phosphoinositide 3-kinase regulatory subunit 4 isoform X1 [Rattus norvegicus]
serine/threonine-protein kinase family protein( domain architecture ID 11599737)
serine/threonine-protein kinase family protein containing WD40 repeats, similar to human phosphoinositide 3-kinase regulatory subunit 4 (PIK3R4) and fungal vacuolar protein sorting-associated protein 15 (VPS15)
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
STKc_Vps15 | cd13980 | Catalytic domain of the Serine/Threonine kinase, Vacuolar protein sorting-associated protein ... |
25-320 | 3.50e-174 | ||||||
Catalytic domain of the Serine/Threonine kinase, Vacuolar protein sorting-associated protein 15; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Vps15 is a large protein consisting of an N-terminal kinase domain, a C-terminal WD-repeat containing domain, and an intermediate bridge domain that contain HEAT repeats. The kinase domain is necessary for the signaling functions of Vps15. Human Vps15 was previously called p150. It associates and regulates Vps34, also called Class III phosphoinositide 3-kinase (PI3K), which catalyzes the phosphorylation of D-myo-phosphatidylinositol (PtdIns). Vps34 is the only PI3K present in yeast. It plays an important role in the regulation of protein and vesicular trafficking and sorting, autophagy, trimeric G-protein signaling, and phagocytosis. The Vps15 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and PI3K. : Pssm-ID: 270882 [Multi-domain] Cd Length: 278 Bit Score: 517.96 E-value: 3.50e-174
|
||||||||||
WD40 | COG2319 | WD40 repeat [General function prediction only]; |
979-1357 | 1.79e-22 | ||||||
WD40 repeat [General function prediction only]; : Pssm-ID: 441893 [Multi-domain] Cd Length: 403 Bit Score: 101.53 E-value: 1.79e-22
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
STKc_Vps15 | cd13980 | Catalytic domain of the Serine/Threonine kinase, Vacuolar protein sorting-associated protein ... |
25-320 | 3.50e-174 | ||||||
Catalytic domain of the Serine/Threonine kinase, Vacuolar protein sorting-associated protein 15; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Vps15 is a large protein consisting of an N-terminal kinase domain, a C-terminal WD-repeat containing domain, and an intermediate bridge domain that contain HEAT repeats. The kinase domain is necessary for the signaling functions of Vps15. Human Vps15 was previously called p150. It associates and regulates Vps34, also called Class III phosphoinositide 3-kinase (PI3K), which catalyzes the phosphorylation of D-myo-phosphatidylinositol (PtdIns). Vps34 is the only PI3K present in yeast. It plays an important role in the regulation of protein and vesicular trafficking and sorting, autophagy, trimeric G-protein signaling, and phagocytosis. The Vps15 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and PI3K. Pssm-ID: 270882 [Multi-domain] Cd Length: 278 Bit Score: 517.96 E-value: 3.50e-174
|
||||||||||
WD40 | COG2319 | WD40 repeat [General function prediction only]; |
979-1357 | 1.79e-22 | ||||||
WD40 repeat [General function prediction only]; Pssm-ID: 441893 [Multi-domain] Cd Length: 403 Bit Score: 101.53 E-value: 1.79e-22
|
||||||||||
WD40 | cd00200 | WD40 domain, found in a number of eukaryotic proteins that cover a wide variety of functions ... |
985-1269 | 2.25e-17 | ||||||
WD40 domain, found in a number of eukaryotic proteins that cover a wide variety of functions including adaptor/regulatory modules in signal transduction, pre-mRNA processing and cytoskeleton assembly; typically contains a GH dipeptide 11-24 residues from its N-terminus and the WD dipeptide at its C-terminus and is 40 residues long, hence the name WD40; between GH and WD lies a conserved core; serves as a stable propeller-like platform to which proteins can bind either stably or reversibly; forms a propeller-like structure with several blades where each blade is composed of a four-stranded anti-parallel b-sheet; instances with few detectable copies are hypothesized to form larger structures by dimerization; each WD40 sequence repeat forms the first three strands of one blade and the last strand in the next blade; the last C-terminal WD40 repeat completes the blade structure of the first WD40 repeat to create the closed ring propeller-structure; residues on the top and bottom surface of the propeller are proposed to coordinate interactions with other proteins and/or small ligands; 7 copies of the repeat are present in this alignment. Pssm-ID: 238121 [Multi-domain] Cd Length: 289 Bit Score: 84.31 E-value: 2.25e-17
|
||||||||||
S_TKc | smart00220 | Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or ... |
109-309 | 4.87e-16 | ||||||
Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or threonine-specific kinase subfamily. Pssm-ID: 214567 [Multi-domain] Cd Length: 254 Bit Score: 79.50 E-value: 4.87e-16
|
||||||||||
SPS1 | COG0515 | Serine/threonine protein kinase [Signal transduction mechanisms]; |
104-301 | 9.67e-14 | ||||||
Serine/threonine protein kinase [Signal transduction mechanisms]; Pssm-ID: 440281 [Multi-domain] Cd Length: 482 Bit Score: 75.43 E-value: 9.67e-14
|
||||||||||
WD40 | smart00320 | WD40 repeats; Note that these repeats are permuted with respect to the structural repeats ... |
982-1021 | 1.58e-07 | ||||||
WD40 repeats; Note that these repeats are permuted with respect to the structural repeats (blades) of the beta propeller domain. Pssm-ID: 197651 [Multi-domain] Cd Length: 40 Bit Score: 48.85 E-value: 1.58e-07
|
||||||||||
WD40 | pfam00400 | WD domain, G-beta repeat; |
983-1021 | 2.85e-06 | ||||||
WD domain, G-beta repeat; Pssm-ID: 459801 [Multi-domain] Cd Length: 39 Bit Score: 45.03 E-value: 2.85e-06
|
||||||||||
PHA03211 | PHA03211 | serine/threonine kinase US3; Provisional |
107-263 | 4.97e-06 | ||||||
serine/threonine kinase US3; Provisional Pssm-ID: 223009 [Multi-domain] Cd Length: 461 Bit Score: 50.66 E-value: 4.97e-06
|
||||||||||
PknB_PASTA_kin | NF033483 | Stk1 family PASTA domain-containing Ser/Thr kinase; |
128-167 | 1.43e-04 | ||||||
Stk1 family PASTA domain-containing Ser/Thr kinase; Pssm-ID: 468045 [Multi-domain] Cd Length: 563 Bit Score: 46.33 E-value: 1.43e-04
|
||||||||||
Pkinase | pfam00069 | Protein kinase domain; |
240-309 | 9.51e-04 | ||||||
Protein kinase domain; Pssm-ID: 459660 [Multi-domain] Cd Length: 217 Bit Score: 42.23 E-value: 9.51e-04
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
STKc_Vps15 | cd13980 | Catalytic domain of the Serine/Threonine kinase, Vacuolar protein sorting-associated protein ... |
25-320 | 3.50e-174 | ||||||
Catalytic domain of the Serine/Threonine kinase, Vacuolar protein sorting-associated protein 15; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Vps15 is a large protein consisting of an N-terminal kinase domain, a C-terminal WD-repeat containing domain, and an intermediate bridge domain that contain HEAT repeats. The kinase domain is necessary for the signaling functions of Vps15. Human Vps15 was previously called p150. It associates and regulates Vps34, also called Class III phosphoinositide 3-kinase (PI3K), which catalyzes the phosphorylation of D-myo-phosphatidylinositol (PtdIns). Vps34 is the only PI3K present in yeast. It plays an important role in the regulation of protein and vesicular trafficking and sorting, autophagy, trimeric G-protein signaling, and phagocytosis. The Vps15 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and PI3K. Pssm-ID: 270882 [Multi-domain] Cd Length: 278 Bit Score: 517.96 E-value: 3.50e-174
|
||||||||||
WD40 | COG2319 | WD40 repeat [General function prediction only]; |
979-1357 | 1.79e-22 | ||||||
WD40 repeat [General function prediction only]; Pssm-ID: 441893 [Multi-domain] Cd Length: 403 Bit Score: 101.53 E-value: 1.79e-22
|
||||||||||
PKc | cd00180 | Catalytic domain of Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group ... |
32-310 | 7.79e-18 | ||||||
Catalytic domain of Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. PKs make up a large family of serine/threonine kinases (STKs), protein tyrosine kinases (PTKs), and dual-specificity PKs that phosphorylate both serine/threonine and tyrosine residues of target proteins. Majority of protein phosphorylation occurs on serine residues while only 1% occurs on tyrosine residues. Protein phosphorylation is a mechanism by which a wide variety of cellular proteins, such as enzymes and membrane channels, are reversibly regulated in response to certain stimuli. PKs often function as components of signal transduction pathways in which one kinase activates a second kinase, which in turn, may act on other kinases; this sequential action transmits a signal from the cell surface to target proteins, which results in cellular responses. The PK family is one of the largest known protein families with more than 100 homologous yeast enzymes and more than 500 human proteins. A fraction of PK family members are pseudokinases that lack crucial residues for catalytic activity. The mutiplicity of kinases allows for specific regulation according to substrate, tissue distribution, and cellular localization. PKs regulate many cellular processes including proliferation, division, differentiation, motility, survival, metabolism, cell-cycle progression, cytoskeletal rearrangement, immunity, and neuronal functions. Many kinases are implicated in the development of various human diseases including different types of cancer. The PK family is part of a larger superfamily that includes the catalytic domains of RIO kinases, aminoglycoside phosphotransferase, choline kinase, phosphoinositide 3-kinase (PI3K), and actin-fragmin kinase. Pssm-ID: 270622 [Multi-domain] Cd Length: 215 Bit Score: 83.86 E-value: 7.79e-18
|
||||||||||
WD40 | cd00200 | WD40 domain, found in a number of eukaryotic proteins that cover a wide variety of functions ... |
985-1269 | 2.25e-17 | ||||||
WD40 domain, found in a number of eukaryotic proteins that cover a wide variety of functions including adaptor/regulatory modules in signal transduction, pre-mRNA processing and cytoskeleton assembly; typically contains a GH dipeptide 11-24 residues from its N-terminus and the WD dipeptide at its C-terminus and is 40 residues long, hence the name WD40; between GH and WD lies a conserved core; serves as a stable propeller-like platform to which proteins can bind either stably or reversibly; forms a propeller-like structure with several blades where each blade is composed of a four-stranded anti-parallel b-sheet; instances with few detectable copies are hypothesized to form larger structures by dimerization; each WD40 sequence repeat forms the first three strands of one blade and the last strand in the next blade; the last C-terminal WD40 repeat completes the blade structure of the first WD40 repeat to create the closed ring propeller-structure; residues on the top and bottom surface of the propeller are proposed to coordinate interactions with other proteins and/or small ligands; 7 copies of the repeat are present in this alignment. Pssm-ID: 238121 [Multi-domain] Cd Length: 289 Bit Score: 84.31 E-value: 2.25e-17
