sulfide/dihydroorotate dehydrogenase-like FAD/NAD-binding protein [Lascolabacillus sp.]
sulfide/dihydroorotate dehydrogenase-like FAD/NAD-binding protein( domain architecture ID 11482141)
sulfide/dihydroorotate dehydrogenase-like FAD/NAD-binding protein such as Thermotoga maritima dihydroorotate dehydrogenase B electron transfer subunit homolog and Pyrococcus furiosus sulfide dehydrogenase subunit beta
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
PRK06222 | PRK06222 | sulfide/dihydroorotate dehydrogenase-like FAD/NAD-binding protein; |
1-259 | 1.63e-150 | |||||
sulfide/dihydroorotate dehydrogenase-like FAD/NAD-binding protein; : Pssm-ID: 235747 [Multi-domain] Cd Length: 281 Bit Score: 421.13 E-value: 1.63e-150
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
PRK06222 | PRK06222 | sulfide/dihydroorotate dehydrogenase-like FAD/NAD-binding protein; |
1-259 | 1.63e-150 | |||||
sulfide/dihydroorotate dehydrogenase-like FAD/NAD-binding protein; Pssm-ID: 235747 [Multi-domain] Cd Length: 281 Bit Score: 421.13 E-value: 1.63e-150
|
|||||||||
DHOD_e_trans_like1 | cd06219 | FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase-like ... |
2-248 | 2.03e-133 | |||||
FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase-like proteins. Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. In L. lactis, DHOD B (encoded by pyrDa) is co-expressed with pyrK and both gene products are required for full activity, as well as NAD binding. NAD(P) binding domain of ferredoxin reductase-like proteins catalyze electron transfer between an NAD(P)-binding domain of the alpha/beta class and a discrete (usually N-terminal) domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal domain may contain a flavin prosthetic group, as in flavoenzymes, or use flavin as a substrate. Ferredoxin is reduced in the final stage of photosystem I. The flavoprotein Ferredoxin-NADP+ reductase transfers electrons from reduced ferredoxin to FAD, forming FADH2 via a semiquinone intermediate, and then transfers a hydride ion to convert NADP+ to NADPH. Pssm-ID: 99815 [Multi-domain] Cd Length: 248 Bit Score: 376.53 E-value: 2.03e-133
|
|||||||||
Mcr1 | COG0543 | NAD(P)H-flavin reductase [Coenzyme transport and metabolism, Energy production and conversion]; ... |
3-249 | 5.25e-85 | |||||
NAD(P)H-flavin reductase [Coenzyme transport and metabolism, Energy production and conversion]; Pssm-ID: 440309 [Multi-domain] Cd Length: 247 Bit Score: 253.63 E-value: 5.25e-85
|
|||||||||
DHODB_Fe-S_bind | pfam10418 | Iron-sulfur cluster binding domain of dihydroorotate dehydrogenase B; Lactococcus lactis is ... |
211-247 | 1.35e-12 | |||||
Iron-sulfur cluster binding domain of dihydroorotate dehydrogenase B; Lactococcus lactis is one of the few organizms with two dihydroorotate dehydrogenases, DHODs, A and B. The B enzyme is a prototype for DHODs in Gram-positive bacteria that use NAD+ as the second substrate. DHODB is a hetero-tetramer composed of a central homodimer of PyrDB subunits resembling the DHODA structure and two PyrK subunits along with three different cofactors: FMN, FAD, and a [2Fe-2S] cluster. The [2Fe-2S] iron-sulfur cluster binds to this C-terminal domain of the PyrK subunit, which is at the interface between the flavin and NAD binding domains and contains three beta-strands. The four cysteine residues at the N-terminal part of this domain are the ones that bind, in pairs, to the iron-sulfur cluster. The conformation of the whole molecule means that the iron-sulfur cluster is localized in a well-ordered part of this domain close to the FAD binding site. The FAD and and NAD binding domains are FAD_binding_6, pfam00970 and NAD_binding_1, pfam00175. Pssm-ID: 463084 [Multi-domain] Cd Length: 40 Bit Score: 60.69 E-value: 1.35e-12
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
PRK06222 | PRK06222 | sulfide/dihydroorotate dehydrogenase-like FAD/NAD-binding protein; |
1-259 | 1.63e-150 | |||||
