MULTISPECIES: globin domain-containing protein [Acinetobacter]
NO-inducible flavohemoprotein( domain architecture ID 1001654)
NO-inducible flavohemoprotein such as nitric oxide dioxygenase, which catalyzes the conversion of NO, O2, and NAD(P)H to NO3-, NAD(P)+, and H+, and is involved NO detoxification and NO signaling
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
PRK13289 super family | cl36224 | NO-inducible flavohemoprotein; |
1-251 | 6.23e-78 | |||||
NO-inducible flavohemoprotein; The actual alignment was detected with superfamily member PRK13289: Pssm-ID: 237337 [Multi-domain] Cd Length: 399 Bit Score: 240.47 E-value: 6.23e-78
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
PRK13289 | PRK13289 | NO-inducible flavohemoprotein; |
1-251 | 6.23e-78 | |||||
NO-inducible flavohemoprotein; Pssm-ID: 237337 [Multi-domain] Cd Length: 399 Bit Score: 240.47 E-value: 6.23e-78
|
|||||||||
FHP_Ae-globin-like | cd14779 | Globin domain of Alcaligenes eutrophus flavohemoglobin (FHP) and related proteins; ... |
1-140 | 4.66e-64 | |||||
Globin domain of Alcaligenes eutrophus flavohemoglobin (FHP) and related proteins; Flavohemoglobins (flavoHbs) function primarily as nitric oxide dioxygenases (NODs, EC 1.14.12.17), converting NO and O2 to inert NO3- (nitrate). They have an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD- and FAD-binding domain, and use the reducing power of cellular NAD(P)H to drive regeneration of the ferrous heme. They protect from nitrosative stress (the broad range of cellular toxicities caused by NO), and modulate NO signaling pathways. NO scavenging by flavoHb maintains Medicago truncatula-Sinorhizobium meliloti symbiosis. Alcaligenes eutrophus FHP contains a phospholipid-binding site. Pssm-ID: 381287 Cd Length: 140 Bit Score: 196.51 E-value: 4.66e-64
|
|||||||||
Hmp | COG1017 | Hemoglobin-like flavoprotein [Energy production and conversion]; |
1-138 | 3.97e-47 | |||||
Hemoglobin-like flavoprotein [Energy production and conversion]; Pssm-ID: 440640 [Multi-domain] Cd Length: 135 Bit Score: 153.00 E-value: 3.97e-47
|
|||||||||
Globin | pfam00042 | Globin; |
27-132 | 9.21e-04 | |||||
Globin; Pssm-ID: 459646 [Multi-domain] Cd Length: 117 Bit Score: 38.04 E-value: 9.21e-04
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
PRK13289 | PRK13289 | NO-inducible flavohemoprotein; |
1-251 | 6.23e-78 | |||||
NO-inducible flavohemoprotein; Pssm-ID: 237337 [Multi-domain] Cd Length: 399 Bit Score: 240.47 E-value: 6.23e-78
|
|||||||||
FHP_Ae-globin-like | cd14779 | Globin domain of Alcaligenes eutrophus flavohemoglobin (FHP) and related proteins; ... |
1-140 | 4.66e-64 | |||||
Globin domain of Alcaligenes eutrophus flavohemoglobin (FHP) and related proteins; Flavohemoglobins (flavoHbs) function primarily as nitric oxide dioxygenases (NODs, EC 1.14.12.17), converting NO and O2 to inert NO3- (nitrate). They have an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD- and FAD-binding domain, and use the reducing power of cellular NAD(P)H to drive regeneration of the ferrous heme. They protect from nitrosative stress (the broad range of cellular toxicities caused by NO), and modulate NO signaling pathways. NO scavenging by flavoHb maintains Medicago truncatula-Sinorhizobium meliloti symbiosis. Alcaligenes eutrophus FHP contains a phospholipid-binding site. Pssm-ID: 381287 Cd Length: 140 Bit Score: 196.51 E-value: 4.66e-64
|
|||||||||
FHb-globin | cd08922 | Globin domain of flavohemoglobins (flavoHbs); FlavoHbs function primarily as nitric oxide ... |
1-140 | 9.67e-61 | |||||