|
||||||||||
S_TKc | smart00220 | Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or ... |
109-309 | 4.87e-16 | ||||||
Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or threonine-specific kinase subfamily. Pssm-ID: 214567 [Multi-domain] Cd Length: 254 Bit Score: 79.50 E-value: 4.87e-16
|
||||||||||
STKc_PknB_like | cd14014 | Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs ... |
109-311 | 1.18e-14 | ||||||
Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes many bacterial eukaryotic-type STKs including Staphylococcus aureus PknB (also called PrkC or Stk1), Bacillus subtilis PrkC, and Mycobacterium tuberculosis Pkn proteins (PknB, PknD, PknE, PknF, PknL, and PknH), among others. S. aureus PknB is the only eukaryotic-type STK present in this species, although many microorganisms encode for several such proteins. It is important for the survival and pathogenesis of S. aureus as it is involved in the regulation of purine and pyrimidine biosynthesis, cell wall metabolism, autolysis, virulence, and antibiotic resistance. M. tuberculosis PknB is essential for growth and it acts on diverse substrates including proteins involved in peptidoglycan synthesis, cell division, transcription, stress responses, and metabolic regulation. B. subtilis PrkC is located at the inner membrane of endospores and functions to trigger spore germination. Bacterial STKs in this subfamily show varied domain architectures. The well-characterized members such as S. aureus and M. tuberculosis PknB, and B. subtilis PrkC, contain an N-terminal cytosolic kinase domain, a transmembrane (TM) segment, and mutliple C-terminal extracellular PASTA domains. The PknB subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270916 [Multi-domain] Cd Length: 260 Bit Score: 75.70 E-value: 1.18e-14
|
||||||||||
SPS1 | COG0515 | Serine/threonine protein kinase [Signal transduction mechanisms]; |
104-301 | 9.67e-14 | ||||||
Serine/threonine protein kinase [Signal transduction mechanisms]; Pssm-ID: 440281 [Multi-domain] Cd Length: 482 Bit Score: 75.43 E-value: 9.67e-14
|
||||||||||
STKc_GSK3 | cd14137 | The catalytic domain of the Serine/Threonine Kinase, Glycogen Synthase Kinase 3; STKs catalyze ... |
30-304 | 9.12e-13 | ||||||
The catalytic domain of the Serine/Threonine Kinase, Glycogen Synthase Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GSK3 is a mutifunctional kinase involved in many cellular processes including cell division, proliferation, differentiation, adhesion, and apoptosis. In plants, GSK3 plays a role in the response to osmotic stress. In Caenorhabditis elegans, it plays a role in regulating normal oocyte-to-embryo transition and response to oxidative stress. In Chlamydomonas reinhardtii, GSK3 regulates flagellar length and assembly. In mammals, there are two isoforms, GSK3alpha and GSK3beta, which show both distinct and redundant functions. The two isoforms differ mainly in their N-termini. They are both involved in axon formation and in Wnt signaling.They play distinct roles in cardiogenesis, with GSKalpha being essential in cardiomyocyte survival, and GSKbeta regulating heart positioning and left-right symmetry. GSK3beta was first identified as a regulator of glycogen synthesis, but has since been determined to play other roles. It regulates the degradation of beta-catenin and IkB. Beta-catenin is the main effector of Wnt, which is involved in normal haematopoiesis and stem cell function. IkB is a central inhibitor of NF-kB, which is critical in maintaining leukemic cell growth. GSK3beta is enriched in the brain and is involved in regulating neuronal signaling pathways. It is implicated in the pathogenesis of many diseases including Type II diabetes, obesity, mood disorders, Alzheimer's disease, osteoporosis, and some types of cancer, among others. The GSK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271039 [Multi-domain] Cd Length: 293 Bit Score: 70.61 E-value: 9.12e-13
|
||||||||||
STKc_HAL4_like | cd13994 | Catalytic domain of Fungal Halotolerance protein 4-like Serine/Threonine kinases; STKs ... |
109-309 | 2.65e-12 | ||||||
Catalytic domain of Fungal Halotolerance protein 4-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of HAL4, Saccharomyces cerevisiae Ptk2/Stk2, and similar fungal proteins. Proteins in this subfamily are involved in regulating ion transporters. In budding and fission yeast, HAL4 promotes potassium ion uptake, which increases cellular resistance to other cations such as sodium, lithium, and calcium ions. HAL4 stabilizes the major high-affinity K+ transporter Trk1 at the plasma membrane under low K+ conditions, which prevents endocytosis and vacuolar degradation. Budding yeast Ptk2 phosphorylates and regulates the plasma membrane H+ ATPase, Pma1. The HAL4-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270896 [Multi-domain] Cd Length: 265 Bit Score: 68.49 E-value: 2.65e-12
|
||||||||||
STKc_CMGC | cd05118 | Catalytic domain of CMGC family Serine/Threonine Kinases; STKs catalyze the transfer of the ... |
109-309 | 4.90e-12 | ||||||
Catalytic domain of CMGC family Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The CMGC family consists of Cyclin-Dependent protein Kinases (CDKs), Mitogen-activated protein kinases (MAPKs) such as Extracellular signal-regulated kinase (ERKs), c-Jun N-terminal kinases (JNKs), and p38, and other kinases. CDKs belong to a large subfamily of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. MAPKs serve as important mediators of cellular responses to extracellular signals. They control critical cellular functions including differentiation, proliferation, migration, and apoptosis. They are also implicated in the pathogenesis of many diseases including multiple types of cancer, stroke, diabetes, and chronic inflammation. Other members of the CMGC family include casein kinase 2 (CK2), Dual-specificity tYrosine-phosphorylated and -Regulated Kinase (DYRK), Glycogen Synthase Kinase 3 (GSK3), among many others. The CMGC family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270688 [Multi-domain] Cd Length: 249 Bit Score: 67.64 E-value: 4.90e-12
|
||||||||||
STKc_PDK1 | cd05581 | Catalytic domain of the Serine/Threonine Kinase, Phosphoinositide-dependent kinase 1; STKs ... |
120-306 | 6.76e-11 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Phosphoinositide-dependent kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PDK1 carries an N-terminal catalytic domain and a C-terminal pleckstrin homology (PH) domain that binds phosphoinositides. It phosphorylates the activation loop of AGC kinases that are regulated by PI3K such as PKB, SGK, and PKC, among others, and is crucial for their activation. Thus, it contributes in regulating many processes including metabolism, growth, proliferation, and survival. PDK1 also has the ability to autophosphorylate and is constitutively active in mammalian cells. It is essential for normal embryo development and is important in regulating cell volume. The PDK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270733 [Multi-domain] Cd Length: 278 Bit Score: 64.54 E-value: 6.76e-11
|
||||||||||
PKc_DYRK | cd14210 | Catalytic domain of the protein kinase, Dual-specificity tYrosine-phosphorylated and ... |
109-259 | 3.46e-10 | ||||||
Catalytic domain of the protein kinase, Dual-specificity tYrosine-phosphorylated and -Regulated Kinase; Protein Kinases (PKs), Dual-specificity tYrosine-phosphorylated and -Regulated Kinase (DYRK) subfamily, catalytic (c) domain. Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. The DYRK subfamily is part of a larger superfamily that includes the catalytic domains of other protein S/T PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). DYRKs autophosphorylate themselves on tyrosine residues and phosphorylate their substrates exclusively on S/T residues. They play important roles in cell proliferation, differentiation, survival, and development. Vertebrates contain multiple DYRKs (DYRK1-4) and mammals contain two types of DYRK1 proteins, DYRK1A and DYRK1B. DYRK1A is involved in neuronal differentiation and is implicated in the pathogenesis of DS (Down syndrome). DYRK1B plays a critical role in muscle differentiation by regulating transcription, cell motility, survival, and cell cycle progression. It is overexpressed in many solid tumors where it acts as a tumor survival factor. DYRK2 promotes apoptosis in response to DNA damage by phosphorylating the tumor suppressor p53, while DYRK3 promotes cell survival by phosphorylating SIRT1 and promoting p53 deacetylation. DYRK4 is a testis-specific kinase that may function during spermiogenesis. Pssm-ID: 271112 [Multi-domain] Cd Length: 311 Bit Score: 62.95 E-value: 3.46e-10
|
||||||||||
STKc_CAMK | cd05117 | The catalytic domain of CAMK family Serine/Threonine Kinases; STKs catalyze the transfer of ... |
109-309 | 5.52e-10 | ||||||
The catalytic domain of CAMK family Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. There are several types of CaMKs including CaMKI, CaMKII, and CaMKIV. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. CaMKII is a signaling molecule that translates upstream calcium and reactive oxygen species (ROS) signals into downstream responses that play important roles in synaptic function and cardiovascular physiology. CAMKIV is implicated in regulating several transcription factors like CREB, MEF2, and retinoid orphan receptors, as well as in T-cell development and signaling. The CAMK family also consists of other related kinases including the Phosphorylase kinase Gamma subunit (PhKG), the C-terminal kinase domains of Ribosomal S6 kinase (RSK) and Mitogen and stress-activated kinase (MSK), Doublecortin-like kinase (DCKL), and the MAPK-activated protein kinases MK2, MK3, and MK5, among others. The CAMK family is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270687 [Multi-domain] Cd Length: 258 Bit Score: 61.72 E-value: 5.52e-10
|
||||||||||
STKc_PASK | cd14004 | Catalytic domain of the Serine/Threonine kinase, Per-ARNT-Sim (PAS) domain Kinase; STKs ... |
109-308 | 6.83e-10 | ||||||