sulfide/dihydroorotate dehydrogenase-like FAD/NAD-binding protein; Pssm-ID: 235747 [Multi-domain] Cd Length: 281 Bit Score: 421.13 E-value: 1.63e-150
|
|||||||||
PRK12778 | PRK12778 | bifunctional dihydroorotate dehydrogenase B NAD binding subunit/NADPH-dependent glutamate ... |
1-259 | 3.24e-143 | |||||
bifunctional dihydroorotate dehydrogenase B NAD binding subunit/NADPH-dependent glutamate synthase; Pssm-ID: 237200 [Multi-domain] Cd Length: 752 Bit Score: 419.15 E-value: 3.24e-143
|
|||||||||
DHOD_e_trans_like1 | cd06219 | FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase-like ... |
2-248 | 2.03e-133 | |||||
FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase-like proteins. Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. In L. lactis, DHOD B (encoded by pyrDa) is co-expressed with pyrK and both gene products are required for full activity, as well as NAD binding. NAD(P) binding domain of ferredoxin reductase-like proteins catalyze electron transfer between an NAD(P)-binding domain of the alpha/beta class and a discrete (usually N-terminal) domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal domain may contain a flavin prosthetic group, as in flavoenzymes, or use flavin as a substrate. Ferredoxin is reduced in the final stage of photosystem I. The flavoprotein Ferredoxin-NADP+ reductase transfers electrons from reduced ferredoxin to FAD, forming FADH2 via a semiquinone intermediate, and then transfers a hydride ion to convert NADP+ to NADPH. Pssm-ID: 99815 [Multi-domain] Cd Length: 248 Bit Score: 376.53 E-value: 2.03e-133
|
|||||||||
Mcr1 | COG0543 | NAD(P)H-flavin reductase [Coenzyme transport and metabolism, Energy production and conversion]; ... |
3-249 | 5.25e-85 | |||||
NAD(P)H-flavin reductase [Coenzyme transport and metabolism, Energy production and conversion]; Pssm-ID: 440309 [Multi-domain] Cd Length: 247 Bit Score: 253.63 E-value: 5.25e-85
|
|||||||||
PRK12775 | PRK12775 | putative trifunctional 2-polyprenylphenol hydroxylase/glutamate synthase subunit beta/ferritin ... |
1-259 | 1.16e-84 | |||||
putative trifunctional 2-polyprenylphenol hydroxylase/glutamate synthase subunit beta/ferritin domain-containing protein; Provisional Pssm-ID: 183738 [Multi-domain] Cd Length: 1006 Bit Score: 272.20 E-value: 1.16e-84
|
|||||||||
PRK12779 | PRK12779 | putative bifunctional glutamate synthase subunit beta/2-polyprenylphenol hydroxylase; ... |
3-259 | 4.53e-71 | |||||
putative bifunctional glutamate synthase subunit beta/2-polyprenylphenol hydroxylase; Provisional Pssm-ID: 183740 [Multi-domain] Cd Length: 944 Bit Score: 234.34 E-value: 4.53e-71
|
|||||||||
DHOD_e_trans_like | cd06192 | FAD/NAD binding domain (electron transfer subunit) of dihydroorotate dehydrogenase-like ... |
4-243 | 5.11e-53 | |||||
FAD/NAD binding domain (electron transfer subunit) of dihydroorotate dehydrogenase-like proteins. Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. In L. lactis, DHOD B (encoded by pyrDa) is co-expressed with pyrK and both gene products are required for full activity, as well as NAD binding. NAD(P) binding domain of ferredoxin reductase-like proteins catalyze electron transfer between an NAD(P)-binding domain of the alpha/beta class and a discrete (usually N-terminal) domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal domain may contain a flavin prosthetic group (as in flavoenzymes) or use flavin as a substrate. Ferredoxin is reduced in the final stage of photosystem I. The flavoprotein Ferredoxin-NADP+ reductase transfers electrons from reduced ferredoxin to FAD (forming FADH2 via a semiquinone intermediate) which then transfers a hydride ion to convert NADP+ to NADPH. Pssm-ID: 99789 [Multi-domain] Cd Length: 243 Bit Score: 172.13 E-value: 5.11e-53
|
|||||||||
DHOD_e_trans | cd06218 | FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase. ... |
4-243 | 1.87e-50 | |||||
FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase. Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. In L. lactis, DHOD B (encoded by pyrDa) is co-expressed with pyrK and both gene products are required for full activity, as well as 3 cofactors: FMN, FAD, and an [2Fe-2S] cluster. Pssm-ID: 99814 [Multi-domain] Cd Length: 246 Bit Score: 165.41 E-value: 1.87e-50
|
|||||||||
PRK00054 | PRK00054 | dihydroorotate dehydrogenase electron transfer subunit; Reviewed |
3-247 | 2.70e-40 | |||||
dihydroorotate dehydrogenase electron transfer subunit; Reviewed Pssm-ID: 234601 [Multi-domain] Cd Length: 250 Bit Score: 139.62 E-value: 2.70e-40
|
|||||||||
DHOD_e_trans_like2 | cd06220 | FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase-like ... |
31-246 | 2.69e-34 | |||||
FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase-like proteins. Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. In L. lactis, DHOD B (encoded by pyrDa) is co-expressed with pyrK and both gene products are required for full activity, as well as 3 cofactors: FMN, FAD, and an [2Fe-2S] cluster. Pssm-ID: 99816 [Multi-domain] Cd Length: 233 Bit Score: 123.51 E-value: 2.69e-34
|
|||||||||
sulfite_reductase_like | cd06221 | Anaerobic sulfite reductase contains an FAD and NADPH binding module with structural ... |
12-243 | 1.47e-21 | |||||
Anaerobic sulfite reductase contains an FAD and NADPH binding module with structural similarity to ferredoxin reductase and sequence similarity to dihydroorotate dehydrogenases. Clostridium pasteurianum inducible dissimilatory type sulfite reductase is linked to ferredoxin and reduces NH2OH and SeO3 at a lesser rate than it's normal substate SO3(2-). Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. Pssm-ID: 99817 [Multi-domain] Cd Length: 253 Bit Score: 90.36 E-value: 1.47e-21
|
|||||||||
PRK05802 | PRK05802 | sulfide/dihydroorotate dehydrogenase-like FAD/NAD-binding protein; |
3-231 | 6.22e-15 | |||||
sulfide/dihydroorotate dehydrogenase-like FAD/NAD-binding protein; Pssm-ID: 235613 [Multi-domain] Cd Length: 320 Bit Score: 73.09 E-value: 6.22e-15
|
|||||||||
FNR_like | cd00322 | Ferredoxin reductase (FNR), an FAD and NAD(P) binding protein, was intially identified as a ... |
5-205 | 6.74e-15 | |||||
Ferredoxin reductase (FNR), an FAD and NAD(P) binding protein, was intially identified as a chloroplast reductase activity, catalyzing the electron transfer from reduced iron-sulfur protein ferredoxin to NADP+ as the final step in the electron transport mechanism of photosystem I. FNR transfers electrons from reduced ferredoxin to FAD (forming FADH2 via a semiquinone intermediate) and then transfers a hydride ion to convert NADP+ to NADPH. FNR has since been shown to utilize a variety of electron acceptors and donors and has a variety of physiological functions including nitrogen assimilation, dinitrogen fixation, steroid hydroxylation, fatty acid metabolism, oxygenase activity, and methane assimilation in many organisms. FNR has an NAD(P)-binding sub-domain of the alpha/beta class and a discrete (usually N-terminal) flavin sub-domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal moeity may contain a flavin prosthetic group (as in flavoenzymes) or use flavin as a substrate. Because flavins such as FAD can exist in oxidized, semiquinone (one- electron reduced), or fully reduced hydroquinone forms, FNR can interact with one and 2 electron carriers. FNR has a strong preference for NADP(H) vs NAD(H). Pssm-ID: 99778 [Multi-domain] Cd Length: 223 Bit Score: 71.71 E-value: 6.74e-15
|
|||||||||
DHODB_Fe-S_bind | pfam10418 | Iron-sulfur cluster binding domain of dihydroorotate dehydrogenase B; Lactococcus lactis is ... |
211-247 | 1.35e-12 | |||||
