MULTISPECIES: Rieske (2Fe-2S) protein [Pseudomonas]
Rieske (2Fe-2S) protein( domain architecture ID 10005408)
Rieske (2Fe-2S) protein contains a [2Fe-2S] cluster, which is involved in electron transfer, and is liganded to two histidine and two cysteine residues present in conserved sequences called Rieske motifs
List of domain hits
Name | Accession | Description | Interval | E-value | |||
NirD | COG2146 | Ferredoxin subunit of nitrite reductase or a ring-hydroxylating dioxygenase [Inorganic ion ... |
4-105 | 2.57e-22 | |||
Ferredoxin subunit of nitrite reductase or a ring-hydroxylating dioxygenase [Inorganic ion transport and metabolism, Secondary metabolites biosynthesis, transport and catabolism]; : Pssm-ID: 441749 [Multi-domain] Cd Length: 103 Bit Score: 83.35 E-value: 2.57e-22
|
|||||||
Name | Accession | Description | Interval | E-value | |||
NirD | COG2146 | Ferredoxin subunit of nitrite reductase or a ring-hydroxylating dioxygenase [Inorganic ion ... |
4-105 | 2.57e-22 | |||
Ferredoxin subunit of nitrite reductase or a ring-hydroxylating dioxygenase [Inorganic ion transport and metabolism, Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 441749 [Multi-domain] Cd Length: 103 Bit Score: 83.35 E-value: 2.57e-22
|
|||||||
Rieske | cd03467 | Rieske domain; a [2Fe-2S] cluster binding domain commonly found in Rieske non-heme iron ... |
4-102 | 8.90e-15 | |||
Rieske domain; a [2Fe-2S] cluster binding domain commonly found in Rieske non-heme iron oxygenase (RO) systems such as naphthalene and biphenyl dioxygenases, as well as in plant/cyanobacterial chloroplast b6f and mitochondrial cytochrome bc(1) complexes. The Rieske domain can be divided into two subdomains, with an incomplete six-stranded, antiparallel beta-barrel at one end, and an iron-sulfur cluster binding subdomain at the other. The Rieske iron-sulfur center contains a [2Fe-2S] cluster, which is involved in electron transfer, and is liganded to two histidine and two cysteine residues present in conserved sequences called Rieske motifs. In RO systems, the N-terminal Rieske domain of the alpha subunit acts as an electron shuttle that accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron in the alpha subunit C-terminal domain to be used for catalysis. Pssm-ID: 239550 [Multi-domain] Cd Length: 98 Bit Score: 64.05 E-value: 8.90e-15
|
|||||||
Rieske | pfam00355 | Rieske [2Fe-2S] domain; The rieske domain has a [2Fe-2S] centre. Two conserved cysteines ... |
3-87 | 1.29e-08 | |||
Rieske [2Fe-2S] domain; The rieske domain has a [2Fe-2S] centre. Two conserved cysteines coordinate one Fe ion, while the other Fe ion is coordinated by two conserved histidines. In hyperthermophilic archaea there is a SKTPCX(2-3)C motif at the C-terminus. The cysteines in this motif form a disulphide bridge, which stabilizes the protein. Pssm-ID: 425632 [Multi-domain] Cd Length: 89 Bit Score: 48.11 E-value: 1.29e-08
|
|||||||
Name | Accession | Description | Interval | E-value | |||
NirD | COG2146 | Ferredoxin subunit of nitrite reductase or a ring-hydroxylating dioxygenase [Inorganic ion ... |
4-105 | 2.57e-22 | |||
Ferredoxin subunit of nitrite reductase or a ring-hydroxylating dioxygenase [Inorganic ion transport and metabolism, Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 441749 [Multi-domain] Cd Length: 103 Bit Score: 83.35 E-value: 2.57e-22
|
|||||||
Rieske | cd03467 | Rieske domain; a [2Fe-2S] cluster binding domain commonly found in Rieske non-heme iron ... |
4-102 | 8.90e-15 | |||
