ABC transporter substrate-binding protein [Pseudomonas agarici]
substrate-binding periplasmic protein( domain architecture ID 11435556)
substrate-binding periplasmic protein similar to ABC transporter substrate-binding proteins, which function as the initial receptor in the ABC transport of a variety of substrates including amino acids and peptides, and to the periplasmic sensor domain of the histidine kinase receptors (HisK), which are elements of the two-component signal transduction systems commonly found in bacteria and lower eukaryotes
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
HisJ | COG0834 | ABC-type amino acid transport/signal transduction system, periplasmic component/domain [Amino ... |
41-237 | 3.79e-14 | ||||
ABC-type amino acid transport/signal transduction system, periplasmic component/domain [Amino acid transport and metabolism, Signal transduction mechanisms]; : Pssm-ID: 440596 [Multi-domain] Cd Length: 223 Bit Score: 69.24 E-value: 3.79e-14
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
HisJ | COG0834 | ABC-type amino acid transport/signal transduction system, periplasmic component/domain [Amino ... |
41-237 | 3.79e-14 | ||||
ABC-type amino acid transport/signal transduction system, periplasmic component/domain [Amino acid transport and metabolism, Signal transduction mechanisms]; Pssm-ID: 440596 [Multi-domain] Cd Length: 223 Bit Score: 69.24 E-value: 3.79e-14
|
||||||||
SBP_bac_3 | pfam00497 | Bacterial extracellular solute-binding proteins, family 3; This is a sensor domain found in ... |
41-237 | 9.75e-09 | ||||
Bacterial extracellular solute-binding proteins, family 3; This is a sensor domain found in solute-binding protein family 3 members from Gram-positive bacteria, Gram-negative bacteria and archaea. It can also be found in the N-terminal of the membrane-bound lytic murein transglycosylase F (MltF) protein. This domain recognizes Nicotinate, quidalnate, pyridine-2,5-dicarboxylate and salicylate (Matilla et. al., FEMS Microbiology Reviews, fuab043, 45, 2021, 1. https://doi.org/10.1093/femsre/fuab043). Pssm-ID: 425719 [Multi-domain] Cd Length: 221 Bit Score: 54.22 E-value: 9.75e-09
|
||||||||
PBP2_HisK | cd13704 | The periplasmic sensor domain of histidine kinase receptors; the type 2 periplasmic binding ... |
41-237 | 1.30e-06 | ||||
The periplasmic sensor domain of histidine kinase receptors; the type 2 periplasmic binding fold protein; This subfamily includes the periplasmic sensor domain of the histidine kinase receptors (HisK) which are elements of the two-component signal transduction systems commonly found in bacteria and lower eukaryotes. Typically, the two-component system consists of a membrane-spanning histidine kinase sensor and a cytoplasmic response regulator. The two-component systems serve as a stimulus-response coupling mechanism to enable microorganisms to sense and respond to changes in environmental conditions. Extracellular stimuli such as small molecule ligands and ions are detected by the N-terminal periplasmic sensing domain of the sensor kinase receptor, which regulate the catalytic activity of the cytoplasmic kinase domain and promote ATP-dependent autophosphorylation of a conserved histidine residue. The phosphate is then transferred to a conserved aspartate in the response regulator through a phospho-transfer mechanism, and the activity of the response regulator is in turn regulated. The sensor domain belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space through their function as an initial high-affinity binding component. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. Pssm-ID: 270422 [Multi-domain] Cd Length: 220 Bit Score: 47.96 E-value: 1.30e-06
|
||||||||
PBPb | smart00062 | Bacterial periplasmic substrate-binding proteins; bacterial proteins, eukaryotic ones are in ... |
41-237 | 6.07e-06 | ||||
Bacterial periplasmic substrate-binding proteins; bacterial proteins, eukaryotic ones are in PBPe Pssm-ID: 214497 [Multi-domain] Cd Length: 219 Bit Score: 45.78 E-value: 6.07e-06
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
HisJ | COG0834 | ABC-type amino acid transport/signal transduction system, periplasmic component/domain [Amino ... |
41-237 | 3.79e-14 | ||||
ABC-type amino acid transport/signal transduction system, periplasmic component/domain [Amino acid transport and metabolism, Signal transduction mechanisms]; Pssm-ID: 440596 [Multi-domain] Cd Length: 223 Bit Score: 69.24 E-value: 3.79e-14
|
||||||||
SBP_bac_3 | pfam00497 | Bacterial extracellular solute-binding proteins, family 3; This is a sensor domain found in ... |
41-237 | 9.75e-09 | ||||
Bacterial extracellular solute-binding proteins, family 3; This is a sensor domain found in solute-binding protein family 3 members from Gram-positive bacteria, Gram-negative bacteria and archaea. It can also be found in the N-terminal of the membrane-bound lytic murein transglycosylase F (MltF) protein. This domain recognizes Nicotinate, quidalnate, pyridine-2,5-dicarboxylate and salicylate (Matilla et. al., FEMS Microbiology Reviews, fuab043, 45, 2021, 1. https://doi.org/10.1093/femsre/fuab043). Pssm-ID: 425719 [Multi-domain] Cd Length: 221 Bit Score: 54.22 E-value: 9.75e-09
