Solute carrier 5 family, sodium/glucose transporters and related proteins; solute-binding ...
14-417
2.00e-12
Solute carrier 5 family, sodium/glucose transporters and related proteins; solute-binding domain; This family represents the solute-binding domain of SLC5 proteins (also called the sodium/glucose cotransporter family or solute sodium symporter family) that co-transport Na+ with sugars, amino acids, inorganic ions or vitamins. Family members include: the human glucose (SGLT1, 2, 4, 5), chiro-inositol (SGLT5), myo-inositol (SMIT), choline (CHT), iodide (NIS), multivitamin (SMVT), and monocarboxylate (SMCT) cotransporters, as well as Vibrio parahaemolyticus glucose/galactose (vSGLT), and Escherichia coli proline (PutP) and pantothenate (PutF) cotransporters. Vibrio parahaemolyticus Na(+)/galactose cotransporter (vSGLT) has 13 transmembrane helices (TMs): TM-1, an inverted topology repeat: TMs1-5 and TMs6-10, and TMs 11-12 (TMs numbered to conform to the solute carrier 6 family Aquifex aeolicus LeuT). One member of this family, human SGLT3, has been characterized as a glucose sensor and not a transporter. Members of this family are important in human physiology and disease.
Pssm-ID: 271357 [Multi-domain] Cd Length: 454 Bit Score: 68.74 E-value: 2.00e-12
Sodium:solute symporter family; This family includes Swiss:P33413 which is not in the Prosite ...
55-204
7.50e-05
Sodium:solute symporter family; This family includes Swiss:P33413 which is not in the Prosite entry. Membership of this family is supported by a significant blast score.
Pssm-ID: 109527 [Multi-domain] Cd Length: 406 Bit Score: 45.02 E-value: 7.50e-05
transporter, SSS family; The Solute:Sodium Symporter (SSS) Family (TC 2.A.21) Members of the ...
44-203
5.64e-03
transporter, SSS family; The Solute:Sodium Symporter (SSS) Family (TC 2.A.21) Members of the SSS family catalyze solute:Na+ symport. The solutes transported may be sugars, amino acids, nucleosides, inositols, vitamins, urea or anions, depending on the system. Members of the SSS family have been identified in bacteria, archaea and animals, and all functionally well characterized members catalyze solute uptake via Na+ symport. Proteins of the SSS generally share a core of 13 TMSs, but different members of the family may have different numbers of TMSs. A 13 TMS topology with a periplasmic N-terminus and a cytoplasmic C-terminus has been experimentally determined for the proline:Na+ symporter, PutP, of E. coli. [Transport and binding proteins, Cations and iron carrying compounds]
Pssm-ID: 273282 [Multi-domain] Cd Length: 407 Bit Score: 38.82 E-value: 5.64e-03
Solute carrier 5 family, sodium/glucose transporters and related proteins; solute-binding ...
14-417
2.00e-12
Solute carrier 5 family, sodium/glucose transporters and related proteins; solute-binding domain; This family represents the solute-binding domain of SLC5 proteins (also called the sodium/glucose cotransporter family or solute sodium symporter family) that co-transport Na+ with sugars, amino acids, inorganic ions or vitamins. Family members include: the human glucose (SGLT1, 2, 4, 5), chiro-inositol (SGLT5), myo-inositol (SMIT), choline (CHT), iodide (NIS), multivitamin (SMVT), and monocarboxylate (SMCT) cotransporters, as well as Vibrio parahaemolyticus glucose/galactose (vSGLT), and Escherichia coli proline (PutP) and pantothenate (PutF) cotransporters. Vibrio parahaemolyticus Na(+)/galactose cotransporter (vSGLT) has 13 transmembrane helices (TMs): TM-1, an inverted topology repeat: TMs1-5 and TMs6-10, and TMs 11-12 (TMs numbered to conform to the solute carrier 6 family Aquifex aeolicus LeuT). One member of this family, human SGLT3, has been characterized as a glucose sensor and not a transporter. Members of this family are important in human physiology and disease.
Pssm-ID: 271357 [Multi-domain] Cd Length: 454 Bit Score: 68.74 E-value: 2.00e-12
Na(+)/urea-polyamine cotransporter DUR3, and related proteins; solute-binding domain; Dur3 is ...
12-336
6.08e-05
Na(+)/urea-polyamine cotransporter DUR3, and related proteins; solute-binding domain; Dur3 is the yeast plasma membrane urea transporter. Saccharomyces cerevisiae DUR3 also transports polyamine. The polyamine uptake of S. cerevisiae DUR3 is activated upon its phosphorylation by polyamine transport protein kinase 2 (PTK2). S. cerevisiae DUR3 also appears to play a role in regulating the cellular boron concentration. This subfamily belongs to the solute carrier 5 (SLC5) transporter family.
Pssm-ID: 271370 Cd Length: 493 Bit Score: 45.27 E-value: 6.08e-05
Sodium:solute symporter family; This family includes Swiss:P33413 which is not in the Prosite ...
55-204
7.50e-05
Sodium:solute symporter family; This family includes Swiss:P33413 which is not in the Prosite entry. Membership of this family is supported by a significant blast score.
Pssm-ID: 109527 [Multi-domain] Cd Length: 406 Bit Score: 45.02 E-value: 7.50e-05
uncharacterized subgroup of the Na(+)/iodide (NIS) cotransporter subfamily; putative ...
139-218
1.71e-03
uncharacterized subgroup of the Na(+)/iodide (NIS) cotransporter subfamily; putative solute-binding domain; Proteins belonging to the same subfamily as this uncharacterized subgroup include i) NIS, which transports I-, and other anions including ClO4-, SCN-, and Br-, ii) SMVT, which transports biotin, pantothenic acid and lipoate, and iii) the Na(+)/monocarboxylate cotransporters SMCT1 and 2. SMCT1 is a high-affinity transporter while SMCT2 is a low-affinity transporter. This subgroup belongs to the solute carrier 5 (SLC5) transporter family.
Pssm-ID: 271384 [Multi-domain] Cd Length: 479 Bit Score: 40.66 E-value: 1.71e-03
Na(+)- and Cl(-)-dependent choline cotransporter CHT and related proteins; solute-binding ...
14-207
3.12e-03
Na(+)- and Cl(-)-dependent choline cotransporter CHT and related proteins; solute-binding domain; Na+/choline co-transport by CHT is Cl- dependent. Human CHT (also called CHT1) is encoded by the SLC5A7 gene, and is expressed in the central nervous system. hCHT1-mediated choline uptake may be the rate-limiting step in acetylcholine synthesis, and essential for cholinergic transmission. Changes in this choline uptake in cortical neurons may contribute to Alzheimer's dementia. This subfamily belongs to the solute carrier 5 (SLC5) transporter family.
Pssm-ID: 271368 [Multi-domain] Cd Length: 464 Bit Score: 39.81 E-value: 3.12e-03
transporter, SSS family; The Solute:Sodium Symporter (SSS) Family (TC 2.A.21) Members of the ...
44-203
5.64e-03
transporter, SSS family; The Solute:Sodium Symporter (SSS) Family (TC 2.A.21) Members of the SSS family catalyze solute:Na+ symport. The solutes transported may be sugars, amino acids, nucleosides, inositols, vitamins, urea or anions, depending on the system. Members of the SSS family have been identified in bacteria, archaea and animals, and all functionally well characterized members catalyze solute uptake via Na+ symport. Proteins of the SSS generally share a core of 13 TMSs, but different members of the family may have different numbers of TMSs. A 13 TMS topology with a periplasmic N-terminus and a cytoplasmic C-terminus has been experimentally determined for the proline:Na+ symporter, PutP, of E. coli. [Transport and binding proteins, Cations and iron carrying compounds]
Pssm-ID: 273282 [Multi-domain] Cd Length: 407 Bit Score: 38.82 E-value: 5.64e-03
Uncharacterized bacterial solute carrier 5 subfamily; putative solute-binding domain; SLC5 (also called the sodium/glucose cotransporter family or solute sodium symporter family) is a family of proteins that co-transports Na+ with sugars, amino acids, inorganic ions or vitamins. Prokaryotic members of this family include Vibrio parahaemolyticus glucose/galactose (vSGLT), and Escherichia coli proline (PutP) and pantothenate (PutF) cotransporters. One member of the SLC5 family, human SGLT3, has been characterized as a glucose sensor and not a transporter. This subfamily belongs to the solute carrier 5 (SLC5) transporter family.
Pssm-ID: 271371 Cd Length: 493 Bit Score: 39.10 E-value: 5.96e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options