884809 273 DSPEDMHSWIKAI 285
Cdd:cd13316   81 DEKEELREWMKAL 93
PH1_ADAP cd13252
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 1; ADAP (also called ...
194-288 3.65e-06

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 1; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270072  Cd Length: 109  Bit Score: 45.33  E-value: 3.65e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 194 IKAGYCVKQGAVMKNWKRRYFLL--DENSVSYFKSDLDKEPLRMIPLKEVHKV-QECKQSD------IMMRDNlfevvtT 264
Cdd:cd13252    2 SKEGFLWKRGKDNNQFKQRKFVLseREGTLKYFVKEDAKEPKAVISIEELNATfQPEKIGHpnglqiTYLKDG------S 75
                         90       100
                 ....*....|....*....|....
gi 573884809 265 SRTFYIQADSPEDMHSWIKAISGA 288
Cdd:cd13252   76 TRNIFVYHEDGKEIVDWYNAIRAA 99
PH_Gab2_2 cd13384
Grb2-associated binding protein family pleckstrin homology (PH) domain; The Gab subfamily ...
209-285 3.77e-06

Grb2-associated binding protein family pleckstrin homology (PH) domain; The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. Members here include insect, nematodes, and crustacean Gab2s. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241535  Cd Length: 115  Bit Score: 45.51  E-value: 3.77e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 209 WKRRYFLLDENSV------SYFKsdlDKEPLRmipLKEVHKVQECKQSDI---MMRDN------LFEVVTTSRTFYIQAD 273
Cdd:cd13384   23 WRRRYFVLRQSEIpgqyflEYYT---DRTCRK---LKGSIDLDQCEQVDAgltFETKNklkdqhIFDIRTPKRTYYLVAD 96
                         90
                 ....*....|..
gi 573884809 274 SPEDMHSWIKAI 285
Cdd:cd13384   97 TEDEMNKWVNCI 108
PH_TBC1D2A cd01265
TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1 ...
9-107 5.58e-06

TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1/Prostate antigen recognized and identified by SEREX 1 and ARMUS) contains a PH domain and a TBC-type GTPase catalytic domain. TBC1D2A integrates signaling between Arf6, Rac1, and Rab7 during junction disassembly. Activated Rac1 recruits TBC1D2A to locally inactivate Rab7 via its C-terminal TBC/RabGAP domain and facilitate E-cadherin degradation in lysosomes. The TBC1D2A PH domain mediates localization at cell-cell contacts and coprecipitates with cadherin complexes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269966  Cd Length: 102  Bit Score: 44.62  E-value: 5.58e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809   9 RICGFLdieeNENSGK------FLRRYFILDTREGSLVWYMDNPQNLPTGTENVGALKLTYiskvsdatkqRPKAEFC-F 81
Cdd:cd01265    1 RLCGYL----NKLETRglglkgWKRRWFVLDESKCQLYYYRSPQDATPLGSIDLSGAAFSY----------DPEAEPGqF 66
                         90       100
                 ....*....|....*....|....*.
gi 573884809  82 VINAGMRKFFLQANDQQDLVEWVNVL 107
Cdd:cd01265   67 EIHTPGRVHILKASTRQAMLYWLQAL 92
PH_PHLDB1_2 cd14673
Pleckstrin homology-like domain-containing family B member 2 pleckstrin homology (PH) domain; ...
197-285 7.11e-06

Pleckstrin homology-like domain-containing family B member 2 pleckstrin homology (PH) domain; PHLDB2 (also called LL5beta) and PHLDB1 (also called LL5alpha) are cytoskeleton- and membrane-associated proteins. PHLDB2 has been identified as a key component of the synaptic podosomes that play an important role in in postsynaptic maturation. Both are large proteins containing an N-terminal pleckstrin (PH) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270192  Cd Length: 105  Bit Score: 44.49  E-value: 7.11e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 197 GYCVKQGAVMKNWKRRYFLLDEN--SVSYFkSDLDKEPLR-MIPLKEVHKVQECKQSDIMMRDN---LFEVVTTSRTFYI 270
Cdd:cd14673    7 GFLTKMGGKIKTWKKRWFVFDRNkrTLSYY-VDKHEKKLKgVIYFQAIEEVYYDHLRSAAKSPNpalTFCVKTHDRLYYM 85
                         90
                 ....*....|....*
gi 573884809 271 QADSPEDMHSWIKAI 285
Cdd:cd14673   86 VAPSPEAMRIWMDVI 100
PH_PKB cd01241
Protein Kinase B-like pleckstrin homology (PH) domain; PKB (also called Akt), a member of the ...
193-287 1.31e-05

