glutathione S-transferase family protein [Gilliamella apicola]
glutathione S-transferase family protein( domain architecture ID 11418207)
glutathione S-transferase family protein similar to Saccharomyces cerevisiae glutathione S-transferase omega-like proteins and Escherichia coli glutathionyl-hydroquinone reductase
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
ECM4 | COG0435 | Glutathionyl-hydroquinone reductase [Energy production and conversion]; |
4-318 | 7.92e-171 | |||||
Glutathionyl-hydroquinone reductase [Energy production and conversion]; : Pssm-ID: 440204 [Multi-domain] Cd Length: 321 Bit Score: 476.54 E-value: 7.92e-171
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
ECM4 | COG0435 | Glutathionyl-hydroquinone reductase [Energy production and conversion]; |
4-318 | 7.92e-171 | |||||
Glutathionyl-hydroquinone reductase [Energy production and conversion]; Pssm-ID: 440204 [Multi-domain] Cd Length: 321 Bit Score: 476.54 E-value: 7.92e-171
|
|||||||||
GST_C_Omega_like | cd03190 | C-terminal, alpha helical domain of Class Omega-like Glutathione S-transferases; Glutathione ... |
161-302 | 5.81e-72 | |||||
C-terminal, alpha helical domain of Class Omega-like Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Saccharomyces cerevisiae Omega-like subfamily; composed of three Saccharomyces cerevisiae GST omega-like (Gto) proteins, Gto1p, Gto2p (also known as Extracellular mutant protein 4 or ECM4p), and Gto3p, as well as similar uncharacterized proteins from fungi and bacteria. The three Saccharomyces cerevisiae Gto proteins are omega-class GSTs with low or no GST activity against standard substrates, but have glutaredoxin/thiol oxidoreductase and dehydroascorbate reductase activity through a single cysteine residue in the active site. Gto1p is located in the peroxisomes while Gto2p and Gto3p are cytosolic. The gene encoding Gto2p, called ECM4, is involved in cell surface biosynthesis and architecture. S. cerevisiae ECM4 mutants show increased amounts of the cell wall hexose, N-acetylglucosamine. More recently, global gene expression analysis shows that ECM4 is upregulated during genotoxic conditions and together with the expression profiles of 18 other genes could potentially differentiate between genotoxic and cytotoxic insults in yeast. Pssm-ID: 198299 [Multi-domain] Cd Length: 142 Bit Score: 218.98 E-value: 5.81e-72
|
|||||||||
GST_C_2 | pfam13410 | Glutathione S-transferase, C-terminal domain; This domain is closely related to pfam00043. |
194-264 | 4.52e-11 | |||||
Glutathione S-transferase, C-terminal domain; This domain is closely related to pfam00043. Pssm-ID: 433185 [Multi-domain] Cd Length: 67 Bit Score: 57.72 E-value: 4.52e-11
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
ECM4 | COG0435 | Glutathionyl-hydroquinone reductase [Energy production and conversion]; |
4-318 | 7.92e-171 | |||||
Glutathionyl-hydroquinone reductase [Energy production and conversion]; Pssm-ID: 440204 [Multi-domain] Cd Length: 321 Bit Score: 476.54 E-value: 7.92e-171
|
|||||||||
GST_C_Omega_like | cd03190 | C-terminal, alpha helical domain of Class Omega-like Glutathione S-transferases; Glutathione ... |
161-302 | 5.81e-72 | |||||
C-terminal, alpha helical domain of Class Omega-like Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Saccharomyces cerevisiae Omega-like subfamily; composed of three Saccharomyces cerevisiae GST omega-like (Gto) proteins, Gto1p, Gto2p (also known as Extracellular mutant protein 4 or ECM4p), and Gto3p, as well as similar uncharacterized proteins from fungi and bacteria. The three Saccharomyces cerevisiae Gto proteins are omega-class GSTs with low or no GST activity against standard substrates, but have glutaredoxin/thiol oxidoreductase and dehydroascorbate reductase activity through a single cysteine residue in the active site. Gto1p is located in the peroxisomes while Gto2p and Gto3p are cytosolic. The gene encoding Gto2p, called ECM4, is involved in cell surface biosynthesis and architecture. S. cerevisiae ECM4 mutants show increased amounts of the cell wall hexose, N-acetylglucosamine. More recently, global gene expression analysis shows that ECM4 is upregulated during genotoxic conditions and together with the expression profiles of 18 other genes could potentially differentiate between genotoxic and cytotoxic insults in yeast. Pssm-ID: 198299 [Multi-domain] Cd Length: 142 Bit Score: 218.98 E-value: 5.81e-72
|
|||||||||
GST_C_2 | pfam13410 | Glutathione S-transferase, C-terminal domain; This domain is closely related to pfam00043. |
194-264 | 4.52e-11 | |||||
Glutathione S-transferase, C-terminal domain; This domain is closely related to pfam00043. Pssm-ID: 433185 [Multi-domain] Cd Length: 67 Bit Score: 57.72 E-value: 4.52e-11
|
|||||||||
GstA | COG0625 | Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]; |
45-272 | 7.51e-08 | |||||
Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440390 [Multi-domain] Cd Length: 205 Bit Score: 51.82 E-value: 7.51e-08
|
|||||||||
GST_C_family | cd00299 | C-terminal, alpha helical domain of the Glutathione S-transferase family; Glutathione ... |
168-264 | 5.46e-06 | |||||