|
||||||||
PBP2_HisK | cd13704 | The periplasmic sensor domain of histidine kinase receptors; the type 2 periplasmic binding ... |
41-237 | 1.30e-06 | ||||
The periplasmic sensor domain of histidine kinase receptors; the type 2 periplasmic binding fold protein; This subfamily includes the periplasmic sensor domain of the histidine kinase receptors (HisK) which are elements of the two-component signal transduction systems commonly found in bacteria and lower eukaryotes. Typically, the two-component system consists of a membrane-spanning histidine kinase sensor and a cytoplasmic response regulator. The two-component systems serve as a stimulus-response coupling mechanism to enable microorganisms to sense and respond to changes in environmental conditions. Extracellular stimuli such as small molecule ligands and ions are detected by the N-terminal periplasmic sensing domain of the sensor kinase receptor, which regulate the catalytic activity of the cytoplasmic kinase domain and promote ATP-dependent autophosphorylation of a conserved histidine residue. The phosphate is then transferred to a conserved aspartate in the response regulator through a phospho-transfer mechanism, and the activity of the response regulator is in turn regulated. The sensor domain belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space through their function as an initial high-affinity binding component. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. Pssm-ID: 270422 [Multi-domain] Cd Length: 220 Bit Score: 47.96 E-value: 1.30e-06
|
||||||||
PBPb | smart00062 | Bacterial periplasmic substrate-binding proteins; bacterial proteins, eukaryotic ones are in ... |
41-237 | 6.07e-06 | ||||
Bacterial periplasmic substrate-binding proteins; bacterial proteins, eukaryotic ones are in PBPe Pssm-ID: 214497 [Multi-domain] Cd Length: 219 Bit Score: 45.78 E-value: 6.07e-06
|
||||||||
PBP2_BvgS_HisK_like | cd01007 | The type 2 periplasmic ligand-binding protein domain of the sensor-kinase BvgS and histidine ... |
39-183 | 4.02e-05 | ||||
The type 2 periplasmic ligand-binding protein domain of the sensor-kinase BvgS and histidine kinase receptors, and related proteins; This family comprises the periplasmic sensor domain of the two-component sensor-kinase systems, such as the sensor protein BvgS of Bordetella pertussis and histidine kinase receptors (HisK), and uncharacterized related proteins. Typically, the two-component system consists of a membrane spanning sensor-kinase and a cytoplasmic response regulator. It serves as a stimulus-response coupling mechanism to enable microorganisms to sense and respond to changes in environmental conditions. The N-terminal sensing domain of the sensor kinase detects extracellular signals, such as small molecule ligands and ions, which then modulate the catalytic activity of the cytoplasmic kinase domain through a phosphorylation cascade. The periplasmic sensor domain belongs to the type 2 periplasmic-binding fold protein (PBP2) superfamily, whose members are involved in chemotaxis and uptake of nutrients and other small molecules from the extracellular space as a primary receptor. PBP2 typically comprises of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270228 [Multi-domain] Cd Length: 220 Bit Score: 43.29 E-value: 4.02e-05
|
||||||||
PBP2_YxeM | cd13709 | Substrate binding domain of an ABC transporter YxeMNO; the type 2 periplasmic binding protein ... |
52-237 | 1.86e-03 | ||||
Substrate binding domain of an ABC transporter YxeMNO; the type 2 periplasmic binding protein fold; This group contains cystine-binding domain (YxeM) of a periplasmic receptor-dependent ATP-binding cassette transporter and its closely related proteins. Cystine is an oxidized dimeric form of cysteine that is required for optimal bacterial growth. In Bacillus subtilis, three ABC transporters, TcyJKLMN (YtmJKLMN), TcyABC (YckKJI), and YxeMNO are involved in uptake of cystine. Likewise, three uptake systems were identified in Salmonella enterica serovar Typhimurium, while in Escherichia coli, two transport systems seem to be involved in cystine uptake. Moreover, L-cystine limitation was shown to prevent virulence of Neisseria gonorrhoeae; thus, its L-cystine solute receptor (Ngo0372) may be suited as target for an antimicrobial vaccine. The cystine receptor belongs to the type 2 periplasmic binding fold protein superfamily (PBP2). The PBP2 proteins are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two receptor cytoplasmically-located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270427 [Multi-domain] Cd Length: 227 Bit Score: 38.48 E-value: 1.86e-03
|
||||||||
Blast search parameters | ||||
|