Protein Kinase B-like pleckstrin homology (PH) domain; PKB (also called Akt), a member of the AGC kinase family, is a phosphatidylinositol 3'-kinase (PI3K)-dependent Ser/Thr kinase which alters the activity of the targeted protein. The name AGC is based on the three proteins that it is most similar to cAMP-dependent protein kinase 1 (PKA; also known as PKAC), cGMP-dependent protein kinase (PKG; also known as CGK1) and protein kinase C (PKC). Human Akt has three isoforms derived for distinct genes: Akt1/PKBalpha, Akt2/PKBbeta, and Akt3/PKBgamma. All Akts have an N-terminal PH domain with an activating Thr phosphorylation site, a kinase domain, and a short C-terminal regulatory tail with an activating Ser phosphorylation site. The PH domain recruits Akt to the plasma membrane by binding to phosphoinositides (PtdIns-3,4-P2) and is required for activation. The phosphorylation of Akt at its Thr and Ser phosphorylation sites leads to increased Akt activity toward forkhead transcription factors, the mammalian target of rapamycin (mTOR), and the Bcl-xL/Bcl-2-associated death promoter (BAD), all of which possess a consensus motif R-X-R-XX-ST-B (X = amino acid, B = bulky hydrophobic residue) for Akt phosphorylation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269947  Cd Length: 107  Bit Score: 43.78  E-value: 1.31e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 193 VIKAGYCVKQGAVMKNWKRRYFLLDEN-SVSYFK----SDLDKEPLRMIplkEVHKVQECKQSDImmRDNLFEV----VT 263
Cdd:cd01241    3 VVKEGWLLKRGEYIKNWRPRYFVLKSDgSFIGYKekpkPNQDPPPLNNF---SVAECQLMKTEKP--KPNTFIIrclqWT 77
                         90       100
                 ....*....|....*....|....*.
gi 573884809 264 TS--RTFyiQADSPEDMHSWIKAISG 287
Cdd:cd01241   78 TVieRTF--HVESEEEREEWMKAIQG 101
PH2_FGD5_FGD6 cd13237
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin ...
197-285 2.48e-05

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin homology (PH) domain, C-terminus; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270057  Cd Length: 91  Bit Score: 42.79  E-value: 2.48e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 197 GYCVKQGAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEvHKVQECKQSDIMMRDNLFEVVTTSRTFYI-QADSP 275
Cdd:cd13237    3 GYLQRRKKSKKSWKRLWFVLKDKVLYTYKASEDVVALESVPLLG-FTVVTIDESFEEDESLVFQLLHKGQLPIIfRADDA 81
                         90
                 ....*....|
gi 573884809 276 EDMHSWIKAI 285
Cdd:cd13237   82 ETAQRWIEAL 91
PH_MELT_VEPH1 cd01264
Melted pleckstrin homology (PH) domain; The melted protein (also called Ventricular zone ...
206-292 3.28e-05

Melted pleckstrin homology (PH) domain; The melted protein (also called Ventricular zone expressed PH domain-containing protein homolog 1) is expressed in the developing central nervous system of vertebrates. It contains a single C-terminal PH domain that is required for membrane targeting. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269965  Cd Length: 105  Bit Score: 42.83  E-value: 3.28e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 206 MKNWKRRYFLLDENSVSY--FKSDLDKEPlrmIPLKEVHKVQECKQSDIMMRdNLFEVVTTSRTFYIQADSPEDMHSWIK 283
Cdd:cd01264   18 FKRWRTRYFTLSGAQLSYrgGKSKPDAPP---IELSKIRSVKVVRKKDRSIP-KAFEIFTDDKTYVLKAKDEKNAEEWLQ 93

                 ....*....
gi 573884809 284 AISGAiVAQ 292
Cdd:cd01264   94 CLSIA-VAQ 101
PH2_ADAP cd01251
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called ...
22-110 5.09e-05

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241282  Cd Length: 105  Bit Score: 42.19  E-value: 5.09e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809  22 SGKFLRRYFILDTRegsLVWYMDNPQN------LPTGTENVGalkltYISKVSDATKQRPKAEFCFVINAGMRKFFLQAN 95
Cdd:cd01251   16 TDGFRKRWFTLDDR---RLMYFKDPLDafpkgeIFIGSKEEG-----YSVREGLPPGIKGHWGFGFTLVTPDRTFLLSAE 87
                         90
                 ....*....|....*
gi 573884809  96 DQQDLVEWVNVLNKA 110
Cdd:cd01251   88 TEEERREWITAIQKV 102
PHA03247 PHA03247
large tegument protein UL36; Provisional
274-371 6.27e-05

large tegument protein UL36; Provisional


Pssm-ID: 223021 [Multi-domain]  Cd Length: 3151  Bit Score: 45.31  E-value: 6.27e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809  274 SPEDMHSWIkaISGAIVAQRGPGRSAATMRQA------RRLSNPCIQRYTSRNGECSTSTVTVPHPQPSTAATRARPSLA 347
Cdd:PHA03247 2848 PSLPLGGSV--APGGDVRRRPPSRSPAAKPAAparppvRRLARPAVSRSTESFALPPDQPERPPQPQAPPPPQPQPQPPP 2925
                          90       100
                  ....*....|....*....|....
gi 573884809  348 RPSLQRQPTYSPLFPSPAAPRPHT 371
Cdd:PHA03247 2926 PPQPQPPPPPPPRPQPPLAPTTDP 2949
PH3_MyoX-like cd13297
Myosin X-like Pleckstrin homology (PH) domain, repeat 3; MyoX, a MyTH-FERM myosin, is a ...
185-289 6.67e-05