Rieske domain; a [2Fe-2S] cluster binding domain commonly found in Rieske non-heme iron oxygenase (RO) systems such as naphthalene and biphenyl dioxygenases, as well as in plant/cyanobacterial chloroplast b6f and mitochondrial cytochrome bc(1) complexes. The Rieske domain can be divided into two subdomains, with an incomplete six-stranded, antiparallel beta-barrel at one end, and an iron-sulfur cluster binding subdomain at the other. The Rieske iron-sulfur center contains a [2Fe-2S] cluster, which is involved in electron transfer, and is liganded to two histidine and two cysteine residues present in conserved sequences called Rieske motifs. In RO systems, the N-terminal Rieske domain of the alpha subunit acts as an electron shuttle that accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron in the alpha subunit C-terminal domain to be used for catalysis. Pssm-ID: 239550 [Multi-domain] Cd Length: 98 Bit Score: 64.05 E-value: 8.90e-15
|
|||||||
Rieske_RO_Alpha_N | cd03469 | Rieske non-heme iron oxygenase (RO) family, N-terminal Rieske domain of the oxygenase alpha ... |
16-105 | 6.03e-10 | |||
Rieske non-heme iron oxygenase (RO) family, N-terminal Rieske domain of the oxygenase alpha subunit; The RO family comprise a large class of aromatic ring-hydroxylating dioxygenases found predominantly in microorganisms. These enzymes enable microorganisms to tolerate and even exclusively utilize aromatic compounds for growth. ROs consist of two or three components: reductase, oxygenase, and ferredoxin (in some cases) components. The oxygenase component may contain alpha and beta subunits, with the beta subunit having a purely structural function. Some oxygenase components contain only an alpha subunit. The oxygenase alpha subunit has two domains, an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from the reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. Reduced pyridine nucleotide is used as the initial source of two electrons for dioxygen activation. Pssm-ID: 239551 [Multi-domain] Cd Length: 118 Bit Score: 52.21 E-value: 6.03e-10
|
|||||||
Rieske_AIFL_N | cd03478 | AIFL (apoptosis-inducing factor like) family, N-terminal Rieske domain; members of this family ... |
4-84 | 1.81e-09 | |||
AIFL (apoptosis-inducing factor like) family, N-terminal Rieske domain; members of this family show similarity to human AIFL, containing an N-terminal Rieske domain and a C-terminal pyridine nucleotide-disulfide oxidoreductase domain (Pyr_redox). The Rieske domain is a [2Fe-2S] cluster binding domain involved in electron transfer. AIFL shares 35% homology with human AIF (apoptosis-inducing factor), mainly in the Pyr_redox domain. AIFL is predominantly localized to the mitochondria. AIFL induces apoptosis in a caspase-dependent manner. Pssm-ID: 239560 [Multi-domain] Cd Length: 95 Bit Score: 50.31 E-value: 1.81e-09
|
|||||||
Rieske | pfam00355 | Rieske [2Fe-2S] domain; The rieske domain has a [2Fe-2S] centre. Two conserved cysteines ... |
3-87 | 1.29e-08 | |||
Rieske [2Fe-2S] domain; The rieske domain has a [2Fe-2S] centre. Two conserved cysteines coordinate one Fe ion, while the other Fe ion is coordinated by two conserved histidines. In hyperthermophilic archaea there is a SKTPCX(2-3)C motif at the C-terminus. The cysteines in this motif form a disulphide bridge, which stabilizes the protein. Pssm-ID: 425632 [Multi-domain] Cd Length: 89 Bit Score: 48.11 E-value: 1.29e-08
|
|||||||
HcaE | COG4638 | Phenylpropionate dioxygenase or related ring-hydroxylating dioxygenase, large terminal subunit ... |
16-105 | 2.75e-08 | |||
Phenylpropionate dioxygenase or related ring-hydroxylating dioxygenase, large terminal subunit [Inorganic ion transport and metabolism, General function prediction only]; Pssm-ID: 443676 [Multi-domain] Cd Length: 298 Bit Score: 49.60 E-value: 2.75e-08
|
|||||||
