MULTISPECIES: saccharopine dehydrogenase family protein [Rhizobium]
saccharopine dehydrogenase family protein( domain architecture ID 11448323)
saccharopine dehydrogenase family protein such as saccharopine dehydrogenase, an enzyme of the alpha-aminoadipate pathway of lysine biosynthesis that catalyzes the reversible conversion of glutamate and alpha-aminoadipic-delta-semialdehyde to saccharopine
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
Lys9 | COG1748 | Saccharopine dehydrogenase, NADP-dependent [Amino acid transport and metabolism]; Saccharopine ... |
27-346 | 2.82e-107 | ||||||
Saccharopine dehydrogenase, NADP-dependent [Amino acid transport and metabolism]; Saccharopine dehydrogenase, NADP-dependent is part of the Pathway/BioSystem: Lysine biosynthesis : Pssm-ID: 441354 [Multi-domain] Cd Length: 352 Bit Score: 318.71 E-value: 2.82e-107
|
||||||||||
WecC super family | cl34005 | UDP-N-acetyl-D-mannosaminuronate dehydrogenase [Cell wall/membrane/envelope biogenesis]; |
5-33 | 3.90e-03 | ||||||
UDP-N-acetyl-D-mannosaminuronate dehydrogenase [Cell wall/membrane/envelope biogenesis]; The actual alignment was detected with superfamily member COG0677: Pssm-ID: 440441 [Multi-domain] Cd Length: 413 Bit Score: 38.89 E-value: 3.90e-03
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
Lys9 | COG1748 | Saccharopine dehydrogenase, NADP-dependent [Amino acid transport and metabolism]; Saccharopine ... |
27-346 | 2.82e-107 | ||||||
Saccharopine dehydrogenase, NADP-dependent [Amino acid transport and metabolism]; Saccharopine dehydrogenase, NADP-dependent is part of the Pathway/BioSystem: Lysine biosynthesis Pssm-ID: 441354 [Multi-domain] Cd Length: 352 Bit Score: 318.71 E-value: 2.82e-107
|
||||||||||
Sacchrp_dh_C | pfam16653 | Saccharopine dehydrogenase C-terminal domain; This family comprises the C-terminal domain of ... |
118-331 | 6.43e-22 | ||||||
Saccharopine dehydrogenase C-terminal domain; This family comprises the C-terminal domain of saccharopine dehydrogenase. In some organizms this enzyme is found as a bifunctional polypeptide with lysine ketoglutarate reductase. The saccharopine dehydrogenase can also function as a saccharopine reductase. Pssm-ID: 465219 Cd Length: 255 Bit Score: 93.51 E-value: 6.43e-22
|
||||||||||
PLN02819 | PLN02819 | lysine-ketoglutarate reductase/saccharopine dehydrogenase |
5-168 | 4.76e-05 | ||||||
lysine-ketoglutarate reductase/saccharopine dehydrogenase Pssm-ID: 215439 [Multi-domain] Cd Length: 1042 Bit Score: 45.56 E-value: 4.76e-05
|
||||||||||
PCBER_SDR_a | cd05259 | phenylcoumaran benzylic ether reductase (PCBER) like, atypical (a) SDRs; PCBER and ... |
5-90 | 2.26e-03 | ||||||
phenylcoumaran benzylic ether reductase (PCBER) like, atypical (a) SDRs; PCBER and pinoresinol-lariciresinol reductases are NADPH-dependent aromatic alcohol reductases, and are atypical members of the SDR family. Other proteins in this subgroup are identified as eugenol synthase. These proteins contain an N-terminus characteristic of NAD(P)-binding proteins and a small C-terminal domain presumed to be involved in substrate binding, but they do not have the conserved active site Tyr residue typically found in SDRs. Numerous other members have unknown functions. The glycine rich NADP-binding motif in this subgroup is of 2 forms: GXGXXG and G[GA]XGXXG; it tends to be atypical compared with the forms generally seen in classical or extended SDRs. The usual SDR active site tetrad is not present, but a critical active site Lys at the usual SDR position has been identified in various members, though other charged and polar residues are found at this position in this subgroup. Atypical SDR-related proteins retain the Rossmann fold of the SDRs, but have limited sequence identity and generally lack the catalytic properties of the archetypical members. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187569 [Multi-domain] Cd Length: 282 Bit Score: 39.21 E-value: 2.26e-03
|
||||||||||