Myosin X-like Pleckstrin homology (PH) domain, repeat 3; MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the third MyoX PH repeat. PLEKHH3/Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) member 3 is also part of this CD and like MyoX contains a FERM domain, a MyTH4 domain, and a single PH domain. Not much is known about the function of PLEKHH3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270109  Cd Length: 126  Bit Score: 42.42  E-value: 6.67e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 185 GRPAQDQAVIKAGYCVKQGA---VMKNW--KRRYFLLDENSVSYFKS-DLDKEPLRMIPLKEVHKVQECKQSdIMMRDNL 258
Cdd:cd13297    5 DLDEGGQDVIERGWLYKEGGkggARGNLtkKKRWFVLTGNSLDYYKSsEKNSLKLGTLVLNSLCSVVPPDEK-MAKETGY 83
                         90       100       110
                 ....*....|....*....|....*....|...
gi 573884809 259 FEVVTTSR--TFYIQADSPEDMHSWIKAISGAI 289
Cdd:cd13297   84 WTFTVHGRkhSFRLYTKLQEEAMRWVNAIQDVI 116
Niban-like cd23949
Niban-like protein; Niban-like proteins contain an N-terminal Pleckstrin-Homology (PH) domain ...
186-323 7.07e-05

Niban-like protein; Niban-like proteins contain an N-terminal Pleckstrin-Homology (PH) domain that may be involved in binding to specific ligands. Phosphatidylinositol (3)-phosphate (PI3P) was recognized as the innate ligand of the PH domain of MINERVA (melanoma invasion by ERK, also known as FAM129B) PH. Niban family proteins have been found to regulate phosphorylation of a number of proteins involved in the regularion of translation, such as EIF2A, EIF4EBP1 and RPS6KB1. They may also be involved in the endoplasmic reticulum stress response (FAM129A, Niban-like protein 1), suggested to play a role in apoptosis suppression in cancer cells, while Niban-like protein 2 (FAM129C) is a B-cell membrane protein that is overexpressed in chronic lymphocytic leukemia.


Pssm-ID: 469558 [Multi-domain]  Cd Length: 550  Bit Score: 44.98  E-value: 7.07e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 186 RPAQDQAVIKAGYCVKQGAVMKNWKRRYFLL-DENSVSYFKSDLDKE----PLRMIPL--KEVHKVQECKQSDImmrDNL 258
Cdd:cd23949   55 PPPEDRKVIFSGKLSKYGEDSKKWKERFCVVrGDYNLEYYESKEAYErgkkPKGSINLagYKVLTSPEEYLELV---DRK 131
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 259 FEVVTTS------------------------RTFYIQADSPEDMHSWIKAISGAI-----VAQRGPGRSAATMRQArrls 309
Cdd:cd23949  132 FPDLAGKsekasvpfperpppftlelyhpyrRHYYFCFETEKEQEEWVAVLQDCIrhvnwVLPKDTTVEARAFLEA---- 207
                        170
                 ....*....|....
gi 573884809 310 npcIQRYTSRNGEC 323
Cdd:cd23949  208 ---VRLYRQEKGHY 218
PH2_FGD4_insect-like cd13238
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 4 pleckstrin homology (PH) ...
196-285 1.10e-04

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 4 pleckstrin homology (PH) domain, C-terminus, in insect and related arthropods; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. This cd contains insects, crustaceans, and chelicerates. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270058  Cd Length: 97  Bit Score: 41.09  E-value: 1.10e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 196 AGYCVKQGAVMKNWKRRYFLLDENSVSY-FKSDLDKEPLRMIPL-----KEVHKVQECKQSDIMMRDNLFEVVTTSRTFY 269
Cdd:cd13238    2 SGYLKLKTNGRKTWSRRWFALQPDFVLYsYKSQEDKLPLTATPVpgflvTLLEKGSAVDPLNDPKRPRTFKMFHVKKSYY 81
                         90
                 ....*....|....*.
gi 573884809 270 IQADSPEDMHSWIKAI 285
Cdd:cd13238   82 FQANDGDEQKKWVLTL 97
PH_CNK_mammalian-like cd01260
Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; ...
201-289 1.18e-04

Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; CNK family members function as protein scaffolds, regulating the activity and the subcellular localization of RAS activated RAF. There is a single CNK protein present in Drosophila and Caenorhabditis elegans in contrast to mammals which have 3 CNK proteins (CNK1, CNK2, and CNK3). All of the CNK members contain a sterile a motif (SAM), a conserved region in CNK (CRIC) domain, and a PSD-95/DLG-1/ZO-1 (PDZ) domain, and, with the exception of CNK3, a PH domain. A CNK2 splice variant CNK2A also has a PDZ domain-binding motif at its C terminus and Drosophila CNK (D-CNK) also has a domain known as the Raf-interacting region (RIR) that mediates binding of the Drosophila Raf kinase. This cd contains CNKs from mammals, chickens, amphibians, fish, and crustacea. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269962  Cd Length: 114  Bit Score: 41.24  E-value: 1.18e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 201 KQGAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKE--VHKVQECKQSDIMMRDNLfevvtTSRTFYIQADSPEDM 278
Cdd:cd01260   25 AKSFFGQKWKKYWFVLKGSSLYWYSNQQDEKAEGFINLPDfkIERASECKKKYAFKACHP-----KIKTFYFAAENLDDM 99
                         90
                 ....*....|.
gi 573884809 279 HSWIKAISGAI 289
Cdd:cd01260  100 NKWLSKLNMAI 110
PH_dynamin cd01256
Dynamin pleckstrin homology (PH) domain; Dynamin is a GTPase that regulates endocytic vesicle ...
193-284 2.01e-04

Dynamin pleckstrin homology (PH) domain; Dynamin is a GTPase that regulates endocytic vesicle formation. It has an N-terminal GTPase domain, followed by a PH domain, a GTPase effector domain and a C-terminal proline arginine rich domain. Dynamin-like proteins, which are found in metazoa, plants and yeast have the same domain architecture as dynamin, but lack the PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269958  Cd Length: 112  Bit Score: 40.38  E-value: 2.01e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 193 VIKAGY-CVKQGAVMKNWKRRY-FLLDENSVSYFKSDLDKEPLRMIPLKEVhkvqecKQSDI----MMRDNLFEVV-TTS 265
Cdd:cd01256    3 VIRKGWlTINNIGFMKGGSKEYwFVLTAESLSWYKDEEEKEKKYMLPLDGL------KLRDVekgfMSRKHIFALFnTDQ 76
                         90       100
                 ....*....|....*....|....*.
gi 573884809 266 RTFY-------IQADSPEDMHSWiKA 284
Cdd:cd01256   77 RNVYkdykqleLSCETQEEVDSW-KA 101
PH_PKD cd01239
Protein kinase D (PKD/PKCmu) pleckstrin homology (PH) domain; Protein Kinase C family is ...
210-305 2.87e-04

Protein kinase D (PKD/PKCmu) pleckstrin homology (PH) domain; Protein Kinase C family is composed of three members, PKD1 (PKCmu), PKD2 and PKD3 (PKCnu). Like the C-type protein kinases (PKCs), PKDs are activated by diacylglycerol (DAG). They are involved in vesicular transport, cell proliferation, survival, migration and immune responses. PKD consists of tandem C1 domains, followed by a PH domain and a kinase domain. While the PKD PH domain has not been shown to bind phosphorylated inositol lipids and is not required for membrane translocation, it is required for nuclear export. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269945  Cd Length: 127  Bit Score: 40.45  E-value: 2.87e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 210 KRRYFLLDENSVSYFKSDLDKEPLRMIPLKEVHKVQECKQSDIM--MRDNLFEVVTTSRTFYIQadspEDMHSWIKAISG 287
Cdd:cd01239   25 KRHYWRLDTKCITLFQNETTSRYYKEIPLSEILSVEPADNPSLPpgTPPHCFEIRTANLVYYVG----EDPDGESGPPKL 100
                         90       100
                 ....*....|....*....|...
gi 573884809 288 AIVAQRGPGRSAATM-----RQA 305
Cdd:cd01239  101 IPPPESGSGTESARMwetaiRQA 123
PH_Osh3p_yeast cd13289
Yeast oxysterol binding protein homolog 3 Pleckstrin homology (PH) domain; Yeast Osh3p is ...
25-110 2.99e-04

Yeast oxysterol binding protein homolog 3 Pleckstrin homology (PH) domain; Yeast Osh3p is proposed to function in sterol transport and regulation of nuclear fusion during mating and of pseudohyphal growth as well as sphingolipid metabolism. Osh3 contains a N-GOLD (Golgi dynamics) domain, a PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. GOLD domains are thought to mediate protein-protein interactions, but their role in ORPs are unknown. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241443  Cd Length: 90  Bit Score: 39.55  E-value: 2.99e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809  25 FLRRYFILDTREGSLVWYMdNPQNLPTGTENVGalkltyISKVSDATKQRPkaefcFVINAGMRKFFLQANDQQDLVEWV 104
Cdd:cd13289   17 FARRYFVLNFKYGTLSYYF-NPNSPVRGQIPLR------LASISASPRRRT-----IHIDSGSEVWHLKALNDEDFQAWM 84

                 ....*.
gi 573884809 105 NVLNKA 110
Cdd:cd13289   85 KALRKF 90
PH_ACAP cd13250
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ...
27-111 4.03e-04

ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270070  Cd Length: 98  Bit Score: 39.51  E-value: 4.03e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809  27 RRYFILDtrEGSLVWYM-DNPQNLPTGTENvgaLKLTYIsKVSDATKQRpkaeFCF-VINAGmRKFFLQANDQQDLVEWV 104
Cdd:cd13250   18 RRWFSLQ--NGQLYYQKrDKKDEPTVMVED---LRLCTV-KPTEDSDRR----FCFeVISPT-KSYMLQAESEEDRQAWI 86

                 ....*..
gi 573884809 105 NVLNKAT 111
Cdd:cd13250   87 QAIQSAI 93
PH_11 pfam15413
Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.
195-285 4.10e-04

Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.