Catalytic domain of the Serine/Threonine kinase, Per-ARNT-Sim (PAS) domain Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PASK (or PASKIN) is a nutrient and energy sensor and thus, plays an important role in maintaining cellular energy homeostasis. It coordinates the utilization of glucose in response to metabolic demand. It contains an N-terminal PAS domain which directly interacts and inhibits a C-terminal catalytic kinase domain. The PAS domain serves as a sensory module for different environmental signals such as light, redox state, and various metabolites. Binding of ligands to the PAS domain causes structural changes which leads to kinase activation and the phosphorylation of substrates to trigger the appropriate cellular response. The PASK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270906 [Multi-domain] Cd Length: 256 Bit Score: 61.25 E-value: 6.83e-10
|
||||||||||
WD40 | COG2319 | WD40 repeat [General function prediction only]; |
1106-1357 | 5.70e-09 | ||||||
WD40 repeat [General function prediction only]; Pssm-ID: 441893 [Multi-domain] Cd Length: 403 Bit Score: 59.92 E-value: 5.70e-09
|
||||||||||
STKc_Rad53_Cds1 | cd14098 | Catalytic domain of the yeast Serine/Threonine Kinases, Rad53 and Cds1; STKs catalyze the ... |
25-304 | 1.10e-08 | ||||||
Catalytic domain of the yeast Serine/Threonine Kinases, Rad53 and Cds1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Rad53 and Cds1 are the checkpoint kinase 2 (Chk2) homologs found in budding and fission yeast, respectively. They play a central role in the cell's response to DNA lesions to prevent genome rearrangements and maintain genome integrity. They are phosphorylated in response to DNA damage and incomplete replication, and are essential for checkpoint control. They help promote DNA repair by stalling the cell cycle prior to mitosis in the presence of DNA damage. The Rad53/Cds1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271000 [Multi-domain] Cd Length: 265 Bit Score: 57.87 E-value: 1.10e-08
|
||||||||||
PKc_DYRK_like | cd14133 | Catalytic domain of Dual-specificity tYrosine-phosphorylated and -Regulated Kinase-like ... |
107-309 | 1.24e-08 | ||||||
Catalytic domain of Dual-specificity tYrosine-phosphorylated and -Regulated Kinase-like protein kinases; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. This subfamily is composed of the dual-specificity DYRKs and YAK1, as well as the S/T kinases (STKs), HIPKs. DYRKs and YAK1 autophosphorylate themselves on tyrosine residues and phosphorylate their substrates exclusively on S/T residues. Proteins in this subfamily play important roles in cell proliferation, differentiation, survival, growth, and development. The DYRK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271035 [Multi-domain] Cd Length: 262 Bit Score: 57.66 E-value: 1.24e-08
|
||||||||||
STKc_MAK_like | cd07830 | Catalytic domain of Male germ cell-Associated Kinase-like Serine/Threonine Kinases; STKs ... |
105-310 | 1.50e-08 | ||||||
Catalytic domain of Male germ cell-Associated Kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of human MAK and MAK-related kinase (MRK), Saccharomyces cerevisiae Ime2p, Schizosaccharomyces pombe Mei4-dependent protein 3 (Mde3) and Pit1, Caenorhabditis elegans dyf-5, Arabidopsis thaliana MHK, and similar proteins. These proteins play important roles during meiosis. MAK is highly expressed in testicular cells specifically in the meiotic phase, but is not essential for spermatogenesis and fertility. It functions as a coactivator of the androgen receptor in prostate cells. MRK, also called Intestinal Cell Kinase (ICK), is expressed ubiquitously, with highest expression in the ovary and uterus. A missense mutation in MRK causes endocrine-cerebro-osteodysplasia, suggesting that this protein plays an important role in the development of many organs. MAK and MRK may be involved in regulating cell cycle and cell fate. Ime2p is a meiosis-specific kinase that is important during meiotic initiation and during the later stages of meiosis. Mde3 functions downstream of the transcription factor Mei-4 which is essential for meiotic prophase I. The MAK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270824 [Multi-domain] Cd Length: 283 Bit Score: 57.54 E-value: 1.50e-08
|
||||||||||
STKc_MEKK4 | cd06626 | Catalytic domain of the Protein Serine/Threonine Kinase, Mitogen-Activated Protein (MAP) ... |
131-309 | 3.17e-08 | ||||||
Catalytic domain of the Protein Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MEKK4 is a MAPK kinase kinase that phosphorylates and activates the c-Jun N-terminal kinase (JNK) and p38 MAPK signaling pathways by directly activating their respective MAPKKs, MKK4/MKK7 and MKK3/MKK6. JNK and p38 are collectively known as stress-activated MAPKs, as they are activated in response to a variety of environmental stresses and pro-inflammatory cytokines. MEKK4 also plays roles in the re-polarization of the actin cytoskeleton in response to osmotic stress, in the proper closure of the neural tube, in cardiovascular development, and in immune responses. The MEKK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270796 [Multi-domain] Cd Length: 265 Bit Score: 56.54 E-value: 3.17e-08
|
||||||||||
STKc_MOK | cd07831 | Catalytic domain of the Serine/Threonine Kinase, MAPK/MAK/MRK Overlapping Kinase; STKs ... |
109-309 | 4.06e-08 | ||||||
Catalytic domain of the Serine/Threonine Kinase, MAPK/MAK/MRK Overlapping Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MOK, also called Renal tumor antigen 1 (RAGE-1), is widely expressed and is enriched in testis, kidney, lung, and brain. It is expressed in approximately 50% of renal cell carcinomas (RCC) and is a potential target for immunotherapy. MOK is stabilized by its association with the HSP90 molecular chaperone. It is induced by the transcription factor Cdx2 and may be involved in regulating intestinal epithelial development and differentiation. The MOK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270825 [Multi-domain] Cd Length: 282 Bit Score: 56.13 E-value: 4.06e-08
|
||||||||||
STKc_CDKL | cd07833 | Catalytic domain of Cyclin-Dependent protein Kinase Like Serine/Threonine Kinases; STKs ... |
104-309 | 5.49e-08 | ||||||
Catalytic domain of Cyclin-Dependent protein Kinase Like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDKL1-5 and similar proteins. Some CDKLs, like CDKL1 and CDKL3, may be implicated in transformation and others, like CDKL3 and CDKL5, are associated with mental retardation when impaired. CDKL2 plays a role in learning and memory. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270827 [Multi-domain] Cd Length: 288 Bit Score: 55.79 E-value: 5.49e-08
|
||||||||||
STKc_NAK1_like | cd06917 | Catalytic domain of Fungal Nak1-like Serine/Threonine Kinases; STKs catalyze the transfer of ... |
123-309 | 5.72e-08 | ||||||
Catalytic domain of Fungal Nak1-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Schizosaccharomyces pombe Nak1, Saccharomyces cerevisiae Kic1p (kinase that interacts with Cdc31p) and related proteins. Nak1 (also called N-rich kinase 1), is required by fission yeast for polarizing the tips of actin cytoskeleton and is involved in cell growth, cell separation, cell morphology and cell-cycle progression. Kic1p is required by budding yeast for cell integrity and morphogenesis. Kic1p interacts with Cdc31p, the yeast homologue of centrin, and phosphorylates substrates in a Cdc31p-dependent manner. The Nak1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270822 [Multi-domain] Cd Length: 277 Bit Score: 55.94 E-value: 5.72e-08
|
||||||||||
WD40 | smart00320 | WD40 repeats; Note that these repeats are permuted with respect to the structural repeats ... |
982-1021 | 1.58e-07 | ||||||
WD40 repeats; Note that these repeats are permuted with respect to the structural repeats (blades) of the beta propeller domain. Pssm-ID: 197651 [Multi-domain] Cd Length: 40 Bit Score: 48.85 E-value: 1.58e-07
|
||||||||||
STKc_Chk2 | cd14084 | Catalytic domain of the Serine/Threonine kinase, Cell cycle Checkpoint Kinase 2; STKs catalyze ... |
110-311 | 3.27e-07 | ||||||
Catalytic domain of the Serine/Threonine kinase, Cell cycle Checkpoint Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Checkpoint Kinase 2 (Chk2) plays an important role in cellular responses to DNA double-strand breaks and related lesions. It is phosphorylated and activated by ATM kinase, resulting in its dissociation from sites of damage to phosphorylate downstream targets such as BRCA1, p53, cell cycle transcription factor E2F1, the promyelocytic leukemia protein (PML) involved in apoptosis, and CDC25 phosphatases, among others. Mutations in Chk2 is linked to a variety of cancers including familial breast cancer, myelodysplastic syndromes, prostate cancer, lung cancer, and osteosarcomas. Chk2 contains an N-terminal SQ/TQ cluster domain (SCD), a central forkhead-associated (FHA) domain, and a C-terminal catalytic kinase domain. The Chk2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270986 [Multi-domain] Cd Length: 275 Bit Score: 53.55 E-value: 3.27e-07
|
||||||||||
STKc_AMPK-like | cd14003 | Catalytic domain of AMP-activated protein kinase-like Serine/Threonine Kinases; STKs catalyze ... |
109-309 | 3.34e-07 | ||||||
Catalytic domain of AMP-activated protein kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The AMPK-like subfamily is composed of AMPK, MARK, BRSK, NUAK, MELK, SNRK, TSSK, and SIK, among others. LKB1 serves as a master upstream kinase that activates AMPK and most AMPK-like kinases. AMPK, also called SNF1 (sucrose non-fermenting1) in yeasts and SnRK1 (SNF1-related kinase1) in plants, is a heterotrimeric enzyme composed of a catalytic alpha subunit and two regulatory subunits, beta and gamma. It is a stress-activated kinase that serves as master regulator of glucose and lipid metabolism by monitoring carbon and energy supplies, via sensing the cell's AMP:ATP ratio. MARKs phosphorylate tau and related microtubule-associated proteins (MAPs), and regulates microtubule-based intracellular transport. They are involved in embryogenesis, epithelial cell polarization, cell signaling, and neuronal differentiation. BRSKs play important roles in establishing neuronal polarity. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. The AMPK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270905 [Multi-domain] Cd Length: 252 Bit Score: 53.29 E-value: 3.34e-07
|
||||||||||
STKc_IRAK | cd14066 | Catalytic domain of the Serine/Threonine kinases, Interleukin-1 Receptor Associated Kinases ... |
32-304 | 4.31e-07 | ||||||