Globin domain of flavohemoglobins (flavoHbs); FlavoHbs function primarily as nitric oxide dioxygenases (NODs, EC 1.14.12.17), converting NO and O2 to inert NO3- (nitrate). They have an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD- and FAD-binding domain, and use the reducing power of cellular NAD(P)H to drive regeneration of the ferrous heme. They protect from nitrosative stress (the broad range of cellular toxicities caused by NO), and modulate NO signaling pathways. NO scavenging by flavoHb attenuates the expression of the nitrosative stress response, affects the swarming behavior of Escherichia coli, and maintains squid-Vibrio fischeri and Medicago truncatula-Sinorhizobium meliloti symbioses. FlavoHb expression affects Aspergillus nidulans sexual development and mycotoxin production, and Dictyostelium discoideum development. This family also includes some single-domain goblins (SDgbs). Pssm-ID: 381260 Cd Length: 140 Bit Score: 187.78 E-value: 9.67e-61
|
|||||||||
Hmp | COG1017 | Hemoglobin-like flavoprotein [Energy production and conversion]; |
1-138 | 3.97e-47 | |||||
Hemoglobin-like flavoprotein [Energy production and conversion]; Pssm-ID: 440640 [Multi-domain] Cd Length: 135 Bit Score: 153.00 E-value: 3.97e-47
|
|||||||||
FHb-globin_3 | cd14783 | Globin domain of flavohemoglobins (flavoHbs); uncharacterized subgroup; FlavoHbs function ... |
1-140 | 6.95e-46 | |||||
Globin domain of flavohemoglobins (flavoHbs); uncharacterized subgroup; FlavoHbs function primarily as nitric oxide dioxygenases (NODs, EC 1.14.12.17), converting NO and O2 to inert NO3- (nitrate). They have an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD- and FAD-binding domain, and use the reducing power of cellular NAD(P)H to drive regeneration of the ferrous heme. They protect from nitrosative stress (the broad range of cellular toxicities caused by NO), and modulate NO signaling pathways. Pssm-ID: 271316 Cd Length: 140 Bit Score: 150.30 E-value: 6.95e-46
|
|||||||||
FHb_fungal-globin | cd19754 | Globin domain of fungal flavohemoglobin; FlavoHbs function primarily as nitric oxide ... |
1-140 | 1.15e-44 | |||||
Globin domain of fungal flavohemoglobin; FlavoHbs function primarily as nitric oxide dioxygenases (NODs, EC 1.14.12.17), converting NO and O2 to inert NO3- (nitrate). They have an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD- and FAD-binding domain, and use the reducing power of cellular NAD(P)H to drive regeneration of the ferrous heme. They protect from nitrosative stress (the broad range of cellular toxicities caused by NO), and modulate NO signaling pathways. NO scavenging by flavoHb attenuates the expression of the nitrosative stress response, affects the swarming behavior of Escherichia coli, and maintains squid-Vibrio fischeri and Medicago truncatula-Sinorhizobium meliloti symbioses. FlavoHb expression affects Aspergillus nidulans sexual development and mycotoxin production, and Dictyostelium discoideum development. Pssm-ID: 381294 Cd Length: 141 Bit Score: 147.10 E-value: 1.15e-44
|
|||||||||
VtHb-like_SDgb | cd14778 | Vitreoscilla stercoraria hemoglobin and related proteins; single-domain globins; VtHb is ... |
1-140 | 1.97e-44 | |||||
Vitreoscilla stercoraria hemoglobin and related proteins; single-domain globins; VtHb is homodimeric, and may both transport oxygen to terminal respiratory oxidases, and provide resistance to nitrosative stress. It has medium oxygen affinity and displays cooperative ligand-binding properties. VHb has biotechnological application, its expression in heterologous hosts (bacteria and plants) has improved growth and productivity under microaerobic conditions. Another member of this subfamily Campylobacter jejuni hemoglobin (Cgb) is monomeric, and plays a role in detoxifying NO. Along with a truncated globin Ctb, it is up-regulated by the transcription factor NssR in response to nitrosative stress. Pssm-ID: 381286 [Multi-domain] Cd Length: 140 Bit Score: 146.42 E-value: 1.97e-44