Pssm-ID: 405988  Cd Length: 105  Bit Score: 39.49  E-value: 4.10e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809  195 KAGYCVKQGAvmKNWKRRYFLLDENSV-SYFKSDLDKEPLRMIplkEVHKVQECKQSDIMMRDNLFEV------------ 261
Cdd:pfam15413   1 IEGYLKKKGP--KTWKHRWFAVLRNGVlFYYKSEKMKVVKHVI---VLSNYIVGKLGTDIISGALFKIdnirsetsddll 75
                          90       100
                  ....*....|....*....|....*..
gi 573884809  262 ---VTTSRTFYIQADSPEDMHSWIKAI 285
Cdd:pfam15413  76 leiSTETKIFFLYGDNNEETYEWVEAL 102
PH_AtPH1 cd13276
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ...
23-110 4.45e-04

Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270095  Cd Length: 106  Bit Score: 39.61  E-value: 4.45e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809  23 GKFL----RRYFILdtREGSLVWYMDnpQNLPTGTENVGALKLTYISKVSDATKQRPKaEFCFVINAGMRKFFLQANDQQ 98
Cdd:cd13276    9 GEFIktwrRRWFVL--KQGKLFWFKE--PDVTPYSKPRGVIDLSKCLTVKSAEDATNK-ENAFELSTPEETFYFIADNEK 83
                         90
                 ....*....|..
gi 573884809  99 DLVEWVNVLNKA 110
Cdd:cd13276   84 EKEEWIGAIGRA 95
PH_DOCK-D cd13267
Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also ...
188-289 4.61e-04

Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also called Zizimin subfamily) consists of Dock9/Zizimin1, Dock10/Zizimin3, and Dock11/Zizimin2. DOCK-D has a N-terminal DUF3398 domain, a PH-like domain, a Dock Homology Region 1, DHR1 (also called CZH1), a C2 domain, and a C-terminal DHR2 domain (also called CZH2). Zizimin1 is enriched in the brain, lung, and kidney; zizimin2 is found in B and T lymphocytes, and zizimin3 is enriched in brain, lung, spleen and thymus. Zizimin1 functions in autoinhibition and membrane targeting. Zizimin2 is an immune-related and age-regulated guanine nucleotide exchange factor, which facilitates filopodial formation through activation of Cdc42, which results in activation of cell migration. No function has been determined for Zizimin3 to date. The N-terminal half of zizimin1 binds to the GEF domain through three distinct areas, including CZH1, to inhibit the interaction with Cdc42. In addition its PH domain binds phosphoinositides and mediates zizimin1 membrane targeting. DOCK is a family of proteins involved in intracellular signalling networks. They act as guanine nucleotide exchange factors for small G proteins of the Rho family, such as Rac and Cdc42. There are 4 subfamilies of DOCK family proteins based on their sequence homology: A-D. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270087  Cd Length: 126  Bit Score: 40.00  E-value: 4.61e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 188 AQDQAVIKAGYCVK---------QGAVMKNWKRRYFLLDENSV-----SYFKSDLDKEPLRMIPLKEVHKVQECKQsdim 253
Cdd:cd13267    1 SGESGITKEGYLYKgpenssdsfISLAMKSFKRRFFHLKQLVDgsyilEFYKDEKKKEAKGTIFLDSCTGVVQNSK---- 76
                         90       100       110
                 ....*....|....*....|....*....|....*..
gi 573884809 254 MRDNLFEV-VTTSRTFYIQADSPEDMHSWIKAISGAI 289
Cdd:cd13267   77 RRKFCFELrMQDKKSYVLAAESEAEMDEWISKLNKIL 113
PH_ASAP cd13251
ArfGAP with SH3 domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain; ASAPs ...
195-289 6.96e-04

ArfGAP with SH3 domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain; ASAPs (ASAP1, ASAP2, and ASAP3) function as an Arf-specific GAPs, participates in rhodopsin trafficking, is associated with tumor cell metastasis, modulates phagocytosis, promotes cell proliferation, facilitates vesicle budding, Golgi exocytosis, and regulates vesicle coat assembly via a Bin/Amphiphysin/Rvs domain. ASAPs contain an NH2-terminal BAR domain, a tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 (SH3) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270071  Cd Length: 108  Bit Score: 38.88  E-value: 6.96e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 195 KAGYCVKQ--GAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLK-EVHKVQECKQSdimmrdnlFEVVTTSRTFYIQ 271
Cdd:cd13251   12 KSGYLLKKseGKIRKVWQKRRCSIKDGFLTISHADENKPPAKLNLLTcQVKLVPEDKKC--------FDLISHNRTYHFQ 83
                         90
                 ....*....|....*...
gi 573884809 272 ADSPEDMHSWIKAISGAI 289
Cdd:cd13251   84 AEDENDANAWMSVLKNSK 101
PH_CpORP2-like cd13293
Cryptosporidium-like Oxysterol binding protein related protein 2 Pleckstrin homology (PH) ...
197-284 7.17e-04