Catalytic domain of the Serine/Threonine kinases, Interleukin-1 Receptor Associated Kinases and related STKs; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRAKs are involved in Toll-like receptor (TLR) and interleukin-1 (IL-1) signalling pathways, and are thus critical in regulating innate immune responses and inflammation. Some IRAKs may also play roles in T- and B-cell signaling, and adaptive immunity. Vertebrates contain four IRAKs (IRAK-1, -2, -3 (or -M), and -4) that display distinct functions and patterns of expression and subcellular distribution, and can differentially mediate TLR signaling. IRAK-1, -2, and -4 are ubiquitously expressed and are active kinases, while IRAK-M is only induced in monocytes and macrophages and is an inactive kinase. Variations in IRAK genes are linked to diverse diseases including infection, sepsis, cancer, and autoimmune diseases. IRAKs contain an N-terminal Death domain (DD), a proST region (rich in serines, prolines, and threonines), a central kinase domain (a pseudokinase domain in the case of IRAK3), and a C-terminal domain; IRAK-4 lacks the C-terminal domain. This subfamily includes plant receptor-like kinases (RLKs) including Arabidopsis thaliana BAK1 and CLAVATA1 (CLV1). BAK1 functions in BR (brassinosteroid)-regulated plant development and in pathways involved in plant resistance to pathogen infection and herbivore attack. CLV1, directly binds small signaling peptides, CLAVATA3 (CLV3) and CLAVATA3/EMBRYO SURROUNDING REGI0N (CLE), to restrict stem cell proliferation: the CLV3-CLV1-WUS (WUSCHEL) module influences stem cell maintenance in the shoot apical meristem, and the CLE40 (CLAVATA3/EMBRYO SURROUNDING REGION40) -ACR4 (CRINKLY4) -CLV1- WOX5 (WUSCHEL-RELATED HOMEOBOX5) module at the root apical meristem. The IRAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270968 [Multi-domain] Cd Length: 272 Bit Score: 53.05 E-value: 4.31e-07
|
||||||||||
STKc_NIM1 | cd14075 | Catalytic domain of the Serine/Threonine Kinase, NIM1; STKs catalyze the transfer of the ... |
110-204 | 5.17e-07 | ||||||
Catalytic domain of the Serine/Threonine Kinase, NIM1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NIM1 is a widely-expressed kinase belonging to the AMP-activated protein kinase (AMPK) subfamily. Although present in most tissues, NIM1 kinase activity is only observed in the brain and testis. NIM1 is capable of autophosphorylating and activating itself, but may be present in other tissues in the inactive form. The physiological function of NIM1 has yet to be elucidated. The NIM1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270977 [Multi-domain] Cd Length: 255 Bit Score: 52.73 E-value: 5.17e-07
|
||||||||||
STKc_NUAK | cd14073 | Catalytic domain of the Serine/Threonine Kinase, novel (nua) kinase family NUAK; STKs catalyze ... |
24-167 | 7.80e-07 | ||||||
Catalytic domain of the Serine/Threonine Kinase, novel (nua) kinase family NUAK; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NUAK proteins are classified as AMP-activated protein kinase (AMPK)-related kinases, which like AMPK are activated by the major tumor suppressor LKB1. Vertebrates contain two NUAK proteins, called NUAK1 and NUAK2. NUAK1, also called ARK5 (AMPK-related protein kinase 5), regulates cell proliferation and displays tumor suppression through direct interaction and phosphorylation of p53. It is also involved in cell senescence and motility. High NUAK1 expression is associated with invasiveness of nonsmall cell lung cancer (NSCLC) and breast cancer cells. NUAK2, also called SNARK (Sucrose, non-fermenting 1/AMP-activated protein kinase-related kinase), is involved in energy metabolism. It is activated by hyperosmotic stress, DNA damage, and nutrients such as glucose and glutamine. NUAK2-knockout mice develop obesity, altered serum lipid profiles, hyperinsulinaemia, hyperglycaemia, and impaired glucose tolerance. The NUAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270975 [Multi-domain] Cd Length: 254 Bit Score: 52.01 E-value: 7.80e-07
|
||||||||||
STKc_Aurora | cd14007 | Catalytic domain of the Serine/Threonine kinase, Aurora kinase; STKs catalyze the transfer of ... |
25-309 | 1.01e-06 | ||||||
Catalytic domain of the Serine/Threonine kinase, Aurora kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Aurora kinases are key regulators of mitosis and are essential for the accurate and equal division of genomic material from parent to daughter cells. Yeast contains only one Aurora kinase while most higher eukaryotes have two. Vertebrates contain at least 2 Aurora kinases (A and B); mammals contains a third Aurora kinase gene (C). Aurora-A regulates cell cycle events from the late S-phase through the M-phase including centrosome maturation, mitotic entry, centrosome separation, spindle assembly, chromosome alignment, cytokinesis, and mitotic exit. Aurora-A activation depends on its autophosphorylation and binding to the microtubule-associated protein TPX2. Aurora-B is most active at the transition during metaphase to the end of mitosis. It is critical for accurate chromosomal segregation, cytokinesis, protein localization to the centrosome and kinetochore, correct microtubule-kinetochore attachments, and regulation of the mitotic checkpoint. Aurora-C is mainly expressed in meiotically dividing cells; it was originally discovered in mice as a testis-specific STK called Aie1. Both Aurora-B and -C are chromosomal passenger proteins that can form complexes with INCENP and survivin, and they may have redundant cellular functions. The Aurora subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270909 [Multi-domain] Cd Length: 253 Bit Score: 51.71 E-value: 1.01e-06
|
||||||||||
STKc_CDK_like | cd07829 | Catalytic domain of Cyclin-Dependent protein Kinase-like Serine/Threonine Kinases; STKs ... |
128-309 | 1.29e-06 | ||||||
Catalytic domain of Cyclin-Dependent protein Kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. CDKs are partly regulated by their subcellular localization, which defines substrate phosphorylation and the resulting specific function. CDK1, CDK2, CDK4, and CDK6 have well-defined functions in the cell cycle, such as the regulation of the early G1 phase by CDK4 or CDK6, the G1/S phase transition by CDK2, or the entry of mitosis by CDK1. They also exhibit overlapping cyclin specificity and functions in certain conditions. Knockout mice with a single CDK deleted remain viable with specific phenotypes, showing that some CDKs can compensate for each other. For example, CDK4 can compensate for the loss of CDK6, however, double knockout mice with both CDK4 and CDK6 deleted die in utero. CDK8 and CDK9 are mainly involved in transcription while CDK5 is implicated in neuronal function. CDK7 plays essential roles in both the cell cycle as a CDK-Activating Kinase (CAK) and in transcription as a component of the general transcription factor TFIIH. The CDK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270823 [Multi-domain] Cd Length: 282 Bit Score: 51.71 E-value: 1.29e-06
|
||||||||||
STKc_NUAK2 | cd14161 | Catalytic domain of the Serine/Threonine Kinase, novel (nua) kinase family NUAK 2; STKs ... |
24-167 | 1.89e-06 | ||||||
Catalytic domain of the Serine/Threonine Kinase, novel (nua) kinase family NUAK 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NUAK proteins are classified as AMP-activated protein kinase (AMPK)-related kinases, which like AMPK are activated by the major tumor suppressor LKB1. Vertebrates contain two NUAK proteins, called NUAK1 and NUAK2. NUAK2, also called SNARK (Sucrose, non-fermenting 1/AMP-activated protein kinase-related kinase), is involved in energy metabolism. It is activated by hyperosmotic stress, DNA damage, and nutrients such as glucose and glutamine. NUAK2-knockout mice develop obesity, altered serum lipid profiles, hyperinsulinaemia, hyperglycaemia, and impaired glucose tolerance. NUAK2 is implicated in regulating actin stress fiber assembly through its association with myosin phosphatase Rho-interacting protein (MRIP), which leads to an increase in myosin regulatory light chain (MLC) phosphorylation. It is also associated with tumor growth, migration, and oncogenicity of melanoma cells. The NUAK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271063 [Multi-domain] Cd Length: 255 Bit Score: 50.72 E-value: 1.89e-06
|
||||||||||
STKc_CDKL1_4 | cd07847 | Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase Like 1 and 4; ... |
128-264 | 2.09e-06 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase Like 1 and 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDKL1, also called p42 KKIALRE, is a glial protein that is upregulated in gliosis. It is present in neuroblastoma and A431 human carcinoma cells, and may be implicated in neoplastic transformation. The function of CDKL4 is unknown. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL1/4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270837 [Multi-domain] Cd Length: 286 Bit Score: 51.22 E-value: 2.09e-06
|
||||||||||
PKc_YAK1 | cd14212 | Catalytic domain of the Dual-specificity protein kinase, YAK1; Dual-specificity PKs catalyze ... |
109-259 | 2.22e-06 | ||||||
Catalytic domain of the Dual-specificity protein kinase, YAK1; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. This subfamily is composed of proteins with similarity to Saccharomyces cerevisiae YAK1 (or Yak1p), a dual-specificity kinase that autophosphorylates at tyrosine residues and phosphorylates substrates on S/T residues. YAK1 phosphorylates and activates the transcription factors Hsf1 and Msn2, which play important roles in cellular homeostasis during stress conditions including heat shock, oxidative stress, and nutrient deficiency. It also phosphorylates the protein POP2, a component of a complex that regulates transcription, under glucose-deprived conditions. It functions as a part of a glucose-sensing system that is involved in controlling growth in yeast. The YAK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271114 [Multi-domain] Cd Length: 330 Bit Score: 51.48 E-value: 2.22e-06
|
||||||||||
WD40 | pfam00400 | WD domain, G-beta repeat; |
983-1021 | 2.85e-06 | ||||||
WD domain, G-beta repeat; Pssm-ID: 459801 [Multi-domain] Cd Length: 39 Bit Score: 45.03 E-value: 2.85e-06
|
||||||||||
STKc_CDK4_6_like | cd07838 | Catalytic domain of Cyclin-Dependent protein Kinase 4 and 6-like Serine/Threonine Kinases; ... |
126-264 | 3.86e-06 | ||||||
