tyrosine based site-specific recombinase (integrase) is involved in cleavage of a single strand of a DNA duplex by nucleophilic attack of a conserved tyrosine to give a 3' phosphotyrosyl protein-DNA adduct
DNA breaking-rejoining enzymes, C-terminal catalytic domain; The DNA breaking-rejoining enzyme ...
142-358
8.65e-13
DNA breaking-rejoining enzymes, C-terminal catalytic domain; The DNA breaking-rejoining enzyme superfamily includes type IB topoisomerases and tyrosine based site-specific recombinases (integrases) that share the same fold in their catalytic domain containing conserved active site residues. The best-studied members of this diverse superfamily include Human topoisomerase I, the bacteriophage lambda integrase, the bacteriophage P1 Cre recombinase, the yeast Flp recombinase, and the bacterial XerD/C recombinases. Their overall reaction mechanism is essentially identical and involves cleavage of a single strand of a DNA duplex by nucleophilic attack of a conserved tyrosine to give a 3' phosphotyrosyl protein-DNA adduct. In the second rejoining step, a terminal 5' hydroxyl attacks the covalent adduct to release the enzyme and generate duplex DNA. The enzymes differ in that topoisomerases cleave and then rejoin the same 5' and 3' termini, whereas a site-specific recombinase transfers a 5' hydroxyl generated by recombinase cleavage to a new 3' phosphate partner located in a different duplex region. Many DNA breaking-rejoining enzymes also have N-terminal domains, which show little sequence or structure similarity.
The actual alignment was detected with superfamily member cd00799:
Pssm-ID: 469662 Cd Length: 188 Bit Score: 66.17 E-value: 8.65e-13
C-terminal catalytic domain of Cre recombinase (also called integrase); Cre-like recombinases ...
142-358
8.65e-13
C-terminal catalytic domain of Cre recombinase (also called integrase); Cre-like recombinases are tyrosine based site specific recombinases. They belong to the superfamily of DNA breaking-rejoining enzymes, which share the same fold in their catalytic domain and the overall reaction mechanism. The bacteriophage P1 Cre recombinase maintains the circular phage replicon in a monomeric state by catalyzing a site-specific recombination between two loxP sites. The catalytic core domain of Cre recombinase is linked to a more divergent helical N-terminal domain, which interacts primarily with the DNA major groove proximal to the crossover region.
Pssm-ID: 271180 Cd Length: 188 Bit Score: 66.17 E-value: 8.65e-13
Phage integrase family; Members of this family cleave DNA substrates by a series of staggered ...
146-358
7.43e-04
Phage integrase family; Members of this family cleave DNA substrates by a series of staggered cuts, during which the protein becomes covalently linked to the DNA through a catalytic tyrosine residue at the carboxy end of the alignment. The catalytic site residues in CRE recombinase are Arg-173, His-289, Arg-292 and Tyr-324.
Pssm-ID: 395471 [Multi-domain] Cd Length: 169 Bit Score: 40.00 E-value: 7.43e-04
C-terminal catalytic domain of Cre recombinase (also called integrase); Cre-like recombinases ...
142-358
8.65e-13
C-terminal catalytic domain of Cre recombinase (also called integrase); Cre-like recombinases are tyrosine based site specific recombinases. They belong to the superfamily of DNA breaking-rejoining enzymes, which share the same fold in their catalytic domain and the overall reaction mechanism. The bacteriophage P1 Cre recombinase maintains the circular phage replicon in a monomeric state by catalyzing a site-specific recombination between two loxP sites. The catalytic core domain of Cre recombinase is linked to a more divergent helical N-terminal domain, which interacts primarily with the DNA major groove proximal to the crossover region.
Pssm-ID: 271180 Cd Length: 188 Bit Score: 66.17 E-value: 8.65e-13
DNA breaking-rejoining enzymes, C-terminal catalytic domain; The DNA breaking-rejoining enzyme ...
140-357
1.71e-05
DNA breaking-rejoining enzymes, C-terminal catalytic domain; The DNA breaking-rejoining enzyme superfamily includes type IB topoisomerases and tyrosine based site-specific recombinases (integrases) that share the same fold in their catalytic domain containing conserved active site residues. The best-studied members of this diverse superfamily include Human topoisomerase I, the bacteriophage lambda integrase, the bacteriophage P1 Cre recombinase, the yeast Flp recombinase, and the bacterial XerD/C recombinases. Their overall reaction mechanism is essentially identical and involves cleavage of a single strand of a DNA duplex by nucleophilic attack of a conserved tyrosine to give a 3' phosphotyrosyl protein-DNA adduct. In the second rejoining step, a terminal 5' hydroxyl attacks the covalent adduct to release the enzyme and generate duplex DNA. The enzymes differ in that topoisomerases cleave and then rejoin the same 5' and 3' termini, whereas a site-specific recombinase transfers a 5' hydroxyl generated by recombinase cleavage to a new 3' phosphate partner located in a different duplex region. Many DNA breaking-rejoining enzymes also have N-terminal domains, which show little sequence or structure similarity.
Pssm-ID: 271175 [Multi-domain] Cd Length: 167 Bit Score: 44.78 E-value: 1.71e-05
Phage integrase family; Members of this family cleave DNA substrates by a series of staggered ...
146-358
7.43e-04
Phage integrase family; Members of this family cleave DNA substrates by a series of staggered cuts, during which the protein becomes covalently linked to the DNA through a catalytic tyrosine residue at the carboxy end of the alignment. The catalytic site residues in CRE recombinase are Arg-173, His-289, Arg-292 and Tyr-324.
Pssm-ID: 395471 [Multi-domain] Cd Length: 169 Bit Score: 40.00 E-value: 7.43e-04
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options