Cryptosporidium-like Oxysterol binding protein related protein 2 Pleckstrin homology (PH) domain; There are 2 types of ORPs found in Cryptosporidium: CpORP1 and CpORP2. Cryptosporium differs from other apicomplexans like Plasmodium, Toxoplasma, and Eimeria which possess only a single long-type ORP consisting of an N-terminal PH domain followed by a C-terminal ligand binding (LB) domain. CpORP2 is like this, but CpORP1 differs and has a truncated N-terminus resulting in only having a LB domain present. The exact functions of these proteins are largely unknown though CpORP1 is thought to be involved in lipid transport across the parasitophorous vacuole membrane. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241447  Cd Length: 88  Bit Score: 38.46  E-value: 7.17e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 197 GYCVKQGAVMKNWKRRYFLLDENSVSYfkSDLDKEPLR-MIPLKeVHKVQECKQsdimmrDNL-FEVVTTSRTFYIQADS 274
Cdd:cd13293    3 GYLKKWTNIFNSWKPRYFILYPGILCY--SKQKGGPKKgTIHLK-ICDIRLVPD------DPLrIIINTGTNQLHLRASS 73
                         90
                 ....*....|
gi 573884809 275 PEDMHSWIKA 284
Cdd:cd13293   74 VEEKLKWYNA 83
PH_Ses cd13288
Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 ...
4-111 1.75e-03

Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 mammalian members: Ses1 and Ses2, which are also callled 7 kDa inositol polyphosphate phosphatase-interacting protein 1 and 2. They play a role in endocytic trafficking and are required for receptor recycling from endosomes, both to the trans-Golgi network and the plasma membrane. Members of this family form homodimers and heterodimers. Sesquipedalian interacts with inositol polyphosphate 5-phosphatase OCRL-1 (INPP5F) also known as Lowe oculocerebrorenal syndrome protein, a phosphatase enzyme that is involved in actin polymerization and is found in the trans-Golgi network and INPP5B. Sesquipedalian contains a single PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270105 [Multi-domain]  Cd Length: 120  Bit Score: 37.99  E-value: 1.75e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809   4 VDRQnricGFLDIEENENSGkFLRRYFILdtrEGSLVWYMDNPQNlptgTENVGALKLTYISKVSDATKQrpkaEFCFVI 83
Cdd:cd13288    8 VDKE----GYLWKKGERNTS-YQKRWFVL---KGNLLFYFEKKGD----REPLGVIVLEGCTVELAEDAE----PYAFAI 71
                         90       100       110
                 ....*....|....*....|....*....|.
gi 573884809  84 N---AGMRKFFLQANDQQDLVEWVNVLNKAT 111
Cdd:cd13288   72 RfdgPGARSYVLAAENQEDMESWMKALSRAS 102
PH_ASAP cd13251
ArfGAP with SH3 domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain; ASAPs ...
72-110 1.77e-03

ArfGAP with SH3 domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain; ASAPs (ASAP1, ASAP2, and ASAP3) function as an Arf-specific GAPs, participates in rhodopsin trafficking, is associated with tumor cell metastasis, modulates phagocytosis, promotes cell proliferation, facilitates vesicle budding, Golgi exocytosis, and regulates vesicle coat assembly via a Bin/Amphiphysin/Rvs domain. ASAPs contain an NH2-terminal BAR domain, a tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 (SH3) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270071  Cd Length: 108  Bit Score: 37.73  E-value: 1.77e-03
                         10        20        30
                 ....*....|....*....|....*....|....*....
gi 573884809  72 KQRPKAEFCFVINAGMRKFFLQANDQQDLVEWVNVLNKA 110
Cdd:cd13251   62 KLVPEDKKCFDLISHNRTYHFQAEDENDANAWMSVLKNS 100
PH_anillin cd01263
Anillin Pleckstrin homology (PH) domain; Anillin (Rhotekin/RTKN; also called PLEKHK/Pleckstrin ...
206-289 2.41e-03