Catalytic domain of Cyclin-Dependent protein Kinase 4 and 6-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK4 and CDK6 partner with D-type cyclins to regulate the early G1 phase of the cell cycle. They are the first kinases activated by mitogenic signals to release cells from the G0 arrested state. CDK4 and CDK6 are both expressed ubiquitously, associate with all three D cyclins (D1, D2 and D3), and phosphorylate the retinoblastoma (pRb) protein. They are also regulated by the INK4 family of inhibitors which associate with either the CDK alone or the CDK/cyclin complex. CDK4 and CDK6 show differences in subcellular localization, sensitivity to some inhibitors, timing in activation, tumor selectivity, and possibly substrate profiles. Although CDK4 and CDK6 seem to show some redundancy, they also have discrete, nonoverlapping functions. CDK6 plays an important role in cell differentiation. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK4/6-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270831 [Multi-domain] Cd Length: 287 Bit Score: 50.35 E-value: 3.86e-06
|
||||||||||
PHA03211 | PHA03211 | serine/threonine kinase US3; Provisional |
107-263 | 4.97e-06 | ||||||
serine/threonine kinase US3; Provisional Pssm-ID: 223009 [Multi-domain] Cd Length: 461 Bit Score: 50.66 E-value: 4.97e-06
|
||||||||||
STKc_Nek9 | cd08221 | Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA) ... |
109-310 | 5.27e-06 | ||||||
Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 9; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek9, also called Nercc1, is primarily a cytoplasmic protein but can also localize in the nucleus. It is involved in modulating chromosome alignment and splitting during mitosis. It interacts with the gamma-tubulin ring complex and the Ran GTPase, and is implicated in microtubule organization. Nek9 associates with FACT (FAcilitates Chromatin Transcription) and modulates interphase progression. It also interacts with Nek6, and Nek7, during mitosis, resulting in their activation. Nek9 is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270860 [Multi-domain] Cd Length: 256 Bit Score: 49.35 E-value: 5.27e-06
|
||||||||||
WD40 | cd00200 | WD40 domain, found in a number of eukaryotic proteins that cover a wide variety of functions ... |
979-1068 | 5.61e-06 | ||||||
WD40 domain, found in a number of eukaryotic proteins that cover a wide variety of functions including adaptor/regulatory modules in signal transduction, pre-mRNA processing and cytoskeleton assembly; typically contains a GH dipeptide 11-24 residues from its N-terminus and the WD dipeptide at its C-terminus and is 40 residues long, hence the name WD40; between GH and WD lies a conserved core; serves as a stable propeller-like platform to which proteins can bind either stably or reversibly; forms a propeller-like structure with several blades where each blade is composed of a four-stranded anti-parallel b-sheet; instances with few detectable copies are hypothesized to form larger structures by dimerization; each WD40 sequence repeat forms the first three strands of one blade and the last strand in the next blade; the last C-terminal WD40 repeat completes the blade structure of the first WD40 repeat to create the closed ring propeller-structure; residues on the top and bottom surface of the propeller are proposed to coordinate interactions with other proteins and/or small ligands; 7 copies of the repeat are present in this alignment. Pssm-ID: 238121 [Multi-domain] Cd Length: 289 Bit Score: 49.64 E-value: 5.61e-06
|
||||||||||
STKc_Kin4 | cd14076 | Catalytic domain of the yeast Serine/Threonine Kinase, Kin4; STKs catalyze the transfer of the ... |
110-209 | 6.31e-06 | ||||||
Catalytic domain of the yeast Serine/Threonine Kinase, Kin4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Kin4 is a central component of the spindle position checkpoint (SPOC), which monitors spindle position and regulates the mitotic exit network (MEN). Kin4 associates with spindle pole bodies in mother cells to inhibit MEN signaling and delay mitosis until the anaphase nucleus is properly positioned along the mother-bud axis. Kin4 activity is regulated by both the bud neck-associated kinase Elm1 and protein phosphatase 2A. The Kin4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270978 [Multi-domain] Cd Length: 270 Bit Score: 49.40 E-value: 6.31e-06
|
||||||||||
STKc_GAK_like | cd13985 | Catalytic domain of cyclin G-Associated Kinase-like proteins; STKs catalyze the transfer of ... |
104-304 | 7.57e-06 | ||||||
Catalytic domain of cyclin G-Associated Kinase-like proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes cyclin G-Associated Kinase (GAK), Drosophila melanogaster Numb-Associated Kinase (NAK)-like proteins, and similar protein kinases. GAK plays regulatory roles in clathrin-mediated membrane trafficking, the maintenance of centrosome integrity and chromosome congression, neural patterning, survival of neurons, and immune responses. NAK plays a role in asymmetric cell division through its association with Numb. It also regulates the localization of Dlg, a protein essential for septate junction formation. The GAK-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270887 [Multi-domain] Cd Length: 272 Bit Score: 49.25 E-value: 7.57e-06
|
||||||||||
STKc_CDKL5 | cd07848 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase Like 5; STKs ... |
26-277 | 1.23e-05 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase Like 5; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Mutations in the gene encoding CDKL5, previously called STK9, are associated with early onset epilepsy and severe mental retardation [X-linked infantile spasm syndrome (ISSX) or West syndrome]. In addition, CDKL5 mutations also sometimes cause a phenotype similar to Rett syndrome (RTT), a progressive neurodevelopmental disorder. These pathogenic mutations are located in the N-terminal portion of the protein within the kinase domain. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270838 [Multi-domain] Cd Length: 287 Bit Score: 48.84 E-value: 1.23e-05
|
||||||||||
STKc_Pat1_like | cd13993 | Catalytic domain of Fungal Pat1-like Serine/Threonine kinases; STKs catalyze the transfer of ... |
110-202 | 1.46e-05 | ||||||
Catalytic domain of Fungal Pat1-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Schizosaccharomyces pombe Pat1 (also called Ran1), Saccharomyces cerevisiae VHS1 and KSP1, and similar fungal STKs. Pat1 blocks Mei2, an RNA-binding protein which is indispensable in the initiation of meiosis. Pat1 is inactivated and Mei2 activated, which initiates meiosis, under nutrient-deprived conditions through a signaling cascade involving Ste11. Meiosis induced by Pat1 inactivation may show different characteristics than normal meiosis including aberrant positioning of centromeres. VHS1 was identified in a screen for suppressors of cell cycle arrest at the G1/S transition, while KSP1 may be involved in regulating PRP20, which is required for mRNA export and maintenance of nuclear structure. The Pat1-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270895 [Multi-domain] Cd Length: 267 Bit Score: 48.12 E-value: 1.46e-05
|
||||||||||
STKc_AGC | cd05123 | Catalytic domain of AGC family Serine/Threonine Kinases; STKs catalyze the transfer of the ... |
126-302 | 1.79e-05 | ||||||
Catalytic domain of AGC family Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. AGC kinases regulate many cellular processes including division, growth, survival, metabolism, motility, and differentiation. Many are implicated in the development of various human diseases. Members of this family include cAMP-dependent Protein Kinase (PKA), cGMP-dependent Protein Kinase (PKG), Protein Kinase C (PKC), Protein Kinase B (PKB), G protein-coupled Receptor Kinase (GRK), Serum- and Glucocorticoid-induced Kinase (SGK), and 70 kDa ribosomal Protein S6 Kinase (p70S6K or S6K), among others. AGC kinases share an activation mechanism based on the phosphorylation of up to three sites: the activation loop (A-loop), the hydrophobic motif (HM) and the turn motif. Phosphorylation at the A-loop is required of most AGC kinases, which results in a disorder-to-order transition of the A-loop. The ordered conformation results in the access of substrates and ATP to the active site. A subset of AGC kinases with C-terminal extensions containing the HM also requires phosphorylation at this site. Phosphorylation at the HM allows the C-terminal extension to form an ordered structure that packs into the hydrophobic pocket of the catalytic domain, which then reconfigures the kinase into an active bi-lobed state. In addition, growth factor-activated AGC kinases such as PKB, p70S6K, RSK, MSK, PKC, and SGK, require phosphorylation at the turn motif (also called tail or zipper site), located N-terminal to the HM at the C-terminal extension. The AGC family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and Phosphoinositide 3-Kinase. Pssm-ID: 270693 [Multi-domain] Cd Length: 250 Bit Score: 47.90 E-value: 1.79e-05
|
||||||||||
WD40 | cd00200 | WD40 domain, found in a number of eukaryotic proteins that cover a wide variety of functions ... |
981-1169 | 1.89e-05 | ||||||
WD40 domain, found in a number of eukaryotic proteins that cover a wide variety of functions including adaptor/regulatory modules in signal transduction, pre-mRNA processing and cytoskeleton assembly; typically contains a GH dipeptide 11-24 residues from its N-terminus and the WD dipeptide at its C-terminus and is 40 residues long, hence the name WD40; between GH and WD lies a conserved core; serves as a stable propeller-like platform to which proteins can bind either stably or reversibly; forms a propeller-like structure with several blades where each blade is composed of a four-stranded anti-parallel b-sheet; instances with few detectable copies are hypothesized to form larger structures by dimerization; each WD40 sequence repeat forms the first three strands of one blade and the last strand in the next blade; the last C-terminal WD40 repeat completes the blade structure of the first WD40 repeat to create the closed ring propeller-structure; residues on the top and bottom surface of the propeller are proposed to coordinate interactions with other proteins and/or small ligands; 7 copies of the repeat are present in this alignment. Pssm-ID: 238121 [Multi-domain] Cd Length: 289 Bit Score: 48.10 E-value: 1.89e-05
|
||||||||||
STKc_PhKG2 | cd14181 | Catalytic domain of the Serine/Threonine Kinase, Phosphorylase kinase Gamma 2 subunit; STKs ... |