Rieske_RO_Alpha_OMO_CARDO | cd03548 | Rieske non-heme iron oxygenase (RO) family, 2-Oxoquinoline 8-monooxygenase (OMO) and Carbazole ... |
8-80 | 2.03e-07 | |||
Rieske non-heme iron oxygenase (RO) family, 2-Oxoquinoline 8-monooxygenase (OMO) and Carbazole 1,9a-dioxygenase (CARDO) subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. OMO catalyzes the NADH-dependent oxidation of the N-heterocyclic aromatic compound 2-oxoquinoline to 8-hydroxy-2-oxoquinoline, the second step in the bacterial degradation of quinoline. OMO consists of a reductase component (OMR) and an oxygenase component (OMO) that together function to shuttle electrons from the reduced pyridine nucleotide to the active site of OMO, where O2 activation and 2-oxoquinoline hydroxylation occurs. CARDO, which contains oxygenase (CARDO-O), ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R) components, catalyzes the dihydroxylation at the C1 and C9a positions of carbazole. The oxygenase component of OMO and CARDO contain only alpha subunits arranged in a trimeric structure. Pssm-ID: 239617 [Multi-domain] Cd Length: 136 Bit Score: 45.88 E-value: 2.03e-07
|
|||||||
Rieske_RO_ferredoxin | cd03528 | Rieske non-heme iron oxygenase (RO) family, Rieske ferredoxin component; composed of the ... |
4-84 | 4.40e-07 | |||
Rieske non-heme iron oxygenase (RO) family, Rieske ferredoxin component; composed of the Rieske ferredoxin component of some three-component RO systems including biphenyl dioxygenase (BPDO) and carbazole 1,9a-dioxygenase (CARDO). The RO family comprise a large class of aromatic ring-hydroxylating dioxygenases found predominantly in microorganisms. These enzymes enable microorganisms to tolerate and even exclusively utilize aromatic compounds for growth. ROs consist of two or three components: reductase, oxygenase, and ferredoxin (in some cases) components. The ferredoxin component contains either a plant-type or Rieske-type [2Fe-2S] cluster. The Rieske ferredoxin component in this family carries an electron from the RO reductase component to the terminal RO oxygenase component. BPDO degrades biphenyls and polychlorinated biphenyls. BPDO ferredoxin (BphF) has structural features consistent with a minimal and perhaps archetypical Rieske protein in that the insertions that give other Rieske proteins unique structural features are missing. CARDO catalyzes dihydroxylation at the C1 and C9a positions of carbazole. Rieske ferredoxins are found as subunits of membrane oxidase complexes, cis-dihydrodiol-forming aromatic dioxygenases, bacterial assimilatory nitrite reductases, and arsenite oxidase. Rieske ferredoxins are also found as soluble electron carriers in bacterial dioxygenase and monooxygenase complexes. Pssm-ID: 239604 [Multi-domain] Cd Length: 98 Bit Score: 44.02 E-value: 4.40e-07
|
|||||||
Rieske_RO_Alpha_PhDO_like | cd03479 | Rieske non-heme iron oxygenase (RO) family, Phthalate 4,5-dioxygenase (PhDO)-like subfamily, ... |
22-84 | 1.33e-05 | |||
Rieske non-heme iron oxygenase (RO) family, Phthalate 4,5-dioxygenase (PhDO)-like subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; composed of the oxygenase alpha subunits of PhDO and similar proteins including 3-chlorobenzoate 3,4-dioxygenase (CBDO), phenoxybenzoate dioxygenase (POB-dioxygenase) and 3-nitrobenzoate oxygenase (MnbA). ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. PhDO and CBDO are two-component RO systems, containing oxygenase and reductase components. PhDO catalyzes the dihydroxylation of phthalate to form the 4,5-dihydro-cis-dihydrodiol of phthalate (DHD). CBDO, together with CbaC dehydrogenase, converts the environmental pollutant 3CBA to protocatechuate (PCA) and 5-Cl-PCA, which are then metabolized by the chromosomal PCA meta (extradiol) ring fission pathway. POB-dioxygenase catalyzes the initial catabolic step in the angular dioxygenation of phenoxybenzoate, converting mono- and dichlorinated phenoxybenzoates to protocatechuate and chlorophenols. These phenoxybenzoates are metabolic products formed during the degradation of pyrethroid insecticides. Pssm-ID: 239561 [Multi-domain] Cd Length: 144 Bit Score: 41.08 E-value: 1.33e-05