Anillin Pleckstrin homology (PH) domain; Anillin (Rhotekin/RTKN; also called PLEKHK/Pleckstrin homology domain-containing family K) is an actin binding protein involved in cytokinesis. It interacts with GTP-bound Rho proteins and results in the inhibition of their GTPase activity. Dysregulation of the Rho signal transduction pathway has been implicated in many forms of cancer. Anillin proteins have a N-terminal HRI domain/ACC (anti-parallel coiled-coil) finger domain or Rho-binding domain binds small GTPases from the Rho family. The C-terminal PH domain helps target anillin to ectopic septin containing foci. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269964  Cd Length: 121  Bit Score: 37.64  E-value: 2.41e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 206 MKNWKRRYFLLDENSVSYFK--SDLDKEP------LRMIPLKEVHKVQEckqsDIMMRDNLFEVVT-------------T 264
Cdd:cd01263   17 LGAWHRRWCVLRGGYLSFWKypDDEEKKKpigsidLTKCITEKVEPAPR----ELCARPNTFLLETlrpaedddrddtnE 92
                         90       100
                 ....*....|....*....|....*
gi 573884809 265 SRTFYIQADSPEDMHSWIKAISGAI 289
Cdd:cd01263   93 KIRVLLSADTKEERIEWLSALNQTL 117
PH3_ARAP cd13256
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
211-285 2.87e-03

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 3; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the third PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270076  Cd Length: 110  Bit Score: 37.05  E-value: 2.87e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 211 RRYFLLDENSVSYFKSDLDKEPLRMIPLKE-----VHKvqeckqSDIMMRDNL---FEVVTTS-RTFYIQADSPEDMHSW 281
Cdd:cd13256   29 RRWCVLEDGFLSYYESERSPEPNGEIDVSEivclaVSP------PDTHPGDGFpftFELYLESeRLYLFGLETAEALHEW 102

                 ....
gi 573884809 282 IKAI 285
Cdd:cd13256  103 VKAI 106
PH_Skap1 cd13380
Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 ...
193-286 3.41e-03

Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 (also called Skap55/Src kinase-associated phosphoprotein of 55 kDa) and its partner, ADAP (adhesion and degranulation promoting adapter protein) help reorganize the cytoskeleton and/or promote integrin-mediated adhesion upon immunoreceptor activation. Skap1 is also involved in T Cell Receptor (TCR)-induced RapL-Rap1 complex formation and LFA-1 activation. Skap1 has an N-terminal coiled-coil conformation which is proposed to be involved in homodimer formation, a central PH domain and a C-terminal SH3 domain that associates with ADAP. The Skap1 PH domain plays a role in controlling integrin function via recruitment of ADAP-SKAP complexes to integrins as well as in controlling the ability of ADAP to interact with the CBM signalosome and regulate NF-kappaB. SKAP1 is necessary for RapL binding to membranes in a PH domain-dependent manner and the PI3K pathway. Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Skap55/Skap1, Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270180  Cd Length: 106  Bit Score: 36.76  E-value: 3.41e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 193 VIKAGYCVKQ----GAVMKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEVHKVQECKQSDIMMRDNLFEVVTTS-RT 267
Cdd:cd13380    1 ILKQGYLEKRskdhSFFGSEWQKRWCVLTNRAFYYYASEKSKQPKGGFLIKGYSAQMAPHLRKDSRRDSCFELTTPGrRT 80
                         90
                 ....*....|....*....
gi 573884809 268 FYIQADSPEDMHSWIKAIS 286
Cdd:cd13380   81 YQFTAASPSEARDWVDQIQ 99
PH_Osh1p_Osh2p_yeast cd13292
Yeast oxysterol binding protein homologs 1 and 2 Pleckstrin homology (PH) domain; Yeast Osh1p ...
197-289 3.83e-03

Yeast oxysterol binding protein homologs 1 and 2 Pleckstrin homology (PH) domain; Yeast Osh1p is proposed to function in postsynthetic sterol regulation, piecemeal microautophagy of the nucleus, and cell polarity establishment. Yeast Osh2p is proposed to function in sterol metabolism and cell polarity establishment. Both Osh1p and Osh2p contain 3 N-terminal ankyrin repeats, a PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. OSBP andOsh1p PH domains specifically localize to the Golgi apparatus in a PtdIns4P-dependent manner. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241446  Cd Length: 103  Bit Score: 36.52  E-value: 3.83e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 197 GYCVKQGAVMKNWKRRYFLLDENSVSYFKsDLDKEPLRM---IPLKEVHKVQECKQsdimmrDNLFEV---VTTSRTFYI 270
Cdd:cd13292    6 GYLKKWTNYAKGYKTRWFVLEDGVLSYYR-HQDDEGSACrgsINMKNARLVSDPSE------KLRFEVsskTSGSPKWYL 78
                         90
                 ....*....|....*....
gi 573884809 271 QADSPEDMHSWIKAISGAI 289
Cdd:cd13292   79 KANHPVEAARWIQALQKAI 97
PH_SKIP cd13309
SifA and kinesin-interacting protein Pleckstrin homology (PH) domain; SKIP (also called ...
209-286 3.90e-03