100-310 | 4.30e-05 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Phosphorylase kinase Gamma 2 subunit; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Phosphorylase kinase (PhK) catalyzes the phosphorylation of inactive phosphorylase b to form the active phosphorylase a. It coordinates hormonal, metabolic, and neuronal signals to initiate the breakdown of glycogen stores, which enables the maintenance of blood-glucose homeostasis during fasting, and is also used as a source of energy for muscle contraction. PhK is one of the largest and most complex protein kinases, composed of a heterotetramer containing four molecules each of four subunit types: one catalytic (gamma) and three regulatory (alpha, beta, and delta). The gamma 2 subunit (PhKG2) is also referred to as the testis/liver gamma isoform. Mutations in its gene cause autosomal-recessive glycogenosis of the liver. The gamma subunit, when isolated, is constitutively active and does not require phosphorylation of the A-loop for activity. The regulatory subunits restrain this kinase activity until signals are received to relieve this inhibition. For example, the kinase is activated in response to hormonal stimulation, after autophosphorylation or phosphorylation by cAMP-dependent kinase of the alpha and beta subunits. The high-affinity binding of ADP to the beta subunit also stimulates kinase activity, whereas calcium relieves inhibition by binding to the delta (calmodulin) subunit. The PhKG2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271083 [Multi-domain] Cd Length: 279 Bit Score: 46.89 E-value: 4.30e-05
|
||||||||||
STKc_BRSK1_2 | cd14081 | Catalytic domain of Brain-specific serine/threonine-protein kinases 1 and 2; STKs catalyze the ... |
26-309 | 4.73e-05 | ||||||
Catalytic domain of Brain-specific serine/threonine-protein kinases 1 and 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BRSK1, also called SAD-B or SAD1 (Synapses of Amphids Defective homolog 1), and BRSK2, also called SAD-A, are highly expressed in mammalian forebrain. They play important roles in establishing neuronal polarity. BRSK1/2 double knock-out mice die soon after birth, showing thin cerebral cortices due to disordered subplate layers and neurons that lack distinct axons and dendrites. BRSK1 regulates presynaptic neurotransmitter release. Its activity fluctuates during cell cysle progression and it acts as a regulator of centrosome duplication. BRSK2 is also abundant in pancreatic islets, where it is involved in the regulation of glucose-stimulated insulin secretion. The BRSK1/2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270983 [Multi-domain] Cd Length: 255 Bit Score: 46.48 E-value: 4.73e-05
|
||||||||||
STKc_TSSK4-like | cd14162 | Catalytic domain of testis-specific serine/threonine kinase 4 and similar proteins; STKs ... |
110-167 | 5.37e-05 | ||||||
Catalytic domain of testis-specific serine/threonine kinase 4 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK4, also called TSSK5, is expressed in testis from haploid round spermatids to mature spermatozoa. It phosphorylates Cre-Responsive Element Binding protein (CREB), facilitating the binding of CREB to the specific cis cAMP responsive element (CRE), which is important in activating genes related to germ cell differentiation. Mutations in the human TSSK4 gene is associated with infertile Chinese men with impaired spermatogenesis. The TSSK4-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271064 [Multi-domain] Cd Length: 259 Bit Score: 46.52 E-value: 5.37e-05
|
||||||||||
STKc_TSSK-like | cd14080 | Catalytic domain of testis-specific serine/threonine kinases and similar proteins; STKs ... |
125-167 | 6.20e-05 | ||||||
Catalytic domain of testis-specific serine/threonine kinases and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK1 and TSSK2 are expressed specifically in meiotic and postmeiotic spermatogenic cells, respectively. TSSK3 has been reported to be expressed in the interstitial Leydig cells of adult testis. TSSK4, also called TSSK5, is expressed in testis from haploid round spermatids to mature spermatozoa. TSSK6, also called SSTK, is expressed at the head of elongated sperm. TSSK1/TSSK2 double knock-out and TSSK6 null mice are sterile without manifesting other defects, making these kinases viable targets for male contraception. The TSSK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270982 [Multi-domain] Cd Length: 262 Bit Score: 46.41 E-value: 6.20e-05
|
||||||||||
STKc_PIM | cd14005 | Catalytic domain of the Serine/Threonine kinase, Proviral Integration Moloney virus (PIM) ... |
109-157 | 6.39e-05 | ||||||
Catalytic domain of the Serine/Threonine kinase, Proviral Integration Moloney virus (PIM) kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The PIM gene locus was discovered as a result of the cloning of retroviral intergration sites in murine Moloney leukemia virus, leading to the identification of PIM kinases. They are constitutively active STKs with a broad range of cellular targets and are overexpressed in many haematopoietic malignancies and solid cancers. Vertebrates contain three distinct PIM kinase genes (PIM1-3); each gene may result in mutliple protein isoforms. There are two PIM1 and three PIM2 isoforms as a result of alternative translation initiation sites, while there is only one PIM3 protein. Compound knockout mice deficient of all three PIM kinases that survive the perinatal period show a profound reduction in body size, indicating that PIMs are important for body growth. The PIM subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270907 [Multi-domain] Cd Length: 255 Bit Score: 46.08 E-value: 6.39e-05
|
||||||||||
PknB_PASTA_kin | NF033483 | Stk1 family PASTA domain-containing Ser/Thr kinase; |
128-167 | 1.43e-04 | ||||||
Stk1 family PASTA domain-containing Ser/Thr kinase; Pssm-ID: 468045 [Multi-domain] Cd Length: 563 Bit Score: 46.33 E-value: 1.43e-04
|
||||||||||
WD40 | cd00200 | WD40 domain, found in a number of eukaryotic proteins that cover a wide variety of functions ... |
1176-1357 | 1.56e-04 | ||||||
WD40 domain, found in a number of eukaryotic proteins that cover a wide variety of functions including adaptor/regulatory modules in signal transduction, pre-mRNA processing and cytoskeleton assembly; typically contains a GH dipeptide 11-24 residues from its N-terminus and the WD dipeptide at its C-terminus and is 40 residues long, hence the name WD40; between GH and WD lies a conserved core; serves as a stable propeller-like platform to which proteins can bind either stably or reversibly; forms a propeller-like structure with several blades where each blade is composed of a four-stranded anti-parallel b-sheet; instances with few detectable copies are hypothesized to form larger structures by dimerization; each WD40 sequence repeat forms the first three strands of one blade and the last strand in the next blade; the last C-terminal WD40 repeat completes the blade structure of the first WD40 repeat to create the closed ring propeller-structure; residues on the top and bottom surface of the propeller are proposed to coordinate interactions with other proteins and/or small ligands; 7 copies of the repeat are present in this alignment. Pssm-ID: 238121 [Multi-domain] Cd Length: 289 Bit Score: 45.40 E-value: 1.56e-04
|
||||||||||
STKc_NAK_like | cd14037 | Catalytic domain of Numb-Associated Kinase (NAK)-like Serine/Threonine kinases; STKs catalyze ... |
112-301 | 1.61e-04 | ||||||
Catalytic domain of Numb-Associated Kinase (NAK)-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Drosophila melanogaster NAK, human BMP-2-inducible protein kinase (BMP2K or BIKe) and similar vertebrate proteins, as well as the Saccharomyces cerevisiae proteins Prk1, Actin-regulating kinase 1 (Ark1), and Akl1. NAK was the first characterized member of this subfamily. It plays a role in asymmetric cell division through its association with Numb. It also regulates the localization of Dlg, a protein essential for septate junction formation. BMP2K contains a nuclear localization signal and a kinase domain that is capable of phosphorylating itself and myelin basic protein. The expression of the BMP2K gene is increase during BMP-2-induced osteoblast differentiation. It may function to control the rate of differentiation. Prk1, Ark1, and Akl1 comprise a subfamily of yeast proteins that are important regulators of the actin cytoskeleton and endocytosis. They share an N-terminal kinase domain but no significant homology in other regions of their sequences. The NAK-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270939 [Multi-domain] Cd Length: 277 Bit Score: 44.97 E-value: 1.61e-04
|
||||||||||
STKc_MSK2_N | cd05614 | N-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated ... |
110-258 | 1.91e-04 | ||||||
N-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MSK2 and MSK1 play nonredundant roles in activating histone H3 kinases, which play pivotal roles in compaction of the chromatin fiber. MSK2 is the required H3 kinase in response to stress stimuli and activation of the p38 MAPK pathway. MSK2 also plays a role in the pathogenesis of psoriasis. MSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family, similar to 90 kDa ribosomal protein S6 kinases (RSKs). MSKs are activated by two major signaling cascades, the Ras-MAPK and p38 stress kinase pathways, which trigger phosphorylation in the activation loop (A-loop) of the CTD of MSK. The active CTD phosphorylates the hydrophobic motif (HM) of NTD, which facilitates the phosphorylation of the A-loop and activates the NTD, which in turn phosphorylates downstream targets. The MSK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270765 [Multi-domain] Cd Length: 332 Bit Score: 45.30 E-value: 1.91e-04
|
||||||||||
STKc_Kin1_2 | cd14077 | Catalytic domain of Kin1, Kin2, and simlar Serine/Threonine Kinases; STKs catalyze the ... |
100-167 | 3.07e-04 | ||||||
Catalytic domain of Kin1, Kin2, and simlar Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of yeast Kin1, Kin2, and similar proteins. Fission yeast Kin1 is a membrane-associated kinase that is involved in regulating cell surface cohesiveness during interphase. It also plays a role during mitosis, linking actomyosin ring assembly with septum synthesis and membrane closure to ensure separation of daughter cells. Budding yeast Kin1 and Kin2 act downstream of the Rab-GTPase Sec4 and are associated with the exocytic apparatus; they play roles in the secretory pathway. The Kin1/2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270979 [Multi-domain] Cd Length: 267 Bit Score: 44.36 E-value: 3.07e-04
|
||||||||||
PKc_STE | cd05122 | Catalytic domain of STE family Protein Kinases; PKs catalyze the transfer of the ... |
123-309 | 3.70e-04 | ||||||