WecC | COG0677 | UDP-N-acetyl-D-mannosaminuronate dehydrogenase [Cell wall/membrane/envelope biogenesis]; |
5-33 | 3.90e-03 | ||||||
UDP-N-acetyl-D-mannosaminuronate dehydrogenase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440441 [Multi-domain] Cd Length: 413 Bit Score: 38.89 E-value: 3.90e-03
|
||||||||||
NDP-sugDHase | TIGR03026 | nucleotide sugar dehydrogenase; Enzymes in this family catalyze the NAD-dependent ... |
4-33 | 5.36e-03 | ||||||
nucleotide sugar dehydrogenase; Enzymes in this family catalyze the NAD-dependent alcohol-to-acid oxidation of nucleotide-linked sugars. Examples include UDP-glucose 6-dehydrogenase (1.1.1.22), GDP-mannose 6-dehydrogenase (1.1.1.132), UDP-N-acetylglucosamine 6-dehydrogenase (1.1.1.136), UDP-N-acetyl-D-galactosaminuronic acid dehydrogenase, and UDP-N-acetyl-D-mannosaminuronic acid dehydrogenase. These enzymes are most often involved in the biosynthesis of polysaccharides and are often found in operons devoted to that purpose. All of these enzymes contain three Pfam domains, pfam03721, pfam00984, and pfam03720 for the N-terminal, central, and C-terminal regions respectively. Pssm-ID: 274399 [Multi-domain] Cd Length: 409 Bit Score: 38.36 E-value: 5.36e-03
|
||||||||||
NAD_bind_Leu_Phe_Val_DH | cd01075 | NAD(P) binding domain of leucine dehydrogenase, phenylalanine dehydrogenase, and valine ... |
5-33 | 6.19e-03 | ||||||
NAD(P) binding domain of leucine dehydrogenase, phenylalanine dehydrogenase, and valine dehydrogenase; Amino acid dehydrogenase (DH) is a widely distributed family of enzymes that catalyzes the oxidative deamination of an amino acid to its keto acid and ammonia with concomitant reduction of NADP+. For example, leucine DH catalyzes the reversible oxidative deamination of L-leucine and several other straight or branched chain amino acids to the corresponding 2-oxoacid derivative. Amino acid DH -like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts. Pssm-ID: 133444 Cd Length: 200 Bit Score: 37.57 E-value: 6.19e-03
|
||||||||||
wecC | PRK11064 | UDP-N-acetyl-D-mannosamine dehydrogenase; Provisional |
1-33 | 8.09e-03 | ||||||
UDP-N-acetyl-D-mannosamine dehydrogenase; Provisional Pssm-ID: 182940 [Multi-domain] Cd Length: 415 Bit Score: 38.04 E-value: 8.09e-03
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
Lys9 | COG1748 | Saccharopine dehydrogenase, NADP-dependent [Amino acid transport and metabolism]; Saccharopine ... |
27-346 | 2.82e-107 | ||||||
Saccharopine dehydrogenase, NADP-dependent [Amino acid transport and metabolism]; Saccharopine dehydrogenase, NADP-dependent is part of the Pathway/BioSystem: Lysine biosynthesis Pssm-ID: 441354 [Multi-domain] Cd Length: 352 Bit Score: 318.71 E-value: 2.82e-107
|
||||||||||
Sacchrp_dh_C | pfam16653 | Saccharopine dehydrogenase C-terminal domain; This family comprises the C-terminal domain of ... |
118-331 | 6.43e-22 | ||||||
Saccharopine dehydrogenase C-terminal domain; This family comprises the C-terminal domain of saccharopine dehydrogenase. In some organizms this enzyme is found as a bifunctional polypeptide with lysine ketoglutarate reductase. The saccharopine dehydrogenase can also function as a saccharopine reductase. Pssm-ID: 465219 Cd Length: 255 Bit Score: 93.51 E-value: 6.43e-22
|
||||||||||
Sacchrp_dh_NADP | pfam03435 | Saccharopine dehydrogenase NADP binding domain; This family contains the NADP binding domain ... |
6-91 | 4.77e-08 | ||||||
Saccharopine dehydrogenase NADP binding domain; This family contains the NADP binding domain of saccharopine dehydrogenase. In some organizms this enzyme is found as a bifunctional polypeptide with lysine ketoglutarate reductase. The saccharopine dehydrogenase can also function as a saccharopine reductase. Pssm-ID: 397480 [Multi-domain] Cd Length: 120 Bit Score: 51.05 E-value: 4.77e-08
|
||||||||||
PLN02819 | PLN02819 | lysine-ketoglutarate reductase/saccharopine dehydrogenase |
5-168 | 4.76e-05 | ||||||
lysine-ketoglutarate reductase/saccharopine dehydrogenase Pssm-ID: 215439 [Multi-domain] Cd Length: 1042 Bit Score: 45.56 E-value: 4.76e-05