C-terminal, alpha helical domain of the Glutathione S-transferase family; Glutathione S-transferase (GST) family, C-terminal alpha helical domain; a large, diverse group of cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. In addition, GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. This family, also referred to as soluble GSTs, is the largest family of GSH transferases and is only distantly related to the mitochondrial GSTs (GSTK). Soluble GSTs bear no structural similarity to microsomal GSTs (MAPEG family) and display additional activities unique to their group, such as catalyzing thiolysis, reduction and isomerization of certain compounds. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Based on sequence similarity, different classes of GSTs have been identified, which display varying tissue distribution, substrate specificities and additional specific activities. In humans, GSTs display polymorphisms which may influence individual susceptibility to diseases such as cancer, arthritis, allergy and sclerosis. Some GST family members with non-GST functions include glutaredoxin 2, the CLIC subfamily of anion channels, prion protein Ure2p, crystallins, metaxins, stringent starvation protein A, and aminoacyl-tRNA synthetases. Pssm-ID: 198286 [Multi-domain] Cd Length: 100 Bit Score: 44.41 E-value: 5.46e-06
|
|||||||||
GST_C_EF1Bgamma_like | cd03181 | Glutathione S-transferase C-terminal-like, alpha helical domain of the Gamma subunit of ... |
192-259 | 5.16e-04 | |||||
Glutathione S-transferase C-terminal-like, alpha helical domain of the Gamma subunit of Elongation Factor 1B and similar proteins; Glutathione S-transferase (GST) C-terminal domain family, Gamma subunit of Elongation Factor 1B (EF1Bgamma) subfamily; EF1Bgamma is part of the eukaryotic translation elongation factor-1 (EF1) complex which plays a central role in the elongation cycle during protein biosynthesis. EF1 consists of two functionally distinct units, EF1A and EF1B. EF1A catalyzes the GTP-dependent binding of aminoacyl-tRNA to the ribosomal A site concomitant with the hydrolysis of GTP. The resulting inactive EF1A:GDP complex is recycled to the active GTP form by the guanine-nucleotide exchange factor EF1B, a complex composed of at least two subunits, alpha and gamma. Metazoan EFB1 contain a third subunit, beta. The EF1B gamma subunit contains a GST fold consisting of an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain. The GST-like domain of EF1Bgamma is believed to mediate the dimerization of the EF1 complex, which in yeast is a dimer of the heterotrimer EF1A:EF1Balpha:EF1Bgamma. In addition to its role in protein biosynthesis, EF1Bgamma may also display other functions. The recombinant rice protein has been shown to possess GSH conjugating activity. The yeast EF1Bgamma binds to membranes in a calcium dependent manner and is also part of a complex that binds to the msrA (methionine sulfoxide reductase) promoter suggesting a function in the regulation of its gene expression. Also included in this subfamily is the GST_C-like domain at the N-terminus of human valyl-tRNA synthetase (ValRS) and its homologs. Metazoan ValRS forms a stable complex with Elongation Factor-1H (EF-1H), and together, they catalyze consecutive steps in protein biosynthesis, tRNA aminoacylation and its transfer to EF. Pssm-ID: 198290 [Multi-domain] Cd Length: 123 Bit Score: 39.08 E-value: 5.16e-04
|
|||||||||
GST_C_5 | cd03196 | C-terminal, alpha helical domain of an unknown subfamily 5 of Glutathione S-transferases; ... |
206-243 | 2.25e-03 | |||||
C-terminal, alpha helical domain of an unknown subfamily 5 of Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, unknown subfamily 5; composed of uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Pssm-ID: 198305 [Multi-domain] Cd Length: 115 Bit Score: 37.13 E-value: 2.25e-03
|
|||||||||
GST_N_2 | pfam13409 | Glutathione S-transferase, N-terminal domain; This family is closely related to pfam02798. |
53-134 | 3.45e-03 | |||||
Glutathione S-transferase, N-terminal domain; This family is closely related to pfam02798. Pssm-ID: 433184 [Multi-domain] Cd Length: 68 Bit Score: 35.68 E-value: 3.45e-03
|
|||||||||
GST_C_Metaxin | cd03193 | C-terminal, alpha helical domain of Metaxin and related proteins; Glutathione S-transferase ... |
206-264 | 7.45e-03 | |||||
C-terminal, alpha helical domain of Metaxin and related proteins; Glutathione S-transferase (GST) C-terminal domain family, Metaxin subfamily; composed of metaxins and related proteins. Metaxin 1 is a component of a preprotein import complex of the mitochondrial outer membrane. It extends to the cytosol and is anchored to the mitochondrial membrane through its C-terminal domain. In mice, metaxin is required for embryonic development. In humans, alterations in the metaxin gene may be associated with Gaucher disease. Metaxin 2 binds to metaxin 1 and may also play a role in protein translocation into the mitochondria. Genome sequencing shows that a third metaxin gene also exists in zebrafish, Xenopus, chicken, and mammals. Sequence analysis suggests that all three metaxins share a common ancestry and that they possess similarity to GSTs. Also included in the subfamily are uncharacterized proteins with similarity to metaxins, including a novel GST from Rhodococcus with toluene o-monooxygenase and glutamylcysteine synthetase activities. Other members are the cadmium-inducible lysosomal protein CDR-1 and its homologs from C. elegans, and the failed axon connections (fax) protein from Drosophila. CDR-1 is an integral membrane protein that functions to protect against cadmium toxicity and may also have a role in osmoregulation to maintain salt balance in C. elegans. The fax gene of Drosophila was identified as a genetic modifier of Abelson (Abl) tyrosine kinase. The fax protein is localized in cellular membranes and is expressed in embryonic mesoderm and axons of the central nervous system. Pssm-ID: 198302 [Multi-domain] Cd Length: 88 Bit Score: 35.29 E-value: 7.45e-03
|
|||||||||
Blast search parameters | ||||
|