Catalytic domain of STE family Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. This family is composed of STKs, and some dual-specificity PKs that phosphorylate both threonine and tyrosine residues of target proteins. Most members are kinases involved in mitogen-activated protein kinase (MAPK) signaling cascades, acting as MAPK kinases (MAPKKs), MAPKK kinases (MAPKKKs), or MAPKKK kinases (MAP4Ks). The MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The pathways involve a triple kinase core cascade comprising of the MAPK, which is phosphorylated and activated by a MAPKK, which itself is phosphorylated and activated by a MAPKKK. Each MAPK cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAPKKK to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. Other STE family members include p21-activated kinases (PAKs) and class III myosins, among others. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. Class III myosins are motor proteins containing an N-terminal kinase catalytic domain and a C-terminal actin-binding domain, which can phosphorylate several cytoskeletal proteins, conventional myosin regulatory light chains, as well as autophosphorylate the C-terminal motor domain. They play an important role in maintaining the structural integrity of photoreceptor cell microvilli. The STE family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270692 [Multi-domain] Cd Length: 254 Bit Score: 43.73 E-value: 3.70e-04
|
||||||||||
STKc_CK2_alpha | cd14132 | Catalytic subunit (alpha) of the Serine/Threonine Kinase, Casein Kinase 2; STKs catalyze the ... |
118-259 | 4.07e-04 | ||||||
Catalytic subunit (alpha) of the Serine/Threonine Kinase, Casein Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CK2 is a tetrameric protein with two catalytic (alpha) and two regulatory (beta) subunits. It is constitutively active and ubiquitously expressed, and is found in the cytoplasm, nucleus, as well as in the plasma membrane. It phosphorylates a wide variety of substrates including gylcogen synthase, cell cycle proteins, nuclear proteins (e.g. DNA topoisomerase II), and ion channels (e.g. ENaC), among others. It may be considered a master kinase controlling the activity or lifespan of many other kinases and exerting its effect over cell fate, gene expression, protein synthesis and degradation, and viral infection. CK2 is implicated in every stage of the cell cycle and is required for cell cycle progression. It plays crucial roles in cell differentiation, proliferation, and survival, and is thus implicated in cancer. CK2 is not an oncogene by itself but elevated CK2 levels create an environment that enhances the survival of tumor cells. The CK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271034 [Multi-domain] Cd Length: 306 Bit Score: 44.07 E-value: 4.07e-04
|
||||||||||
STKc_IRE1 | cd13982 | Catalytic domain of the Serine/Threonine kinase, Inositol-requiring protein 1; STKs catalyze ... |
131-309 | 4.74e-04 | ||||||
Catalytic domain of the Serine/Threonine kinase, Inositol-requiring protein 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRE1, also called Endoplasmic reticulum (ER)-to-nucleus signaling protein (or ERN), is an ER-localized type I transmembrane protein with kinase and endoribonuclease domains in the cytoplasmic side. It acts as an ER stress sensor and is the oldest and most conserved component of the unfolded protein response (UPR) in eukaryotes. The UPR is activated when protein misfolding is detected in the ER in order to decrease the synthesis of new proteins and increase the capacity of the ER to cope with the stress. During ER stress, IRE1 dimerizes and forms oligomers, allowing the kinase domain to undergo trans-autophosphorylation. This leads to a conformational change that stimulates its endoribonuclease activity and results in the cleavage of its mRNA substrate, HAC1 in yeast and XBP1 in metazoans, promoting a splicing event that enables translation into a transcription factor which activates the UPR. Mammals contain two IRE1 proteins, IRE1alpha (or ERN1) and IRE1beta (or ERN2). The Ire1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270884 [Multi-domain] Cd Length: 269 Bit Score: 43.80 E-value: 4.74e-04
|
||||||||||
STKc_MSK_N | cd05583 | N-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated ... |
110-206 | 5.28e-04 | ||||||
N-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. MSKs are activated by two major signaling cascades, the Ras-MAPK and p38 stress kinase pathways, in response to various stimuli such as growth factors, hormones, neurotransmitters, cellular stress, and pro-inflammatory cytokines. This triggers phosphorylation in the activation loop (A-loop) of the CTD of MSK. The active CTD phosphorylates the hydrophobic motif (HM) in the C-terminal extension of NTD, which facilitates the phosphorylation of the A-loop and activates the NTD, which in turn phosphorylates downstream targets. MSKs are predominantly nuclear proteins. They are widely expressed in many tissues including heart, brain, lung, liver, kidney, and pancreas. There are two isoforms of MSK, called MSK1 and MSK2. The MSK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270735 [Multi-domain] Cd Length: 268 Bit Score: 43.54 E-value: 5.28e-04
|
||||||||||
STKc_SGK1 | cd05602 | Catalytic domain of the Protein Serine/Threonine Kinase, Serum- and Glucocorticoid-induced ... |
25-316 | 7.50e-04 | ||||||
Catalytic domain of the Protein Serine/Threonine Kinase, Serum- and Glucocorticoid-induced Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SGK1 is ubiquitously expressed and is under transcriptional control of numerous stimuli including cell stress (cell shrinkage), serum, hormones (gluco- and mineralocorticoids), gonadotropins, growth factors, interleukin-6, and other cytokines. It plays roles in sodium retention and potassium elimination in the kidney, nutrient transport, salt sensitivity, memory consolidation, and cardiac repolarization. A common SGK1 variant is associated with increased blood pressure and body weight. SGK1 may also contribute to tumor growth, neurodegeneration, fibrosing disease, and ischemia. The SGK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270753 [Multi-domain] Cd Length: 339 Bit Score: 43.47 E-value: 7.50e-04
|
||||||||||
STKc_SnRK3 | cd14663 | Catalytic domain of the Serine/Threonine Kinases, Sucrose nonfermenting 1-related protein ... |
25-206 | 7.64e-04 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Sucrose nonfermenting 1-related protein kinase subfamily 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The SnRKs form three different subfamilies designated SnRK1-3. SnRK3 is represented in this cd. The SnRK3 group contains members also known as CBL-interacting protein kinase, salt overly sensitive 2, SOS3-interacting proteins and protein kinase S. These kinases interact with calcium-binding proteins such as SOS3, SCaBPs, and CBL proteins, and are involved in responses to salt stress and in sugar and ABA signaling. The SnRKs belong to a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271133 [Multi-domain] Cd Length: 256 Bit Score: 42.78 E-value: 7.64e-04
|
||||||||||
STKc_ASK | cd06624 | Catalytic domain of the Serine/Threonine Kinase, Apoptosis signal-regulating kinase; STKs ... |
128-261 | 8.01e-04 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Apoptosis signal-regulating kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this subfamily are mitogen-activated protein kinase (MAPK) kinase kinases (MAPKKKs or MKKKs) and include ASK1, ASK2, and MAPKKK15. ASK1 (also called MAPKKK5) functions in the c-Jun N-terminal kinase (JNK) and p38 MAPK signaling pathways by directly activating their respective MAPKKs, MKK4/MKK7 and MKK3/MKK6. It plays important roles in cytokine and stress responses, as well as in reactive oxygen species-mediated cellular responses. ASK1 is implicated in various diseases mediated by oxidative stress including inschemic heart disease, hypertension, vessel injury, brain ischemia, Fanconi anemia, asthma, and pulmonary edema, among others. ASK2 (also called MAPKKK6) functions only in a heteromeric complex with ASK1, and can activate ASK1 by direct phosphorylation. The function of MAPKKK15 is still unknown. The ASK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270794 [Multi-domain] Cd Length: 268 Bit Score: 42.78 E-value: 8.01e-04
|
||||||||||
Pkinase | pfam00069 | Protein kinase domain; |
240-309 | 9.51e-04 | ||||||
Protein kinase domain; Pssm-ID: 459660 [Multi-domain] Cd Length: 217 Bit Score: 42.23 E-value: 9.51e-04
|
||||||||||
STKc_AMPK_alpha | cd14079 | Catalytic domain of the Alpha subunit of the Serine/Threonine Kinase, AMP-activated protein ... |
110-167 | 9.52e-04 | ||||||
Catalytic domain of the Alpha subunit of the Serine/Threonine Kinase, AMP-activated protein kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. AMPK, also called SNF1 (sucrose non-fermenting1) in yeasts and SnRK1 (SNF1-related kinase1) in plants, is a heterotrimeric enzyme composed of a catalytic alpha subunit and two regulatory subunits, beta and gamma. It is a stress-activated kinase that serves as master regulator of glucose and lipid metabolism by monitoring carbon and energy supplies, via sensing the cell's AMP:ATP ratio. In response to decreased ATP levels, it enhances energy-producing processes and inhibits energy-consuming pathways. Once activated, AMPK phosphorylates a broad range of downstream targets, with effects in carbohydrate metabolism and uptake, lipid and fatty acid biosynthesis, carbon energy storage, and inflammation, among others. Defects in energy homeostasis underlie many human diseases including Type 2 diabetes, obesity, heart disease, and cancer. As a result, AMPK has emerged as a therapeutic target in the treatment of these diseases. The AMPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270981 [Multi-domain] Cd Length: 256 Bit Score: 42.64 E-value: 9.52e-04
|
||||||||||
STKc_CaMKI_alpha | cd14167 | Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase ... |
22-310 | 9.64e-04 | ||||||
Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type I alpha; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. The CaMK family includes CaMKI, CaMKII, CaMKIV, and CaMK kinase (CaMKK). In vertebrates, there are four CaMKI proteins encoded by different genes (alpha, beta, gamma, and delta), each producing at least one variant. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. In addition, they may be involved in osteoclast differentiation and bone resorption. The CaMKI-alpha subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271069 [Multi-domain] Cd Length: 263 Bit Score: 42.71 E-value: 9.64e-04
|
||||||||||