|
|||||||||
HmpPa-globin-like | cd14780 | Globin domain of Pseudomonas aeruginosa flavohemoglobin (HmpPa) and related proteins; ... |
1-140 | 5.79e-44 | |||||
Globin domain of Pseudomonas aeruginosa flavohemoglobin (HmpPa) and related proteins; Flavohemoglobins (flavoHbs) function primarily as nitric oxide dioxygenases (NODs, EC 1.14.12.17), converting NO and O2 to inert NO3- (nitrate). They have an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD- and FAD-binding domain, and use the reducing power of cellular NAD(P)H to drive regeneration of the ferrous heme. They protect from nitrosative stress (the broad range of cellular toxicities caused by NO), and modulate NO signaling pathways. The physiological role of HmpPa is thought to be detoxification of NO under aerobic conditions. Pssm-ID: 381288 Cd Length: 140 Bit Score: 145.29 E-value: 5.79e-44
|
|||||||||
Yhb1-globin-like | cd14777 | Globin domain of Saccharomyces cerevisiae flavohemoglobin (Yhb1p) and related domains; ... |
1-140 | 9.75e-44 | |||||
Globin domain of Saccharomyces cerevisiae flavohemoglobin (Yhb1p) and related domains; FlavoHbs function primarily as nitric oxide dioxygenases (NODs, EC 1.14.12.17), converting NO and O2 to inert NO3- (nitrate). They have an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD- and FAD-binding domain, and use the reducing power of cellular NAD(P)H to drive regeneration of the ferrous heme. They protect from nitrosative stress (the broad range of cellular toxicities caused by NO), and modulate NO signaling pathways. S. cerevisiae Yhb1p has been shown to protect against nitrosative stress and to control ferric reductase activity; it may participate in regulating the activity of plasma membrane ferric reductase(s). Also included in this subfamily is Dictyostelium discoideum FlavoHb, the expression of which affects D. discoideum development. Pssm-ID: 381285 Cd Length: 140 Bit Score: 144.79 E-value: 9.75e-44
|
|||||||||
HmpEc-globin-like | cd14776 | Globin domain of Escherichia coli flavohemoglobin (Hmp) and related proteins; Flavohemoglobins ... |
1-140 | 3.96e-43 | |||||
Globin domain of Escherichia coli flavohemoglobin (Hmp) and related proteins; Flavohemoglobins (flavoHbs) function primarily as nitric oxide dioxygenases (NODs, EC 1.14.12.17), converting NO and O2 to inert NO3- (nitrate). They have an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD- and FAD-binding domain, and use the reducing power of cellular NAD(P)H to drive regeneration of the ferrous heme. They protect from nitrosative stress (the broad range of cellular toxicities caused by NO), and modulate NO signaling pathways. This subfamily includes Vibrio fischeri Hmp and E.coli Hmp. NO scavenging by flavoHb affects the swarming behavior of Escherichia coli, and protects against NO during initiation of the squid-Vibrio symbiosis. E.coli Hmp can catalyze the reduction of several alkylhydroperoxide substrates into their corresponding alcohols using NADH as an electron donor, and it has been suggested that it participates in the repair of the lipid membrane oxidative damage generated during oxidative/nitrosative stress. Pssm-ID: 271309 Cd Length: 138 Bit Score: 142.99 E-value: 3.96e-43
|
|||||||||
FHb-globin_1 | cd14781 | Globin domain of flavohemoglobins (flavoHbs); uncharacterized subgroup; FlavoHbs function ... |
1-140 | 8.22e-40 | |||||
Globin domain of flavohemoglobins (flavoHbs); uncharacterized subgroup; FlavoHbs function primarily as nitric oxide dioxygenases (NODs, EC 1.14.12.17), converting NO and O2 to inert NO3- (nitrate). They have an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD- and FAD-binding domain, and use the reducing power of cellular NAD(P)H to drive regeneration of the ferrous heme. They protect from nitrosative stress (the broad range of cellular toxicities caused by NO), and modulate NO signaling pathways. This subfamily may contain some single-domain goblins (SDgbs). Pssm-ID: 381289 Cd Length: 139 Bit Score: 134.53 E-value: 8.22e-40