Iron-sulfur cluster binding domain of dihydroorotate dehydrogenase B; Lactococcus lactis is one of the few organizms with two dihydroorotate dehydrogenases, DHODs, A and B. The B enzyme is a prototype for DHODs in Gram-positive bacteria that use NAD+ as the second substrate. DHODB is a hetero-tetramer composed of a central homodimer of PyrDB subunits resembling the DHODA structure and two PyrK subunits along with three different cofactors: FMN, FAD, and a [2Fe-2S] cluster. The [2Fe-2S] iron-sulfur cluster binds to this C-terminal domain of the PyrK subunit, which is at the interface between the flavin and NAD binding domains and contains three beta-strands. The four cysteine residues at the N-terminal part of this domain are the ones that bind, in pairs, to the iron-sulfur cluster. The conformation of the whole molecule means that the iron-sulfur cluster is localized in a well-ordered part of this domain close to the FAD binding site. The FAD and and NAD binding domains are FAD_binding_6, pfam00970 and NAD_binding_1, pfam00175. Pssm-ID: 463084 [Multi-domain] Cd Length: 40 Bit Score: 60.69 E-value: 1.35e-12
|
|||||||||
PRK08345 | PRK08345 | cytochrome-c3 hydrogenase subunit gamma; Provisional |
12-242 | 1.12e-10 | |||||
cytochrome-c3 hydrogenase subunit gamma; Provisional Pssm-ID: 236247 [Multi-domain] Cd Length: 289 Bit Score: 60.59 E-value: 1.12e-10
|
|||||||||
Fpr | COG1018 | Flavodoxin/ferredoxin--NADP reductase [Energy production and conversion]; |
3-205 | 3.33e-09 | |||||
Flavodoxin/ferredoxin--NADP reductase [Energy production and conversion]; Pssm-ID: 440641 [Multi-domain] Cd Length: 231 Bit Score: 55.57 E-value: 3.33e-09
|
|||||||||
FAD_binding_6 | pfam00970 | Oxidoreductase FAD-binding domain; |
3-94 | 3.28e-08 | |||||
Oxidoreductase FAD-binding domain; Pssm-ID: 425968 [Multi-domain] Cd Length: 99 Bit Score: 50.27 E-value: 3.28e-08
|
|||||||||
COG4097 | COG4097 | Predicted ferric reductase [Inorganic ion transport and metabolism]; |
3-79 | 7.70e-06 | |||||
Predicted ferric reductase [Inorganic ion transport and metabolism]; Pssm-ID: 443273 [Multi-domain] Cd Length: 442 Bit Score: 46.42 E-value: 7.70e-06
|
|||||||||
PRK06567 | PRK06567 | putative bifunctional glutamate synthase subunit beta/2-polyprenylphenol hydroxylase; Validated |
1-257 | 2.85e-05 | |||||
putative bifunctional glutamate synthase subunit beta/2-polyprenylphenol hydroxylase; Validated Pssm-ID: 235832 [Multi-domain] Cd Length: 1028 Bit Score: 44.90 E-value: 2.85e-05
|
|||||||||
cyt_b5_reduct_like | cd06183 | Cytochrome b5 reductase catalyzes the reduction of 2 molecules of cytochrome b5 using NADH as ... |
3-194 | 1.22e-04 | |||||
Cytochrome b5 reductase catalyzes the reduction of 2 molecules of cytochrome b5 using NADH as an electron donor. Like ferredoxin reductases, these proteins have an N-terminal FAD binding subdomain and a C-terminal NADH binding subdomain, separated by a cleft, which accepts FAD. The NADH-binding moiety interacts with part of the FAD and resembles a Rossmann fold. However, NAD is bound differently than in canonical Rossmann fold proteins. Nitrate reductases, flavoproteins similar to pyridine nucleotide cytochrome reductases, catalyze the reduction of nitrate to nitrite. The enzyme can be divided into three functional fragments that bind the cofactors molybdopterin, heme-iron, and FAD/NADH. Pssm-ID: 99780 [Multi-domain] Cd Length: 234 Bit Score: 42.17 E-value: 1.22e-04
|
|||||||||
FNR_iron_sulfur_binding_1 | cd06215 | Iron-sulfur binding ferredoxin reductase (FNR) proteins combine the FAD and NAD(P) binding ... |
13-206 | 3.60e-03 | |||||