|
|||||||
PobA | COG5749 | Chlorophyllide a oxygenase/letal leaf spot protein [Coenzyme transport and metabolism]; |
19-103 | 1.59e-05 | |||
Chlorophyllide a oxygenase/letal leaf spot protein [Coenzyme transport and metabolism]; Pssm-ID: 444459 [Multi-domain] Cd Length: 349 Bit Score: 41.91 E-value: 1.59e-05
|
|||||||
Rieske_RO_Alpha_AntDO | cd03538 | Rieske non-heme iron oxygenase (RO) family, Anthranilate 1,2-dioxygenase (AntDO) subfamily, ... |
20-53 | 2.69e-03 | |||
Rieske non-heme iron oxygenase (RO) family, Anthranilate 1,2-dioxygenase (AntDO) subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. AntDO converts anthranilate to catechol, a naturally occurring compound formed through tryptophan degradation and an important intermediate in the metabolism of many N-heterocyclic compounds such as indole, o-nitrobenzoate, carbazole, and quinaldine. Pssm-ID: 239612 [Multi-domain] Cd Length: 146 Bit Score: 35.13 E-value: 2.69e-03
|
|||||||
Rieske_RO_Alpha_VanA_DdmC | cd03532 | Rieske non-heme iron oxygenase (RO) family, Vanillate-O-demethylase oxygenase (VanA) and ... |
30-103 | 3.06e-03 | |||
Rieske non-heme iron oxygenase (RO) family, Vanillate-O-demethylase oxygenase (VanA) and dicamba O-demethylase oxygenase (DdmC) subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. Vanillate-O-demethylase is a heterodimeric enzyme consisting of a terminal oxygenase (VanA) and reductase (VanB) components. This enzyme reductively catalyzes the conversion of vanillate into protocatechuate and formaldehyde. Protocatechuate and vanillate are important intermediate metabolites in the degradation pathway of lignin-derived compounds such as ferulic acid and vanillin by soil microbes. DDmC is the oxygenase component of a three-component dicamba O-demethylase found in Pseudomonas maltophila, that catalyzes the conversion of a widely used herbicide called herbicide dicamba (2-methoxy-3,6-dichlorobenzoic acid) to DCSA (3,6-dichlorosalicylic acid). Pssm-ID: 239608 [Multi-domain] Cd Length: 116 Bit Score: 34.26 E-value: 3.06e-03
|
|||||||
Rieske_RO_Alpha_DTDO | cd03536 | This alignment model represents the N-terminal rieske domain of the oxygenase alpha subunit ... |
25-83 | 8.91e-03 | |||
This alignment model represents the N-terminal rieske domain of the oxygenase alpha subunit (DitA) of diterpenoid dioxygenase (DTDO). DTDO is a novel aromatic-ring-hydroxylating dioxygenase found in Pseudomonas and other proteobacteria that degrades dehydroabietic acid (DhA). Specifically, DitA hydroxylates 7-oxodehydroabietic acid to 7-oxo-11,12-dihydroxy-8, 13-abietadien acid. The ditA1 and ditA2 genes encode the alpha and beta subunits of the oxygenase component of DTDO while the ditA3 gene encodes the ferredoxin component of DTDO. The organization of the genes encoding the various diterpenoid dioxygenase components, the phylogenetic distinctiveness of both the alpha subunit and the ferredoxin component, and the unusual iron-sulfur cluster of the ferredoxin all suggest that this enzyme belongs to a new class of aromatic ring-hydroxylating dioxygenases. Pssm-ID: 239610 [Multi-domain] Cd Length: 123 Bit Score: 33.37 E-value: 8.91e-03
|
|||||||
Blast search parameters | ||||
|