|
|||||||||
FHb-globin_2 | cd14782 | Globin domain of flavohemoglobins (flavoHbs); uncharacterized subgroup; FlavoHbs function ... |
1-140 | 4.84e-28 | |||||
Globin domain of flavohemoglobins (flavoHbs); uncharacterized subgroup; FlavoHbs function primarily as nitric oxide dioxygenases (NODs, EC 1.14.12.17), converting NO and O2 to inert NO3- (nitrate). They have an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD- and FAD-binding domain, and use the reducing power of cellular NAD(P)H to drive regeneration of the ferrous heme. They protect from nitrosative stress (the broad range of cellular toxicities caused by NO), and modulate NO signaling pathways. Pssm-ID: 381290 Cd Length: 143 Bit Score: 104.40 E-value: 4.84e-28
|
|||||||||
Mb-like | cd01040 | myoglobin-like; M family globin domain; This family includes chimeric (FHbs/flavohemoglobins) ... |
9-132 | 2.16e-13 | |||||
myoglobin-like; M family globin domain; This family includes chimeric (FHbs/flavohemoglobins) and single-domain globins: FHbs, Ngbs/neuroglobins, Cygb/cytoglobins, GbE/avian eye specific globin E, GbX/globin X, amphibian GbY/globin Y, Mb/myoglobin, HbA/hemoglobin-alpha, HbB/hemoglobin-beta, SDgbs/single-domain globins related to FHbs, and Adgb/androglobin. The M family exhibits the canonical secondary structure of hemoglobins, a 3-over-3 alpha-helical sandwich structure (3/3 Mb-fold), built by eight alpha-helical segments (named A through H). In Adgbs, the globin domain is split into two: helices C-H are followed by helices A-B and the two parts are separated by the IQ motif. Although rearranged, the globin domain of most Adgbs contains a number of conserved residues which play critical roles in heme-coordination and gas ligand binding. Adgbs have been omitted from this A-H helix cd. Pssm-ID: 381254 Cd Length: 133 Bit Score: 65.17 E-value: 2.16e-13
|
|||||||||
HGbI-like | cd12131 | Hell's gate globin I (HGbI) from Methylacidophilum infernorum and related proteins; HGbI is a ... |
5-133 | 3.29e-13 | |||||
Hell's gate globin I (HGbI) from Methylacidophilum infernorum and related proteins; HGbI is a single-domain heme-containing protein isolated from Methylacidiphilum infernorum, an aerobic acidophilic and thermophilic methanotroph. M. infernorum grows optimally at pH 2.0 and 60C and its home is New Zealand's Hell's Gate geothermal park. The physiological role of HGbI has yet to be determined. It has an extremely strong resistance to auto-oxidation, and has fast oxygen-binding/slow release characteristics. Its CO on-rate is comparable to the O2 on-rate, and it is able to bind acetate with high affinity in the ferric state. The coordination of the heme iron changes in the ferrous form from pentacoordinate at low pH to predominantly hexacoordinate at high pH; in the ferric form, it is predominantly hexacoordinate at all pH. Pssm-ID: 381269 [Multi-domain] Cd Length: 128 Bit Score: 64.49 E-value: 3.29e-13
|
|||||||||
flavohem_like_fad_nad_binding | cd06184 | FAD_NAD(P)H binding domain of flavohemoglobin. Flavohemoglobins have a globin domain ... |
148-251 | 1.49e-12 | |||||
FAD_NAD(P)H binding domain of flavohemoglobin. Flavohemoglobins have a globin domain containing a B-type heme fused with a ferredoxin reductase-like FAD/NAD-binding domain. Flavohemoglobins detoxify nitric oxide (NO) via an NO dioxygenase reaction. The hemoglobin domain adopts a globin fold with an embedded heme molecule. Flavohemoglobins also have a C-terminal reductase domain with bindiing sites for FAD and NAD(P)H. This domain catalyzes the conversion of NO + O2 + NAD(P)H to NO3- + NAD(P)+. Instead of the oxygen transport function of hemoglobins, flavohemoglobins seem to act in NO dioxygenation and NO signalling. Pssm-ID: 99781 Cd Length: 247 Bit Score: 65.27 E-value: 1.49e-12