|
||||||||||
COG3268 | COG3268 | Uncharacterized conserved protein, related to short-chain dehydrogenases [Function unknown]; |
12-93 | 1.39e-04 | ||||||
Uncharacterized conserved protein, related to short-chain dehydrogenases [Function unknown]; Pssm-ID: 442499 [Multi-domain] Cd Length: 368 Bit Score: 43.29 E-value: 1.39e-04
|
||||||||||
YbjT | COG0702 | Uncharacterized conserved protein YbjT, contains NAD(P)-binding and DUF2867 domains [General ... |
5-90 | 2.20e-04 | ||||||
Uncharacterized conserved protein YbjT, contains NAD(P)-binding and DUF2867 domains [General function prediction only]; Pssm-ID: 440466 [Multi-domain] Cd Length: 215 Bit Score: 42.14 E-value: 2.20e-04
|
||||||||||
WcaG | COG0451 | Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; |
5-88 | 5.69e-04 | ||||||
Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440220 [Multi-domain] Cd Length: 295 Bit Score: 41.12 E-value: 5.69e-04
|
||||||||||
MurD | COG0771 | UDP-N-acetylmuramoylalanine-D-glutamate ligase [Cell wall/membrane/envelope biogenesis]; ... |
5-87 | 6.58e-04 | ||||||
UDP-N-acetylmuramoylalanine-D-glutamate ligase [Cell wall/membrane/envelope biogenesis]; UDP-N-acetylmuramoylalanine-D-glutamate ligase is part of the Pathway/BioSystem: Mureine biosynthesis Pssm-ID: 440534 [Multi-domain] Cd Length: 445 Bit Score: 41.60 E-value: 6.58e-04
|
||||||||||
TrkA_N | pfam02254 | TrkA-N domain; This domain is found in a wide variety of proteins. These proteins include ... |
6-83 | 2.11e-03 | ||||||
TrkA-N domain; This domain is found in a wide variety of proteins. These proteins include potassium channels, phosphoesterases, and various other transporters. This domain binds to NAD. Pssm-ID: 426679 [Multi-domain] Cd Length: 115 Bit Score: 37.51 E-value: 2.11e-03
|
||||||||||
PCBER_SDR_a | cd05259 | phenylcoumaran benzylic ether reductase (PCBER) like, atypical (a) SDRs; PCBER and ... |
5-90 | 2.26e-03 | ||||||
phenylcoumaran benzylic ether reductase (PCBER) like, atypical (a) SDRs; PCBER and pinoresinol-lariciresinol reductases are NADPH-dependent aromatic alcohol reductases, and are atypical members of the SDR family. Other proteins in this subgroup are identified as eugenol synthase. These proteins contain an N-terminus characteristic of NAD(P)-binding proteins and a small C-terminal domain presumed to be involved in substrate binding, but they do not have the conserved active site Tyr residue typically found in SDRs. Numerous other members have unknown functions. The glycine rich NADP-binding motif in this subgroup is of 2 forms: GXGXXG and G[GA]XGXXG; it tends to be atypical compared with the forms generally seen in classical or extended SDRs. The usual SDR active site tetrad is not present, but a critical active site Lys at the usual SDR position has been identified in various members, though other charged and polar residues are found at this position in this subgroup. Atypical SDR-related proteins retain the Rossmann fold of the SDRs, but have limited sequence identity and generally lack the catalytic properties of the archetypical members. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187569 [Multi-domain] Cd Length: 282 Bit Score: 39.21 E-value: 2.26e-03
|
||||||||||
BVR-B_like_SDR_a | cd05244 | biliverdin IX beta reductase (BVR-B, aka flavin reductase)-like proteins; atypical (a) SDRs; ... |
5-81 | 3.44e-03 | ||||||
biliverdin IX beta reductase (BVR-B, aka flavin reductase)-like proteins; atypical (a) SDRs; Human BVR-B catalyzes pyridine nucleotide-dependent production of bilirubin-IX beta during fetal development; in the adult BVR-B has flavin and ferric reductase activities. Human BVR-B catalyzes the reduction of FMN, FAD, and riboflavin. Recognition of flavin occurs mostly by hydrophobic interactions, accounting for the broad substrate specificity. Atypical SDRs are distinct from classical SDRs. BVR-B does not share the key catalytic triad, or conserved tyrosine typical of SDRs. The glycine-rich NADP-binding motif of BVR-B is GXXGXXG, which is similar but not identical to the pattern seen in extended SDRs. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187555 [Multi-domain] Cd Length: 207 Bit Score: 38.38 E-value: 3.44e-03