STKc_obscurin_rpt2 | cd14110 | Catalytic kinase domain, second repeat, of the Giant Serine/Threonine Kinase Obscurin; STKs ... |
109-183 | 1.08e-03 | ||||||
Catalytic kinase domain, second repeat, of the Giant Serine/Threonine Kinase Obscurin; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Obscurin, approximately 800 kDa in size, is one of three giant proteins expressed in vetebrate striated muscle, together with titin and nebulin. It is a multidomain protein composed of tandem adhesion and signaling domains, including 49 immunoglobulin (Ig) and 2 fibronectin type III (FN3) domains at the N-terminus followed by a more complex region containing more Ig domains, a conserved SH3 domain near a RhoGEF and PH domains, non-modular regions, as well as IQ and phosphorylation motifs. The obscurin gene also encode two kinase domains, which are not expressed as part of the 800 kDa protein, but as a smaller, alternatively spliced product present mainly in the heart muscle, also called obscurin-MLCK. Obscurin is localized at the peripheries of Z-disks and M-lines, where it is able to communicate with the surrounding myoplasm. It interacts with diverse proteins including sAnk1, myosin, titin, and MyBP-C. It may act as a scaffold for the assembly of elements of the contractile apparatus. The obscurin subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271012 [Multi-domain] Cd Length: 257 Bit Score: 42.60 E-value: 1.08e-03
|
||||||||||
STKc_SIK | cd14071 | Catalytic domain of the Serine/Threonine Kinases, Salt-Inducible kinases; STKs catalyze the ... |
110-202 | 1.90e-03 | ||||||
Catalytic domain of the Serine/Threonine Kinases, Salt-Inducible kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SIKs are part of a complex network that regulates Na,K-ATPase to maintain sodium homeostasis and blood pressure. Vertebrates contain three forms of SIKs (SIK1-3) from three distinct genes, which display tissue-specific effects. SIK1, also called SNF1LK, controls steroidogenic enzyme production in adrenocortical cells. In the brain, both SIK1 and SIK2 regulate energy metabolism. SIK2, also called QIK or SNF1LK2, is involved in the regulation of gluconeogenesis in the liver and lipogenesis in adipose tissues, where it phosphorylates the insulin receptor substrate-1. In the liver, SIK3 (also called QSK) regulates cholesterol and bile acid metabolism. In addition, SIK2 plays an important role in the initiation of mitosis and regulates the localization of C-Nap1, a centrosome linker protein. The SIK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270973 [Multi-domain] Cd Length: 253 Bit Score: 41.61 E-value: 1.90e-03
|
||||||||||
STKc_LKB1_CaMKK | cd14008 | Catalytic domain of the Serine/Threonine kinases, Liver Kinase B1, Calmodulin Dependent ... |
126-167 | 2.25e-03 | ||||||
Catalytic domain of the Serine/Threonine kinases, Liver Kinase B1, Calmodulin Dependent Protein Kinase Kinase, and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Both LKB1 and CaMKKs can phosphorylate and activate AMP-activated protein kinase (AMPK). LKB1, also called STK11, serves as a master upstream kinase that activates AMPK and most AMPK-like kinases. LKB1 and AMPK are part of an energy-sensing pathway that links cell energy to metabolism and cell growth. They play critical roles in the establishment and maintenance of cell polarity, cell proliferation, cytoskeletal organization, as well as T-cell metabolism, including T-cell development, homeostasis, and effector function. CaMKKs are upstream kinases of the CaM kinase cascade that phosphorylate and activate CaMKI and CamKIV. They may also phosphorylate other substrates including PKB and AMPK. Vertebrates contain two CaMKKs, CaMKK1 (or alpha) and CaMKK2 (or beta). CaMKK1 is involved in the regulation of glucose uptake in skeletal muscles. CaMKK2 is involved in regulating energy balance, glucose metabolism, adiposity, hematopoiesis, inflammation, and cancer. The LKB1/CaMKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270910 [Multi-domain] Cd Length: 267 Bit Score: 41.38 E-value: 2.25e-03
|
||||||||||
pk1 | PHA03390 | serine/threonine-protein kinase 1; Provisional |
105-155 | 2.43e-03 | ||||||
serine/threonine-protein kinase 1; Provisional Pssm-ID: 223069 [Multi-domain] Cd Length: 267 Bit Score: 41.38 E-value: 2.43e-03
|
||||||||||
WD40 | smart00320 | WD40 repeats; Note that these repeats are permuted with respect to the structural repeats ... |
1327-1358 | 2.50e-03 | ||||||
WD40 repeats; Note that these repeats are permuted with respect to the structural repeats (blades) of the beta propeller domain. Pssm-ID: 197651 [Multi-domain] Cd Length: 40 Bit Score: 36.91 E-value: 2.50e-03
|
||||||||||
STKc_MSK1_N | cd05613 | N-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated ... |
110-258 | 2.95e-03 | ||||||
N-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MSK1 plays a role in the regulation of translational control and transcriptional activation. It phosphorylates the transcription factors, CREB and NFkB. It also phosphorylates the nucleosomal proteins H3 and HMG-14. Increased phosphorylation of MSK1 is associated with the development of cerebral ischemic/hypoxic preconditioning. MSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. MSKs are activated by two major signaling cascades, the Ras-MAPK and p38 stress kinase pathways, which trigger phosphorylation in the activation loop (A-loop) of the CTD of MSK. The active CTD phosphorylates the hydrophobic motif (HM) of NTD, which facilitates the phosphorylation of the A-loop and activates the NTD, which in turn phosphorylates downstream targets. The MSK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270764 [Multi-domain] Cd Length: 290 Bit Score: 41.14 E-value: 2.95e-03
|
||||||||||
STKc_PIM3 | cd14102 | Catalytic domain of the Serine/Threonine kinase, Proviral Integration Moloney virus (PIM) ... |
109-169 | 3.12e-03 | ||||||
Catalytic domain of the Serine/Threonine kinase, Proviral Integration Moloney virus (PIM) kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The PIM gene locus was discovered as a result of the cloning of retroviral intergration sites in murine Moloney leukemia virus, leading to the identification of PIM kinases. They are constitutively active STKs with a broad range of cellular targets and are overexpressed in many haematopoietic malignancies and solid cancers. Vertebrates contain three distinct PIM kinase genes (PIM1-3). PIM3 can inhibit apoptosis and promote cell survival and protein translation, therefore, it can enhance the proliferation of normal and cancer cells. Mice deficient with PIM3 show minimal effects, suggesting that PIM3 msy not be essential. Since its expression is enhanced in several cancers, it may make a good molecular target for cancer drugs. The PIM3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271004 [Multi-domain] Cd Length: 253 Bit Score: 41.09 E-value: 3.12e-03
|
||||||||||
STKc_PIM1 | cd14100 | Catalytic domain of the Serine/Threonine kinase, Proviral Integration Moloney virus (PIM) ... |
100-169 | 3.52e-03 | ||||||
Catalytic domain of the Serine/Threonine kinase, Proviral Integration Moloney virus (PIM) kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The PIM gene locus was discovered as a result of the cloning of retroviral intergration sites in murine Moloney leukemia virus, leading to the identification of PIM kinases. They are constitutively active STKs with a broad range of cellular targets and are overexpressed in many haematopoietic malignancies and solid cancers. Vertebrates contain three distinct PIM kinase genes (PIM1-3); each gene may result in mutliple protein isoforms. There are two PIM1 isoforms resulting from alternative translation initiation sites. PIM1 is the founding member of the PIM subfamily. It is involved in regulating cell growth, differentiation, and apoptosis. It promotes cancer development when overexpressed by inhibiting apoptosis, promoting cell proliferation, and promoting genomic instability. The PIM1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271002 [Multi-domain] Cd Length: 254 Bit Score: 40.72 E-value: 3.52e-03
|
||||||||||
STKc_ROCK_NDR_like | cd05573 | Catalytic domain of Rho-associated coiled-coil containing protein kinase (ROCK)- and Nuclear ... |
132-269 | 3.89e-03 | ||||||
Catalytic domain of Rho-associated coiled-coil containing protein kinase (ROCK)- and Nuclear Dbf2-Related (NDR)-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this subfamily include ROCK and ROCK-like proteins such as DMPK, MRCK, and CRIK, as well as NDR and NDR-like proteins such as LATS, CBK1 and Sid2p. ROCK and CRIK are effectors of the small GTPase Rho, while MRCK is an effector of the small GTPase Cdc42. NDR and NDR-like kinases contain an N-terminal regulatory (NTR) domain and an insert within the catalytic domain that contains an auto-inhibitory sequence. Proteins in this subfamily are involved in regulating many cellular functions including contraction, motility, division, proliferation, apoptosis, morphogenesis, and cytokinesis. The ROCK/NDR-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270725 [Multi-domain] Cd Length: 350 Bit Score: 41.12 E-value: 3.89e-03
|
||||||||||
STKc_HUNK | cd14070 | Catalytic domain of the Serine/Threonine Kinase, Hormonally up-regulated Neu-associated kinase ... |
109-167 | 4.19e-03 | ||||||
Catalytic domain of the Serine/Threonine Kinase, Hormonally up-regulated Neu-associated kinase (also called MAK-V); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. HUNK/MAK-V was identified from a mammary tumor in an MMTV-neu transgenic mouse. It is required for the metastasis of c-myc-induced mammary tumors, but is not necessary for c-myc-induced primary tumor formation or normal development. It is required for HER2/neu-induced tumor formation and maintenance of the cells' tumorigenic phenotype. It is over-expressed in aggressive subsets of ovary, colon, and breast carcinomas. HUNK interacts with synaptopodin, and may also play a role in synaptic plasticity. The HUNK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270972 [Multi-domain] Cd Length: 262 Bit Score: 40.57 E-value: 4.19e-03
|
||||||||||
WD40 | pfam00400 | WD domain, G-beta repeat; |
1327-1357 | 5.26e-03 | ||||||
WD domain, G-beta repeat; Pssm-ID: 459801 [Multi-domain] Cd Length: 39 Bit Score: 36.17 E-value: 5.26e-03
|
||||||||||
pknD | PRK13184 | serine/threonine-protein kinase PknD; |
128-310 | 7.16e-03 | ||||||
serine/threonine-protein kinase PknD; Pssm-ID: 183880 [Multi-domain] Cd Length: 932 Bit Score: 40.91 E-value: 7.16e-03
|
||||||||||
Blast search parameters | ||||
|