SifA and kinesin-interacting protein Pleckstrin homology (PH) domain; SKIP (also called PLEKHM2/Pleckstrin homology domain-containing family M member 2) is a soluble cytosolic protein that contains a RUN domain and a PH domain separated by a unstructured linker region. SKIP is a target of the Salmonella effector protein SifA and the SifA-SKIP complex regulates kinesin-1 on the bacterial vacuole. The PH domain of SKIP binds to the N-terminal region of SifA while the N-terminus of SKIP is proposed to bind the TPR domain of the kinesin light chain. The opposite side of the SKIP PH domain is proposed to bind phosphoinositides. TSifA, SKIP, SseJ, and RhoA family GTPases are also thought to promote host membrane tubulation. Recently, it was shown that the lysosomal GTPase Arl8 binds to the kinesin-1 linker SKIP and that both are required for the normal intracellular distribution of lysosomes. Interestingly, two kinesin light chain binding motifs (WD) in SKIP have now been identified to match a consensus sequence for a kinesin light chain binding site found in several proteins including calsyntenin-1/alcadein, caytaxin, and vaccinia virus A36. SKIP has also been shown to interact with Rab1A. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270119  Cd Length: 103  Bit Score: 36.59  E-value: 3.90e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 573884809 209 WKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEVHkVQECKQSDIMMRDNLFEVVTTSRTFY-IQADSPEDMHSWIKAIS 286
Cdd:cd13309   20 WKPGYFLLKNGVLYQYPDRSDRLPLLSISLGGEQ-CGGCRRINNTERPHTFELILTDRSSLeLAAPDEYEASEWLQSLC 97
PH-GRAM1_AGT26 cd13215
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, ...
22-110 4.28e-03

Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1; ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275402  Cd Length: 116  Bit Score: 36.83  E-value: 4.28e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809  22 SGKFLRRYFILdtREGSLVWYmDNPQNL--PTGTenvgaLKLTYISKVsDATKQRPKAEFCFVINAGMRKFFLQANDQQD 99
Cdd:cd13215   34 TLRYTRYWFVL--KGDTLSWY-NSSTDLyfPAGT-----IDLRYATSI-ELSKSNGEATTSFKIVTNSRTYKFKADSETS 104
                         90
                 ....*....|.
gi 573884809 100 LVEWVNVLNKA 110
Cdd:cd13215  105 ADEWVKALKKQ 115
PH1_FGD5_FGD6 cd13389
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6, N-terminal ...
193-304 4.85e-03

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6, N-terminal Pleckstrin Homology (PH) domain; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275424  Cd Length: 124  Bit Score: 36.86  E-value: 4.85e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 193 VIKAG-YCVKQGAVMK----NWKRRYFLL--D-------ENSVSYFKSDldkeplRMIPLK--EVHK--VQECKqsdimm 254
Cdd:cd13389    7 IVKPGrKLIKEGELMKvsrkEMQPRYFFLfnDcllyttpVQSSGMLKLN------NELPLSgmKVKLpeDEEYS------ 74
                         90       100       110       120       130
                 ....*....|....*....|....*....|....*....|....*....|
gi 573884809 255 rdNLFEVVTTSRTFYIQADSPEDMHSWIKAISGAIVAQRGPGRSAATMRQ 304
Cdd:cd13389   75 --NEFQIISTKRSFTLIASSEEERDEWVKALSRAIEEHTKKQRTFAENVS 122
PH_PLEKHJ1 cd13258
Pleckstrin homology domain containing, family J member 1 Pleckstrin homology (PH) domain; ...
203-288 5.01e-03

Pleckstrin homology domain containing, family J member 1 Pleckstrin homology (PH) domain; PLEKHJ1 (also called GNRPX2/Guanine nucleotide-releasing protein x ). It contains a single PH domain. Very little information is known about PLEKHJ1. PLEKHJ1 has been shown to interact with IKBKG (inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma) and KRT33B (keratin 33B). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270078  Cd Length: 123  Bit Score: 36.92  E-value: 5.01e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 203 GAVMKNWKRRYFLLDENSVSYFKSD---LDKEPLRMIPLKEVHKVQECKqSDIMmrdNLFEVV---TTSRTFYIQADSPE 276
Cdd:cd13258   30 PKKSEVFKERWFKLKGNLLFYFRTNefgDCSEPIGAIVLENCRVQMEEI-TEKP---FAFSIVfndEPEKKYIFSCRSEE 105
                         90
                 ....*....|..
gi 573884809 277 DMHSWIKAISGA 288
Cdd:cd13258  106 QCEQWIEALRQA 117
PH2_PH_fungal cd13299
Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal ...
193-285 8.00e-03

Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270111  Cd Length: 102  Bit Score: 35.68  E-value: 8.00e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 573884809 193 VIKAGY--CVKQGAVmKNWKRRYFLLDENSVSYFKSDLDKEPLRMIPLKEVHKVQECkqsDIMMRD--NLFEVVTTSRTF 268
Cdd:cd13299    6 VIEQGYlqVLKKKGV-NQWKKYWLVLRNRSLSFYKDQSEYSPVKIIPIDDIIDVVEL---DPLSKSkkWCLQIITPEKRI 81
                         90
                 ....*....|....*..
gi 573884809 269 YIQADSPEDMHSWIKAI 285
Cdd:cd13299   82 RFCADDEESLIKWLGAL 98
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH