amidinotransferase domain-containing protein includes glycine and inosamine amidinotransferases, enzymes involved in creatine and streptomycin biosynthesis respectively, and arginine deiminase that catalyzes the reaction: arginine + H2O <=> citrulline + NH3| arginine deiminase catalyzes the degradation of arginine to citrulline and ammonia
agmatine deiminase; Members of this family are agmatine deiminase (3.5.3.12), as characterized ...
2-365
0e+00
agmatine deiminase; Members of this family are agmatine deiminase (3.5.3.12), as characterized in Pseudomonas aeruginosa and plants. Related deiminases include the peptidyl-arginine deiminase (3.5.3.15) as found in Porphyromonas gingivalis. [Central intermediary metabolism, Polyamine biosynthesis]
Pssm-ID: 132423 Cd Length: 357 Bit Score: 602.37 E-value: 0e+00
Porphyromonas-type peptidyl-arginine deiminase; Peptidyl-arginine deiminase (PAD) enzymes catalyze the deimination of the guanidino group from carboxy-terminal arginine residues of various peptides to produce ammonia. PAD from Porphyromonas gingivalis (PPAD) appears to be evolutionarily unrelated to mammalian PAD (pfam03068), which is a metalloenzyme. PPAD is thought to belong to the same superfamily as aminotransferase and arginine deiminase, and to form an alpha/beta propeller structure. This family has previously been named PPADH (Porphyromonas peptidyl-arginine deiminase homologs). The predicted catalytic residues in PPAD are Asp130, Asp187, His236, Asp238 and Cys351. These are absolutely conserved with the exception of Asp187 which is absent in two family members. PPAD is also able to catalyze the deimination of free L-arginine, but has primarily peptidyl-arginine specificity. It may have a FMN cofactor.
Pssm-ID: 461280 Cd Length: 324 Bit Score: 503.90 E-value: 0e+00
agmatine deiminase; Members of this family are agmatine deiminase (3.5.3.12), as characterized ...
2-365
0e+00
agmatine deiminase; Members of this family are agmatine deiminase (3.5.3.12), as characterized in Pseudomonas aeruginosa and plants. Related deiminases include the peptidyl-arginine deiminase (3.5.3.15) as found in Porphyromonas gingivalis. [Central intermediary metabolism, Polyamine biosynthesis]
Pssm-ID: 132423 Cd Length: 357 Bit Score: 602.37 E-value: 0e+00
Porphyromonas-type peptidyl-arginine deiminase; Peptidyl-arginine deiminase (PAD) enzymes catalyze the deimination of the guanidino group from carboxy-terminal arginine residues of various peptides to produce ammonia. PAD from Porphyromonas gingivalis (PPAD) appears to be evolutionarily unrelated to mammalian PAD (pfam03068), which is a metalloenzyme. PPAD is thought to belong to the same superfamily as aminotransferase and arginine deiminase, and to form an alpha/beta propeller structure. This family has previously been named PPADH (Porphyromonas peptidyl-arginine deiminase homologs). The predicted catalytic residues in PPAD are Asp130, Asp187, His236, Asp238 and Cys351. These are absolutely conserved with the exception of Asp187 which is absent in two family members. PPAD is also able to catalyze the deimination of free L-arginine, but has primarily peptidyl-arginine specificity. It may have a FMN cofactor.
Pssm-ID: 461280 Cd Length: 324 Bit Score: 503.90 E-value: 0e+00
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options