Iron-sulfur binding ferredoxin reductase (FNR) proteins combine the FAD and NAD(P) binding regions of FNR with an iron-sulfur binding cluster domain. Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria in which they participate in a wide variety of redox metabolic pathways. The C-terminal portion of the FAD/NAD binding domain contains most of the NADP(H) binding residues and the N-terminal sub-domain interacts non-covalently with the isoalloxazine rings of the flavin molecule which lies largely in a large gap betweed the two domains. In this ferredoxin like sub-group, the FAD/NAD sub-domains is typically fused to a C-terminal iron-sulfur binding domain. Iron-sulfur proteins play an important role in electron transfer processes and in various enzymatic reactions. The family includes plant and algal ferredoxins which act as electron carriers in photosynthesis and ferredoxins which participate in redox chains from bacteria to mammals. Ferredoxin reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2 which then transfers two electrons and a proton to NADP+ to form NADPH. Pssm-ID: 99811 [Multi-domain] Cd Length: 231 Bit Score: 37.57 E-value: 3.60e-03
|
|||||||||
FNR_like_3 | cd06198 | NAD(P) binding domain of ferredoxin reductase-like proteins catalyze electron transfer ... |
29-205 | 5.02e-03 | |||||
NAD(P) binding domain of ferredoxin reductase-like proteins catalyze electron transfer between an NAD(P)-binding sub-domain of the alpha/beta class and a discrete (usually N-terminal) domain, which varies in orientation with respect to the NAD(P) binding domain. The N-terminal domain may contain a flavin prosthetic group (as in flavoenzymes) or use flavin as a substrate. Ferredoxin is reduced in the final stage of photosystem I. The flavoprotein Ferredoxin-NADP+ reductase transfers electrons from reduced ferredoxin to FAD (forming FADH2 via a semiquinone intermediate) which then transfers a hydride ion to convert NADP+ to NADPH. Pssm-ID: 99795 [Multi-domain] Cd Length: 216 Bit Score: 37.24 E-value: 5.02e-03
|
|||||||||
PA_degradation_oxidoreductase_like | cd06214 | NAD(P) binding domain of ferredoxin reductase like phenylacetic acid (PA) degradation ... |
13-192 | 7.62e-03 | |||||
NAD(P) binding domain of ferredoxin reductase like phenylacetic acid (PA) degradation oxidoreductase. PA oxidoreductases of E. coli hydroxylate PA-CoA in the second step of PA degradation. Members of this group typically fuse a ferredoxin reductase-like domain with an iron-sulfur binding cluster domain. Ferredoxins catalyze electron transfer between an NAD(P)-binding domain of the alpha/beta class and a discrete (usually N-terminal) domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal portion may contain a flavin prosthetic group, as in flavoenzymes, or use flavin as a substrate. Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria and participate in a wide variety of redox metabolic pathways. The C-terminal domain contains most of the NADP(H) binding residues and the N-terminal domain interacts non-covalently with the isoalloxazine rings of the flavin molecule which lies largely in a large gap betweed the two domains. Ferredoxin-NADP+ reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2 which then transfers two electrons and a proton to NADP+ to form NADPH. Pssm-ID: 99810 [Multi-domain] Cd Length: 241 Bit Score: 36.75 E-value: 7.62e-03
|
|||||||||
O2ase_reductase_like | cd06187 | The oxygenase reductase FAD/NADH binding domain acts as part of the multi-component bacterial ... |
4-172 | 8.95e-03 | |||||
The oxygenase reductase FAD/NADH binding domain acts as part of the multi-component bacterial oxygenases which oxidize hydrocarbons using oxygen as the oxidant. Electron transfer is from NADH via FAD (in the oxygenase reductase) and an [2FE-2S] ferredoxin center (fused to the FAD/NADH domain and/or discrete) to the oxygenase. Dioxygenases add both atoms of oxygen to the substrate, while mono-oxygenases (aka mixed oxygenases) add one atom to the substrate and one atom to water. In dioxygenases, Class I enzymes are 2 component, containing a reductase with Rieske type [2Fe-2S] redox centers and an oxygenase. Class II are 3 component, having discrete flavin and ferredoxin proteins and an oxygenase. Class III have 2 [2Fe-2S] centers, one fused to the flavin domain and the other separate. Pssm-ID: 99784 [Multi-domain] Cd Length: 224 Bit Score: 36.42 E-value: 8.95e-03
|
|||||||||
Blast search parameters | ||||
|