|
||||||||||
WecC | COG0677 | UDP-N-acetyl-D-mannosaminuronate dehydrogenase [Cell wall/membrane/envelope biogenesis]; |
5-33 | 3.90e-03 | ||||||
UDP-N-acetyl-D-mannosaminuronate dehydrogenase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440441 [Multi-domain] Cd Length: 413 Bit Score: 38.89 E-value: 3.90e-03
|
||||||||||
NAD_binding_10 | pfam13460 | NAD(P)H-binding; |
12-87 | 4.08e-03 | ||||||
NAD(P)H-binding; Pssm-ID: 463885 [Multi-domain] Cd Length: 183 Bit Score: 37.97 E-value: 4.08e-03
|
||||||||||
PRK08220 | PRK08220 | 2,3-dihydroxybenzoate-2,3-dehydrogenase; Validated |
1-65 | 5.26e-03 | ||||||
2,3-dihydroxybenzoate-2,3-dehydrogenase; Validated Pssm-ID: 236190 [Multi-domain] Cd Length: 252 Bit Score: 37.94 E-value: 5.26e-03
|
||||||||||
NDP-sugDHase | TIGR03026 | nucleotide sugar dehydrogenase; Enzymes in this family catalyze the NAD-dependent ... |
4-33 | 5.36e-03 | ||||||
nucleotide sugar dehydrogenase; Enzymes in this family catalyze the NAD-dependent alcohol-to-acid oxidation of nucleotide-linked sugars. Examples include UDP-glucose 6-dehydrogenase (1.1.1.22), GDP-mannose 6-dehydrogenase (1.1.1.132), UDP-N-acetylglucosamine 6-dehydrogenase (1.1.1.136), UDP-N-acetyl-D-galactosaminuronic acid dehydrogenase, and UDP-N-acetyl-D-mannosaminuronic acid dehydrogenase. These enzymes are most often involved in the biosynthesis of polysaccharides and are often found in operons devoted to that purpose. All of these enzymes contain three Pfam domains, pfam03721, pfam00984, and pfam03720 for the N-terminal, central, and C-terminal regions respectively. Pssm-ID: 274399 [Multi-domain] Cd Length: 409 Bit Score: 38.36 E-value: 5.36e-03
|
||||||||||
NAD_bind_Leu_Phe_Val_DH | cd01075 | NAD(P) binding domain of leucine dehydrogenase, phenylalanine dehydrogenase, and valine ... |
5-33 | 6.19e-03 | ||||||
NAD(P) binding domain of leucine dehydrogenase, phenylalanine dehydrogenase, and valine dehydrogenase; Amino acid dehydrogenase (DH) is a widely distributed family of enzymes that catalyzes the oxidative deamination of an amino acid to its keto acid and ammonia with concomitant reduction of NADP+. For example, leucine DH catalyzes the reversible oxidative deamination of L-leucine and several other straight or branched chain amino acids to the corresponding 2-oxoacid derivative. Amino acid DH -like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts. Pssm-ID: 133444 Cd Length: 200 Bit Score: 37.57 E-value: 6.19e-03
|
||||||||||
2-desacetyl-2-hydroxyethyl_bacteriochlorophyllide_ | cd08255 | 2-desacetyl-2-hydroxyethyl bacteriochlorophyllide and other MDR family members; This subgroup ... |
4-33 | 6.76e-03 | ||||||
2-desacetyl-2-hydroxyethyl bacteriochlorophyllide and other MDR family members; This subgroup of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family has members identified as 2-desacetyl-2-hydroxyethyl bacteriochlorophyllide A dehydrogenase and alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. Pssm-ID: 176217 [Multi-domain] Cd Length: 277 Bit Score: 38.02 E-value: 6.76e-03
|
||||||||||
TrkA | COG0569 | Trk/Ktr K+ transport system regulatory component TrkA/KtrA/KtrC, RCK domain [Inorganic ion ... |
5-87 | 7.94e-03 | ||||||
Trk/Ktr K+ transport system regulatory component TrkA/KtrA/KtrC, RCK domain [Inorganic ion transport and metabolism, Signal transduction mechanisms]; Pssm-ID: 440335 [Multi-domain] Cd Length: 296 Bit Score: 37.74 E-value: 7.94e-03
|
||||||||||
wecC | PRK11064 | UDP-N-acetyl-D-mannosamine dehydrogenase; Provisional |
1-33 | 8.09e-03 | ||||||
UDP-N-acetyl-D-mannosamine dehydrogenase; Provisional Pssm-ID: 182940 [Multi-domain] Cd Length: 415 Bit Score: 38.04 E-value: 8.09e-03
|
||||||||||
Blast search parameters | ||||
|