|
|||||||||
Mb-like_oxidoreductase | cd19753 | Globin domain of uncharacterized oxidoreductases containing a FAD/NADH binding domain; This ... |
9-125 | 1.04e-05 | |||||
Globin domain of uncharacterized oxidoreductases containing a FAD/NADH binding domain; This subfamily is composed of uncharacterized proteins containing an N-terminal myoglobin-like (M family globin) domain and a C-terminal oxygenase reductase FAD/NADH binding domain belonging to the ferredoxin reductase (FNR) family and is usually part of multi-component bacterial oxygenases which oxidize hydrocarbons using oxygen as the oxidant. The domain architecture of this subfamily is similar to flavohemoglobins, which function primarily as nitric oxide dioxygenases (NODs, EC 1.14.12.17), converting NO and O2 to inert NO3- (nitrate). They protect from nitrosative stress (the broad range of cellular toxicities caused by NO), and modulate NO signaling pathways. NO scavenging by flavoHb attenuates the expression of the nitrosative stress response, affects the swarming behavior of Escherichia coli, and maintains squid-Vibrio fischeri and Medicago truncatula-Sinorhizobium meliloti symbioses. Pssm-ID: 381293 [Multi-domain] Cd Length: 121 Bit Score: 43.77 E-value: 1.04e-05
|
|||||||||
GbX | cd12137 | Globin_X (GbX); Zebrafish globin X (GbX) is expressed at low levels in neurons of the central ... |
1-123 | 1.96e-04 | |||||
Globin_X (GbX); Zebrafish globin X (GbX) is expressed at low levels in neurons of the central nervous system, and appears to be associated with the sensory system. GbX is likely to be attached to the cell membrane via S-palmitoylation and N-myristoylation. It's unlikely to have a true respiratory function as it is membrane-associated. It has been suggested that it may protect the lipids in the cell membrane from oxidation or act as a redox-sensing or signaling protein. Zebrafish GbX is hexacoordinate, and displays cooperative O2 binding. Pssm-ID: 271287 Cd Length: 145 Bit Score: 40.36 E-value: 1.96e-04
|
|||||||||
Globin | pfam00042 | Globin; |
27-132 | 9.21e-04 | |||||
Globin; Pssm-ID: 459646 [Multi-domain] Cd Length: 117 Bit Score: 38.04 E-value: 9.21e-04
|
|||||||||
Fpr | COG1018 | Flavodoxin/ferredoxin--NADP reductase [Energy production and conversion]; |
151-251 | 1.09e-03 | |||||
Flavodoxin/ferredoxin--NADP reductase [Energy production and conversion]; Pssm-ID: 440641 [Multi-domain] Cd Length: 231 Bit Score: 39.39 E-value: 1.09e-03
|
|||||||||
class1-2_nsHbs_Lbs | cd08923 | Class1 nonsymbiotic hemoglobins (nsHbs), class II nsHbs, leghemoglobins (Lbs,) and related ... |
2-129 | 5.04e-03 | |||||
Class1 nonsymbiotic hemoglobins (nsHbs), class II nsHbs, leghemoglobins (Lbs,) and related proteins; Class1 nsHbs include the dimeric hexacoordinate Trema tomentosa nsHb and the dimeric hexacoordinate nsHb from monocot barley. Also belonging to this family is ParaHb, a dimeric pentacoordinate Hb from the root nodules of Parasponia andersonii, a non-legume capable of symbiotic nitrogen fixation. ParaHb is unusual in that it has different heme redox potentials for each subunit; it may have evolved from class1 nsHbs. Lbs are pentacoordinate, and facilitate the diffusion of O2 to the respiring Rhizobium bacteroids within root nodules. They may have evolved from class 2 nonsymbiotic hemoglobins (class2 nsHb). Pssm-ID: 381261 Cd Length: 147 Bit Score: 36.31 E-value: 5.04e-03
|
|||||||||
Blast search parameters | ||||
|